JP6116108B2 - Permanent magnet synchronous machine - Google Patents

Permanent magnet synchronous machine Download PDF

Info

Publication number
JP6116108B2
JP6116108B2 JP2016042948A JP2016042948A JP6116108B2 JP 6116108 B2 JP6116108 B2 JP 6116108B2 JP 2016042948 A JP2016042948 A JP 2016042948A JP 2016042948 A JP2016042948 A JP 2016042948A JP 6116108 B2 JP6116108 B2 JP 6116108B2
Authority
JP
Japan
Prior art keywords
permanent magnet
synchronous machine
rotor core
central
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016042948A
Other languages
Japanese (ja)
Other versions
JP2016105696A (en
Inventor
暁史 高橋
暁史 高橋
恵理 丸山
恵理 丸山
湧井 真一
真一 湧井
Original Assignee
ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド
ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド, ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド filed Critical ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド
Priority to JP2016042948A priority Critical patent/JP6116108B2/en
Publication of JP2016105696A publication Critical patent/JP2016105696A/en
Application granted granted Critical
Publication of JP6116108B2 publication Critical patent/JP6116108B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は永久磁石同期機に関するものである。   The present invention relates to a permanent magnet synchronous machine.
永久磁石同期機では、回転子に永久磁石を埋設するInterior Permanent Magnet(以下「IPM」という。)構造が広く採用されている。IPM構造の永久磁石同期機に埋設する永久磁石に、安価でかつ安定調達が可能なフェライト磁石が採用され始めている。   In the permanent magnet synchronous machine, an interior permanent magnet (hereinafter referred to as “IPM”) structure in which a permanent magnet is embedded in a rotor is widely adopted. Low-cost ferrite magnets that can be stably procured have begun to be used for permanent magnets embedded in permanent magnet synchronous machines having an IPM structure.
しかしながら、永久磁石の性能は残留磁束密度と保持力という2つの物理量で表され、フェライト磁石の残留磁束密度及び保持力は、ネオジウム磁石の約1/3である。従って、現在広く使用されているネオジウム磁石をフェライト磁石に置き換えた場合、著しい性能の低下を招くことになる。   However, the performance of a permanent magnet is expressed by two physical quantities, ie, residual magnetic flux density and coercive force, and the residual magnetic flux density and coercive force of a ferrite magnet are about 1/3 of a neodymium magnet. Therefore, when a neodymium magnet that is widely used at present is replaced with a ferrite magnet, the performance is significantly reduced.
特許文献1は、永久磁石を埋め込む収容孔が径方向内側に凸状である永久磁石埋め込み回転子を開示している。特許文献1によれば、磁石磁束の発生面積を大きくするとともに、永久磁石の径方向外側の鉄心断面積を大きくすることで、リラクタンストルクを積極的に活用して性能の向上を図ることができる。   Patent Document 1 discloses a permanent magnet embedded rotor in which a housing hole for embedding a permanent magnet is convex radially inward. According to Patent Document 1, by increasing the magnetic flux generation area and increasing the core cross-sectional area on the radially outer side of the permanent magnet, the reluctance torque can be actively used to improve performance. .
特許第3507680号公報Japanese Patent No. 3507680
特許文献1の径方向内側に凸状である永久磁石収容孔の形状では、回転子の回転による遠心力、急加速及び急停止による慣性力によって、永久磁石が永久磁石収容孔内を移動する。そして、遠心力及び慣性力を永久磁石の極間側端部で集中して受け、永久磁石の破断及び材料特性の劣化を招くおそれがある。   In the shape of the permanent magnet accommodation hole that is convex radially inward in Patent Document 1, the permanent magnet moves in the permanent magnet accommodation hole by centrifugal force due to rotation of the rotor, inertial force due to sudden acceleration and sudden stop. Then, centrifugal force and inertial force are concentrated and received at the end portion between the poles of the permanent magnet, which may cause breakage of the permanent magnet and deterioration of material characteristics.
本発明は、永久磁石の破断及び材料特性の劣化を抑制する永久磁石同期機を提供することを目的とする。   An object of this invention is to provide the permanent magnet synchronous machine which suppresses the fracture | rupture of a permanent magnet and deterioration of a material characteristic.
本願発明の永久磁石同期機は、回転子と固定子から構成される永久磁石同期機であって、回転子は、径方向内側に凸となるよう構成される永久磁石と、永久磁石が配設される磁石収容孔と、磁石収容孔の径方向外側に位置する回転子鉄心と、回転子鉄心の極間側、且つ、磁石収容孔の径方向外側に位置するリブと、を備え、永久磁石同期機の運転停止中における永久磁石と回転子鉄心との間の遠心力方向における隙間は、永久磁石同期機の運転停止中における永久磁石とリブとの間の遠心力方向における隙間より狭い。   The permanent magnet synchronous machine of the present invention is a permanent magnet synchronous machine including a rotor and a stator, and the rotor includes a permanent magnet configured to protrude radially inward and a permanent magnet. A permanent magnet including a magnet receiving hole, a rotor iron core positioned on the radially outer side of the magnet receiving hole, and a rib positioned on the pole core side of the rotor iron core and on the radially outer side of the magnet receiving hole. The clearance in the centrifugal force direction between the permanent magnet and the rotor core during the operation stop of the synchronous machine is narrower than the clearance in the centrifugal force direction between the permanent magnet and the rib during the operation stop of the permanent magnet synchronous machine.
