JP2010200480A - Embedded magnetic motor - Google Patents

Embedded magnetic motor Download PDF

Info

Publication number
JP2010200480A
JP2010200480A JP2009042179A JP2009042179A JP2010200480A JP 2010200480 A JP2010200480 A JP 2010200480A JP 2009042179 A JP2009042179 A JP 2009042179A JP 2009042179 A JP2009042179 A JP 2009042179A JP 2010200480 A JP2010200480 A JP 2010200480A
Authority
JP
Japan
Prior art keywords
magnet
motor
permanent magnet
rotor
longitudinal axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009042179A
Other languages
Japanese (ja)
Inventor
Arata Kusase
草瀬  新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009042179A priority Critical patent/JP2010200480A/en
Publication of JP2010200480A publication Critical patent/JP2010200480A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve cost reduction by using a ferrite magnet for a permanent magnet of a rotor so as not to cause torque deterioration. <P>SOLUTION: An embedded magnet motor 10 includes a stator 13 having a laminate core having a three-phase winding 11 wound therearound, and a rotor 16 having a circular laminate core in which the outer circumference is spaced from the stator 13 with a gap length G1 of a predetermined dimension and the inner circumference is fixed to a rotating shaft. In the motor 10, rectangular slits 21 having a longitudinal direction axis following the imaginary radiation line extending from the center of the circular shape and rectangular permanent magnets 22 having a longitudinal direction following the imaginary radiation line are disposed on the surface of the circular shape of the rotor 16 so as to be 1/2 of the number of motor poles P alternately at a predetermined interval in the circumferential direction of the circular shape, and segment regions 23 at as many parts as the number of motor poles P between each of the slits 21 and the permanent magnets 22, and the segment regions 23 are alternately magnetized in N- and S-poles along the circumferential direction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ハイブリッド車両や電気自動車等の車両に用いられる埋め込み磁石式モータに関する。   The present invention relates to an embedded magnet motor used in a vehicle such as a hybrid vehicle or an electric vehicle.

従来、埋め込み磁石式モータとしては、例えば特許文献1に記載の永久磁石形同期回転電機のロータがある。この構成は、図1に示すように、薄板を軸方向に積層したロータコア1と、このロータコア1に所定ピッチで設けた矩形の永久磁石挿入穴2と、この永久磁石挿入穴2に挿入する永久磁石4aよりなる永久磁石形同期回転電機のロータにおいて、永久磁石挿入穴2を1極ピッチ置きに設け、径方向の極性を同一とした永久磁石4aを挿入し、永久磁石形同期回転電機のロータを構成する。永久磁石を軸方向に分割し、おのおのの長さの和を永久磁石挿入穴2の軸方向長さより短くし、ロータコアの両端面を合わせたり端面より深く挿入したりして、永久磁石挿入穴2の軸方向に磁気的空間部を形成する。さらに、軸方向に3分割し、中央のロータコアに設けた挿入穴の高さを両側のものより高くし、中央の挿入穴にエネルギ積の低い永久磁石を、両側の挿入穴にエネルギ積の高い永久磁石を挿入して構成されている。   Conventionally, as an embedded magnet type motor, for example, there is a rotor of a permanent magnet type synchronous rotating electric machine described in Patent Document 1. As shown in FIG. 1, this configuration includes a rotor core 1 in which thin plates are laminated in the axial direction, a rectangular permanent magnet insertion hole 2 provided in the rotor core 1 at a predetermined pitch, and a permanent magnet inserted into the permanent magnet insertion hole 2. In a rotor of a permanent magnet type synchronous rotating electric machine composed of magnets 4a, permanent magnet insertion holes 2 are provided every other pole pitch, and permanent magnets 4a having the same radial polarity are inserted, and the rotor of the permanent magnet type synchronous rotating electric machine. Configure. The permanent magnet is divided in the axial direction, the sum of the respective lengths is made shorter than the axial length of the permanent magnet insertion hole 2, and both end surfaces of the rotor core are aligned or inserted deeper than the end surface to obtain the permanent magnet insertion hole 2. A magnetic space is formed in the axial direction. Furthermore, it is divided into three in the axial direction, the height of the insertion hole provided in the central rotor core is made higher than that on both sides, a permanent magnet with a low energy product is installed in the central insertion hole, and a high energy product is installed in the insertion holes on both sides. It is configured by inserting a permanent magnet.

