JPWO2003002777A1 - Non-oriented electrical steel sheet and manufacturing method thereof - Google Patents

Non-oriented electrical steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JPWO2003002777A1
JPWO2003002777A1 JP2003508741A JP2003508741A JPWO2003002777A1 JP WO2003002777 A1 JPWO2003002777 A1 JP WO2003002777A1 JP 2003508741 A JP2003508741 A JP 2003508741A JP 2003508741 A JP2003508741 A JP 2003508741A JP WO2003002777 A1 JPWO2003002777 A1 JP WO2003002777A1
Authority
JP
Japan
Prior art keywords
less
steel sheet
steel
oriented electrical
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003508741A
Other languages
Japanese (ja)
Other versions
JP4329538B2 (en
Inventor
河野 雅昭
雅昭 河野
河野 正樹
正樹 河野
本田 厚人
厚人 本田
藤田 明男
明男 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2003002777A1 publication Critical patent/JPWO2003002777A1/en
Application granted granted Critical
Publication of JP4329538B2 publication Critical patent/JP4329538B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14716Fe-Ni based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

質量百分率でC:0〜0.010%、Siおよび/またはAl:0.03%〜0.5%、または0.5%超〜2.5%以下Mn:0.5%以下、P:0.10%以上、0.26%以下、S:0.015%以下およびN:0.010%以下を含有させることにより、優れた打ち抜き寸法精度を有し、さらに低Si鋼では優れた高磁束密度−低鉄損磁性バランスを有し、中〜高Si鋼では優れた高磁束密度−高強度バランスを有する無方向性電磁鋼板を提供する。C: 0 to 0.010% by mass percentage, Si and / or Al: 0.03% to 0.5%, or more than 0.5% to 2.5% Mn: 0.5% or less, P: By containing 0.10% or more, 0.26% or less, S: 0.015% or less, and N: 0.010% or less, it has excellent punching dimensional accuracy, and further has excellent high dimensional accuracy in low Si steel. Provided is a non-oriented electrical steel sheet having a magnetic flux density-low iron loss magnetic balance and an excellent high magnetic flux density-high strength balance for medium to high Si steels.

Description

技術分野
本発明は、電気機器の鉄心材料として用いられる無方向性電磁鋼板に関するものである。中でも、高い打ち抜き寸法精度と、高磁束密度とが併せて求められる、リラクタンスモータやあるいはさらに強度が要求される埋め込み磁石型のDCブラシレスモータなどの鉄心素材として好適な無方向性電磁鋼板およびその製造方法に関するものである。
背景技術
無方向性電磁鋼板は、主にモータやトランスなどの電気機器の鉄心材料として使用される軟磁性材料である。これらの電気機器の効率改善や小型化を図るためには、電磁鋼板の鉄損が低く磁束密度が高いことが要求される。電動モータの分野でも、鉄心素材である電磁鋼板の磁気特性の改善、すなわち低鉄損、高磁束密度化が進められており、またモータ自体も従来の非同期型のAC誘導モータから、より高効率な同期モータへの置き換えや、高特性化が急速に進行している。
同期モータは、一般的に、表面磁石型(SPM)および埋め込み磁石型(IPM)のDCブラシレスモータと、ローターとステーターの磁気的な突極性により発生するリラクタンストルクを利用するリラクタンスモータに分類される。中でもリラクタンスモータの場合、トルクの発生量は、ローターおよびステーターの形状と、ローター/ステーター間のギャップおよび素材の磁束密度に依存する。従って、リラクタンスモータ用の鉄心素材としては、高磁束密度と共に、打ち抜きにおける寸法精度が高いことが、他のモータ以上に重要とされる。
さらに、インバーター化の進展に伴い、モータ効率やトルク等の改善のために、高速回転化と共に極数が増加する傾向にある。これらはいずれも動作周波数を高める要素であるため、モータ素材である無方向性電磁鋼板に対しても、従来からの商用周波数(50〜60Hz)での磁気特性だけでなく、400Hz以上の高周波域での磁気特性を改善することも必要となってきている。
これまで、上記したような無方向性電磁鋼板の磁束密度および鉄損の改善に関しては、種々の努力が払われてきた。
無方向性電磁鋼板の鉄損を低減するためには、Si含有量を高める手法が一般的であり、例えば最高級グレードの無方向性電磁鋼板では約3.5mass%程度のSiが添加される場合がある。しかしながら、Si含有量の増加に伴い、鉄損は低減するものの磁束密度も同時に低下してしまう。
一方、低級グレードの無方向性電磁鋼板では、Si含有量を抑制しているため、比較的高い磁束密度が得られるが、鉄損が高いという問題がある。
このような低Si鋼の鉄損改善方法として、特開昭62−267421号公報には、Si量を0.6mass%以下、Al量を0.15〜0.60mass%とした無方向性電磁鋼板において、C,S,NおよびOといった不純物の量を規制し、結晶粒成長の阻害要因となる介在物の低減および無害化を図り、粒成長を促進して、低鉄損化を達成する技術が提案されている。しかしながら、このような低Si鋼の粒成長には強度低下が伴うため、打ち抜き加工時に打ち抜き面のだれや、かえりが大きくなり、打ち抜き性の著しい低下を招くという問題があった。
なお、低Si鋼の硬度を調整して打ち抜き性を改善する方法としては、0.08〜0.1mass%程度のPを添加する技術があり、例えば特開昭56−130425号公報には、0.2mass%未満のPを添加して打ち抜き性を改善する技術が開示されている。また、低Si鋼にPを積極的に添加する技術として、特開平2−66138号公報には、Si量を0.1mass%以下に抑制し、かつAlを0.1〜1.0mass%の範囲で含有させたAl添加鋼に、0.1〜0.25mass%のPを添加し、AlとPの複合効果によって磁気特性を改善する方法が開示されている。
しかしながら、これらの技術において、P添加による打ち抜き性の改善は、その硬度調整による鋼板のだれ抑制に着目したのみであり、打ち抜き後の寸法精度については何ら考慮が払われていなかった。
一方、埋め込み磁石型のDCブラシレスモータにおいても、高トルク化、および小型化の観点から、打ち抜き精度および高磁束密度が要求されるが、さらに、ローターの高速回転に耐え、あるいは埋め込まれた磁石の離脱を防ぐために、電磁鋼板の強度を高く維持する必要がある。既に述べたように強度の観点からも高級Si鋼が有利であるが、磁束密度の観点からは低Si化が望ましく、強度および磁束密度の両立は従来困難であった。
発明の開示
(発明が解決しようとする課題)
上述したとおり、無方向性電磁鋼板における高磁束密度および低鉄損特性は、各種モータ、トランスなど無方向性電磁鋼板の全ての用途に望まれる共通の特性であるが、中でもリラクタンスモータ用無方向性電磁鋼板素材としては、その動作原理上、特に高い磁束密度と高い寸法精度が重要となってくる。
しかしながら、これまでのところ、高磁束密度でかつ低鉄損という優れた磁気特性を有しつつ、しかも打ち抜き性、特に打ち抜きにおける寸法精度に優れた無方向性電磁鋼板は見出されていなかった。また、これらの特性に加え、埋め込み磁石型のDCブラシレスモータ等に要求される強度の要請を、さらに満たす無方向性電磁鋼板も、見出されていなかった。
さらに、これらの磁気特性や打ち抜き性などに加えて、近年のモータの高速回転化や多極化に伴う高周波化にも対応できるように考慮された無方向性電磁鋼板は見出されていなかった。
本発明は、上記の現状に鑑み開発されたもので、モータやトランス等の鉄心素材、とくに、
・リラクタンスモータのように特に高い磁束密度と高い寸法精度が要求される鉄心素材として最適な、これまでにない優れた高磁束密度−低鉄損の磁性バランスを有し、しかも打ち抜き寸法精度にも優れた無方向性電磁鋼板、および、
・高磁束密度とローターの高速回転や埋め込み磁石の飛散防止の観点で重要な高強度特性を、打ち抜き寸法精度と共に兼ね備えた電磁鋼板
を、その有利な製造方法と共に提案することを目的とする。
なお、以後、便宜上、SiとAlの和が約0.03mass%以上、0.5mass%以下であるものを低Si鋼、SiとAlの和が0.5mass%を超えるものは、中〜高Si鋼と呼ぶものとする。
(課題を解決するための手段)
さて、発明者らは、上記の目的を達成すべく鋭意研究を重ねた結果、SiやAl量を低Si鋼レベルに低減して本質的に飽和磁束密度が高い鋼とした上で、平均結晶粒径を所定の範囲に調整すると共に、適正量のPを添加することによって、高磁束密度でかつ低鉄損という優れた磁気特性が得られるだけでなく、打ち抜き寸法精度が格段に向上することの知見を得た。また、SiおよびAlを合計0.05mass%超〜約2.5mass%の範囲に制御することに加え、適正量のPを添加することによって、打ち抜き寸法精度の向上効果に加えて磁束密度を維持したまま強度を大幅に向上でき、従来にない磁性−強度バランスを達成できるという知見も得た。
本発明は、上記の知見に立脚するものである。
すなわち、本発明の要旨構成は次のとおりである。
1.質量百分率で
C:0〜0.010%、
Siおよび/またはAl:合計で0.03%以上、0.5%以下、
Mn:0.5%以下、
P:0.10%以上、0.26%以下、
S:0.015%以下および
N:0.010%以下
を含有し、残部はFeおよび不可避的不純物の組成になり、かつ
平均結晶粒径:30μm以上、80μm以下
としたことを特徴とする、磁気特性および打ち抜き精度に優れた無方向性電磁鋼板。
2.上記1において、鋼板がさらに、質量百分率で
Sbおよび/またはSn:合計で0.40%以下
を含有することを特徴とする、磁気特性および打ち抜き精度に優れた無方向性電磁鋼板。
3.上記1または2において、鋼板がさらに、質量百分率で
Ni:2.3%以下
を含有することを特徴とする、磁気特性および打ち抜き精度に優れた無方向性電磁鋼板。
4.上記1、2または3において、鋼板の板厚が0.35mm以下であることを特徴とする、磁気特性および打ち抜き精度に優れた無方向性電磁鋼板。
5.質量百分率で
C:0〜0.010%、
Siおよび/またはAl:合計で0.5超〜2.5%、
Mn:0.5%以下、
P:0.10%以上、0.26%以下、
S:0.015%以下および
N:0.010%以下、および、
必要に応じ Ni:2.3%以下
を含有し、かつ、
以下の式で表される指数P