本発明によれば、永久磁石の破断及び材料特性の劣化を抑制することができる。   According to the present invention, breakage of a permanent magnet and deterioration of material properties can be suppressed.
本発明の第1の実施例による永久磁石同期機の全体図。1 is an overall view of a permanent magnet synchronous machine according to a first embodiment of the present invention. 本発明の第1の実施例による永久磁石同期機の1極分の部分断面図。1 is a partial cross-sectional view of one pole of a permanent magnet synchronous machine according to a first embodiment of the present invention. 本発明の第1の実施例による永久磁石同期機の1極分の部分断面図。1 is a partial cross-sectional view of one pole of a permanent magnet synchronous machine according to a first embodiment of the present invention. 本発明の第1の実施例の他形態による永久磁石同期機の1極分の部分断面図。The fragmentary sectional view for 1 pole of the permanent magnet synchronous machine by the other form of 1st Example of this invention. 本発明の第2の実施例による永久磁石同期機の1極分の部分断面図。The fragmentary sectional view for one pole of the permanent magnet synchronous machine by the 2nd example of the present invention. 本発明の第2の実施例による永久磁石同期機の1極分の部分断面図。The fragmentary sectional view for one pole of the permanent magnet synchronous machine by the 2nd example of the present invention.
以下、本発明の実施例について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.
図1は、本発明の第1の実施例における永久磁石同期機の全体図である。永久磁石同期機は回転子1と固定子30から構成される。回転子1は、径方向内側に凸となるよう構成された永久磁石収容孔4と、永久磁石収容孔4の径方向外側に位置する回転子鉄心2と、回転子鉄心2の極間側で、且つ、永久磁石収容孔4の径方向外側に位置するリブ6を有している。   FIG. 1 is an overall view of a permanent magnet synchronous machine according to a first embodiment of the present invention. The permanent magnet synchronous machine includes a rotor 1 and a stator 30. The rotor 1 includes a permanent magnet housing hole 4 configured to protrude radially inward, a rotor core 2 positioned on the radially outer side of the permanent magnet housing hole 4, and an interpole side of the rotor core 2. And the rib 6 located in the radial direction outer side of the permanent magnet accommodation hole 4 is provided.
図2は、本発明の第1の実施例における永久磁石同期機の1極分の部分断面図である。永久磁石収容孔4には永久磁石3が配設される。永久磁石収容孔4と隣の極の永久磁石収容孔4とは、連結部11で連結される。また、永久磁石3は1極につき周方向に少なくとも2箇所の屈曲点42を有する。屈曲点42の間には磁化方向に対して垂直に伸びる中央部40が設けられている。また、屈曲点42を始端として極の端部側に向けて伸びる少なくとも2つの側部41が設けられている。   FIG. 2 is a partial cross-sectional view of one pole of the permanent magnet synchronous machine in the first embodiment of the present invention. The permanent magnet 3 is disposed in the permanent magnet accommodation hole 4. The permanent magnet accommodation hole 4 and the adjacent permanent magnet accommodation hole 4 are connected by a connecting portion 11. The permanent magnet 3 has at least two bending points 42 in the circumferential direction per pole. A central portion 40 extending perpendicular to the magnetization direction is provided between the bending points 42. In addition, at least two side portions 41 extending from the bending point 42 toward the end of the pole are provided.
このような永久磁石3の形状は、U字形状と同様に磁石磁束発生面の表面積を大きくすることができるとともに、永久磁石3の径方向外側の鉄心断面積が大きくなるのでリラクタンストルクを積極的に活用することができる。   Such a shape of the permanent magnet 3 can increase the surface area of the magnet magnetic flux generating surface in the same manner as the U-shape, and the core cross-sectional area on the radially outer side of the permanent magnet 3 is increased, so that the reluctance torque is positively increased. It can be used for.
しかし、永久磁石3には、回転子1の回転による遠心力、急加速及び急停止による慣性力が働く。この遠心力や慣性力によって、永久磁石3は永久磁石収容孔4内部で移動する。   However, the permanent magnet 3 is subjected to centrifugal force due to the rotation of the rotor 1 and inertial force due to sudden acceleration and sudden stop. Due to this centrifugal force and inertial force, the permanent magnet 3 moves inside the permanent magnet accommodation hole 4.