特開平8−107639号公報JP-A-8-107639

しかし、上記の特許文献1において、ロータに高トルクを発生させるためには、一般的に永久磁石に希土類磁石を軸心方向に埋め込み磁極表面近くの鉄心吸引トルクを活用することが考えられるが、希土類磁石は高価であるという問題がある。そこで、安価なフェライト磁石に置き換えることが考えられるが、保磁力の弱いフェライトでは十分な磁力とするためには厚くする必要がありその厚い磁石を埋め込むと表面近くの鉄の部分は過少となり鉄心吸引トルクが発揮できない問題がある。厚くせずに配置すると特に弱め界磁制御の際にステータからの減磁界が加わった時に保磁力が弱いフェライトのため不可逆減磁となってトルクの低下する恐れが生じる問題がある。上記特許文献1のロータにおいては希土類磁石にフェライト磁石を組み合わせ、少量の希土類磁石を削減する構成も採られているが、基本的に希土類磁石を用いる構成となっているので、その分、コスト高となっている。   However, in Patent Document 1 described above, in order to generate high torque in the rotor, it is generally considered that a rare earth magnet is embedded in a permanent magnet in the axial direction and the iron core attracting torque near the surface of the magnetic pole is utilized. There is a problem that rare earth magnets are expensive. Therefore, it is conceivable to replace it with an inexpensive ferrite magnet, but it is necessary to increase the thickness of the ferrite with a weak coercive force so that sufficient magnetic force is obtained. There is a problem that torque cannot be exhibited. If they are not thickened, there is a problem that the torque may be reduced due to irreversible demagnetization due to ferrite having a weak coercive force when a demagnetizing field is applied from the stator during field weakening control. In the rotor of the above-mentioned Patent Document 1, a configuration in which a ferrite magnet is combined with a rare earth magnet and a small amount of the rare earth magnet is reduced is adopted. However, since the configuration basically uses a rare earth magnet, the cost increases accordingly. It has become.

本発明は、このような事情に鑑みてなされたものであり、トルクの低下を招かないようにロータの永久磁石にフェライト磁石を用いて低コスト化を図ることができる埋め込み磁石式モータを提供することを目的とする。   The present invention has been made in view of such circumstances, and provides an embedded magnet motor that can reduce the cost by using a ferrite magnet as a permanent magnet of a rotor so as not to cause a reduction in torque. For the purpose.

上記目的を達成するためになされた請求項1に記載の発明は、三相巻線が巻装された積層鉄心を有するステータと、このステータに所定寸法の空隙長を持って外周が離間し、且つ内周が回転軸に固定された環状の積層鉄心を有するロータとを備える埋め込み磁石式モータにおいて、前記ロータの環状の表面に、当該環状の中心から延びる仮想放射線に長手方向軸が沿った長方形状のスリットと、前記仮想放射線に長手方向軸が沿った長方形状の永久磁石とを、当該環状の周方向に所定間隔で交互にモータ極数Pの1/2個づつ配設し、各々のスリットと永久磁石との間に、モータ極数P箇所のセグメント領域(前記の表面近くの鉄心部領域)が形成され、これらセグメント領域が周方向に沿ってN極とS極に交互に磁化されるようにしたことを特徴とする。   The invention according to claim 1, which has been made to achieve the above object, has a stator having a laminated iron core around which a three-phase winding is wound, and the stator has a gap length of a predetermined dimension and the outer periphery is spaced apart. And a rotor having an annular laminated iron core whose inner periphery is fixed to a rotation shaft, and a rectangular whose longitudinal axis is along the virtual radiation extending from the center of the ring on the annular surface of the rotor Each having a slit of a rectangular shape and rectangular permanent magnets whose longitudinal axes follow the virtual radiation are alternately arranged at predetermined intervals in the circumferential direction of the ring, each being ½ of the number of motor poles P. Between the slit and the permanent magnet, segment areas of P number of motor poles (iron core area near the surface) are formed, and these segment areas are alternately magnetized into N pole and S pole along the circumferential direction. What I did And features.

この構成によれば、ステータからロータへ弱め界磁制御を行った場合、ステータから見ると、スリットと永久磁石とが並列に配置されているので、ステータからの逆磁界による磁束が永久磁石のみならずスリットにも流れる。従って、永久磁石への過大な減磁界の印加を防止して高速回転域でのトルク低下を防止することができる。また、永久磁石が、極数Pの1/2の数でよく、且つスリット21の間に配置されるため、永久磁石一個の幅を広くすることができ、これによって磁力が強められる。従って、永久磁石がフェライト磁石の場合はトルクの低下を来たすことが無くなり、希土類磁石の場合はトルクが向上する。   According to this configuration, when field-weakening control is performed from the stator to the rotor, the slit and the permanent magnet are arranged in parallel when viewed from the stator. Also flows. Accordingly, it is possible to prevent application of an excessive demagnetizing field to the permanent magnet and to prevent a decrease in torque in the high speed rotation region. Further, since the number of permanent magnets may be 1/2 of the number of poles P and is disposed between the slits 21, the width of one permanent magnet can be widened, thereby increasing the magnetic force. Therefore, when the permanent magnet is a ferrite magnet, the torque does not decrease, and when the permanent magnet is a rare earth magnet, the torque is improved.