Figure 2003002777
(ただし、各元素含有量の単位はmass%。(2)式においても同様)
とP含有量の間の関係が、
P≦P
を満足するか、あるいは、
以下の式で表される指数P
Figure 2003002777
が、
≦0.26
を満足するかのいずれかであり、
残部はFeおよび不可避不純物からなることを特徴とする磁気特性、打ち抜き精度に優れる電磁鋼板。
6.上記5において、鋼板がさらに、質量百分率で
Sbおよび/またはSn:合計で0.40%以下
を含有することを特徴とする、強度、磁気特性および打ち抜き精度に優れた無方向性電磁鋼板。
なお、以上の鋼種において、副次的含有元素として、Ca:0.01%以下、B:0.005%以下、Cr:0.1%以下、Cu:0.1%以下、Mo:0.1%以下の少なくともいずれかを含有しても良い。
7.上記1〜3のいずれかに記載の成分組成になる鋼スラブに対し、熱間圧延を、加熱温度がオーステナイト単相域で、かつコイル巻き取り温度が650℃以下の条件で行い、ついで脱スケール処理後、1回または中間焼鈍を含む2回以上の冷間圧延を行ったのち、700℃以上のフェライト単相域で仕上げ焼鈍を行うことを特徴とする、磁気特性および打ち抜き精度に優れた無方向性電磁鋼板の製造方法。
8.上記1〜3のいずれかに記載の成分組成になる鋼スラブに対し、熱間圧延を、加熱温度がオーステナイト単相域で、かつコイル巻き取り温度が650℃以下の条件で行ったのち、熱延板焼鈍を、Ni含有量が0%(無添加)〜1.0mass%の場合には、900℃以上のフェライト単相域またはAc3点以上のオーステナイト単相域で、一方Ni含有量が1.0mass%超え、2.3mass%以下の場合には、Ac3点以上のオーステナイト単相域で行い、ついで脱スケール処理後、1回または中間焼鈍を含む2回以上の冷間圧延を行ったのち、700℃以上のフェライト単相域で仕上げ焼鈍を行うことを特徴とする、磁気特性および打ち抜き精度に優れた無方向性電磁鋼板の製造方法。
9.上記5または6のスラブに対し、熱延加熱温度を1000℃〜1200℃、熱延巻き取り温度を650℃以下で熱間圧延を行い、ついで脱スケール後、1回または中間焼鈍を含む2回以上の冷間圧延を行ったのち、仕上げ焼鈍を行うことを特徴とする、強度、磁気特性および打ち抜き精度に優れた無方向性電磁鋼板の製造方法。
なお、上記9の電磁鋼板の製造方法において、熱延後に熱延板焼鈍を施しても良い。
また、上記7、8または9の何れかの電磁鋼板の製造方法において、仕上げ焼鈍の後、絶縁被膜を付与する処理を施しても良い。
発明を実施するための最良の形態
以下、本発明を由来するに至った実験結果について鋭明する。なお、以下に示す成分組成の%表示はいずれも「mass%」である。
〔実験1〕
まず、無方向性電磁鋼板の鋼成分と打ち抜き寸法精度との関係を明らかにするため、C:0.0016〜0.0028%、Mn:0.20〜0.22%、Al:0.0007〜0.0014%、N:0.0012〜0.0022%およびSb:0.03%とほぼ一定にした成分を基本組成とし、P量を0.02%と一定にしてSi量を0.03〜1.49%の範囲で変化させた鋼、およびSi量を0.10〜0.11%と一定にしてP含有量を0.02〜0.29%の範囲で変化させた鋼を、それぞれ実験室的に溶製した。ついで、これらの鋼材を、1100℃で60min加熱後、板厚:2mmまで熱延し、600℃で2hのコイル巻き取り相当の均熱保持を行ったのち、放冷した。ついで、900℃で60sの熱延板焼鈍後、酸洗してから、板厚:0.5mmまで冷延した後、700〜900℃の種々の温度で仕上げ焼鈍を施し、再結晶粒の粒径を種々に変化させた。その後、この仕上げ焼鈍板に、平均膜厚:0.6μmの半有機絶縁被膜を塗布し焼き付けしたサンプルを作製して、打ち抜き試験に供した。
なお、平均結晶粒径は圧延方向に平行な、板厚方向断面を観察し、Jeffries法により求めた円相当径とした。
打ち抜き試験は、直径:21mmφの円形金型を用いて行い、クリアランスは板厚の8%とした。圧延方向となす角度が0°,45°,90°,135°の4方向の、打ち抜き円形の直径(内径)を測定し、その4点の平均径を求めると共に、4点中の最大径と最小径の差を測定し、打ち抜き異方性の指標とした。
得られた結果を、圧延方向に切り出した引張試験片(JIS 5号)より求めた降伏強度(YP)との関係で整理して図1,図2に示す。
図1,2から明らかなように、全般的に、YPが低い軟質な材料は、金型径に対して打ち抜き径の差が大きく、YPの上昇に伴い打ち抜き径は金型寸法に近づいて、寸法精度は改善する傾向にある。これは従来から知られていたように、強度上昇により打ち抜き時のだれ変形が抑制された効果であると考えられる。
しかしながら、ここで注目すべきは、Pの添加により強度調整を行った試料は、Si量の変化により強度が変化した従来型の電磁鋼板と比較して、同程度の強度レベルでも優れた寸法精度を示し、しかも比較的低YP域でも金型との寸法差が抑制されていることである(図1)。
また、Si量を変化させた鋼は、強度の上昇に伴い打ち抜き径は金型寸法に近づくものの、図2に示されるとおり、最大径と最小径の差で表される異方性が大きいままである。これに対し、P量増加により強度上昇を図った鋼は、打ち抜き形状の異方性も改善されている。
これらの関係を仕上げ焼鈍板の平均結晶粒径との関係で整理したものが、図3、図4である。
図3,4から明らかなように、Si量を変化させた鋼は、粒径が大きくなると打ち抜き寸法精度および打ち抜き異方性とも劣化するのに対し、Pを0.13%以上添加した鋼は、結晶粒径が大きいものでも打ち抜き寸法精度および打ち抜き異方性とも良好なレベルにある。
Pを一定量以上含有させることによって打ち抜き寸法精度や打ち抜き異方性が効果的に改善される理由について、その詳細は明らかではないが、
(1)Pの添加により強度が上昇し、打ち抜き時のだれ変形が緩和される効果に加えて、
(2)鋼に対して脆化元素として知られているPを適正量添加することにより、打ち抜き時の破断限界が早まる効果、および
(3)Pの添加により仕上げ焼鈍板の集合組織中の{100}<uvw>方位が増加する傾向にあり、これが異方性を緩和する効果などが複合的に作用した結果によるものと考えている。
次に、磁気特性の面から検討した結果について説明する。
発明者らは、鉄損を改善するものの飽和磁束密度を低下させるSiやAlの含有量を極力制限することにより、本質的に磁束密度を高くした鋼を素材として、製造条件と磁気特性の関係について詳細に検討した。
図5に、各鋼材の板厚:0.5mmのサンプルについて、仕上げ焼鈍板の結晶粒径と商用周波域での鉄損(W15/50:周波数50Hz、最大磁束密度1.5Tにおける値)との関係について調査した結果を示す。
同図から明らかなように、低Siにすると電気抵抗が減少するため鉄損には不利となるが、鉄損は結晶粒径により大きく変化するため、粒径を約30μm以上とすれば安定的に低鉄損となることが分かる。また、低Alとして電気抵抗を減少させた場合にも、同様に、粒径を約30μm以上とすることが低鉄損化に有効であることが確認された。
しかしながら、これまでは、本発明のような低Si,Al組成の低級グレードに属する無方向性電磁鋼板の場合、仕上げ焼鈍板の平均結晶粒径は15〜25μm程度に制限されているのが通例であった。この理由は、図3,4の0.11%Si−0.07%P鋼(図中の●印)の例に示すように、粒成長させると強度低下により打ち抜き性の劣化が著しくなるからである。
これに対し、P添加量を高めた鋼は、平均結晶粒径を約30μm以上としても、良好な打ち抜き寸法精度が維持されている。
次に、図6に、各鋼種の平均結晶粒径と磁束密度との関係、また図7には、鉄損と磁束密度との関係について調べた結果を示す。ここで、B50は磁化力5000A/mにおける磁束密度である。
Siを添加した試料は、鉄損は改善されるものの磁束密度の低下が大きい。これに対し、Pを添加した試料は、結晶粒が成長して鉄損が改善された後も高い磁束密度を維持している。
ところで、Pは脆化元素であり、本発明のようにP添加量が多い場合、主に冷延工程において耳割れや層状割れなどの欠陥が発生することがある。本発明者らはこの現象を鋭意調査し、熱間圧延に際してスラブ加熱時に温度がフェライト/オーステナイト共存領域となると、フェライト粒とオーステナイト粒間でPの分配が起こり、フェライト粒中で著しいPの偏析が生じ、鋼の脆化が促進されることを究明した。このような脆化現象を防止するためには、本発明の鋼板の製造に当たり、熱間圧延のためのスラブ加熱の温度を、オーステナイト単相領域(あるいは可能であればフェライト単相)とすることが重要である。
なお、Pはフェライト形成元素であるため、スラブ加熱温度付近でのオーステナイト単相域を縮小する作用を有するが、低Si鋼の成分範囲では、スラブ加熱温度が1000〜1200℃であればオーステナイト単相とすることができる。
以上のように、低Si鋼に約0.1%以上のPの添加が非常に有効であることが明らかになった。
そこで、0.5%以上のSiを含有する鋼板にもPの積極的な添加を検討した。
〔実験2〕
C:0.0013〜0.0026、Mn:0.18〜0.23%、Al:0.0001〜0.0011%、N:0.0020〜0.0029%とほぼ一定とした成分として、Si量を0.60〜2.42、およびP量を0.04〜0.29%まで変化させた種々の鋼を溶製し、1100度で60分加熱後、板厚2mmまで熱延し、酸洗後板厚0.50mmまで冷延した。
その結果、鋼組成によっては圧延後の鋼板内部で板面と平行に層状の割れが発生する、不具合が発生した。
その結果を図8に示す。
層状割れ発生部分をEPMAによりマッピング分析したところ、割れ発生部分にはPが偏析または濃化していることが観察された。そこでこのPの偏析条件を詳細に検討したところ、熱延に際して、鋼片(スラブ)加熱時にフェライトとオーステナイト相の2相領域に均熱保持される条件となっており、フェライト相中にPが分配されて濃化したことがわかった。
すなわち、中〜高Si鋼領域においてはフェライト形成元素であるSi、Al量が多いためにオーステナイト単相域がより縮小し、その結果、従来の加熱温度ではフェライト/オーステナイト2相域となりやすいという問題が明らかとなった。
また、Pが0.26%を超えると、どのような組成条件であっても層状割れが発生していた。
そこで、種々のSi,Mn,Al、P量を持つ鋼を研究設備にて作製し、約1000〜1200℃の温度域で、Pの偏析が圧延不良を発生しない程度に抑制できる条件を調査した。なお、上記のスラブ加熱温度は、鋼中に存在する炭化物・窒化物・硫化物などの析出安定化の観点から好適な温度である。
まず、スラブ加熱温度がオーステナイト単相域あるいはフェライト単相域となる条件下では、相分配による偏析は生じないので、P添加量そのものが所定量より少なければ層状割れは回避できると考えられる。前記実験より、Pの添加量は約0.26%以下とすることが必要である。
そこでまず、中〜高Si鋼がオーステナイト単相となる条件を調査した。
その結果、Si+Alを0.5%より多く含有する鋼においては、P添加量が、
P≦P’、ただし
Figure 2003002777
(Si,Mn,Al,Pの各含有量はmass%で表す)
の範囲であればオーステナイト単相域にあることが分かった。したがって、上の条件を満たし、かつP≦約0.26%に限定すれば、Pによる脆化を抑制することができる。
次に、中〜高Si鋼がフェライト単相となる条件を調査し、同様に、P添加量が、
P≧P’、ただし
Figure 2003002777
(Si,Mn,Al,Pの各含有量はmass%で表す)
の範囲であればフェライト単相域にあることが分かった。したがって、この条件を満たし、かつP≦約0.26%に限定しても、Pによる脆化を抑制することができる。
次に、オーステナイト単相域あるいはフェライト単相域でのスラブ加熱が困難な場合に、Pの偏析を抑制する条件を調査した。フェライト/オーステナイト2相域においてP濃度の分配が生じた場合の、フェライト相中のP濃度も上記P’となるが、調査の結果、このP’を約0.26以下とすれば、Pによる脆化が回避できることがわかった。
上記の2相領域における脆化回避条件と、フェライト単相域における脆化回避条件を整理すると、P≦約0.26%かつP’≦約0.26とまとめることができる。
以上の関係をまとめると、Pによる脆化の回避条件は、P≦約0.26%で、かつ、P≦P’またはP’≦約0.26となる。
以上の結果より、P添加量が約0.26%以内であり、かつ熱延加熱時にオーステナイト単相あるいはフェライト単相域に加熱される条件であれば、冷延後の層状割れなどのトラブルなく製造可能であること、さらに、フェライト/オーステナイト2相加熱となる条件であってもフェライト相へのP分配量が低くなる、Si,Al量が比較的高い成分系では製造可能となることがわかった。
さらに、約0.1%以上のPを添加しても熱延時のスラブ加熱温度域(1000〜1200℃付近)でオーステナイトあるいはフェライト単相組織となるような鋼組成を種々検討した。
その結果、磁気特性の改善および強度確保に好適な元素であるNiの添加が、P添加鋼において熱延温度付近でのオーステナイト領域を拡大する目的にも有効であることがわかった。
〔実験3〕
C:0.0013〜0.0026%、Mn:0.18〜0.23%、Al:0.0007〜0.0013%、N:0.0014〜0.0025%およびP:0.16〜0.18%とほぼ一定にした成分を基本組成とし、Si量を0.95〜2.44%、Ni量を0〜2.20%までそれぞれ変化させた試料を、実験2と同様に0.50mmまで圧延し、得られた冷延鋼板の層状割れの発生状況を調査した。その結果を図9に示す。
Ni無添加では割れていた1.1〜1.5%Si鋼が、Niの添加により割れ発生なく圧延可能となっている。一方、Ni無添加では圧延できていた1.95%Si鋼や2.4%Si鋼ではNiの増加により割れを発生する場合も生じており、Niの効果には適正領域が存在することがわかる。
Niの影響を加味して前記式を拡張すると、Si+Alを0.5%より多く含有する鋼においては、P添加量が約0.26%以下で、かつ、
P≦P、ただし
Figure 2003002777
の範囲であれば1000〜1200℃のスラブ加熱温度がオーステナイト単相域にあり、
≦約0.26、ただし
Figure 2003002777
の範囲であれば、2相領域あるいはフェライト単相域であってもPの濃化程度が少なく、いずれの場合もPによる脆化が回避できることがわかった。
なお、上記の2つの式において、Si,Mn,Al,P,Niの各含有量はmass%で表すものとする。また、PおよびPの技術的意味は、前記P’およびP’と同じである。
〔実験4〕
実験2および3で0.50mmまで圧延された冷延鋼板について、仕上げ焼鈍を施したのち、平均膜厚0.6μmの半有機絶縁被膜を塗布し、焼き付けを行った。
これらのサンプルに対して、実験1に記載の方法による打ち抜き試験を行い、打ち抜き径とその異方性を調査して、その結果を図10および図11に示した。
これらの図より、Si+Alを0.5%より多く含有する鋼においても、P≧0.10%を含有した鋼は、いずれも優れた打ち抜き寸法精度を示した。
ここで、Ni添加鋼においては、添加量は0.38〜2.20%の間で変化させた。
さらにこれらの試料の磁束密度B50と引張強度TSの関係を図12に示す。ここで、TSは実験1と同様の引張試験により求め、磁束密度も実験1の方法で測定した。
約0.1%以上のPを含有する鋼は従来の中〜高Si組成(すなわちSi+Al>0.5%)の電磁鋼板と比較して優れたB50−TSバランスを示している。
特にPの添加量の増大に伴い、TSは増大するが磁束密度には低下が見られず、むしろ向上する傾向にあった。
これは、従来の電磁鋼板に関して通常行われていたSi,Alといった強磁性体以外の合金元素の添加による鋼板の強化が、磁束密度の低下を伴うことと比較して特徴的である。
これらの特性はモータの高トルク化、小型化、高速回転化といった要求のあるDCブラシレスモータやリラクタンスモータなど各種回転機(モータ、発電機)のロータ素材として好適なものである。
以上の知見により、優れた磁束密度と打ち抜き寸法精度を両立するための条件として、鋼中のSi,Al,P、Ni量、さらには低Si鋼の場合は仕上げ焼鈍板の平均結晶粒径を次の範囲に規定した。
低Si鋼の場合、Si,Alの1種または2種の合計:約0.03〜0.5%
SiおよびAlは、鋼に添加すると脱酸効果を有するので脱酸剤として単独あるいは併用して使用される。その効果を発揮させるためには、Si,Alそれぞれ単独あるいは両者の合計で約0.03%以上が必要である。また、Si,Alは比抵抗を増加させ鉄損を改善する作用もあるが、一方で飽和磁束密度の低下をもたらすので、その上限を0.5%に定めた。
中〜高Si鋼の場合、Si,Alの1種または2種の合計:0.5%超〜約2.5%
優れた寸法精度とともに、機械的強度や低鉄損性が重視される場合には、Si+Alの合計量が0.5%を超えて含有することができる。
既に述べたように、中〜高Si鋼の場合でも、P添加の効果により、従来の低Pの中〜高Si鋼と比較して、高い打ち抜き精度および強度−磁束密度バランスの材料が得られる。
しかしながら、Si+Alの合計量が2.5%を超えると本発明の方法によっても通常の冷間圧延が困難になるので、その範囲を0.5%超〜約2.5%に規定した。
P:約0.10%以上、約0.26%以下
Pは、本発明において特に重要な元素である。Pは、従来から知られていたように、その高い固溶強化能により材料硬度を調整する機能を有している。特に低Si,低Al鋼板は本来、比較的軟質であるが、本発明では低鉄損化のために平均結晶粒径を約30μm以上とする必要があるので、鋼板がさらに軟質化するおそれがある。Pは、このような本発明鋼板の打ち抜き性の改善、すなわち鋼板の強度不足によるだれやかえりの増加を抑制するために必須の元素である。このような材料強度増加能に加えて、打ち抜き時の破断限界を早めることによって打ち抜き時の総変形量を抑制する効果や、仕上げ焼鈍板の集合組織中の{100}<uvw>方位を増加させて異方性を改善する効果、などの複合的な作用によって打ち抜き寸法精度を改善する。
また、鋼板の強度を増加させるにもかかわらず磁束密度を低下させない特性があり、この効果は中〜高Si鋼においても発揮される。
これらの効果を発揮させるためには、Pは約0.10%以上含有させる必要がある。一方、Pは元来、鋼に対して脆化元素であり、過剰に添加すると耳割れや層状割れを起こし易くなり、製造性が低下する。この点、本発明では、製造方法に工夫を加えたり、Niを添加することによって、従来困難とされた高P添加鋼の製造を可能とすることができる。しかしながら、含有量が約0.26%を超えると、本発明の製造方法を採用してもP添加鋼の製造が難しくなるので、P量は約0.10〜約0.26%の範囲に限定した。
Ni:約2.3%以下(オプションとして添加可)
Niは、鋼の集合組織を改善して磁束密度を高める効果があるだけでなく、鋼の電気抵抗を増加して鉄損を低下させる効果や、固溶強化により鋼の強度を高めて打ち抜き加工時のだれを抑制する効果などを併せ持つので、積極的に添加することができる。
また、Niはオーステナイト形成元素であることから、好適なスラブ加熱温度である1000〜1200℃付近でのオーステナイト域(状態図中のγループ)を拡大する効果がある。とくに、Si+Al量が0.5%より多い組成の鋼に対しては、操業安定性を増大するのに有効となる。この効果を活用すると、本発明の様に脆化元素であるPを積極的に添加する場合に生じ得る圧延不安定性を大幅に改善することができる。すなわち、高P鋼の安定製造のポイントは熱延時の過剰なP偏析の抑制であり、その有力な手段としてスラブ加熱温度がフェライト/オーステナイト2相域となることを回避することである。Si含有量とAl含有量の合計が0.5%を超えるとスラブ加熱温度で2相に分離し易くなるが、Niのγ域拡大効果により、このようなSi、Al組成でも、スラブ加熱時にオーステナイト単相とすることが可能となる。
しかしながら、Ni含有量が約2.3%を超えると、フェライト(α)→オーステナイト(γ)変態開始温度が低下し、仕上げ焼鈍中にオーステナイト変態を起こして磁束密度の低下を招くおそれが生じる。また、変態温度以下の低温の仕上げ焼鈍温度では低Si鋼において約30μm以上の平均粒径を確保することが難しくなり、鉄損も劣化するようになる。従って、Niは約2.3%以下で含有させるものとした。なお、Niを添加する場合は、約0.50%以上の添加が好ましい。
低Si鋼において、仕上げ焼鈍板の平均結晶粒径:約30μm以上、約80μm以下
本発明の低Si、低Al無方向性電磁鋼板において良好な鉄損特性を得るためには、図5にも示したとおり、仕上げ焼鈍板の平均結晶粒径を約30μm以上にする必要がある。しかしながら、約80μmを超える粒経としてもそれ以上の鉄損改善効果は望めず、また本発明に属する鋼はいずれも変態鋼で再結晶焼鈍に適したフェライト単相域はおおむね700〜900℃の範囲であり、高Si組成のフェライト単相鋼と比較すると低温であるため、過度に粒成長させるのは連続短時間焼鈍設備における生産性の点で不利となるので、約80μmを上限とした。
なお、中〜高Si鋼においては、合金による電気抵抗の向上効果等を有することから、比較的低鉄損が得られ易いため、粒径はとくに限定せず、通常の範囲で良い。一般的には20〜200μm程度である。
次に、発明者らは、モータの高速回転化および極数増加などに伴い、近年重視されつつある、高周波域での磁気特性を改善する手法について検討した。その結果、板厚低減が有効であり、とくに低Si鋼においてその効果が顕著であることがわかった。以下にその結果を導いた実験を示す。
〔実験5〕
図13に、0.11%Si−0.18%P鋼と0.95%Si−0.02%P鋼および2.0%Si−0.5%Al鋼の400Hzにおける鉄損の板厚依存性について調べた結果を示す。
同図に示したとおり、いずれの試料も板厚の減少により渦電流損が低下するため、高周波鉄損は改善される傾向にあること、そして板厚減少による高周波鉄損の改善効果は低Si鋼の方が大きいことが分かる。
ところが、これまで無方向性電磁鋼板の板厚は0.50mmが主流で、それ以上の板厚低減は比抵抗元素であるSiやAlの含有量が高い高級グレードの一部に適用されるだけで、SiやAlの含有量の少ない無方向性電磁鋼板に適用した製品例は見られなかった。
また、図14に、これらの素材の磁束密度の板厚依存性について調べた結果を示す。
同図に示されているとおり、板厚を低減すると磁束密度がやや低下する傾向があるものの、その低下はごく僅かであり、またいずれの板厚においても低Si鋼の方が格段に高い磁束密度を有している。特に電気自動車(EV)やハイブリッド電気自動車(HEV)の駆動用モータなどの用途に対しては、高速回転型のリラクタンスモータが検討されていて、かような用途では、高磁束密度でかつ高周波における低鉄損性が重視されるが、これに対しては、本発明に示すような低Si、低Alの本質的に磁束密度が高い鋼板を薄くすることで対処することができる。
図13に示したとおり、板厚低減の効果は約0.35mm以下とすることで著しくなり、約0.30mm以下とすることで一層顕著となる。なお、板厚は、薄いほど渦電流損の低減に有効であるため、特に板厚の下限は設けないが、一方でコアの積み工数が増大してコスト高となり、また積層コアのかしめが困難になるなどの弊害もあるので、一般的な生産に供する場合には下限は0.10mm程度とするのが望ましい。
以下、本発明鋼におけるSi,Al,PおよびNi以外の成分の限定理由について説明する。
C:0〜約0.010%
Cは、時効効果作用により、鋼板製造後、時間の経過に伴って磁気特性(鉄損)を劣化させる元素であり、その程度はC含有量が約0.010%を超えると著しくなるので、C含有量は0.010%以下に制限した。なお、この時効劣化特性に関しては、C量が少なければ少ないほど好ましいので、本発明ではC量については実質的にゼロ(分析限界値未満)の場合を含むものとする。
Mn:約0.5%以下
Mnは、MnSとしてSを固定し、FeSに起因する熱間圧延中の脆化を抑制する効果がある。また、Mn含有量が増加するに伴い、比抵抗が増加し鉄損を改善する。しかしながらその一方で、Mn含有量の増加は磁束密度の低下を招くので、Mn含有量の上限を約0.5%に定めた。
S:約0.015%以下
Sは、不可避的不純物であり、上述のようにFeSとして析出した場合、熱間脆性の原因となるだけでなく、微細に析出した場合には粒成長性を劣化させるので、鉄損低減の観点からはできる限り低減することが有利である。ここに、S量が約0.015%を超えると鉄損の劣化代が著しく大きくなるため、その上限を約0.015%に定めた。しかしその一方で、Sは打ち抜き時の剪断面形状を改善する効果も有しているため、どの程度まで低減するかは用途に応じて決定される。
N:約0.010%以下
Nは、不可避的混入不純物であり、AlNとして微細に析出した場合、粒成長を阻害し鉄損を劣化させるので、約0.010%以下に規制した。
以上、必須成分および抑制成分について説明したが、本発明では、その他にも磁気特性改善成分として、以下に述べる元素を適宜含有させることができる。
Sbおよび/またはSn:合計で約0.40%以下
Sb,Snは、粒界に偏在し、鋼の再結晶に際して結晶粒界からの{111}方位の再結晶核の生成を抑制することにより、磁束密度および鉄損を改善する効果がある。この効果を得るためには、単独使用または併用いずれの場合にも合計で約0.01%以上含有することが望ましい。とはいえ、過剰に含有させてもその効果は飽和に達し、むしろ含有量が0.40%を超えると脆化して冷間圧延の際に割れを生じるようになるので、単独使用または併用いずれの場合でも合計で約0.40%以下で含有させることが望ましい。
その他の副次的含有元素について説明する。
本発明では、脱酸剤として、また不純物として存在するSをMnと共に効果的に捕捉する元素として約0.01%以下の範囲でCaを含有させることもできる。また、歪み取り焼鈍時の酸化、窒化を緩和するために約0.005%以下のB、約0.1%以下のCrを添加することもできる。
また、この他にも、磁気特性を損なわない元素として公知のCu、Moなどの元素を添加しても本発明の効果は損なわれないが、添加コストの面からは、各々の元素の含有量は約0.1%以下とすることが好ましい。
その他の成分について、例えばTi、Nb、Vなどの炭窒化物形成元素は少量の存在が許容されるが、極力少ない方が鉄損を低く維持するため好ましい。
なお、中〜高Siにおいては、既に述べたように、スラブ加熱温度でオーステナイト相かフェライト相のいずれか単相にあるよう成分設計するか、あるいはオーステナイト/フェライトの2相状態にある場合には、よりPが濃化しやすいフェライト相へのPの分配濃化量が抑制されるよう成分設計を行い、Pの過剰な局所偏析を抑制し、安定的に高P添加鋼を製造できるようにする。
具体的には、鋼中に存在する炭化物、窒化物、硫化物などの析出安定化のため好適であるスラブ加熱温度(約1000〜1200℃)における、Pの過剰な局所偏析を抑制するために、
以下の式で表される指数P
Figure 2003002777
とP含有量の間の関係が、
P≦P
を満足するか、あるいは、
以下の式で表される指数P
Figure 2003002777
が、
≦約0.26
(Si、Mn、Al、Ni、Pの単位はmass%)
であればよい。ここでPは種々のSi,Mn,Al,Ni組成において約1000〜1200℃の温度域でオーステナイト単相である上限のP含有量を実験的に求めたものであり、Pはフェライト単相となる下限のP含有量を実験的に求めたものである。
次に、本発明の製造条件について鋭明する。
上記の好適成分組成に調整した溶鋼を、転炉精錬法あるいは電気炉溶解法などで溶製したのち、連続鋳造法や造塊一分塊圧延法によってスラブとする。
ついで、このスラブは、加熱後、熱間圧延に供される。ここで、鋼中に存在する炭化物、窒化物、硫化物などの析出安定化のためには、スラブ加熱温度は約1000〜1200℃が好適である。また、前述のように、スラブ加熱時の相状態がPの過剰な局所偏析の抑制に極めて重要である。
Pはフェライト形成元素であるため、スラブ加熱温度付近でのオーステナイト単相域を縮小する作用を有するが、低Si鋼の場合、本発明の成分範囲では、スラブ加熱温度が約1000〜1200℃であればオーステナイト単相とすることができる。また中〜高Si鋼の場合も、前記P≦Pを満足する成分系であれば、スラブ加熱温度が約1000〜1200℃の範囲においてオーステナイト単相とすることができる。さらに、中〜高Si鋼の場合、P≦約0.26を満足する成分系の場合は、フェライト/オーステナイト共存域となっても、フェライト相へのPの偏析の程度は、脆化を回避できるレベルにとどまる。また、フェライト単相域で加熱される場合にも、P含有量が約0.26%以内であれば層状割れ等なく製造することができる。
熱延後のコイル巻き取り温度も、本発明では、高P鋼の製造性を確保する上で重要なポイントである。すなわち、コイル巻き取り温度が高いと、コイル冷却中に鉄燐化物(Fe3P)が生成し、熱延板の曲げ性や圧延性を低下させるので、巻き取り温度は約650℃以下、好ましくは約600℃以下、さらに好ましくは約550℃以下とできるだけ低温で巻き取りを行うことが望ましい。また、巻き取り後のコイルを水槽に浸漬、あるいはコイルに放水するなどの手段により、コイルを加速冷却する方法も有効である。
ついで、熱延コイルは、酸洗などの手法により脱スケール後、冷間圧延に供されるが、磁気特性をさらに向上させるために熱延板焼鈍を施すこともできる。
ここで、Si含有量とAl含有量の合計が0.5%以下である、低Si鋼においては、熱延板焼鈍温度もフェライト/オーステナイト共存域(2相領域)を避けることが好ましい。これは、2相領域の焼鈍では結晶粒成長が進行しにくく、磁束密度等の磁気特性の向上が望めないためである。
以下、低Si鋼における好適な熱延板焼鈍温度を、Ni量別に説明する。
Ni無添加鋼またはNi量が1.0%以下と比較的少ないNi含有量の場合には、無方向性電磁鋼板に対して通常、熱延板焼鈍を施す場合と同様、約900℃以上のフェライト単相域で焼鈍することができる。また、焼鈍温度をより高温とし、Ac3点以上のオーステナイト単相域(望ましくは1050〜1100℃程度)とすることもできる。要は、両者の中間領域である2相領域での焼鈍(とくに950℃付近)を避けることが重要である。
一方、Ni量が1.0超〜2.3%と比較的多いNi含有量の場合には、焼鈍中のオーステナイト生成温度が低下するため900℃程度の焼鈍温度でも2相領域となり、磁束密度が低下する。とはいえ、900℃以下のフェライト単相域での焼鈍では粒成長性不足のため、十分な磁束密度が得られない。従って、この成分系での熱延板焼鈍条件は、Ac3点以上のオーステナイト単相域(望ましくは1050〜1100℃程度)に限定した。
なお、中〜高Si鋼の場合は前述のように細粒でも低鉄損が得られ易いので、焼鈍における粒成長は低Si鋼ほど重要ではない。したがって、熱延板焼鈍温度はとくに限定しないが、通常は700〜1100℃の範囲内とすることが好ましい。
ついで、得られたコイルは、脱スケール後、冷間あるいは温間で1回の圧延、あるいは中間焼鈍を挟む2回以上の冷間(あるいは温間)圧延を行い、所定の板厚に仕上げる。
その後、仕上げ焼鈍を行うが、低Si鋼の場合は、この仕上げ焼鈍を700℃以上のフェライト単相域で行う。というのは、仕上げ焼鈍温度が700℃未満では、安定して平均結晶粒径を約30μm以上に成長させることが難しく、一方フェライト単相域を超えてオーステナイト粒が生成すると集合組織が劣化し、磁束密度および鉄損の劣化を招くからである。
なお、中〜高Si鋼の場合は前述のように焼鈍における粒成長は低Si鋼ほど重要ではないので、仕上げ焼鈍温度もとくに限定しないが、通常は700〜1100℃の範囲内とすることが好ましい。
なお、熱延板および冷延板のフェライト単相温度域、あるいはオーステナイト単相温度域は、予め同組成の鋼板を種々の温度域で加熱−水冷して得られた組織を光学顕微鏡などで観察して決定することができる。あるいは、他の方法として、Thermo−CalcTM等の熱力学計算ソフトウェアにより求めた計算状態図により、予め推定することもできる。
仕上げ焼鈍の後は、一般的な無方向性電磁鋼板と同様に、絶縁被膜の付与を行うことができる。付与方法はとくに限定しないが、処理液の塗布後、焼付け処理を施す方法が好適である。
なお、得られたコイルは、必要な幅、寸法にスリット加工されたのち、ユーザーにてモータ固定子や、回転子の形状に打ち抜き加工後、積層され、製品化される。あるいは、場合によっては、打ち抜き後、歪み取り焼鈍(通常750℃×1〜2h)を施した後に製品化される。
(実施例)
〔実施例1〕
表1に示す成分組成になる溶鋼を、実験室的に溶製し鋳込んだ後、熱延により板厚:30mmのシートバーとした。ついで、1100℃で60minの加熱後、板厚:2mmまで熱延し、600℃で2hのコイル巻き取り相当の均熱保持を行ったのち、放冷した。その後、950℃で60sの熱延板焼鈍後、酸洗したのち、0.50mm厚までの冷延(1回冷延)を行い、700〜900℃の種々の温度で仕上げ焼鈍を施して、再結晶粒径を種々に変化させた。なお、冷間圧延の際、P含有量が本発明の範囲を超える鋼Jは冷延中に板面と平行に層状の割れが多数発生したため、以降の処理を中止し、評価を行っていない。
なお、No.56〜59は熱延後、熱延板焼鈍を施さずに、800℃での中間焼鈍を挟む2回冷延法で冷延したものである。
ついで、得られた仕上げ焼鈍板に平均膜厚:0.6μmの半有機絶縁被膜を塗布したサンプルを作製し、各種試験に供した。
打ち抜き試験は、直径:21mmφの円形金型を用いて行い、クリアランスは板厚の8%とした。圧延方向となす角度が0°,45°,90°,135°の4方向の打ち抜き円形の直径(内径)を測定して、その4点の平均径を求めた。また、4点中最大径および最小径の差を取り、打ち抜き異方性の指標とした。
磁気特性は、圧延方向となす角度が0°および90°となるように180mm×30mmに切り出した短冊状試験片を用いて、エプスタイン法で測定した。
降伏応力(YP)は、圧延方向と平行に切り出したJIS 5号試験片を用いて速度10mm/minの条件で引張試験を行い、上降伏点を採用した。
得られた結果を表2および表3に示す。
Figure 2003002777
Figure 2003002777
Figure 2003002777
P含有量が本発明の適正範囲に満たず、またSi量および結晶粒径の変化により強度が変化している鋼A〜F(No.1〜33,56,57)では、YPの増加につれて打ち抜き径は金型径に近づく傾向にあるが、最大径と最小径の差で表される打ち抜き寸法の異方性は10〜20μm程度と比較的大きい。また、Si量が増加すると磁束密度が低下するという問題もある。
これに対して、本発明に従い、低Si,Al組成としてPを0.10%以上含有させた鋼G〜Hは、YPが350MPa以下と比較的低くても良好な打ち抜き径となり、しかも打ち抜き寸法の異方性も小さい。また、磁気特性の面からも、これらの鋼種で平均結晶粒径を30μm以上に制御したもの(No.37,38,39,44,45,46,47,51,52,53,54,59)はいずれも、安定して低鉄損でかつ高磁束密度が得られている。
〔実施例2〕
表4に示す成分組成になる溶鋼を、実験室的に溶製し、実施例1と同様にして板厚:2mmの熱延板としたのち、1100℃で30sの熱延板焼鈍後、酸洗してから、0.50mm厚まで冷延した。ついで、700℃以上でかつフェライト単相域の種々の温度で仕上げ焼鈍を施し、再結晶粒径を種々に変化させた。
ついで、実施例1と同様の半有機絶縁被膜を塗布したサンプルを作製して、各種試験に供した。
得られた結果を表5に示す。
ここで、鋼K〜Mは、Siを低減しAlによる脱酸を行ったものであり、鋼N,Oの組および鋼Q、Rの組はNi添加の影響を評価できるように溶製したものである。
Figure 2003002777
Figure 2003002777
本発明の鋼組成を満足し、かつ平均結晶粒径を30μm以上と適正化したものはいずれも、優れた打ち抜き寸法精度を有し、また打ち抜き異方性が小さいだけでなく、磁気特性にも優れていた。特に、鋼Nと鋼O、および鋼Qと鋼Rをそれぞれ比較すると、Niを添加した鋼Oおよび鋼Rでは磁束密度の顕著な向上が認められる。
〔実施例3〕
表1の鋼F、表4の鋼Nおよび鋼Oに示した組成になる溶鋼を、実験室的に溶製し、実施例1と同様にして板厚:2mmの熱延板としたのち、1100℃で30sの熱延板焼鈍後、酸洗したのち、冷延圧延により0.50〜0.2mmの種々の厚みに仕上げた。ついで、700℃以上でかつフェライト単相域の種々の温度で仕上げ焼鈍を施し、再結晶粒径を35〜45μmの間に制御した。
ついで、実施例1と同様の半有機絶縁被膜を塗布したサンプルを作製して、各種試験に供した。また、これらのサンプルについては400Hzでの高周波鉄損についても調査した。
得られた結果を表6に併記する。
Figure 2003002777
板厚を薄くするにつれて特に高周波での鉄損が改善される傾向が顕著である。また、打ち抜き寸法精度も板厚減に伴って改善する傾向にあるが、本発明の成分範囲を満足する鋼N,Oの方が比較鋼Fよりも優れている。さらに、本発明鋼はいずれの板厚でも、打ち抜き寸法の異方性にも優れている。
〔実施例4〕
表7に示す成分組成になる溶鋼を、実験室的に溶製して鋼塊に鋳込んだのち、1150℃×1時間の均熱を施し、その後熱延により板厚30mmのシートバーとした。
得られたシートバーを、表8に示す温度(SRT)に加熱して1時間保持したのち、2.0mmまで熱延し、580℃×1時間のコイル巻き取り相当処理を施し、放冷した。そののち、一部の鋼を除き、表8に示す条件で熱延板焼鈍を施した。その後、酸洗ののち、0.50mmまで冷延を行った。
冷間圧延に際し、冷延中の板の状況、および冷延後の断面組織観察の結果より、冷間圧延時の加工性を評価した。
高P(≧0.10%)でかつ本発明の成分範囲を満たさない鋼(W、Z、a、c、d、k、およびl)、および、成分範囲は本発明を満たすものの、スラブ加熱温度(SRT)あるいは熱延巻き取り温度(CT)が本発明の範囲を外れるもの(No.25、26)では、板面に平行に層状の割れが多数観察され、一部の試料(No.5、19、25)においては圧延途中に層状に分離し、以降の圧延が困難となった。