フェライト磁石は焼成工程で成形体にうねりが発生するため、このうねり部分に相当する厚みを切削加工で除去する影響により、寸法公差が数百μmと大きくなる。フェライト磁石はうねりが大きく、希土類磁石の場合よりも数倍大きなクリアランスが生じるケースが珍しくない。また、フェライト磁石は希土類磁石に比べ残留磁束密度が低く、回転子鉄心2との磁気吸引力が弱い。そのため、フェライト磁石は希土類磁石に比べて永久磁石収容孔4内部で移動しやすく、永久磁石の破断及び材料特性の劣化を引き起こしやすい。   In the ferrite magnet, waviness is generated in the molded body in the firing step, and the dimensional tolerance becomes as large as several hundred μm due to the effect of removing the thickness corresponding to this wavy portion by cutting. Ferrite magnets have large undulations, and it is not uncommon to have a clearance several times larger than that of rare earth magnets. Further, the ferrite magnet has a lower residual magnetic flux density than the rare earth magnet, and has a weak magnetic attractive force with the rotor core 2. Therefore, the ferrite magnet is likely to move inside the permanent magnet accommodation hole 4 as compared with the rare earth magnet, and the permanent magnet is likely to be broken and the material characteristics are deteriorated.
そこで、本実施例では、極間側端部クリアランスの径方向における幅T1を中央部40と径方向外側の回転子鉄心2aとの間の径方向における隙間T3、又は、側部41と径方向外側の回転子鉄心2aとの間の径方向における隙間T2より長くしている。   Therefore, in the present embodiment, the radial width T1 of the inter-electrode side end clearance is set to the radial gap T3 between the central portion 40 and the radially outer rotor core 2a, or the side portion 41 and the radial direction. It is longer than the gap T2 in the radial direction between the outer rotor core 2a.
この構成により、永久磁石3の極間側端部がリブ6と接触する前に、中央部40又は側部41が回転子鉄心2に接触するため、永久磁石3の極間側端部がリブ6に接触するのを回避することができる。従って、特定箇所に集中して遠心力が加わることを回避して、永久磁石3の破断および材料特性の劣化を確実に防止することができる。   With this configuration, before the end portion between the poles of the permanent magnet 3 contacts the rib 6, the central portion 40 or the side portion 41 contacts the rotor core 2, so that the end portion between the poles of the permanent magnet 3 is the rib. 6 can be avoided. Therefore, it is possible to prevent the permanent magnet 3 from being broken and the material properties from being deteriorated by avoiding the centrifugal force from being concentrated on a specific location.
また、永久磁石3は、回転子1の急加速及び急停止による慣性力によって回転方向に移動する。隙間T3が隙間T2より狭い場合、遠心力によって中央部40と回転子鉄心2は接触するが、側部41と回転子鉄心2は接触するとは限らない。つまり、急加速及び急停止による慣性力によって側部41と回転子鉄心2が接触したり離れたりする可能性がある。   Further, the permanent magnet 3 moves in the rotation direction by the inertial force due to the rapid acceleration and sudden stop of the rotor 1. When the gap T3 is narrower than the gap T2, the central portion 40 and the rotor core 2 are in contact with each other by centrifugal force, but the side portion 41 and the rotor core 2 are not necessarily in contact with each other. That is, there is a possibility that the side portion 41 and the rotor core 2 come into contact with or separate from each other due to inertial force due to sudden acceleration and sudden stop.
そこで、本実施例では中央部40と径方向外側の回転子鉄心2aとの間の径方向における隙間T3を、側部41と径方向外側の回転子鉄心2aとの間の径方向における隙間T2よりも長くしている。この構成によれば、遠心力によって側部41が径方向外側の回転子鉄心2aへの接触を維持でき、慣性力によって側部41と回転子鉄心2が接触したり離れたりすることを防止することができる。   Therefore, in this embodiment, the radial gap T3 between the central portion 40 and the radially outer rotor core 2a is used as the radial gap T2 between the side portion 41 and the radially outer rotor core 2a. Longer than that. According to this configuration, the side portion 41 can maintain contact with the radially outer rotor core 2a by centrifugal force, and the side portion 41 and the rotor core 2 are prevented from coming into contact with or separated from each other by inertial force. be able to.
このように、側部41と回転子鉄心2とを面接触させて遠心力や慣性力を分散させることで、特定箇所に集中して遠心力や慣性力が加わることを回避することができる。そのため、永久磁石3の破断及び材料特性の劣化を抑制することができる。   In this way, by bringing the side portion 41 and the rotor core 2 into surface contact and dispersing centrifugal force and inertial force, it is possible to avoid the centrifugal force and inertial force being concentrated on a specific location. Therefore, the breakage of the permanent magnet 3 and the deterioration of the material characteristics can be suppressed.
なお、側部41を直線形状にすることで、側部41と回転子鉄心2との磁気吸引力を一様にすることができるため、側部41と回転子鉄心2とをより確実に面接触させることができる。   In addition, since the magnetic attractive force of the side part 41 and the rotor core 2 can be made uniform by making the side part 41 into a linear shape, the side part 41 and the rotor core 2 can be more reliably faced. Can be contacted.
図3に示すように、永久磁石3の極間側の端部の長さをリブ6の長さよりも短くし、角を削る構成にしてもよい。この構成によれば、永久磁石3の極間側の端部の角がリブ6に接触するのをより確実に回避することができる。   As shown in FIG. 3, the length of the end portion between the poles of the permanent magnet 3 may be made shorter than the length of the rib 6 to cut the corner. According to this configuration, it is possible to more reliably avoid contact of the corners of the end portions on the interpolar side of the permanent magnet 3 with the rib 6.