請求項2に記載の発明は、請求項1に記載の埋め込み磁石式モータにおいて、前記スリットの前記仮想放射線に沿った長手方向軸と直交する方向の幅は、前記ステータと前記ロータとの空隙長よりも幅広で、且つ前記永久磁石の前記仮想放射線に沿った長手方向軸と直交する方向の幅よりも狭い寸法であることを特徴とする。   According to a second aspect of the present invention, in the embedded magnet motor according to the first aspect, the width of the slit in a direction perpendicular to the longitudinal axis along the virtual radiation is a gap length between the stator and the rotor. The width of the permanent magnet is smaller than the width of the permanent magnet in the direction perpendicular to the longitudinal axis along the virtual radiation.

この構成によれば、スリットの幅が空隙長よりも幅広なので、永久磁石からの磁束はスリットには流れにくく前記空隙を通してステータの方に流れ易く、更に、スリットの幅は永久磁石の幅よりも狭いので、高速回転領域などで弱め界磁作用をさせるステータからの逆磁界が加わったときに逆磁界は前記磁石よりも前記スリットに流し易くなりその結果前記永久磁石への逆磁界は緩和されるという作用が得られる。   According to this configuration, since the width of the slit is wider than the gap length, the magnetic flux from the permanent magnet is less likely to flow into the slit and more easily to the stator through the gap, and the slit width is larger than the width of the permanent magnet. Since it is narrow, when a reverse magnetic field is applied from a stator that causes a field weakening action in a high-speed rotation region or the like, the reverse magnetic field is easier to flow through the slit than the magnet, and as a result, the reverse magnetic field to the permanent magnet is relaxed. The effect is obtained.

請求項3に記載の発明は、請求項1又は2に記載の埋め込み磁石式モータにおいて、前記スリットは、前記永久磁石間の中央乃至は略中央に配置されていることを特徴とする。   According to a third aspect of the present invention, in the embedded magnet type motor according to the first or second aspect, the slit is disposed at the center or substantially at the center between the permanent magnets.

この構成によれば、逆界磁により永久磁石及びスリットに発生する磁束をバランスよく流すことができるので、トルクが安定的に発生してロータをスムーズに回転させることができる。   According to this configuration, since the magnetic flux generated in the permanent magnet and the slit by the reversed field can flow in a balanced manner, torque can be stably generated and the rotor can be smoothly rotated.

請求項4に記載の発明は、請求項1〜3のいずれか1項に記載の埋め込み磁石式モータにおいて、前記永久磁石は、当該永久磁石の長手方向軸が前記仮想放射線に対して斜めに配置されていることを特徴とする。   The invention according to claim 4 is the embedded magnet type motor according to any one of claims 1 to 3, wherein the permanent magnet is arranged such that a longitudinal axis of the permanent magnet is inclined with respect to the virtual radiation. It is characterized by being.

この構成によれば、ステータに対向する方向の永久磁石の面積が広がるので、その分、逆磁界による磁束を多く流すことができ、トルクを増大させることができる。   According to this configuration, since the area of the permanent magnet in the direction facing the stator is increased, a larger amount of magnetic flux due to the reverse magnetic field can be flowed, and the torque can be increased.

請求項5に記載の発明は、請求項1〜4のいずれか1項に記載の埋め込み磁石式モータにおいて、前記永久磁石は、フェライト磁石であることを特徴とする。   The invention according to claim 5 is the embedded magnet type motor according to any one of claims 1 to 4, wherein the permanent magnet is a ferrite magnet.

この構成によれば、永久磁石を安価なフェライト磁石とすることができるので、埋め込み磁石式モータのコストを低減させることができる。   According to this configuration, since the permanent magnet can be an inexpensive ferrite magnet, the cost of the embedded magnet motor can be reduced.

請求項6に記載の発明は、請求項1,3,4のいずれか1項に記載の埋め込み磁石式モータにおいて、前記永久磁石を希土類磁石とし、この希土類磁石の前記仮想放射線に沿った長手方向軸と直交する方向の幅を、前記スリットの前記仮想放射線に沿った長手方向軸と直交する方向の幅以下の寸法としたことを特徴とする。   A sixth aspect of the present invention is the embedded magnet motor according to any one of the first, third, and fourth aspects, wherein the permanent magnet is a rare earth magnet, and the rare earth magnet is longitudinally along the virtual radiation. The width in the direction orthogonal to the axis is set to a dimension equal to or smaller than the width in the direction orthogonal to the longitudinal axis along the virtual radiation of the slit.

この構成によれば、永久磁石が希土類磁石であっても、当該希土類磁石の幅が狭く且つモータ極数の1/2の数で済むので、全体的に希土類磁石の使用量を減少させることができ、その分、モータ製作コストを低減させることができる。   According to this configuration, even if the permanent magnet is a rare earth magnet, the width of the rare earth magnet is narrow and the number of motor poles is ½, so that the amount of rare earth magnet used can be reduced overall. The motor manufacturing cost can be reduced correspondingly.