これらの結果では、工業的に安定製造を行うことが困難であるため、これらの試料については以降の処理および評価を行わなかった。
ついで、冷延板に700℃以上の種々の温度で仕上げ焼鈍を施したのち、実施例1と同様の半有機絶縁被膜を施したのち、各種試験に供した。
ここで強度は圧延方向と平行にJIS5号試験片を切り出し、引張速度10mm/sで引張り、得られた引張強度(TS)で評価した。
得られた結果を表8に併記した。
Figure 2003002777
Figure 2003002777
本発明の範囲の成分とし、とくにPを0.1%以上添加した鋼(No.2〜4、7、13、14、16〜18、および21〜24)は、いずれも優れた抜き打ち寸法精度を示す。
すなわち、P添加量が0.1%に満たない鋼(No.1,6、10および15)では、打ち抜き径はSi+Al量の増加に伴い改善する傾向が見られるものの、打ち抜き径の異方性が大きい。一方、本発明鋼は打ち抜き径並びに打ち抜き径の異方性ともに優れているのが明らかである。
さらに、これらの発明鋼はP含有量が0.1%に満たない比較鋼と同等以上の磁束密度を有するにも関わらず高強度であり、優れた強度−磁束密度バランスを有する。
〔実施例5〕
表4の鋼M、鋼Nおよび鋼Oに示した組成になる溶鋼を、実験室的に溶製・鋳込みの後、熱延により板厚:30mmのシートバーとした。ついで、表9に示す各温度(SRT)に60分間加熱した後、板厚:2mmまで熱延し、表9に示す各温度(CT)にてコイル巻き取り相当の均熱保持を1時間行ったのち、放冷した。その後、一部の鋼を除き、表9に示す各温度で60秒の熱延板焼鈍を施した。
得られた熱延鋼板について、室温(23℃)で曲げ試験を行った。曲げ試験は、熱延板より100mm×30mmの試験片を圧延方向が長手となるように採取し、JIS−C2550に準じて曲げ半径15mmの繰り返し曲げ試験を行った。熱延板表面に亀裂の入るまでの回数を表9に示す。
また、スラブ加熱時、熱延板焼鈍時の組織(相)を次の方法で調査した。シートバー、熱延板とも、それぞれ所定温度(表9に記載)に所定時間(スラブ加熱:1時間、焼鈍:60秒)保持した後、水焼き入れして加熱時の組織を凍結し、光学顕微鏡による組織観察により、相を同定した。結果を表9に併記する。
上記熱延板は酸洗したのち、0.50mm厚までの冷延(1回冷延)を行い、脆化による冷延不良(層状割れ)が発生していないかを評価した。層状割れの発生していない冷延板については、表9に示す種々の温度で仕上げ焼鈍を施し、ついで、実施例1と同様の半有機絶縁被膜を塗布したサンプルを作製して、各種試験に供した。得られた結果を表9に示す。
Figure 2003002777
本発明の鋼組成(低Si鋼)において、本発明の製造条件を満足した場合(No.2、3、6、8、10および11)、高P添加にもかかわらず、問題なく鋼板が製造され、特性も良好であった。
他方、本発明のスラブ加熱温度が2相領域となった(No.1および4)場合は、脆化による冷延不良が発生し易く製品化が困難であることがわかる。また、コイル巻き取り温度が650℃より高い(No.5)した場合は、熱延板の加工性が低下し、得られた電磁鋼板の鉄損も低下した。さらに、熱延板焼鈍温度が2相域となった場合(No.7および12)、および、Niを1.0mass%より多く添加した鋼においてα単相域で熱延板焼鈍を行った場合(No.13)は、得られた電磁鋼板の磁束密度が低下した。さらにまた、仕上げ焼鈍温度が本発明の製造条件を外れ、再結晶粒径を30μm以上とするのに不十分な場合(No.9)も、磁気特性が劣化した。
産業上の利用の可能性
かくして、本発明によれば、高磁束密度かつ低鉄損という優れた磁気特性を有し、しかも高い打ち抜き寸法精度を有する無方向性電磁鋼板、およびさらに高強度を有する無方向性電磁鋼板を安定して得ることができる。
そして、本発明の無方向性電磁鋼板は、各種モータの鉄心素材、中でも特に高い寸法精度と高磁束密度が併せて要求されるリラクタンスモータや、さらに素材強度を要する埋め込み磁石型のDCブラシレスモータなどの鉄心素材として最適である。
【図面の簡単な説明】
図1は、降伏強度と打ち抜き径との関係に及ぼすSi含有量およびP含有量の影響を示すグラフである。
図2は、降伏強度と打ち抜き異方性との関係に及ぼすSi含有量およびP含有量の影響を示すグラフである。
図3は、平均結晶粒径と打ち抜き径との関係に及ぼすSi含有量およびP含有量の影響を示すグラフである。
図4は、平均結晶粒径と打ち抜き異方性との関係に及ぼすSi含有量およびP含有量の影響を示すグラフである。
図5は、平均結晶粒径と鉄損との関係に及ぼすSi含有量およびP含有量の影響を示すグラフである。
図6は、平均結晶粒径と磁束密度との関係に及ぼすSi含有量およびP含有量の影響を示すグラフである。
図7は、鉄損と磁束密度との関係に及ぼすSi含有量およびP含有量の影響を示すグラフである。
図8は、層状割れの発生に及ぼすSi含有量およびP含有量の影響を示すグラフである。
図9は、層状割れの発生に及ぼすSi含有量およびNi含有量の影響を示すグラフである。
図10は、P含有量と打ち抜き径との関係に及ぼすSi含有量およびNi添加の影響を示すグラフである。
図11は、P含有量と打ち抜き異方性との関係に及ぼすSi含有量およびNi添加の影響を示すグラフである。
図12は、引張強度と磁束密度との関係に及ぼすP含有量の影響を示すグラフである。
図13は、板厚と高周波鉄損との関係を示すグラフである。
図14は、板厚と磁束密度との関係を示すグラフである。Technical field
The present invention relates to a non-oriented electrical steel sheet used as a core material of electric equipment. Among them, non-oriented electrical steel sheets suitable for iron core materials such as reluctance motors or embedded magnet type DC brushless motors that require higher strength, which require high punching dimensional accuracy and high magnetic flux density, and the production thereof It is about the method.
Background art
A non-oriented electrical steel sheet is a soft magnetic material mainly used as a core material of electric equipment such as a motor and a transformer. In order to improve the efficiency and reduce the size of these electrical devices, it is required that the magnetic steel sheets have low iron loss and high magnetic flux density. In the field of electric motors, the magnetic properties of magnetic steel sheets, which are core materials, are being improved, that is, low iron loss and high magnetic flux density are being promoted. The motors themselves are also more efficient than conventional asynchronous AC induction motors. Replacement with a simple synchronous motor and improvement in characteristics are progressing rapidly.
Synchronous motors are generally classified into surface magnet type (SPM) and embedded magnet type (IPM) DC brushless motors, and reluctance motors that use reluctance torque generated by the magnetic saliency of the rotor and stator. . Above all, in the case of a reluctance motor, the amount of generated torque depends on the shape of the rotor and the stator, the gap between the rotor and the stator, and the magnetic flux density of the material. Therefore, as a core material for a reluctance motor, high magnetic flux density and high dimensional accuracy in punching are more important than other motors.
Further, with the progress of inverters, the number of poles tends to increase with the rotation at high speed in order to improve motor efficiency and torque. Since these are all elements for increasing the operating frequency, not only the conventional magnetic characteristics at the commercial frequency (50 to 60 Hz) but also the high frequency range of 400 Hz or more are applied to the non-oriented electrical steel sheet as the motor material. It is also necessary to improve the magnetic characteristics in the magnetic field.
Until now, various efforts have been made to improve the magnetic flux density and iron loss of the non-oriented electrical steel sheet as described above.
In order to reduce the iron loss of the non-oriented electrical steel sheet, it is common to increase the Si content. For example, about 3.5 mass% of Si is added to the highest grade non-oriented electrical steel sheet. There are cases. However, as the Si content increases, the iron loss decreases, but the magnetic flux density also decreases.
On the other hand, in a low-grade non-oriented electrical steel sheet, since the Si content is suppressed, a relatively high magnetic flux density can be obtained, but there is a problem that iron loss is high.
As a method for improving iron loss of such a low Si steel, Japanese Patent Application Laid-Open No. 62-267421 discloses a non-directional electromagnetic device in which the amount of Si is 0.6 mass% or less and the amount of Al is 0.15 to 0.60 mass%. In steel sheets, the amount of impurities such as C, S, N, and O is regulated to reduce inclusions, which are obstacles to crystal grain growth, to make them harmless, to promote grain growth, and to achieve low iron loss. Technology has been proposed. However, since the grain growth of such a low Si steel is accompanied by a decrease in strength, there is a problem that the punching surface becomes droopy and burred during the punching process, resulting in a marked decrease in punchability.
As a method of improving the punching property by adjusting the hardness of the low Si steel, there is a technique of adding about 0.08 to 0.1 mass% of P. For example, Japanese Patent Application Laid-Open No. Sho 56-130425 discloses a technique. There is disclosed a technique for improving the punching property by adding P of less than 0.2 mass%. As a technique for positively adding P to low Si steel, Japanese Patent Application Laid-Open No. 2-66138 discloses a technique in which the amount of Si is suppressed to 0.1 mass% or less, and the content of Al is 0.1 to 1.0 mass%. A method is disclosed in which 0.1 to 0.25 mass% of P is added to an Al-added steel contained in a range to improve the magnetic characteristics by a combined effect of Al and P.
However, in these techniques, the improvement of the punchability by the addition of P focuses only on the suppression of drooping of the steel sheet by adjusting the hardness thereof, and no consideration is given to the dimensional accuracy after the punching.
On the other hand, in an embedded magnet type DC brushless motor, punching accuracy and high magnetic flux density are required from the viewpoint of high torque and miniaturization. In order to prevent detachment, it is necessary to keep the strength of the magnetic steel sheet high. As described above, high-grade Si steel is advantageous from the viewpoint of strength, but low Si is desirable from the viewpoint of magnetic flux density, and it has been conventionally difficult to achieve both strength and magnetic flux density.
Disclosure of the invention
(Problems to be solved by the invention)
As described above, high magnetic flux density and low iron loss characteristics of non-oriented electrical steel sheets are common properties desired for all uses of non-oriented electrical steel sheets such as various motors and transformers. From the viewpoint of the operation principle, particularly high magnetic flux density and high dimensional accuracy are important for the conductive magnetic steel sheet material.
However, up to now, a non-oriented electrical steel sheet having excellent magnetic properties such as high magnetic flux density and low iron loss and excellent punching properties, particularly excellent dimensional accuracy in punching, has not been found. Further, in addition to these characteristics, no non-oriented electrical steel sheet has been found which further satisfies the demand for strength required for an embedded magnet type DC brushless motor and the like.
Further, in addition to these magnetic properties and punching properties, no non-oriented electrical steel sheet has been found that is considered to be able to cope with the recent high-speed rotation of motors and the high frequency accompanying multipolarization.
The present invention has been developed in view of the above situation, and iron core materials such as motors and transformers, in particular,
・ It has an unprecedented excellent magnetic balance of high magnetic flux density and low iron loss, which is ideal as an iron core material that requires particularly high magnetic flux density and high dimensional accuracy like a reluctance motor. Excellent non-oriented electrical steel sheet, and
・ Electromagnetic steel sheet that combines high magnetic flux density, high strength characteristics important from the viewpoint of high-speed rotation of the rotor and prevention of scattering of embedded magnets, along with punching dimensional accuracy
With its advantageous manufacturing method.
Hereafter, for convenience, low Si steels are those in which the sum of Si and Al is about 0.03 mass% or more and 0.5 mass% or less, and those in which the sum of Si and Al exceeds 0.5 mass% are medium to high. It shall be called Si steel.
(Means for solving the problem)
By the way, the present inventors have conducted intensive studies to achieve the above object, and as a result, after reducing the amount of Si or Al to a low Si steel level to obtain a steel having a substantially high saturation magnetic flux density, By adjusting the particle size to a predetermined range and adding an appropriate amount of P, not only excellent magnetic properties such as high magnetic flux density and low iron loss can be obtained, but also the punching dimensional accuracy is remarkably improved. Was obtained. Further, in addition to controlling the total amount of Si and Al in a range of more than 0.05 mass% to about 2.5 mass%, by adding an appropriate amount of P, the magnetic flux density is maintained in addition to the effect of improving the punching dimensional accuracy. It has also been found that the strength can be greatly improved while maintaining the same, and an unprecedented magnetic-strength balance can be achieved.
The present invention is based on the above findings.
That is, the gist configuration of the present invention is as follows.
1. In percent by mass
C: 0 to 0.010%,
Si and / or Al: 0.03% or more and 0.5% or less in total
Mn: 0.5% or less,
P: 0.10% or more, 0.26% or less,
S: 0.015% or less and
N: 0.010% or less
, The balance being Fe and inevitable impurities, and
Average crystal grain size: 30 μm or more and 80 μm or less
Non-oriented electrical steel sheet with excellent magnetic properties and punching accuracy.
2. In the above item 1, the steel sheet may further have a mass percentage
Sb and / or Sn: 0.40% or less in total
A non-oriented electrical steel sheet excellent in magnetic properties and punching accuracy, characterized by containing:
3. In the above 1 or 2, the steel sheet further comprises a mass percentage
Ni: 2.3% or less
A non-oriented electrical steel sheet excellent in magnetic properties and punching accuracy, characterized by containing:
4. In the above 1, 2 or 3, a non-oriented electrical steel sheet excellent in magnetic properties and punching accuracy, wherein the thickness of the steel sheet is 0.35 mm or less.
5. In percent by mass
C: 0 to 0.010%,
Si and / or Al: more than 0.5 to 2.5% in total;
Mn: 0.5% or less,
P: 0.10% or more, 0.26% or less,
S: 0.015% or less and
N: 0.010% or less, and
As required Ni: 2.3% or less
Containing, and
Index P represented by the following equationA:
Figure 2003002777
(However, the unit of the content of each element is mass%. The same applies to equation (2).)
And the P content is
P ≦ PA
Is satisfied or
Index P represented by the following equationF:
Figure 2003002777
But,
PF≤0.26
Is either satisfied,
The remainder is made of Fe and unavoidable impurities, and is an electromagnetic steel sheet having excellent magnetic properties and excellent punching accuracy.
6. In the above item 5, the steel sheet further comprises a mass percentage
Sb and / or Sn: 0.40% or less in total
A non-oriented electrical steel sheet having excellent strength, magnetic properties, and punching accuracy.
In the above steel types, as the secondary contained elements, Ca: 0.01% or less, B: 0.005% or less, Cr: 0.1% or less, Cu: 0.1% or less, Mo: 0. It may contain at least one of 1% or less.
7. Hot rolling is performed on the steel slab having the component composition described in any of the above 1 to 3 under the condition that the heating temperature is in the austenite single phase region and the coil winding temperature is 650 ° C or less. After the treatment, cold rolling is performed once or twice or more including intermediate annealing, and then finish annealing is performed in a ferrite single phase region at 700 ° C. or more. Manufacturing method of grain-oriented electrical steel sheet.
8. The steel slab having the component composition described in any one of the above 1 to 3 is subjected to hot rolling under the condition that the heating temperature is in the austenite single-phase region and the coil winding temperature is 650 ° C. or less. When the Ni content is 0% (no addition) to 1.0 mass% in the rolled sheet annealing, the Ni content is 1% in the ferrite single phase region at 900 ° C. or more or the austenite single phase region at Ac 3 points or more. In the case of more than 2.0 mass% and 2.3 mass% or less, it is performed in an austenitic single phase region having an Ac of 3 or more points, and after descaling, cold rolling is performed once or twice or more including intermediate annealing. A method for producing a non-oriented electrical steel sheet having excellent magnetic properties and punching accuracy, wherein finish annealing is performed in a ferrite single phase region at 700 ° C. or higher.
9. The above 5 or 6 slab is subjected to hot rolling at a hot rolling heating temperature of 1000 ° C. to 1200 ° C. and a hot rolling take-up temperature of 650 ° C. or less, and after descaling, once or twice including intermediate annealing. A method for producing a non-oriented electrical steel sheet having excellent strength, magnetic properties and punching accuracy, comprising performing the above-mentioned cold rolling and then performing finish annealing.
In the method for manufacturing an electromagnetic steel sheet of the above item 9, hot-rolled sheet annealing may be performed after hot-rolling.
Further, in the method for manufacturing an electromagnetic steel sheet according to any one of the above items 7, 8 and 9, after the finish annealing, a treatment for providing an insulating film may be performed.
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the experimental results that led to the present invention will be elucidated. The percentages of the component compositions shown below are all “mass%”.
[Experiment 1]
First, in order to clarify the relationship between the steel composition of the non-oriented electrical steel sheet and the punching dimensional accuracy, C: 0.0016 to 0.0028%, Mn: 0.20 to 0.22%, Al: 0.0007 To 0.0014%, N: 0.0012 to 0.0022% and Sb: 0.03% as a basic composition, the P content is kept constant at 0.02%, and the Si content is set to 0.1%. Steel in which the P content was changed in the range of 0.02 to 0.29% while the Si content was kept constant in the range of 0.10 to 0.11%. , Respectively. Next, these steel materials were heated at 1100 ° C. for 60 minutes, hot-rolled to a thickness of 2 mm, and kept at 600 ° C. for 2 hours, equivalent to coil winding, and then allowed to cool. Then, after annealing the hot-rolled sheet at 900 ° C. for 60 s, pickling and then cold-rolling the sheet to a thickness of 0.5 mm, performing finish annealing at various temperatures of 700 to 900 ° C. The diameter was varied. Thereafter, a sample obtained by applying and baking a semi-organic insulating film having an average film thickness of 0.6 μm to this finished annealed plate was prepared and subjected to a punching test.