さらに、図3に示すように、永久磁石3の極間側の端部に、中央部40の磁化方向50に対して垂直となる面44を設けてもよい。中央部40の磁化方向50に対して垂直となる面44を底にして永久磁石3を置くことができ、永久磁石3を加工しやすくすることができる。   Further, as shown in FIG. 3, a surface 44 that is perpendicular to the magnetization direction 50 of the central portion 40 may be provided at the end portion of the permanent magnet 3 on the interpolar side. The permanent magnet 3 can be placed with the surface 44 perpendicular to the magnetization direction 50 of the central portion 40 as the bottom, and the permanent magnet 3 can be easily processed.
また、中央部40の磁化方向50に対して平行となる面43を設けてもよい。   Further, a surface 43 that is parallel to the magnetization direction 50 of the central portion 40 may be provided.
さらに、永久磁石3が永久磁石収容孔4との接触面上をスライドして移動するのを屈曲点42によって阻止することができる。なお、本実施例では永久磁石3が2箇所の屈曲点42を有する場合について説明したが、永久磁石3のスライドを阻止する構造であれば、1箇所の屈曲点42のみ有する構造や、屈曲点42を有さずに突起や摩擦等によってスライドを阻止する構造であってもよい。   Further, the bending point 42 can prevent the permanent magnet 3 from sliding on the contact surface with the permanent magnet accommodation hole 4. In this embodiment, the case where the permanent magnet 3 has two bending points 42 has been described. However, if the permanent magnet 3 has a structure that prevents the permanent magnet 3 from sliding, a structure having only one bending point 42 or a bending point may be used. The structure which does not have 42 but prevents a slide by protrusion, friction, etc. may be sufficient.
また、永久磁石3の極間側の端部を円弧形状で構成することによって、遠心力や慣性力を分散させることができる。   Further, by configuring the end portion between the poles of the permanent magnet 3 in an arc shape, centrifugal force and inertial force can be dispersed.
また、屈曲点42と回転子鉄心2との接触点45及び接触点46を円弧形状で構成することによって、遠心力や慣性力を分散させることができる。   Moreover, the centrifugal force and the inertial force can be dispersed by configuring the contact point 45 and the contact point 46 between the bending point 42 and the rotor core 2 in an arc shape.
さらに、屈曲点42と回転子鉄心2との接触点45における径方向外側の回転子鉄心2aの円弧の半径を永久磁石3の円弧の半径より大きくすることで、屈曲点42と回転子鉄心2との接触点45における永久磁石3と回転子鉄心2との接触を回避することができる。   Further, by making the radius of the arc of the rotor core 2 a radially outside the contact point 45 between the bending point 42 and the rotor core 2 larger than the radius of the arc of the permanent magnet 3, the bending point 42 and the rotor core 2 are made. The contact between the permanent magnet 3 and the rotor core 2 at the contact point 45 can be avoided.
また、屈曲点42と回転子鉄心2との接触点46における径方向内側の回転子鉄心2bの円弧の半径を永久磁石3の円弧の半径より小さくすることで、屈曲点42と回転子鉄心2との接触点46における永久磁石3と回転子鉄心2との接触を回避することができる。   Further, the radius of the arc of the rotor core 2b on the radially inner side at the contact point 46 between the bend point 42 and the rotor core 2 is made smaller than the radius of the arc of the permanent magnet 3, so that the bend point 42 and the rotor core 2 are reduced. The contact between the permanent magnet 3 and the rotor core 2 at the contact point 46 can be avoided.
以上のように、永久磁石収容孔4内のフェライト磁石のガタつきを抑えることができ、騒音発生を抑制するとともに、磁石の破断および材料特性の劣化を防止することが可能となる。   As described above, rattling of the ferrite magnet in the permanent magnet housing hole 4 can be suppressed, noise generation can be suppressed, and magnet breakage and material property deterioration can be prevented.
なお、図4に示すように、永久磁石3を径方向外側の回転子鉄心2aと径方向内側の回転子鉄心2bを別々に構成する分割コアであっても、同様の効果を得ることができる。   As shown in FIG. 4, the same effect can be obtained even if the permanent magnet 3 is a split core in which the radially outer rotor core 2a and the radially inner rotor core 2b are separately configured. .
径方向外側の回転子鉄心2aと永久磁石3の接触面、及び、径方向内側の回転子鉄心2bと永久磁石3の接触面をそれぞれ接着剤で接着固定する方法や、径方向外側の回転子鉄心2aと径方向内側の回転子鉄心2bの断面の一部に軸方向に貫通するボルト穴を設けるとともに、軸方向端部に肉厚の当て板を構造部材として設け、ボルト穴を通るボルトで回転子鉄心2と永久磁石3が一体となるよう締結する方法などが挙げられる。このような構成とすることで、構造体として設けられていたリブ6を削除できるため、永久磁石3からリブ6への漏れ磁束を低減して、トルク及び永久磁石同期機の効率を向上させることができる。   A method of bonding and fixing the contact surface between the radially outer rotor core 2a and the permanent magnet 3 and the contact surface between the radially inner rotor core 2b and the permanent magnet 3 with an adhesive, or a radially outer rotor A bolt hole penetrating in the axial direction is provided in a part of the cross section of the iron core 2a and the radially inner rotor core 2b, and a thick contact plate is provided as a structural member at the axial end portion. Examples include a method of fastening the rotor core 2 and the permanent magnet 3 so as to be integrated. By adopting such a configuration, the rib 6 provided as a structure can be deleted, so that the leakage magnetic flux from the permanent magnet 3 to the rib 6 is reduced, and the efficiency of the torque and the permanent magnet synchronous machine is improved. Can do.