以上説明したように本発明によれば、トルクの低下を招かないようにロータの永久磁石にフェライト磁石を用いて低コスト化を図ることができる埋め込み磁石式モータを提供することができるという効果がある。   As described above, according to the present invention, there is an effect that it is possible to provide an embedded magnet motor that can reduce the cost by using a ferrite magnet as a permanent magnet of a rotor so as not to cause a reduction in torque. is there.

従来の埋め込み磁石式モータとしての永久磁石形同期回転電機のロータの構成を示す図である。It is a figure which shows the structure of the rotor of the permanent-magnet-type synchronous rotary electric machine as a conventional embedded magnet type motor. 本発明の実施形態に係る埋め込み磁石式モータの構成を示し、(a)は埋め込み磁石式モータの断面図、(b)は埋め込み磁石式モータのロータの一部表面図である。The structure of the embedded magnet type motor which concerns on embodiment of this invention is shown, (a) is sectional drawing of an embedded magnet type motor, (b) is a partial surface view of the rotor of an embedded magnet type motor. 本実施形態の埋め込み磁石式モータのロータの他の構成を示す一部表面図である。It is a partial surface view which shows the other structure of the rotor of the embedded magnet type motor of this embodiment.

以下、本発明の実施形態を、図面を参照して説明する。但し、本明細書中の全図において相互に対応する部分には同一符号を付し、重複部分においては後述での説明を適時省略する。   Embodiments of the present invention will be described below with reference to the drawings. However, parts corresponding to each other in all the drawings in this specification are denoted by the same reference numerals, and description of the overlapping parts will be omitted as appropriate.

図2は、本発明の実施形態に係る埋め込み磁石式モータの構成を示し、(a)は埋め込み磁石式モータの断面図、(b)は埋め込み磁石式モータのロータの一部表面図である。   2A and 2B show a configuration of an embedded magnet motor according to an embodiment of the present invention. FIG. 2A is a cross-sectional view of the embedded magnet motor, and FIG. 2B is a partial surface view of a rotor of the embedded magnet motor.

図2に示す埋め込み磁石式モータ(IPMモータ)10は、例えば電気自動車に搭載されており、電力変換用のインバータ(図示せず)に接続された三相巻線11と、この三相巻線11を巻装した積層鉄心12とを有して成るステータ13を備え、このステータ13に対して0.3mmの空隙長G1を持って外周が離間し、且つ内周が回転軸14に固定された環状の積層鉄心15を有して成るロータ16を備えて構成されている。   An embedded magnet motor (IPM motor) 10 shown in FIG. 2 is mounted on an electric vehicle, for example, and includes a three-phase winding 11 connected to an inverter (not shown) for power conversion, and the three-phase winding. 11 is provided with a stator core 13 having a laminated iron core 12 wound thereon, the outer circumference is spaced apart from the stator 13 with a gap length G1 of 0.3 mm, and the inner circumference is fixed to the rotary shaft 14. A rotor 16 having an annular laminated iron core 15 is provided.

本実施形態の特徴は、ロータ16の環状の表面に、当該環状の中心から延びる仮想の放射線上に長手方向が沿った細長い長方形状のスリット21と、同様に仮想放射線上に沿った長方形状のフェライト磁石による永久磁石22とを、周方向に所定間隔で交互に当該モータの極数Pの1/2個づつ配設し、各々のスリット21と永久磁石22との間に、極数P箇所のセグメント領域23が形成され、これらセグメント領域23が周方向に沿ってN極とS極に交互に磁化されるように構成した点にある。ここで、極数が8であるとし、スリット21及び永久磁石22が各々4個づつ配設されているとする。また、矢印Y1がロータ16の回転方向である。   The feature of the present embodiment is that an elongated rectangular slit 21 along the longitudinal direction on the virtual radiation extending from the annular center is formed on the annular surface of the rotor 16, and the rectangular shape along the virtual radiation. Permanent magnets 22 made of ferrite magnets are alternately arranged at predetermined intervals in the circumferential direction, each being ½ of the number of poles P of the motor, and the number of poles P is between each slit 21 and the permanent magnet 22. Segment regions 23 are formed, and these segment regions 23 are configured to be alternately magnetized into N and S poles along the circumferential direction. Here, it is assumed that the number of poles is 8, and four slits 21 and four permanent magnets 22 are arranged. An arrow Y1 is the rotation direction of the rotor 16.