The average crystal grain size was a circle equivalent diameter obtained by observing a cross section in the plate thickness direction parallel to the rolling direction and determining by a Jeffries method.
The punching test was performed using a circular mold having a diameter of 21 mmφ, and the clearance was set to 8% of the plate thickness. The diameters (inner diameters) of the punched circles in the four directions at angles of 0 °, 45 °, 90 °, and 135 ° with the rolling direction are measured, and the average diameter of the four points is determined. The minimum diameter difference was measured and used as an index of punching anisotropy.
The obtained results are shown in FIGS. 1 and 2 arranged in relation to the yield strength (YP) obtained from a tensile test piece (JIS No. 5) cut out in the rolling direction.
As is clear from FIGS. 1 and 2, in general, a soft material having a low YP has a large difference in the punching diameter with respect to the die diameter, and the punching diameter approaches the die dimension as the YP increases. Dimensional accuracy tends to improve. This is considered to be an effect of suppressing drooping at the time of punching due to an increase in strength, as conventionally known.
However, it should be noted here that the sample whose strength has been adjusted by the addition of P has excellent dimensional accuracy even at the same strength level as compared to conventional magnetic steel sheets whose strength has changed due to the change in the amount of Si. And the dimensional difference from the mold is suppressed even in the relatively low YP region (FIG. 1).
Further, in the steel in which the amount of Si is changed, the punching diameter approaches the die size with the increase in strength, but as shown in FIG. 2, the anisotropy represented by the difference between the maximum diameter and the minimum diameter remains large. It is. On the other hand, in steel whose strength has been increased by increasing the amount of P, the anisotropy of the punched shape is also improved.
FIG. 3 and FIG. 4 summarize these relationships in relation to the average crystal grain size of the finish-annealed sheet.
As is clear from FIGS. 3 and 4, the steel with the changed amount of Si deteriorates in both the punching dimensional accuracy and the punching anisotropy as the grain size increases. Even when the crystal grain size is large, the punching dimensional accuracy and the punching anisotropy are at a satisfactory level.
Although the details of the reason why the punching dimensional accuracy and the punching anisotropy are effectively improved by containing P in a certain amount or more are not clear,
(1) In addition to the effect of increasing the strength due to the addition of P and reducing the sagging during punching,
(2) The effect of adding an appropriate amount of P, which is known as an embrittlement element, to the steel to accelerate the breaking limit at the time of punching, and
(3) The addition of P tends to increase the {100} <uvw> orientation in the texture of the finish-annealed sheet, which is considered to be the result of the combined effect of the effect of relaxing anisotropy and the like. I have.
Next, the results examined from the viewpoint of magnetic characteristics will be described.
The present inventors have limited the content of Si and Al, which improve the iron loss but reduce the saturation magnetic flux density, as much as possible. Was examined in detail.
FIG. 5 shows the crystal grain size of the finish-annealed sheet and the iron loss (W15/50: Value at a frequency of 50 Hz and a maximum magnetic flux density of 1.5 T).
As is clear from the figure, when the Si content is low, the electric resistance decreases, which is disadvantageous for iron loss. However, since the iron loss greatly changes depending on the crystal grain size, it is stable if the grain size is about 30 μm or more. It can be seen that the iron loss is low. Also, when the electric resistance was reduced with low Al, it was similarly confirmed that setting the particle size to about 30 μm or more is effective for reducing iron loss.
However, until now, in the case of non-oriented electrical steel sheets belonging to a low grade having a low Si and Al composition as in the present invention, the average crystal grain size of the finish-annealed sheet is generally limited to about 15 to 25 μm. Met. The reason for this is that, as shown in the example of 0.11% Si-0.07% P steel (marked by ● in the figures) in FIGS. It is.
On the other hand, in the steel with an increased P content, good punching dimensional accuracy is maintained even when the average crystal grain size is about 30 μm or more.
Next, FIG. 6 shows the relationship between the average crystal grain size of each steel type and the magnetic flux density, and FIG. 7 shows the relationship between the iron loss and the magnetic flux density. Where B50Is the magnetic flux density at a magnetization force of 5000 A / m.
In the sample to which Si was added, the iron loss was improved, but the magnetic flux density was greatly reduced. On the other hand, the sample to which P is added maintains a high magnetic flux density even after the crystal grains grow and the iron loss is improved.
By the way, P is an embrittlement element, and when P is added in a large amount as in the present invention, defects such as edge cracks and layer cracks may occur mainly in the cold rolling process. The present inventors have studied this phenomenon diligently, and when the temperature in the slab heating during hot rolling is in the coexistence region of ferrite / austenite, distribution of P occurs between ferrite grains and austenite grains, and significant segregation of P in the ferrite grains. Was found, and the embrittlement of steel was promoted. In order to prevent such an embrittlement phenomenon, in manufacturing the steel sheet of the present invention, the slab heating temperature for hot rolling is set to an austenite single phase region (or a ferrite single phase if possible). is important.
Since P is a ferrite-forming element, it has an effect of reducing the austenite single phase region near the slab heating temperature. However, in the component range of the low Si steel, if the slab heating temperature is 1000 to 1200 ° C., the austenitic single phase is reduced. Phase.
As described above, it has been found that the addition of about 0.1% or more of P to the low Si steel is very effective.
Therefore, aggressive addition of P was examined for steel sheets containing 0.5% or more of Si.
[Experiment 2]
C: 0.0013 to 0.0026, Mn: 0.18 to 0.23%, Al: 0.0001 to 0.0011%, N: 0.0020 to 0.0029% Various steels with the Si content varied from 0.60 to 2.42 and the P content varied from 0.04 to 0.29% were melted, heated at 1100 ° C. for 60 minutes, and hot rolled to a plate thickness of 2 mm. After pickling, it was cold rolled to a sheet thickness of 0.50 mm.
As a result, depending on the steel composition, a problem occurred in which a layered crack occurred parallel to the plate surface inside the rolled steel plate.
FIG. 8 shows the result.
Mapping analysis of the layered cracking portion by EPMA showed that P was segregated or concentrated in the cracking portion. Therefore, when the segregation condition of P was examined in detail, it was found that, during hot rolling, the solute was maintained in a two-phase region of ferrite and austenite during heating of a steel slab (slab), and P was contained in the ferrite phase. It was found to be distributed and thickened.
That is, in the medium to high Si steel region, the austenite single phase region is further reduced due to the large amounts of Si and Al, which are ferrite forming elements, and as a result, at the conventional heating temperature, a ferrite / austenite two phase region is likely to be formed. Became clear.
When P exceeds 0.26%, laminar cracking has occurred under any composition conditions.
Therefore, steels having various amounts of Si, Mn, Al, and P were produced in a research facility, and conditions were investigated under which the segregation of P could be suppressed to a level at which rolling failure did not occur in a temperature range of about 1000 to 1200 ° C. . The slab heating temperature is a suitable temperature from the viewpoint of stabilizing precipitation of carbides, nitrides, sulfides, and the like existing in steel.
First, under the condition that the slab heating temperature is in the austenite single phase region or the ferrite single phase region, segregation due to phase distribution does not occur. Therefore, it is considered that layered cracking can be avoided if the amount of P added is less than a predetermined amount. From the above experiment, it is necessary that the amount of P added be about 0.26% or less.
Therefore, first, the conditions under which the middle to high Si steel becomes an austenitic single phase were investigated.
As a result, in steel containing more than 0.5% of Si + Al, the amount of P added is
P ≦ PA’, But
Figure 2003002777
(Each content of Si, Mn, Al, and P is represented by mass%.)
It was found that the range was within the austenite single phase region. Therefore, embrittlement due to P can be suppressed if the above conditions are satisfied and P ≦ about 0.26%.
Next, the conditions under which the medium to high Si steel became a ferrite single phase were investigated.
P ≧ PF’, But
Figure 2003002777
(Each content of Si, Mn, Al, and P is represented by mass%.)
It was found that the ferrite was in the single-phase region within the range of. Therefore, even if this condition is satisfied and P is limited to about 0.26%, embrittlement due to P can be suppressed.
Next, the conditions for suppressing the segregation of P when the slab heating in the austenite single phase region or the ferrite single phase region is difficult were investigated. When the distribution of the P concentration occurs in the ferrite / austenite two phase region, the P concentration in the ferrite phase is also the above P concentration.F’, But as a result of the investigation, this PF′ Is about 0.26 or less, embrittlement by P can be avoided.
When the embrittlement avoiding conditions in the two-phase region and the embrittlement avoiding conditions in the ferrite single-phase region are summarized, P ≦ about 0.26% and PF'≦ about 0.26.
To summarize the above relationship, the conditions for avoiding embrittlement by P are P ≦ about 0.26% and P ≦ PA’Or PF≦≦ approximately 0.26.
From the above results, if the amount of P added is within about 0.26% and the condition is such that heating is performed in the austenite single phase or ferrite single phase region during hot rolling, there is no trouble such as laminar cracking after cold rolling. It is found that it can be manufactured, and that even under the condition of two-phase heating of ferrite / austenite, it can be manufactured with a component system in which the amount of P distribution to the ferrite phase is low and the amounts of Si and Al are relatively high. Was.
Furthermore, various steel compositions were studied to provide an austenite or ferrite single phase structure in the slab heating temperature range (around 1000 to 1200 ° C.) during hot rolling even if about 0.1% or more of P is added.
As a result, it was found that the addition of Ni, which is an element suitable for improving magnetic properties and ensuring strength, is also effective for expanding the austenite region near the hot rolling temperature in P-added steel.
[Experiment 3]
C: 0.0013 to 0.0026%, Mn: 0.18 to 0.23%, Al: 0.0007 to 0.0013%, N: 0.0014 to 0.0025%, and P: 0.16 to A sample in which a component substantially constant at 0.18% was used as a basic composition and a Si amount was changed from 0.95 to 2.44% and a Ni amount was changed from 0 to 2.20%, as in Experiment 2, The cold-rolled steel sheet was rolled to .50 mm, and the state of occurrence of layered cracks was examined. The result is shown in FIG.
A 1.1-1.5% Si steel that had been cracked without adding Ni can be rolled without cracking by adding Ni. On the other hand, in the 1.95% Si steel and the 2.4% Si steel that could be rolled without Ni addition, cracks may occur due to an increase in Ni, and there is a possibility that an appropriate region exists in the effect of Ni. Understand.
Extending the above equation taking into account the effect of Ni, in steels containing more than 0.5% of Si + Al, the amount of P added is about 0.26% or less, and
P ≦ PA, But
Figure 2003002777
Slab heating temperature of 1000 to 1200 ° C. is in the austenite single phase region,
PF≤about 0.26, except
Figure 2003002777
In this case, the degree of P enrichment is small even in the two-phase region or the ferrite single-phase region, and it was found that embrittlement due to P can be avoided in any case.
In the above two equations, each content of Si, Mn, Al, P, and Ni is represented by mass%. Also, PFAnd PAThe technical meaning ofF’And PA'.
[Experiment 4]
The cold rolled steel sheet rolled to 0.50 mm in Experiments 2 and 3 was subjected to finish annealing, and then a semi-organic insulating film having an average film thickness of 0.6 μm was applied and baked.
A punching test was performed on these samples by the method described in Experiment 1 to check the punching diameter and its anisotropy, and the results are shown in FIGS. 10 and 11.
From these figures, all steels containing P ≧ 0.10% showed excellent punching dimensional accuracy even in steels containing more than 0.5% of Si + Al.
Here, in the Ni-added steel, the addition amount was changed between 0.38 to 2.20%.
Further, the magnetic flux density B of these samples50FIG. 12 shows the relationship between the tensile strength and the tensile strength TS. Here, TS was obtained by the same tensile test as in Experiment 1, and the magnetic flux density was also measured by the method in Experiment 1.
Steel containing about 0.1% or more of P is superior in B steel to conventional magnetic steel sheets having a medium to high Si composition (ie, Si + Al> 0.5%).50-TS balance is shown.
In particular, as the amount of P added increased, TS increased but the magnetic flux density did not decrease, but tended to increase.
This is characteristic in that the strengthening of the steel sheet by the addition of alloying elements other than ferromagnetic materials such as Si and Al, which is usually performed for conventional magnetic steel sheets, is accompanied by a decrease in magnetic flux density.
These characteristics are suitable as a rotor material for various types of rotating machines (motors, generators) such as DC brushless motors and reluctance motors, which are required to have higher torque, smaller size, and higher speed rotation of the motor.
Based on the above findings, as conditions for achieving both excellent magnetic flux density and punching dimensional accuracy, the amounts of Si, Al, P, and Ni in steel, and in the case of low Si steel, the average crystal grain size of the finish annealed sheet, It is specified in the following range.
In the case of low Si steel, the total of one or two of Si and Al: about 0.03 to 0.5%
Since Si and Al have a deoxidizing effect when added to steel, they are used alone or in combination as deoxidizing agents. In order to exert the effect, it is necessary that Si and Al are each used alone or about 0.03% or more in total. Further, Si and Al have the effect of increasing the specific resistance and improving the iron loss, but on the other hand, they lower the saturation magnetic flux density. Therefore, the upper limit is set to 0.5%.
For medium to high Si steels, the sum of one or two of Si and Al: more than 0.5% to about 2.5%
When importance is attached to mechanical strength and low iron loss together with excellent dimensional accuracy, the total amount of Si + Al can be contained in excess of 0.5%.
As described above, even in the case of a medium to high Si steel, a material having higher punching accuracy and strength-magnetic flux density balance can be obtained due to the effect of the addition of P, as compared with the conventional low P medium to high Si steel. .
However, if the total amount of Si + Al exceeds 2.5%, normal cold rolling becomes difficult even by the method of the present invention, so the range is specified to be more than 0.5% to about 2.5%.
P: about 0.10% or more, about 0.26% or less