なお、1極あたりの永久磁石3を周方向に分割して構成することも可能であるが、隣接する磁石の間に生じるクリアランス及び永久磁石の寸法公差に相当する分の磁束発生面積が消失するため、結果的に性能低下を招く。このため、永久磁石3は周方向に分割することなく一体で構成することが望ましい。   Although it is possible to divide the permanent magnet 3 per pole in the circumferential direction, the magnetic flux generation area corresponding to the clearance generated between adjacent magnets and the dimensional tolerance of the permanent magnet disappears. As a result, the performance is degraded. For this reason, it is desirable that the permanent magnet 3 is integrally formed without being divided in the circumferential direction.
また、永久磁石3の屈曲点42の間には、磁化方向に対して垂直に伸びる直線部分を設けているが、径方向内側に凸となるよう湾曲しても良いし、径方向内側に凸となるよう複数の直線部分で構成してもよい。   In addition, a straight line portion extending perpendicularly to the magnetization direction is provided between the bending points 42 of the permanent magnet 3, but may be curved so as to protrude radially inward or protrude radially inward. It may be composed of a plurality of straight line portions.
また、永久磁石3には、フェライト磁石のような保持力、残留磁束密度が比較的低い永久磁石を使用する。   The permanent magnet 3 is a permanent magnet having a relatively low coercive force and residual magnetic flux density, such as a ferrite magnet.
また、回転子鉄心2は軸方向に積み重ねた積層鋼板で構成しても良いし、圧粉磁心などで構成しても良いし、アモルファス金属などで構成しても良い。   The rotor core 2 may be composed of laminated steel plates stacked in the axial direction, may be composed of a dust core, or may be composed of amorphous metal.
また、本発明は、内転型回転子に限定されるものではなく、外転型回転子にも適用が可能である。   In addition, the present invention is not limited to the inner rotation type rotor, but can also be applied to the outer rotation type rotor.
図5に本発明の第2の実施例による永久磁石同期機の1極分の部分断面図を示す。中央部40の磁化方向に対して垂直方向における中央部40の長さW1は、側部41の磁化方向に対して垂直方向における側部41の長さW2よりも長い。この構成により、永久磁石3に働く回転方向の慣性力を低減することができる。   FIG. 5 shows a partial sectional view of one pole of a permanent magnet synchronous machine according to a second embodiment of the present invention. The length W1 of the central portion 40 in the direction perpendicular to the magnetization direction of the central portion 40 is longer than the length W2 of the side portion 41 in the perpendicular direction to the magnetization direction of the side portion 41. With this configuration, the inertial force in the rotational direction acting on the permanent magnet 3 can be reduced.
原理について、図6を用いて詳しく説明する。回転子1の急停止・脱調時には、図6に示すように永久磁石3に回転方向の力である慣性力60が印加される。このとき、慣性力60が最も集中するのは屈曲点42と回転子鉄心2との接触点45であり、屈曲点42と回転子鉄心2との接触点45での応力の大きさは、屈曲点42と回転子鉄心2との接触点45から慣性力60の作用点までの距離と、慣性力60との積、すなわち曲げモーメントで表すことができる。   The principle will be described in detail with reference to FIG. At the time of sudden stop / step-out of the rotor 1, an inertia force 60, which is a force in the rotation direction, is applied to the permanent magnet 3 as shown in FIG. At this time, the inertial force 60 is most concentrated at the contact point 45 between the bending point 42 and the rotor core 2, and the magnitude of the stress at the contact point 45 between the bending point 42 and the rotor core 2 is It can be expressed by the product of the distance from the contact point 45 between the point 42 and the rotor core 2 to the point of action of the inertial force 60 and the inertial force 60, that is, the bending moment.
つまり、屈曲点42と回転子鉄心2との接触点45から慣性力60の作用点までの距離の合計値を短くすることで、屈曲点42と回転子鉄心2との接触点45に加わる曲げモーメントを低減することができる。   That is, the bending applied to the contact point 45 between the bending point 42 and the rotor core 2 is shortened by shortening the total value of the distance from the contact point 45 between the bending point 42 and the rotor core 2 to the action point of the inertial force 60. The moment can be reduced.
したがって、図5に示すように、W2の長さをW1よりも小さくし、曲げモーメントを極力小さくすることで、屈曲点42と回転子鉄心2との接触点45への応力集中を低減でき、永久磁石3の破断および材料特性の劣化を抑制することができる。   Therefore, as shown in FIG. 5, the stress concentration at the contact point 45 between the bending point 42 and the rotor core 2 can be reduced by making the length of W2 smaller than W1 and making the bending moment as small as possible. Breakage of the permanent magnet 3 and deterioration of material characteristics can be suppressed.