また、スリット21の仮想放射線と直交方向の幅21wは、ステータ13とロータ16との空隙長G1よりも幅広で且つ永久磁石22の仮想放射線と直交方向の幅22wよりも狭い寸法である。ここでは、空隙長G1が0.3mmであり、永久磁石22の幅22wが8mmである場合に、スリット21の幅21wが1.5mmであるとする。   Further, the width 21w in the direction orthogonal to the virtual radiation of the slit 21 is larger than the gap length G1 between the stator 13 and the rotor 16 and smaller than the width 22w in the direction orthogonal to the virtual radiation of the permanent magnet 22. Here, it is assumed that when the gap length G1 is 0.3 mm and the width 22w of the permanent magnet 22 is 8 mm, the width 21w of the slit 21 is 1.5 mm.

このような構成の埋め込み磁石式モータ10において、高速回転域などで制限電圧を超える駆動領域で、ステータ13からロータ16へ弱め界磁制御を行ったとする。この場合、ステータ13から見ると、スリット21と永久磁石22とが並列に配置されているので、ステータ13からの逆磁界による磁束が図3にφ22、φ21で示すように、永久磁石22とスリット21に流れる。つまり、永久磁石22のみならず、スリット21にもセグメント領域23を通って磁束φ21が分散されて流れるので、これがリラクタンストルクとなる。なお、ロータ16のトルクは、永久磁石22を流れる磁束φ22によるマグネットトルクと、リラクタンストルクとの和となる。   In the embedded magnet motor 10 having such a configuration, it is assumed that field weakening control is performed from the stator 13 to the rotor 16 in a driving region that exceeds the limit voltage in a high-speed rotation region or the like. In this case, since the slit 21 and the permanent magnet 22 are arranged in parallel when viewed from the stator 13, the magnetic flux generated by the reverse magnetic field from the stator 13 is represented by φ22 and φ21 in FIG. It flows to 21. That is, not only the permanent magnet 22 but also the slit 21 flows through the segment region 23 in a distributed manner, so that this becomes reluctance torque. The torque of the rotor 16 is the sum of the magnet torque generated by the magnetic flux φ22 flowing through the permanent magnet 22 and the reluctance torque.

従って、永久磁石22のみに減磁界による過大な磁束φ22が流れることなく、スリット21にも磁束φ21が分散して流れることになる。このように分散して磁束φ21が最適に流れるようにするため、スリット21の幅21wを空隙長G1よりも幅広としてある。更にその幅21wが永久磁石22の幅22wよりも狭くなっているのは、磁束φ21を分散して流しすぎないようにするためである。   Therefore, the excessive magnetic flux φ22 due to the demagnetizing field does not flow only in the permanent magnet 22, but the magnetic flux φ21 flows in the slit 21 in a distributed manner. In order to distribute the magnetic flux φ21 optimally by dispersing in this way, the width 21w of the slit 21 is made wider than the gap length G1. Further, the reason why the width 21w is narrower than the width 22w of the permanent magnet 22 is to prevent the magnetic flux φ21 from being distributed excessively.

また、弱め界磁制御を行なわない場合、スリット21の幅21wが空隙長G1よりも幅広で永久磁石22の幅22wよりも狭くしてあるので、スリット21への磁束φ21の漏れも永久磁石22に対して相対的に少ない。更に、永久磁石22が、極数Pの1/2の数でよくスリット21の間に配置されるため、永久磁石22一個の幅22wを広くすることができ、これによって磁力が強められるのでトルクの低下を来たすことはない。   Further, when the field weakening control is not performed, the width 21w of the slit 21 is wider than the gap length G1 and narrower than the width 22w of the permanent magnet 22, so that the leakage of the magnetic flux φ21 to the slit 21 also occurs with respect to the permanent magnet 22. And relatively few. Further, since the permanent magnets 22 may be ½ the number of poles P and are arranged between the slits 21, the width 22 w of each permanent magnet 22 can be widened, thereby increasing the magnetic force and torque. Never came down.

このようなフェライト磁石が永久磁石22としてロータ16に配設された埋め込み磁石式モータ10を、従来の希土類磁石であるネオジウム磁石が永久磁石としてロータに配設された埋め込み磁石式モータと比較したところ、トルクや減磁耐力がほぼ同等であり、使用されている永久磁石22のコストが約1/3となる効果が得られた。つまり、トルクの低下を招かないようにロータ16の永久磁石にフェライト磁石を用いて低コスト化を図ることができる。   When the embedded magnet type motor 10 in which such a ferrite magnet is disposed in the rotor 16 as a permanent magnet 22 is compared with an embedded magnet type motor in which a neodymium magnet as a conventional rare earth magnet is disposed in the rotor as a permanent magnet. Further, the torque and the demagnetization resistance are almost equal, and the effect that the cost of the used permanent magnet 22 is about 1/3 is obtained. That is, it is possible to reduce the cost by using a ferrite magnet as the permanent magnet of the rotor 16 so as not to reduce the torque.