P is a particularly important element in the present invention. P has a function of adjusting the material hardness by its high solid solution strengthening ability as conventionally known. In particular, low Si and low Al steel sheets are relatively soft by nature, but in the present invention, the average crystal grain size needs to be about 30 μm or more in order to reduce iron loss, so that the steel sheet may be further softened. is there. P is an essential element for improving the punching property of the steel sheet of the present invention, that is, for suppressing an increase in drooling and burrs due to insufficient strength of the steel sheet. In addition to such a material strength increasing ability, the effect of suppressing the total amount of deformation at the time of punching by accelerating the breaking limit at the time of punching, and increasing the {100} <uvw> orientation in the texture of the finished annealed sheet. The punching dimensional accuracy is improved by the combined effect of improving the anisotropy.
In addition, there is a characteristic that the magnetic flux density is not reduced despite increasing the strength of the steel sheet, and this effect is also exerted on medium to high Si steel.
In order to exhibit these effects, P must be contained at about 0.10% or more. On the other hand, P is originally an embrittlement element for steel, and when added excessively, ear cracks and layer cracks are liable to occur, and the productivity is reduced. In this regard, in the present invention, it is possible to manufacture a high-P-added steel, which has been conventionally difficult, by devising the manufacturing method or adding Ni. However, if the content exceeds about 0.26%, the production of P-added steel becomes difficult even when the production method of the present invention is employed. Therefore, the P content is in the range of about 0.10 to about 0.26%. Limited.
Ni: about 2.3% or less (can be added as an option)
Ni not only has the effect of improving the texture of the steel and increasing the magnetic flux density, but also has the effect of increasing the electrical resistance of the steel to reduce iron loss, and the punching by increasing the strength of the steel by solid solution strengthening. Since it also has the effect of suppressing dripping at the time, it can be added positively.
Further, since Ni is an austenite-forming element, it has an effect of expanding the austenite region (γ loop in the phase diagram) around 1000 to 1200 ° C., which is a suitable slab heating temperature. In particular, for steel having a composition in which the amount of Si + Al is more than 0.5%, it is effective to increase the operation stability. By utilizing this effect, rolling instability that can occur when P, which is an embrittlement element, is positively added as in the present invention can be significantly improved. That is, the point of stable production of high-P steel is suppression of excessive P segregation during hot rolling, and as an effective means thereof, avoiding the slab heating temperature from being in the ferrite / austenite two-phase region. If the sum of the Si content and the Al content exceeds 0.5%, it is easy to separate into two phases at the slab heating temperature. A single phase of austenite can be obtained.
However, when the Ni content exceeds about 2.3%, the ferrite (α) → austenite (γ) transformation start temperature decreases, and austenite transformation occurs during finish annealing, which may cause a decrease in magnetic flux density. Further, at a low finish annealing temperature lower than the transformation temperature, it is difficult to secure an average grain size of about 30 μm or more in a low Si steel, and iron loss also deteriorates. Therefore, Ni should be contained at about 2.3% or less. In addition, when adding Ni, about 0.50% or more of addition is preferable.
In low Si steel, average grain size of finish-annealed sheet: about 30 μm or more and about 80 μm or less
In order to obtain good iron loss characteristics in the low-Si, low-Al non-oriented electrical steel sheet of the present invention, as shown in FIG. 5, the average grain size of the finish-annealed sheet needs to be about 30 μm or more. . However, even if the grain size exceeds about 80 μm, no further effect of improving iron loss cannot be expected, and all of the steels belonging to the present invention are transformed steels and the ferrite single phase region suitable for recrystallization annealing is generally 700 to 900 ° C. Since the temperature is lower than that of the ferritic single-phase steel having a high Si composition, excessive grain growth is disadvantageous in terms of productivity in continuous short-time annealing equipment. Therefore, the upper limit is set to about 80 μm.
In addition, in the medium to high Si steels, since the alloy has an effect of improving electric resistance and the like, a relatively low iron loss is easily obtained, and thus the grain size is not particularly limited and may be in a normal range. Generally, it is about 20 to 200 μm.
Next, the inventors studied a technique for improving magnetic characteristics in a high-frequency range, which has been increasingly emphasized in recent years as the motor rotates at a higher speed and the number of poles increases. As a result, it was found that the reduction of the plate thickness was effective, and the effect was particularly remarkable in low Si steel. The experiment which led to the result is shown below.
[Experiment 5]
FIG. 13 shows the thickness of the iron loss at 400 Hz of the 0.11% Si-0.18% P steel, the 0.95% Si-0.02% P steel, and the 2.0% Si-0.5% Al steel. The result of examining the dependency is shown.
As shown in the figure, since the eddy current loss is reduced due to the decrease in the thickness of each sample, the high-frequency iron loss tends to be improved. It can be seen that steel is larger.
However, the thickness of non-oriented electrical steel sheets has hitherto been mainly 0.50 mm, and further reductions in thickness are only applied to some high-grade grades with high contents of Si and Al, which are specific resistance elements. Thus, there was no product example applied to a non-oriented electrical steel sheet having a low content of Si or Al.
FIG. 14 shows the results of examining the dependence of the magnetic flux density of these materials on the plate thickness.
As shown in the figure, when the sheet thickness is reduced, the magnetic flux density tends to decrease slightly, but the decrease is negligible, and at all sheet thicknesses, the low Si steel has a much higher magnetic flux. It has a density. Particularly for applications such as driving motors for electric vehicles (EV) and hybrid electric vehicles (HEV), high-speed rotation type reluctance motors are being studied. In such applications, high magnetic flux density and high frequency Low iron loss property is emphasized, but this can be dealt with by reducing the thickness of a steel sheet having low Si and low Al and having essentially high magnetic flux density as shown in the present invention.
As shown in FIG. 13, the effect of reducing the thickness becomes significant when the thickness is set to about 0.35 mm or less, and becomes more significant when the thickness is set to about 0.30 mm or less. The lower the thickness, the more effective the reduction of the eddy current loss. Therefore, there is no particular lower limit of the thickness. Therefore, the lower limit is desirably about 0.10 mm for general production.
Hereinafter, the reasons for limiting components other than Si, Al, P and Ni in the steel of the present invention will be described.
C: 0 to about 0.010%
C is an element that deteriorates the magnetic properties (iron loss) with the lapse of time after the steel sheet is manufactured due to the aging effect, and the degree becomes significant when the C content exceeds about 0.010%. C content was limited to 0.010% or less. In addition, as for the aging deterioration characteristic, the smaller the C content, the better. Therefore, the present invention includes a case where the C content is substantially zero (less than the analysis limit value).
Mn: about 0.5% or less
Mn has an effect of fixing S as MnS and suppressing embrittlement during hot rolling caused by FeS. Further, as the Mn content increases, the specific resistance increases and the iron loss is improved. However, on the other hand, since an increase in the Mn content causes a decrease in the magnetic flux density, the upper limit of the Mn content is set to about 0.5%.
S: about 0.015% or less
S is an unavoidable impurity, and as described above, when precipitated as FeS, not only causes hot embrittlement, but when precipitated finely, it deteriorates the grain growth property. It is advantageous to reduce as much as possible. Here, if the amount of S exceeds about 0.015%, the amount of deterioration of iron loss becomes remarkably large, so the upper limit is set to about 0.015%. However, on the other hand, S also has the effect of improving the shear profile at the time of punching, so the extent to which it is reduced is determined according to the application.
N: about 0.010% or less
N is an unavoidable impurity, and when finely precipitated as AlN, it inhibits grain growth and deteriorates iron loss. Therefore, N is regulated to about 0.010% or less.
As described above, the essential components and the suppressing components have been described. However, in the present invention, the following elements can be appropriately contained as magnetic property improving components.
Sb and / or Sn: about 0.40% or less in total
Sb and Sn are unevenly distributed at grain boundaries, and have an effect of improving magnetic flux density and iron loss by suppressing generation of recrystallization nuclei of {111} orientation from crystal grain boundaries during recrystallization of steel. In order to obtain this effect, it is desirable that the total content be about 0.01% or more when used alone or in combination. Nevertheless, even if it is contained excessively, the effect reaches saturation, and if the content exceeds 0.40%, it becomes brittle and cracks occur during cold rolling. In this case, it is desirable that the total content be about 0.40% or less.
Other secondary elements will be described.
In the present invention, Ca may be contained in an amount of about 0.01% or less as an element for effectively trapping S present as an impurity together with Mn as a deoxidizing agent. In addition, B of about 0.005% or less and Cr of about 0.1% or less can be added to alleviate oxidation and nitridation during strain relief annealing.
In addition, the addition of known elements such as Cu and Mo as elements that do not impair magnetic properties does not impair the effects of the present invention, but from the viewpoint of the cost of addition, the content of each element is reduced. Is preferably about 0.1% or less.
As for other components, for example, a small amount of a carbonitride-forming element such as Ti, Nb, or V is allowed, but it is preferable to keep the iron loss as low as possible.
As described above, in the case of medium to high Si, if the component is designed to be in a single phase of an austenite phase or a ferrite phase at a slab heating temperature, or if it is in a two-phase state of austenite / ferrite, In order to suppress the excessive local segregation of P, it is possible to stably produce a high P-added steel by designing a component so that the amount of P enriched in the ferrite phase in which P is more easily enriched is suppressed. .
Specifically, in order to suppress excessive local segregation of P at a slab heating temperature (about 1000 to 1200 ° C.) suitable for stabilizing precipitation of carbides, nitrides, sulfides, and the like existing in steel. ,
Index P represented by the following equationA:
Figure 2003002777
And the P content is
P ≦ PA
Is satisfied or
Index P represented by the following equationF:
Figure 2003002777
But,
PF≤ about 0.26
(The unit of Si, Mn, Al, Ni, and P is mass%.)
Should be fine. Where PAIs an experimentally determined upper limit P content of an austenitic single phase in a temperature range of about 1000 to 1200 ° C. for various Si, Mn, Al, and Ni compositions.FIs the experimentally determined lower limit of the P content of the ferrite single phase.
Next, the production conditions of the present invention will be elucidated.
After smelting the molten steel adjusted to the above-mentioned suitable component composition by a converter refining method or an electric furnace melting method, it is formed into a slab by a continuous casting method or an ingot lump rolling method.
Next, the slab is subjected to hot rolling after heating. Here, in order to stabilize precipitation of carbides, nitrides, sulfides, and the like existing in steel, the slab heating temperature is preferably about 1000 to 1200 ° C. Further, as described above, the phase state during slab heating is extremely important for suppressing excessive local segregation of P.
Since P is a ferrite-forming element, it has an effect of reducing the austenite single-phase region around the slab heating temperature, but in the case of low Si steel, in the component range of the present invention, the slab heating temperature is about 1000 to 1200 ° C. If present, it can be made into an austenitic single phase. In the case of medium to high Si steel, the above P ≦ PAWhen the slab heating temperature is in the range of about 1000 to 1200 ° C., the austenitic single phase can be obtained. Furthermore, for medium to high Si steels, PFIn the case of a component system that satisfies ≦ about 0.26, the degree of segregation of P in the ferrite phase remains at a level at which embrittlement can be avoided even in the ferrite / austenite coexistence region. In addition, even when the ferrite is heated in a single phase region of ferrite, if the P content is within about 0.26%, it can be produced without layer cracks or the like.
In the present invention, the coil winding temperature after hot rolling is also an important point in ensuring the productivity of high-P steel. That is, if the coil winding temperature is high, iron phosphide (Fe3P) is generated during cooling of the coil, and the bendability and rollability of the hot-rolled sheet are reduced, so that the winding temperature is about 650 ° C. or less, preferably about It is desirable to perform winding at as low a temperature as possible, such as 600 ° C. or less, and more preferably about 550 ° C. or less. It is also effective to accelerate the cooling of the coil by means such as immersing the wound coil in a water tank or discharging water onto the coil.
Next, the hot-rolled coil is subjected to cold rolling after descaling by a technique such as pickling, but may be subjected to hot-rolled sheet annealing in order to further improve magnetic properties.
Here, in a low Si steel in which the total of the Si content and the Al content is 0.5% or less, it is preferable that the hot-rolled sheet annealing temperature also avoid the ferrite / austenite coexistence region (two-phase region). This is because the growth of crystal grains does not easily progress in annealing in the two-phase region, and improvement in magnetic properties such as magnetic flux density cannot be expected.
Hereinafter, a preferable hot-rolled sheet annealing temperature in the low Si steel will be described according to the amount of Ni.
When the Ni-free steel or the Ni content is a relatively small Ni content of 1.0% or less, the non-oriented electrical steel sheet is usually heated to about 900 ° C. or higher, similarly to the case of performing hot-rolled sheet annealing. Annealing can be performed in the ferrite single phase region. Further, the annealing temperature may be set to a higher temperature, and the austenite single phase region (desirably, about 1,050 to 1,100 ° C.) having an Ac point of 3 or more may be used. In short, it is important to avoid annealing (especially around 950 ° C.) in a two-phase region that is an intermediate region between the two.
On the other hand, when the Ni content is a relatively large Ni content of more than 1.0 to 2.3%, the austenite generation temperature during annealing is lowered, so that the two-phase region is obtained even at an annealing temperature of about 900 ° C. Decreases. However, sufficient magnetic flux density cannot be obtained in annealing in a ferrite single phase region at 900 ° C. or lower due to insufficient grain growth. Therefore, the conditions for annealing the hot-rolled sheet in this component system were limited to the austenitic single-phase region of Ac 3 points or more (preferably about 1050 to 1100 ° C.).
In the case of a medium to high Si steel, as described above, low iron loss is easily obtained even with fine grains, so that the grain growth in annealing is not as important as that of the low Si steel. Therefore, the hot-rolled sheet annealing temperature is not particularly limited, but is usually preferably in the range of 700 to 1100 ° C.