以上説明したように、本願発明の永久磁石同期機は、回転子と固定子から構成される永久磁石同期機であって、回転子は、径方向内側に凸となるよう構成される永久磁石3と、永久磁石3が配設される永久磁石収容孔4と、永久磁石収容孔4の径方向外側に位置する径方向外側の回転子鉄心2aと、径方向外側の回転子鉄心2aの極間側、且つ、永久磁石収容孔4の径方向外側に位置するリブ6と、を備え、永久磁石3は中央部40と、中央部40の両端に位置する側部41と、を有し、中央部40と永久磁石収容孔4との間の径方向における隙間は側部41とリブ6との間の径方向における隙間より狭い。   As described above, the permanent magnet synchronous machine of the present invention is a permanent magnet synchronous machine including a rotor and a stator, and the rotor is a permanent magnet 3 configured to protrude radially inward. Between the permanent magnet housing hole 4 in which the permanent magnet 3 is disposed, the radially outer rotor core 2a located on the radially outer side of the permanent magnet housing hole 4, and the radially outer rotor core 2a. And a rib 6 positioned on the outer side in the radial direction of the permanent magnet housing hole 4, and the permanent magnet 3 has a central portion 40 and side portions 41 positioned at both ends of the central portion 40. The gap in the radial direction between the portion 40 and the permanent magnet accommodation hole 4 is narrower than the gap in the radial direction between the side portion 41 and the rib 6.
また、本願発明の永久磁石同期機は、側部41と永久磁石収容孔4との間の径方向における隙間は、側部41とリブ6との間の径方向における隙間より狭い。   Further, in the permanent magnet synchronous machine of the present invention, the radial gap between the side portion 41 and the permanent magnet accommodation hole 4 is narrower than the radial gap between the side portion 41 and the rib 6.
また、本願発明の永久磁石同期機は、永久磁石3は少なくとも2箇所の屈曲点42を有し、中央部40は2箇所の屈曲点42の間に位置する。   In the permanent magnet synchronous machine of the present invention, the permanent magnet 3 has at least two bending points 42, and the central portion 40 is located between the two bending points 42.
また、本願発明の永久磁石同期機は、中央部40と永久磁石収容孔4との間の径方向における隙間は、側部41と永久磁石収容孔4との間の径方向における隙間より狭い。   In the permanent magnet synchronous machine of the present invention, the radial gap between the central portion 40 and the permanent magnet accommodation hole 4 is narrower than the radial gap between the side portion 41 and the permanent magnet accommodation hole 4.
また、本願発明の永久磁石同期機は、側部41及び永久磁石収容孔4は、側部41の磁化方向に対して垂直なリブ面を有し、側部41のリブ面は永久磁石収容孔4のリブ面より小さい。   In the permanent magnet synchronous machine of the present invention, the side portion 41 and the permanent magnet accommodation hole 4 have rib surfaces perpendicular to the magnetization direction of the side portion 41, and the rib surface of the side portion 41 is a permanent magnet accommodation hole. 4 is smaller than the rib surface.
また、本願発明の永久磁石同期機は、側部41は中央部40の磁化方向に対して垂直な面を有する。   In the permanent magnet synchronous machine of the present invention, the side portion 41 has a surface perpendicular to the magnetization direction of the central portion 40.
また、本願発明の永久磁石同期機は、永久磁石3は、中央部40と側部41とを接続する円弧部を有し、永久磁石収容孔4は、円弧部を収容する円弧収容部を有し、円弧部の径方向外側の径は円弧収容部の径方向外側の径よりも小さい。   In the permanent magnet synchronous machine of the present invention, the permanent magnet 3 has an arc portion that connects the central portion 40 and the side portion 41, and the permanent magnet accommodation hole 4 has an arc accommodation portion that accommodates the arc portion. The diameter of the arc portion on the outer side in the radial direction is smaller than the diameter on the outer side in the radial direction of the arc receiving portion.
また、本願発明の永久磁石同期機は、中央部40の磁化方向に対して垂直方向における中央部40の長さW1は、側部41の磁化方向に対して垂直方向における側部41の長さW2よりも長い。   In the permanent magnet synchronous machine of the present invention, the length W1 of the central portion 40 in the direction perpendicular to the magnetization direction of the central portion 40 is equal to the length of the side portion 41 in the direction perpendicular to the magnetization direction of the side portion 41. Longer than W2.
1 回転子
2a 径方向外側の回転子鉄心
2b 径方向内側の回転子鉄心
3 永久磁石
4 永久磁石収容孔
5 シャフト孔
6 リブ
11 連結部
30 固定子
40 中央部
41 側部
42 屈曲点
43 中央部40の磁化方向50に対して平行となる面
44 中央部40の磁化方向50に対して垂直となる面
45、46 屈曲点42と回転子鉄心2との接触点
50 極の中央部の磁化方向
60 慣性力
DESCRIPTION OF SYMBOLS 1 Rotor 2a Rotor core 2b of radial outer side Rotor core 2b of radial inner side Permanent magnet 4 Permanent magnet accommodation hole 5 Shaft hole 6 Rib 11 Connection part 30 Stator 40 Central part 41 Side part 42 Bending point 43 Central part Surface 44 parallel to the magnetization direction 50 of the surface 40 Surfaces 45 and 46 perpendicular to the magnetization direction 50 of the central portion 40 Contact point 50 between the bending point 42 and the rotor core 2 Magnetization direction of the central portion of the pole 60 Inertia force