このように本実施形態の埋め込み磁石式モータ10は、ロータ16の環状の表面に、当該環状の中心から延びる仮想放射線に長手方向軸が沿った長方形状のスリット21と、仮想放射線に長手方向軸が沿った長方形状の永久磁石22とを、当該環状の周方向に所定間隔で交互にモータ極数Pの1/2個づつ配設し、各々のスリット21と永久磁石22との間に、モータ極数P箇所のセグメント領域23が形成され、これらセグメント領域23が周方向に沿ってN極とS極に交互に磁化されるようにしてある。   As described above, the embedded magnet type motor 10 of the present embodiment has the rectangular slit 21 whose longitudinal axis extends along the virtual radiation extending from the annular center on the annular surface of the rotor 16, and the longitudinal axis along the virtual radiation. Are arranged at intervals of a predetermined interval in the annular circumferential direction, and the number of motor poles P is alternately arranged between the slits 21 and the permanent magnets 22. The segment regions 23 having the number P of motor poles are formed, and these segment regions 23 are alternately magnetized to the N and S poles along the circumferential direction.

これによって、ステータ13からロータ16へ弱め界磁制御を行った場合、ステータ13から見ると、スリット21と永久磁石22とが並列に配置されているので、ステータ13からの逆磁界による磁束が永久磁石22のみならずスリット21にも流れる。従って、永久磁石22への過大な減磁界の印加を防止して高速回転域でのトルク低下を防止することができる。また、永久磁石22が、極数Pの1/2の数でよく、且つスリット2121の間に配置されるため、永久磁石22一個の幅を広くすることができ、これによって磁力が強められる。従って、永久磁石22がフェライト磁石の場合はトルクの低下を来たすことが無くなる。永久磁石22が希土類磁石の場合はトルクが向上する。   Thus, when field weakening control is performed from the stator 13 to the rotor 16, the slit 21 and the permanent magnet 22 are arranged in parallel when viewed from the stator 13, so that the magnetic flux generated by the reverse magnetic field from the stator 13 is generated by the permanent magnet 22. Not only flows into the slit 21 but also. Accordingly, it is possible to prevent application of an excessive demagnetizing field to the permanent magnet 22 and to prevent a decrease in torque in the high speed rotation region. Further, since the number of permanent magnets 22 may be ½ of the number of poles P and disposed between the slits 2121, the width of one permanent magnet 22 can be widened, thereby increasing the magnetic force. Therefore, when the permanent magnet 22 is a ferrite magnet, the torque does not decrease. When the permanent magnet 22 is a rare earth magnet, the torque is improved.

また、スリット21の仮想放射線に沿った長手方向軸と直交する方向の幅を、ステータ13とロータ16との空隙長G1よりも幅広で、且つ永久磁石22の仮想放射線に沿った長手方向軸と直交する方向の幅よりも狭い寸法とする。   The width of the slit 21 in the direction orthogonal to the longitudinal axis along the virtual radiation is wider than the gap length G1 between the stator 13 and the rotor 16 and the longitudinal axis along the virtual radiation of the permanent magnet 22 The dimension is narrower than the width in the orthogonal direction.

これによって、スリット21の幅が空隙長G1よりも幅広なので、永久磁石22からの磁束はスリット21には流れにくく空隙G1を通してステータの方に流れ易く、更に、スリット21の幅は永久磁石22の幅よりも狭いので、高速回転領域などで弱め界磁作用をさせるステータ13からの逆磁界が加わったときに逆磁界は永久磁石22よりもスリット21に流し易くなりその結果永久磁石22への逆磁界は緩和されることになる。   Accordingly, since the width of the slit 21 is wider than the gap length G1, the magnetic flux from the permanent magnet 22 hardly flows into the slit 21 and easily flows toward the stator through the gap G1, and further, the width of the slit 21 is the width of the permanent magnet 22. Since it is narrower than the width, when a reverse magnetic field from the stator 13 that causes a field weakening action in a high-speed rotation region or the like is applied, the reverse magnetic field is more likely to flow through the slit 21 than the permanent magnet 22, and as a result, reverse to the permanent magnet 22. The magnetic field will be relaxed.

更に、スリット21を、永久磁石22間の中央乃至は略中央に配置する。これによって、逆界磁により永久磁石22及びスリット21に発生する磁束をバランスよく流すことができるので、トルクが安定的に発生してロータ16をスムーズに回転させることができる。   Further, the slit 21 is arranged at the center or substantially at the center between the permanent magnets 22. As a result, the magnetic flux generated in the permanent magnet 22 and the slit 21 by the reverse field can flow in a well-balanced manner, so that torque can be stably generated and the rotor 16 can be rotated smoothly.