Next, after descaling, the obtained coil is rolled once in a cold or warm state, or is subjected to two or more cold (or warm) rolling steps with intermediate annealing to finish to a predetermined thickness.
Thereafter, finish annealing is performed. In the case of a low Si steel, the finish annealing is performed in a ferrite single phase region at 700 ° C. or higher. That is, if the final annealing temperature is lower than 700 ° C., it is difficult to stably grow the average crystal grain size to about 30 μm or more, while if austenite grains are generated beyond the ferrite single phase region, the texture deteriorates, This is because the magnetic flux density and iron loss deteriorate.
In the case of a medium to high Si steel, as described above, the grain growth during annealing is not as important as that of the low Si steel, and thus the finish annealing temperature is not particularly limited, but it is usually within the range of 700 to 1100 ° C. preferable.
The ferrite single-phase temperature range or austenite single-phase temperature range of the hot-rolled sheet and cold-rolled sheet was previously observed by heating and cooling water-cooled steel sheets of the same composition in various temperature ranges with an optical microscope. Can be determined. Alternatively, as another method, Thermo-CalcTMIt can also be estimated in advance by a calculation state diagram obtained by thermodynamic calculation software such as.
After the finish annealing, an insulating coating can be applied in the same manner as a general non-oriented electrical steel sheet. The application method is not particularly limited, but a method of performing a baking treatment after applying the treatment liquid is preferable.
The obtained coil is slit into a required width and dimensions, and then punched into the shape of a motor stator or a rotor by a user, and then laminated and commercialized. Alternatively, in some cases, after punching, the product is produced after performing strain relief annealing (normally 750 ° C. × 1 to 2 hours).
(Example)
[Example 1]
A molten steel having the composition shown in Table 1 was smelted and cast in a laboratory, and then hot-rolled to form a sheet bar having a thickness of 30 mm. Then, after heating at 1100 ° C. for 60 minutes, the sheet was hot-rolled to a thickness of 2 mm, and kept at 600 ° C. for 2 hours, equivalent to coil winding, and then allowed to cool. Thereafter, after hot-rolled sheet annealing at 950 ° C. for 60 s, after pickling, cold rolling to a thickness of 0.50 mm (one time cold rolling) is performed, and finish annealing is performed at various temperatures of 700 to 900 ° C. The recrystallized grain size was varied. During cold rolling, steel J having a P content exceeding the range of the present invention caused many layered cracks parallel to the sheet surface during cold rolling, and the subsequent processing was stopped and evaluation was not performed. .
In addition, No. Nos. 56 to 59 are obtained by cold rolling by hot rolling twice without intermediary annealing at 800 ° C. without performing hot rolling sheet annealing.
Then, a sample in which a semi-organic insulating film having an average film thickness of 0.6 μm was applied to the obtained finish-annealed plate was prepared and subjected to various tests.
The punching test was performed using a circular mold having a diameter of 21 mmφ, and the clearance was set to 8% of the plate thickness. The diameters (inner diameters) of the punched circles in four directions having angles of 0 °, 45 °, 90 °, and 135 ° with the rolling direction were measured, and the average diameter of the four points was determined. The difference between the maximum diameter and the minimum diameter among the four points was taken as an index of punching anisotropy.
The magnetic properties were measured by the Epstein method using strip-shaped test pieces cut out to 180 mm × 30 mm so that the angles formed with the rolling direction were 0 ° and 90 °.
For the yield stress (YP), a tensile test was performed at a speed of 10 mm / min using a JIS No. 5 test piece cut out in parallel with the rolling direction, and the upper yield point was adopted.
Tables 2 and 3 show the obtained results.
Figure 2003002777
Figure 2003002777
Figure 2003002777
In steels A to F (Nos. 1 to 33, 56, and 57) in which the P content is less than the appropriate range of the present invention and the strength is changed due to the change in the Si content and the crystal grain size, the YP increases. The punching diameter tends to approach the die diameter, but the anisotropy of the punching dimension represented by the difference between the maximum diameter and the minimum diameter is relatively large at about 10 to 20 μm. Also, there is a problem that the magnetic flux density decreases when the amount of Si increases.
On the other hand, according to the present invention, steels G to H containing 0.10% or more of P as a low Si and Al composition have good punching diameters even when YP is relatively low at 350 MPa or less. Has a small anisotropy. Further, from the viewpoint of magnetic properties, the average grain size of these steels was controlled to 30 μm or more (Nos. 37, 38, 39, 44, 45, 46, 47, 51, 52, 53, 54, 59). In each case), stable low iron loss and high magnetic flux density are obtained.
[Example 2]
Molten steel having the composition shown in Table 4 was smelted in a laboratory and made into a hot-rolled sheet having a thickness of 2 mm in the same manner as in Example 1. After annealing the hot-rolled sheet at 1100 ° C. for 30 s, the acid was added. After washing, it was cold rolled to a thickness of 0.50 mm. Subsequently, finish annealing was performed at 700 ° C. or higher and at various temperatures in the ferrite single phase region to change the recrystallized grain size in various ways.
Subsequently, samples coated with the same semi-organic insulating film as in Example 1 were prepared and subjected to various tests.
Table 5 shows the obtained results.
Here, steels K to M were obtained by reducing the amount of Si and deoxidizing with Al, and the steel N and O pairs and the steel Q and R pairs were melted so that the effects of Ni addition could be evaluated. Things.
Figure 2003002777
Figure 2003002777
Any steel satisfying the steel composition of the present invention and having an average crystal grain size of 30 μm or more has excellent punching dimensional accuracy, and has not only low punching anisotropy but also magnetic properties. It was excellent. In particular, when steel N and steel O and steel Q and steel R are compared with each other, a remarkable improvement in magnetic flux density is observed in steels O and R to which Ni is added.
[Example 3]
Molten steel having the composition shown in Steel F of Table 1 and Steel N and Steel O of Table 4 was smelted in a laboratory and made into a hot-rolled sheet having a thickness of 2 mm in the same manner as in Example 1. After the hot-rolled sheet was annealed at 1100 ° C. for 30 s, it was pickled and then cold-rolled to various thicknesses of 0.50 to 0.2 mm. Then, finish annealing was performed at 700 ° C. or more and at various temperatures in the ferrite single phase region, and the recrystallized grain size was controlled to 35 to 45 μm.
Subsequently, samples coated with the same semi-organic insulating film as in Example 1 were prepared and subjected to various tests. These samples were also examined for high-frequency iron loss at 400 Hz.
The results obtained are also shown in Table 6.
Figure 2003002777
As the plate thickness is reduced, the tendency that iron loss particularly at high frequencies is improved is remarkable. The punching dimensional accuracy also tends to improve with a decrease in sheet thickness, but steels N and O that satisfy the component range of the present invention are superior to comparative steel F. Furthermore, the steel of the present invention is excellent in the anisotropy of the punched size at any thickness.
[Example 4]
Molten steel having the composition shown in Table 7 was smelted in a laboratory and cast into a steel ingot, then subjected to soaking at 1150 ° C. × 1 hour, and then hot-rolled into a sheet bar having a thickness of 30 mm. .
The obtained sheet bar was heated to the temperature (SRT) shown in Table 8 and held for 1 hour, then hot rolled to 2.0 mm, subjected to a coil winding process of 580 ° C. × 1 hour, and allowed to cool. . Thereafter, except for some steels, hot-rolled sheet annealing was performed under the conditions shown in Table 8. Then, after pickling, it was cold rolled to 0.50 mm.
During cold rolling, the workability during cold rolling was evaluated from the state of the sheet during cold rolling and the result of observation of the cross-sectional structure after cold rolling.
Steel (W, Z, a, c, d, k, and l) having a high P (≧ 0.10%) and not satisfying the component range of the present invention, and slab heating while the component range satisfies the present invention When the temperature (SRT) or hot-rolling temperature (CT) is out of the range of the present invention (Nos. 25 and 26), many layered cracks are observed parallel to the plate surface, and some samples (No. In 5, 19, and 25), they were separated into layers during rolling, and subsequent rolling became difficult.
From these results, it was difficult to carry out industrially stable production. Therefore, these samples were not subjected to subsequent processing and evaluation.
Next, the cold-rolled sheet was subjected to finish annealing at various temperatures of 700 ° C. or more, and then subjected to the same semi-organic insulating coating as in Example 1, and then subjected to various tests.
Here, the strength was determined by cutting out a JIS No. 5 test piece in parallel with the rolling direction, pulling it at a pulling speed of 10 mm / s, and evaluating the obtained tensile strength (TS).
Table 8 also shows the obtained results.
Figure 2003002777
Figure 2003002777
Steels (Nos. 2 to 4, 7, 13, 14, 16 to 18 and 21 to 24) to which P is added in an amount of 0.1% or more as components within the scope of the present invention have excellent punching dimensional accuracy. Is shown.
That is, in steels (Nos. 1, 6, 10 and 15) in which the amount of P added is less than 0.1%, although the punched diameter tends to improve with an increase in the Si + Al amount, the anisotropy of the punched diameter is observed. Is big. On the other hand, it is clear that the steel of the present invention is excellent in both the punching diameter and the anisotropy of the punching diameter.
Furthermore, these inventive steels have high strength despite having a magnetic flux density equal to or higher than that of comparative steel having a P content of less than 0.1%, and have an excellent strength-magnetic flux density balance.
[Example 5]
Molten steel having the compositions shown in Steel M, Steel N and Steel O in Table 4 was experimentally produced and cast, and then hot-rolled to form a sheet bar having a thickness of 30 mm. Then, after heating to each temperature (SRT) shown in Table 9 for 60 minutes, hot-rolling to a plate thickness: 2 mm, and maintaining the soaking temperature equivalent to coil winding at each temperature (CT) shown in Table 9 for 1 hour. After that, it was left to cool. After that, except for some steel, hot-rolled sheet annealing was performed at each temperature shown in Table 9 for 60 seconds.
A bending test was performed on the obtained hot-rolled steel sheet at room temperature (23 ° C.). In the bending test, a test piece of 100 mm × 30 mm was sampled from the hot-rolled sheet so that the rolling direction was elongated, and a repeated bending test with a bending radius of 15 mm was performed according to JIS-C2550. Table 9 shows the number of times until the surface of the hot rolled sheet cracks.
The structure (phase) during slab heating and hot-rolled sheet annealing was investigated by the following method. After the sheet bar and the hot-rolled sheet are each maintained at a predetermined temperature (described in Table 9) for a predetermined time (slab heating: 1 hour, annealing: 60 seconds), the structure at the time of heating is frozen by water quenching, and optical The phase was identified by microscopic observation of the structure. The results are also shown in Table 9.
The hot-rolled sheet was pickled and then cold-rolled to a thickness of 0.50 mm (one-time cold-rolling) to evaluate whether or not a cold-rolling defect (lamellar cracking) due to embrittlement occurred. The cold-rolled sheet having no layered cracks was subjected to finish annealing at various temperatures shown in Table 9, and then a sample coated with the same semi-organic insulating coating as in Example 1 was prepared. Provided. Table 9 shows the obtained results.
Figure 2003002777
When the steel composition of the present invention (low Si steel) satisfies the manufacturing conditions of the present invention (Nos. 2, 3, 6, 8, 10, and 11), a steel sheet can be manufactured without any problem despite the addition of high P. And the characteristics were also good.
On the other hand, when the slab heating temperature of the present invention is in the two-phase region (Nos. 1 and 4), it can be seen that cold rolling failure due to embrittlement is likely to occur and commercialization is difficult. When the coil winding temperature was higher than 650 ° C. (No. 5), the workability of the hot rolled sheet was reduced, and the iron loss of the obtained electromagnetic steel sheet was also reduced. Furthermore, when the hot-rolled sheet annealing temperature is in the two-phase region (Nos. 7 and 12), and when the hot-rolled sheet annealing is performed in the α single-phase region in steel containing more than 1.0 mass% of Ni. In (No. 13), the magnetic flux density of the obtained electromagnetic steel sheet was reduced. Furthermore, when the finish annealing temperature was outside the production conditions of the present invention and was insufficient to make the recrystallized grain size 30 μm or more (No. 9), the magnetic properties were also deteriorated.
Industrial potential
Thus, according to the present invention, a non-oriented electrical steel sheet having excellent magnetic properties such as a high magnetic flux density and a low iron loss, and having a high punching dimensional accuracy, and a non-oriented electrical steel sheet having a further high strength can be stably obtained. Can be obtained.
The non-oriented electrical steel sheet of the present invention is used for iron core materials of various motors, among others, a reluctance motor requiring particularly high dimensional accuracy and a high magnetic flux density, and an embedded magnet type DC brushless motor requiring further material strength. Ideal for iron core material.
[Brief description of the drawings]
FIG. 1 is a graph showing the influence of the Si content and the P content on the relationship between the yield strength and the punch diameter.
FIG. 2 is a graph showing the influence of Si content and P content on the relationship between yield strength and punching anisotropy.
FIG. 3 is a graph showing the influence of the Si content and the P content on the relationship between the average crystal grain size and the punched diameter.
FIG. 4 is a graph showing the influence of the Si content and the P content on the relationship between the average crystal grain size and the punching anisotropy.
FIG. 5 is a graph showing the influence of the Si content and the P content on the relationship between the average crystal grain size and iron loss.
FIG. 6 is a graph showing the influence of the Si content and the P content on the relationship between the average crystal grain size and the magnetic flux density.
FIG. 7 is a graph showing the influence of the Si content and the P content on the relationship between iron loss and magnetic flux density.
FIG. 8 is a graph showing the influence of the Si content and the P content on the occurrence of layered cracks.
FIG. 9 is a graph showing the influence of the Si content and the Ni content on the occurrence of layered cracks.
FIG. 10 is a graph showing the influence of the Si content and Ni addition on the relationship between the P content and the punch diameter.
FIG. 11 is a graph showing the influence of Si content and Ni addition on the relationship between P content and punching anisotropy.
FIG. 12 is a graph showing the effect of the P content on the relationship between the tensile strength and the magnetic flux density.
FIG. 13 is a graph showing the relationship between the plate thickness and the high-frequency iron loss.
FIG. 14 is a graph showing the relationship between the plate thickness and the magnetic flux density.