Claims (3)

  1. 回転子と固定子から構成される永久磁石同期機であって、前記回転子は、
    径方向内側に凸となるよう構成される永久磁石と、
    前記永久磁石が配設される磁石収容孔と、
    前記磁石収容孔の径方向外側に位置する回転子鉄心と、
    前記回転子鉄心の極間側、且つ、前記磁石収容孔の径方向外側に位置するリブと、を備え、
    前記永久磁石同期機の運転停止中における前記永久磁石と前記回転子鉄心との間の遠心力方向における隙間は、前記永久磁石同期機の運転停止中における前記永久磁石と前記リブとの間の遠心力方向における隙間より狭い永久磁石同期機。
    A permanent magnet synchronous machine composed of a rotor and a stator, wherein the rotor is
    A permanent magnet configured to protrude radially inward;
    A magnet housing hole in which the permanent magnet is disposed;
    A rotor core positioned radially outside the magnet housing hole;
    A rib located between the poles of the rotor core and radially outside the magnet housing hole,
    The clearance in the direction of the centrifugal force between the permanent magnet and the rotor core during the operation stop of the permanent magnet synchronous machine is a centrifugal force between the permanent magnet and the rib during the operation stop of the permanent magnet synchronous machine. Permanent magnet synchronous machine narrower than the gap in the force direction.
  2. 前記永久磁石は中央部と、前記中央部の両端に位置する側部と、を有し、
    前記永久磁石は少なくとも2箇所の屈曲点を有し、
    前記中央部は前記2箇所の屈曲点の間に位置することを特徴とする請求項1に記載の永久磁石同期機。
    The permanent magnet has a central part, and side parts located at both ends of the central part,
    The permanent magnet has at least two bending points;
    The permanent magnet synchronous machine according to claim 1, wherein the central portion is located between the two bending points.
  3. 前記永久磁石は中央部と、前記中央部の両端に位置する側部と、を有し、
    前記中央部の磁化方向に対して垂直方向における前記中央部の長さは、前記側部の磁化方向に対して垂直方向における前記側部の長さよりも長いことを特徴とする請求項1又は2に記載の永久磁石同期機。
    The permanent magnet has a central part, and side parts located at both ends of the central part,
    The length of the central portion in the direction perpendicular to the magnetization direction of the central portion is longer than the length of the side portion in the direction perpendicular to the magnetization direction of the side portion. The permanent magnet synchronous machine described in 1.
JP2016042948A 2016-03-07 2016-03-07 Permanent magnet synchronous machine Active JP6116108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016042948A JP6116108B2 (en) 2016-03-07 2016-03-07 Permanent magnet synchronous machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016042948A JP6116108B2 (en) 2016-03-07 2016-03-07 Permanent magnet synchronous machine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012130357A Division JP5901436B2 (en) 2012-06-08 2012-06-08 Permanent magnet synchronous machine