更には、永久磁石22を、当該永久磁石22の長手方向軸が仮想放射線に対して斜めに配置する。これによって、ステータ13に対向する方向の永久磁石22の面積が広がるので、その分、逆磁界による磁束を多く流すことができ、トルクを増大させることができる。   Furthermore, the permanent magnet 22 is disposed so that the longitudinal axis of the permanent magnet 22 is oblique to the virtual radiation. As a result, the area of the permanent magnet 22 in the direction facing the stator 13 is increased, so that a larger amount of magnetic flux due to the reverse magnetic field can be caused to flow, and the torque can be increased.

この他、図3に示すように、永久磁石をネオジウム磁石等の希土類磁石32とし、この希土類磁石32の仮想放射線に沿った長手方向軸と直交する方向の幅32wを、スリット21の幅19w以下の寸法としても良い。この構成の場合、永久磁石が希土類磁石32であっても、当該希土類磁石32の幅32wが狭く且つモータ極数の1/2の数で済むので、全体的に希土類磁石32の使用量を減少させることができ、その分、モータ製作コストを低減させることができる。   In addition, as shown in FIG. 3, the permanent magnet is a rare earth magnet 32 such as a neodymium magnet, and the width 32w of the rare earth magnet 32 in the direction perpendicular to the longitudinal axis along the virtual radiation is equal to or less than the width 19w of the slit 21. It is good also as a dimension. In the case of this configuration, even if the permanent magnet is the rare earth magnet 32, the width 32w of the rare earth magnet 32 is narrow and the number of motor poles is ½, so that the amount of the rare earth magnet 32 used is reduced overall. The motor manufacturing cost can be reduced accordingly.

10 埋め込み磁石式モータ
11 三相巻線
12 積層鉄心
13 ステータ
14 回転軸
15 積層鉄心
16 ロータ
21 スリット
22 永久磁石
23 セグメント領域
32 希土類磁石
DESCRIPTION OF SYMBOLS 10 Embedded magnet type motor 11 Three-phase winding 12 Laminated iron core 13 Stator 14 Rotating shaft 15 Laminated iron core 16 Rotor 21 Slit 22 Permanent magnet 23 Segment area 32 Rare earth magnet

Claims (6)

三相巻線が巻装された積層鉄心を有するステータと、このステータに所定寸法の空隙長を持って外周が離間し、且つ内周が回転軸に固定された環状の積層鉄心を有するロータとを備える埋め込み磁石式モータにおいて、
前記ロータの環状の表面に、当該環状の中心から延びる仮想放射線に長手方向軸が沿った長方形状のスリットと、前記仮想放射線に長手方向軸が沿った長方形状の永久磁石とを、当該環状の周方向に所定間隔で交互にモータ極数Pの1/2個づつ配設し、各々のスリットと永久磁石との間に、モータ極数P箇所のセグメント領域が形成され、これらセグメント領域が周方向に沿ってN極とS極に交互に磁化されるようにしたことを特徴とする埋め込み磁石式モータ。
A stator having a laminated iron core around which three-phase windings are wound, and a rotor having an annular laminated iron core having an outer circumference spaced apart from the stator with a gap length of a predetermined dimension and an inner circumference fixed to a rotating shaft; In an embedded magnet type motor comprising:
On the annular surface of the rotor, a rectangular slit whose longitudinal axis extends along virtual radiation extending from the annular center, and a rectangular permanent magnet whose longitudinal axis extends along the virtual radiation, The motor pole number P is alternately arranged at predetermined intervals in the circumferential direction, and segment areas of P motor pole numbers are formed between the slits and the permanent magnets. An embedded magnet motor characterized in that it is magnetized alternately in N and S poles along the direction.
前記スリットの前記仮想放射線に沿った長手方向軸と直交する方向の幅は、前記ステータと前記ロータとの空隙長よりも幅広で、且つ前記永久磁石の前記仮想放射線に沿った長手方向軸と直交する方向の幅よりも狭い寸法であることを特徴とする請求項1に記載の埋め込み磁石式モータ。   The width of the slit in the direction orthogonal to the longitudinal axis along the virtual radiation is wider than the gap length between the stator and the rotor and orthogonal to the longitudinal axis of the permanent magnet along the virtual radiation. The embedded magnet motor according to claim 1, wherein the embedded magnet motor has a size smaller than a width in a direction in which the motor is driven. 前記スリットは、前記永久磁石間の中央乃至は略中央に配置されていることを特徴とする請求項1又は2に記載の埋め込み磁石式モータ。   The embedded magnet type motor according to claim 1, wherein the slit is arranged at a center or a substantially center between the permanent magnets. 前記永久磁石は、当該永久磁石の長手方向軸が前記仮想放射線に対して斜めに配置されていることを特徴とする請求項1〜3のいずれか1項に記載の埋め込み磁石式モータ。   The embedded magnet type motor according to any one of claims 1 to 3, wherein the permanent magnet is disposed such that a longitudinal axis of the permanent magnet is inclined with respect to the virtual radiation. 前記永久磁石は、フェライト磁石であることを特徴とする請求項1〜4のいずれか1項に記載の埋め込み磁石式モータ。   The embedded magnet motor according to claim 1, wherein the permanent magnet is a ferrite magnet. 前記永久磁石を希土類磁石とし、この希土類磁石の前記仮想放射線に沿った長手方向軸と直交する方向の幅を、前記スリットの前記仮想放射線に沿った長手方向軸と直交する方向の幅以下の寸法としたことを特徴とする請求項1,3,4のいずれか1項に記載の埋め込み磁石式モータ。   The permanent magnet is a rare earth magnet, and the width of the rare earth magnet in the direction perpendicular to the longitudinal axis along the virtual radiation is smaller than the width of the slit in the direction perpendicular to the longitudinal axis along the virtual radiation. The embedded magnet motor according to claim 1, wherein the motor is an embedded magnet motor.
JP2009042179A 2009-02-25 2009-02-25 Embedded magnetic motor Pending JP2010200480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009042179A JP2010200480A (en) 2009-02-25 2009-02-25 Embedded magnetic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009042179A JP2010200480A (en) 2009-02-25 2009-02-25 Embedded magnetic motor