Claims (11)

質量百分率で
C:0〜0.010%、
SiおよびAlの少なくとも1種:合計で0.03%以上、0.5%以下、 Mn:0.5%以下、
P:0.10%以上、0.26%以下、
S:0.015%以下および
N:0.010%以下
を含有し、残部はFeおよび不可避的不純物の組成になり、かつ
平均結晶粒径:30μm以上、80μm以下
としたことを特徴とする無方向性電磁鋼板。
C: 0 to 0.010% by mass percentage;
At least one of Si and Al: 0.03% or more and 0.5% or less in total; Mn: 0.5% or less;
P: 0.10% or more, 0.26% or less,
S: 0.015% or less and N: 0.010% or less, the balance being a composition of Fe and unavoidable impurities, and an average crystal grain size of 30 μm or more and 80 μm or less. Grain-oriented electrical steel sheet.
請求項1において、鋼板がさらに、質量百分率で
SbおよびSnの少なくとも1種:合計で0.40%以下
を含有することを特徴とする無方向性電磁鋼板。
2. The non-oriented electrical steel sheet according to claim 1, wherein the steel sheet further contains at least one of Sb and Sn by mass percentage: 0.40% or less in total.
請求項1または2において、鋼板がさらに、質量百分率で
Ni:2.3%以下
を含有することを特徴とする無方向性電磁鋼板。
The non-oriented electrical steel sheet according to claim 1 or 2, wherein the steel sheet further contains Ni: 2.3% or less by mass percentage.
請求項1〜3のいずれかにおいて、鋼板がさらに、質量百分率で
Ca:0.01%以下、 B:0.005%以下、
Cr:0.1%以下、 Cu:0.1%以下
Mo:0.1%以下
の少なくともいずれかを含有することを特徴とする無方向性電磁鋼板。
The steel sheet according to any one of claims 1 to 3, wherein the steel sheet further comprises, by mass percentage, Ca: 0.01% or less, B: 0.005% or less,
A non-oriented electrical steel sheet comprising at least one of Cr: 0.1% or less, Cu: 0.1% or less, and Mo: 0.1% or less.
請求項1〜4のいずれかにおいて、鋼板の板厚が0.35mm以下であることを特徴とする無方向性電磁鋼板。The non-oriented electrical steel sheet according to any one of claims 1 to 4, wherein a thickness of the steel sheet is 0.35 mm or less. 質量百分率で
C:0〜0.010%、
SiおよびAlの少なくとも1種:合計で0.5%超え、2.5%以下、
Mn:0.5%以下、
P:0.10%以上、0.26%以下、
S:0.015%以下、
N:0.010%以下、および
必要に応じ Ni:2.3%以下
を含有し、残部はFeおよび不可避的不純物の組成になり、かつ、
P≦PおよびP≦0.26の少なくとも一方の関係を満足する、
ただし、
Figure 2003002777
ここで、各元素含有量の単位はmass%
ことを特徴とする無方向性電磁鋼板。
C: 0 to 0.010% by mass percentage;
At least one of Si and Al: more than 0.5% and 2.5% or less in total
Mn: 0.5% or less,
P: 0.10% or more, 0.26% or less,
S: 0.015% or less,
N: 0.010% or less, and optionally Ni: 2.3% or less, the balance being Fe and unavoidable impurities, and
Satisfies at least one relationship of P ≦ P A and P F ≦ 0.26,
However,
Figure 2003002777
Here, the unit of the content of each element is mass%.
Non-oriented electrical steel sheet characterized by the above-mentioned.
請求項6において、鋼板がさらに、質量百分率で
SbおよびSnの少なくとも1種:合計で0.40%以下
を含有することを特徴とする無方向性電磁鋼板。
The non-oriented electrical steel sheet according to claim 6, wherein the steel sheet further contains at least one of Sb and Sn by mass percentage: 0.40% or less in total.
請求項6または7において、鋼板がさらに、質量百分率で
Ca:0.01%以下、 B:0.005%以下、
Cr:0.1%以下、 Cu:0.1%以下
Mo:0.1%以下
の少なくともいずれかを含有することを特徴とする無方向性電磁鋼板。
The steel sheet according to claim 6 or 7, wherein the steel sheet further comprises, by mass percentage, Ca: 0.01% or less, B: 0.005% or less,
A non-oriented electrical steel sheet comprising at least one of Cr: 0.1% or less, Cu: 0.1% or less, and Mo: 0.1% or less.
請求項1〜4のいずれかに記載の成分組成になる鋼スラブに対し、
熱間圧延を、加熱温度がオーステナイト単相域で、かつコイル巻き取り温度が650℃以下の条件で行い、
ついで脱スケール処理後、1回または中間焼鈍を含む2回以上の冷間圧延を行ったのち、700℃以上のフェライト単相域で仕上げ焼鈍を行うことを特徴とする、無方向性電磁鋼板の製造方法。
For a steel slab having the component composition according to any one of claims 1 to 4,
The hot rolling is performed under the condition that the heating temperature is in the austenite single-phase region and the coil winding temperature is 650 ° C. or less,
Then, after the descaling treatment, after performing cold rolling once or twice including intermediate annealing, finish annealing is performed in a ferrite single phase region at 700 ° C. or more, characterized in that the non-oriented electrical steel sheet is Production method.
請求項1〜4のいずれかに記載の成分組成になる鋼スラブに対し、
熱間圧延を、加熱温度がオーステナイト単相域で、かつコイル巻き取り温度が650℃以下の条件で行ったのち、
Niが無添加であるか、Ni含有量が1.0mass%以下の場合には、900℃以上のフェライト単相域またはAc3点以上のオーステナイト単相域のいずれかで熱延板焼鈍を行い、
Ni含有量が1.0mass%超え、2.3mass%以下の場合には、Ac3点以上のオーステナイト単相域で熱延板焼鈍を行い、
ついで脱スケール処理後、1回または中間焼鈍を含む2回以上の冷間圧延を行ったのち、
700℃以上のフェライト単相域で仕上げ焼鈍を行うことを特徴とする、無方向性電磁鋼板の製造方法。
For a steel slab having the component composition according to any one of claims 1 to 4,
After performing the hot rolling under the condition that the heating temperature is in the austenite single phase region and the coil winding temperature is 650 ° C. or less,
When Ni is not added or the Ni content is 1.0 mass% or less, hot-rolled sheet annealing is performed in either a ferrite single-phase region of 900 ° C. or more or an austenitic single-phase region of Ac3 or more.
When the Ni content exceeds 1.0 mass% and is 2.3 mass% or less, hot-rolled sheet annealing is performed in an austenitic single-phase region of three or more Ac points.
Then, after descaling, cold rolling is performed once or twice or more including intermediate annealing.
A method for producing a non-oriented electrical steel sheet, comprising performing finish annealing in a ferrite single phase region at 700 ° C or higher.
請求項6〜8のいずれかに記載の成分組成になる鋼スラブに対し、
熱間圧延を、加熱温度が1000〜1200℃、かつコイル巻き取り温度が650℃以下の条件で行ったのち、
必要に応じ熱延板焼鈍を施し、
ついで脱スケール処理後、1回または中間焼鈍を含む2回以上の冷間圧延を行ったのち、
仕上げ焼鈍を行うことを特徴とする、無方向性電磁鋼板の製造方法。
For a steel slab having the component composition according to any one of claims 6 to 8,
After performing the hot rolling under the condition that the heating temperature is 1000 to 1200 ° C and the coil winding temperature is 650 ° C or less,
Perform hot rolled sheet annealing as necessary,
Then, after descaling, cold rolling is performed once or twice or more including intermediate annealing.
A method for producing a non-oriented electrical steel sheet, comprising performing finish annealing.
JP2003508741A 2001-06-28 2002-06-27 Non-oriented electrical steel sheet and manufacturing method thereof Expired - Fee Related JP4329538B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001195832 2001-06-28
JP2001195832 2001-06-28
PCT/JP2002/006458 WO2003002777A1 (en) 2001-06-28 2002-06-27 Nonoriented electromagnetic steel sheet