Publications (2)

Publication Number Publication Date
JP2016105696A JP2016105696A (en) 2016-06-09
JP6116108B2 true JP6116108B2 (en) 2017-04-19

Family

ID=56102650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016042948A Active JP6116108B2 (en) 2016-03-07 2016-03-07 Permanent magnet synchronous machine

Country Status (1)

Country Link
JP (1) JP6116108B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067349A1 (en) * 2018-09-28 2020-04-02 本田技研工業株式会社 Rotor of electric rotary machine
WO2020067350A1 (en) * 2018-09-28 2020-04-02 本田技研工業株式会社 Rotor of electric rotary machine
US10931221B2 (en) 2018-10-03 2021-02-23 Exedy Corporation Rotational electric machine, drive control system of vehicle, and storage medium having program executed by or caused to be executed by control apparatus of rotational electric

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3183356B2 (en) * 1992-01-30 2001-07-09 ダイキン工業株式会社 Method and apparatus for driving brushless DC motor
JPH05236685A (en) * 1992-02-20 1993-09-10 Daikin Ind Ltd Brushless dc motor
JPH0638415A (en) * 1992-07-22 1994-02-10 Hitachi Metals Ltd Permanent magnet type rotor
WO2008113082A1 (en) * 2007-03-15 2008-09-18 A.O. Smith Corporation Interior permanent magnet motor including rotor with flux barriers
JP5077114B2 (en) * 2008-07-11 2012-11-21 ダイキン工業株式会社 Rotor core

Also Published As

Publication number Publication date
JP2016105696A (en) 2016-06-09

Similar Documents

Publication Publication Date Title
JP6319973B2 (en) Permanent magnet type rotating electric machine
JP5370433B2 (en) Permanent magnet embedded electric motor
JP6116108B2 (en) Permanent magnet synchronous machine
JP5337548B2 (en) Permanent magnet motor
JP5958502B2 (en) Rotor and rotating electric machine using the same
JP6385715B2 (en) Rotating electric machine
CN108462268B (en) Rotor of rotating electric machine
JP2013255326A (en) Permanent magnet synchronous machine
JP6573031B2 (en) Rotor
WO2013150652A1 (en) Rotor and electric motor having embedded permanent magnet
JP6112970B2 (en) Permanent magnet rotating electric machine
JP2013236418A (en) Rotary electric machine
JP5954279B2 (en) Rotating electric machine
JP5901436B2 (en) Permanent magnet synchronous machine
JP6379132B2 (en) Permanent magnet synchronous machine
KR101477904B1 (en) Rotating electrical machine
WO2020100675A1 (en) Rotor, and rotary electric machine provided with same
JP2013187943A (en) Permanent magnet type motor and rotor thereof
JP2012125111A (en) Rotor of outer rotor type rotary machine
JP6176379B2 (en) Permanent magnet rotating electric machine
JP6507956B2 (en) Permanent magnet type rotating electric machine
JP6013269B2 (en) Permanent magnet rotating electric machine
WO2020208924A1 (en) Permanent magnet rotating electric machine and permanent magnet rotating electric machine manufacturing method
JP2008301540A (en) Permanent magnet type rotary electric machine and its rotor
JP5332335B2 (en) Rotor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160405

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170320

R150 Certificate of patent or registration of utility model

Ref document number: 6116108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250