Publications (1)

Publication Number Publication Date
JP2010200480A true JP2010200480A (en) 2010-09-09

Family

ID=42824597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009042179A Pending JP2010200480A (en) 2009-02-25 2009-02-25 Embedded magnetic motor

Country Status (1)

Country Link
JP (1) JP2010200480A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101182595B1 (en) 2011-03-17 2012-09-18 (주) 코모텍 Interior permanent magnet motor
JP2013183574A (en) * 2012-03-02 2013-09-12 Aichi Elec Co Rotor and motor
JP2017118692A (en) * 2015-12-24 2017-06-29 アスモ株式会社 Motor and method for adjusting magnetic flux of the same
DE102016223976A1 (en) * 2016-12-01 2018-06-07 Schaeffler Technologies AG & Co. KG Rotor of an electric motor
CN114337019A (en) * 2021-11-19 2022-04-12 中车永济电机有限公司 Permanent magnet auxiliary type synchronous reluctance motor with alternately salient pole rotors
DE112020007517T5 (en) 2020-08-20 2023-06-22 Mitsubishi Electric Corporation ROTATING ELECTRICAL MACHINE

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101182595B1 (en) 2011-03-17 2012-09-18 (주) 코모텍 Interior permanent magnet motor
JP2013183574A (en) * 2012-03-02 2013-09-12 Aichi Elec Co Rotor and motor
JP2017118692A (en) * 2015-12-24 2017-06-29 アスモ株式会社 Motor and method for adjusting magnetic flux of the same
DE102016223976A1 (en) * 2016-12-01 2018-06-07 Schaeffler Technologies AG & Co. KG Rotor of an electric motor
DE112020007517T5 (en) 2020-08-20 2023-06-22 Mitsubishi Electric Corporation ROTATING ELECTRICAL MACHINE
CN114337019A (en) * 2021-11-19 2022-04-12 中车永济电机有限公司 Permanent magnet auxiliary type synchronous reluctance motor with alternately salient pole rotors

Similar Documents

Publication Publication Date Title
US9172279B2 (en) Automotive embedded permanent magnet rotary electric machine
JP5491484B2 (en) Switched reluctance motor
US7598645B2 (en) Stress distributing permanent magnet rotor geometry for electric machines
JP5329902B2 (en) Rotor structure of rotating electrical machine
JP5347588B2 (en) Embedded magnet motor
JP5774081B2 (en) Rotating electric machine
US20100231079A1 (en) Axial gap motor
EP1643618B1 (en) Rotor for rotary electric machine
WO2013098912A1 (en) Rotor
JP6595443B2 (en) Rotating electric machine
US20190348879A1 (en) Rotor for rotating electric machine
JP4844570B2 (en) Permanent magnet type motor
US20140210296A1 (en) Rotor for permanent magnet type motor, method of manufacturing rotor for permanent magnet type motor, and permanent magnet type motor
JP2006223052A (en) Permanent-magnet motor
JP2010213455A (en) Claw pole type motor
US20110163618A1 (en) Rotating Electrical Machine
US20130278106A1 (en) Rotor assembly
JP2009017669A (en) Permanent magnet type rotating machine
JP2009131070A (en) Magnet type synchronous machine
JP2010200480A (en) Embedded magnetic motor
JP2014155373A (en) Multi-gap rotary electric machine
JP2008289209A (en) Brushless dc motor
JP2008283806A (en) Buried-magnet motor
JP4080273B2 (en) Permanent magnet embedded motor
KR200462692Y1 (en) Spoke type motor