Publications (2)

Publication Number Publication Date
JPWO2003002777A1 true JPWO2003002777A1 (en) 2004-10-21
JP4329538B2 JP4329538B2 (en) 2009-09-09

Family

ID=19033747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003508741A Expired - Fee Related JP4329538B2 (en) 2001-06-28 2002-06-27 Non-oriented electrical steel sheet and manufacturing method thereof

Country Status (7)

Country Link
US (2) US20040149355A1 (en)
EP (1) EP1411138A4 (en)
JP (1) JP4329538B2 (en)
KR (1) KR100956530B1 (en)
CN (1) CN1318627C (en)
TW (1) TW555863B (en)
WO (1) WO2003002777A1 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10153234A1 (en) * 2001-10-31 2003-05-22 Thyssenkrupp Stahl Ag Hot-rolled steel strip intended for the production of non-grain-oriented electrical sheet and method for its production
DE10221793C1 (en) * 2002-05-15 2003-12-04 Thyssenkrupp Electrical Steel Ebg Gmbh Non-grain oriented electrical steel or sheet and process for its manufacture
CN100334246C (en) * 2004-05-28 2007-08-29 宝山钢铁股份有限公司 False-proof coinage steel and producing method thereof
PT1662010E (en) 2004-11-24 2009-03-03 Giovanni Arvedi Magnetic hot rolled steel strip particularly suited for the production of electromagnetic lamination packs
KR100973627B1 (en) * 2005-07-07 2010-08-02 수미도모 메탈 인더스트리즈, 리미티드 Non-oriented electromagnetic steel sheet and process for producing the same
JP4464889B2 (en) * 2005-08-11 2010-05-19 株式会社神戸製鋼所 Soft magnetic steel materials with excellent cold forgeability, machinability and magnetic properties, and soft magnetic steel parts with excellent magnetic properties
WO2007063581A1 (en) * 2005-11-30 2007-06-07 Sumitomo Metal Industries, Ltd. Nonoriented electromagnetic steel sheet and process for producing the same
KR100797895B1 (en) * 2006-12-22 2008-01-24 성진경 Method of forming cube-on-face texture on surface, method of manufacturing non-oriented electrical steel sheets using the same and non-oriented electrical steel sheets manufactured by using the same
JP5338082B2 (en) * 2008-02-07 2013-11-13 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
JP4681687B2 (en) * 2009-01-26 2011-05-11 新日本製鐵株式会社 Non-oriented electrical steel sheet
US9051622B2 (en) 2009-03-13 2015-06-09 Nippon Steel & Sumitomo Metal Corporation Non-oriented magnetic steel sheet and method for producing the same
JP5041084B2 (en) * 2010-03-31 2012-10-03 Jfeスチール株式会社 High-tensile hot-rolled steel sheet excellent in workability and manufacturing method thereof
CN102453837B (en) * 2010-10-25 2013-07-17 宝山钢铁股份有限公司 Method for preparing non-oriented silicon steel with high magnetic induction
JP5668460B2 (en) * 2010-12-22 2015-02-12 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheet
PL2746418T3 (en) * 2011-08-18 2017-05-31 Nippon Steel & Sumitomo Metal Corporation Non-oriented eletrical steel sheet, manufacturing method thereof, laminate for motor iron core, and manufacturing method thereof
US9728312B2 (en) * 2011-11-11 2017-08-08 Nippon Steel & Sumitomo Metal Corporation Non-oriented electrical steel sheet and manufacturing method thereof
CN104039998B (en) * 2011-12-28 2017-10-24 Posco公司 Non-oriented electromagnetic steel sheet and its manufacture method
CN104080938B (en) 2012-01-31 2016-01-20 杰富意钢铁株式会社 Generator wheel hub hot-rolled steel sheet and manufacture method thereof
JP6127440B2 (en) * 2012-10-16 2017-05-17 Jfeスチール株式会社 Hot rolled steel sheet for manufacturing non-oriented electrical steel sheet and method for manufacturing the same
JP6057082B2 (en) * 2013-03-13 2017-01-11 Jfeスチール株式会社 Non-oriented electrical steel sheet with excellent magnetic properties
JP5995002B2 (en) 2013-08-20 2016-09-21 Jfeスチール株式会社 High magnetic flux density non-oriented electrical steel sheet and motor
JP5790953B2 (en) 2013-08-20 2015-10-07 Jfeスチール株式会社 Non-oriented electrical steel sheet and its hot-rolled steel sheet
WO2015040852A1 (en) * 2013-09-17 2015-03-26 パナソニックIpマネジメント株式会社 Brushless dc motor and ventilation device having same mounted therein
JP2015131993A (en) * 2014-01-14 2015-07-23 Jfeスチール株式会社 Non-oriented silicon steel sheet having excellent magnetic property
US10199910B2 (en) * 2014-10-03 2019-02-05 Ford Global Technologies, Llc Motor core formed from a single steel source and having separately processed rotor and stator laminations
US11225699B2 (en) 2015-11-20 2022-01-18 Jfe Steel Corporation Method for producing non-oriented electrical steel sheet
KR101705235B1 (en) * 2015-12-11 2017-02-09 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
CN105925884B (en) * 2016-05-30 2018-03-09 宝山钢铁股份有限公司 A kind of high magnetic strength, low iron loss non-oriented silicon steel sheet and its manufacture method
JP6658338B2 (en) * 2016-06-28 2020-03-04 日本製鉄株式会社 Electrical steel sheet excellent in space factor and method of manufacturing the same
JP6451873B2 (en) * 2016-10-27 2019-01-16 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
JP6665794B2 (en) 2017-01-17 2020-03-13 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
CA3051823C (en) * 2017-02-07 2022-07-12 Jfe Steel Corporation Method for producing non-oriented electrical steel sheet, method for producing motor core, and motor core
JP6770260B2 (en) 2017-03-30 2020-10-14 Jfeスチール株式会社 Manufacturing method of non-oriented electrical steel sheet, manufacturing method of motor core and motor core
KR102043525B1 (en) * 2017-12-26 2019-11-12 주식회사 포스코 Thin non-oriented electrical steel sheet having excellent magnetic properties and shape and method of manufacturing the same
EP3783126B1 (en) 2018-03-26 2023-09-06 Nippon Steel Corporation Non-oriented electrical steel sheet
WO2020188783A1 (en) 2019-03-20 2020-09-24 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256917A (en) * 1986-04-28 1987-11-09 Nippon Steel Corp High-tensile non-oriented electrical steel sheet for rotating machine and its production
JPS63317627A (en) * 1987-06-18 1988-12-26 Kawasaki Steel Corp Semiprocessing non-oriented silicon steel sheet combining low iron loss with high magnetic permeability and its production
JPH01112700A (en) * 1987-10-26 1989-05-01 Hitachi Medical Corp Inverter type x-ray device
JPH0686648B2 (en) * 1990-09-27 1994-11-02 住友金属工業株式会社 Non-oriented electrical steel sheet with excellent magnetic properties
JP2599529B2 (en) * 1992-02-21 1997-04-09 新日本製鐵株式会社 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
US5803989A (en) * 1994-06-24 1998-09-08 Nippon Steel Corporation Process for producing non-oriented electrical steel sheet having high magnetic flux density and low iron loss
JPH09263908A (en) * 1996-03-26 1997-10-07 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet and its production
US6139650A (en) * 1997-03-18 2000-10-31 Nkk Corporation Non-oriented electromagnetic steel sheet and method for manufacturing the same
JPH1112700A (en) * 1997-06-27 1999-01-19 Nkk Corp Non-oriented electrical sheet having low iron loss
CN1102670C (en) * 1999-06-16 2003-03-05 住友金属工业株式会社 Non-directional electromagnetic steel sheet, and method for mfg. same
US6436199B1 (en) * 1999-09-03 2002-08-20 Kawasaki Steel Corporation Non-oriented magnetic steel sheet having low iron loss and high magnetic flux density and manufacturing method therefor
JP4258918B2 (en) * 1999-11-01 2009-04-30 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheet
JP6086648B2 (en) * 2012-03-12 2017-03-01 国立研究開発法人産業技術総合研究所 Phototransistor and imaging device

Also Published As

Publication number Publication date
EP1411138A4 (en) 2005-01-12
TW555863B (en) 2003-10-01
WO2003002777A1 (en) 2003-01-09
CN1318627C (en) 2007-05-30
KR100956530B1 (en) 2010-05-07
JP4329538B2 (en) 2009-09-09
US20080060728A1 (en) 2008-03-13
KR20040014960A (en) 2004-02-18
CN1520464A (en) 2004-08-11
EP1411138A1 (en) 2004-04-21
US20040149355A1 (en) 2004-08-05

Similar Documents

Publication Publication Date Title
JP4329538B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5995002B2 (en) High magnetic flux density non-oriented electrical steel sheet and motor
JP5228379B2 (en) Non-oriented electrical steel sheet with excellent strength and magnetic properties and manufacturing method thereof
JP5884153B2 (en) High strength electrical steel sheet and manufacturing method thereof
WO2012114383A1 (en) Non-oriented electromagnetic steel sheet and method for manufacturing same
JP5028992B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2019019355A (en) Electromagnetic steel and method for producing the same, motor core for rotor and method for producing the same, motor core for stator and method for producing the same, and method for producing motor core
JP5699642B2 (en) Motor core
JP2008127612A (en) Non-oriented electromagnetic steel sheet for divided core
JP2011084761A (en) Non-oriented electromagnetic steel sheet for rotor and manufacturing method therefor
KR101628193B1 (en) High-strength electrical steel sheet and method of producing the same
JP5146169B2 (en) High strength non-oriented electrical steel sheet and manufacturing method thereof
JP5119710B2 (en) High strength non-oriented electrical steel sheet and manufacturing method thereof
CN113474472B (en) Non-oriented electromagnetic steel sheet
JP5515451B2 (en) Core material for split motor
JP2014196538A (en) Magnetic steel sheet
JP6123234B2 (en) Electrical steel sheet
JP4568999B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4424075B2 (en) Non-oriented electrical steel sheet, non-oriented electrical steel sheet for aging heat treatment, and production method thereof
JP2001152300A (en) Nonoriented silicon steel sheet minimal in magnetic anisotropy in high frequency region and excellent in press workability
JP4929484B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2003013190A (en) High-grade non-oriented magnetic steel sheet
JP2006077305A (en) Nonoriented silicon steel sheet, nonoriented silicon steel sheet for aging heat treatment, and method for producing them
JP2005120431A (en) Method for manufacturing high-strength nonoriented silicon steel sheet having excellent magnetic characteristic
JP2001234302A (en) Nonoriented silicon steel sheet excellent in mechanical strength property and magnetic property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090608

R150 Certificate of patent or registration of utility model

Ref document number: 4329538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140626

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees