JPH09263908A - Nonoriented silicon steel sheet and its production - Google Patents

Nonoriented silicon steel sheet and its production

Info

Publication number
JPH09263908A
JPH09263908A JP6976196A JP6976196A JPH09263908A JP H09263908 A JPH09263908 A JP H09263908A JP 6976196 A JP6976196 A JP 6976196A JP 6976196 A JP6976196 A JP 6976196A JP H09263908 A JPH09263908 A JP H09263908A
Authority
JP
Japan
Prior art keywords
steel sheet
steel
magnetic properties
hot
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6976196A
Other languages
Japanese (ja)
Inventor
Mitsuyo Doi
光代 土居
Hiroyoshi Yashiki
裕義 屋鋪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6976196A priority Critical patent/JPH09263908A/en
Publication of JPH09263908A publication Critical patent/JPH09263908A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To produce a nonoriented silicon steel sheet low in the content of Si and excellent in magnetic properties and to provided a method for producing the same. SOLUTION: This nonoriented silicon steel sheet excellent in magnetic properties has a compsn. contg., by weight, <=0.01% C, 0.05 to 1.0% Si, 0.05 to 1.0% Mn, <=0.15$% P, <=0.005% S, 0.008 to 0.02% 0 (oxygen), <0.002% sol. Al, 0.003 to 0.018% Ca, and the balance Fe with inevitable impurities. As for the method for furthermore improving its magnetic properties, in the producing process in which a steel slab is subjected to hot rolling, cold rolling, annealing or the like to form into a final product, the coiling temp. in the hot rolling is regulated to >=650 deg.C, or the coiling temp. in the hot rolling is regulated to <650 deg.C, and hot rolled sheet annealing before the cold rolling is executed at 650 to 1,000 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気機器の鉄心と
して広く用いられる磁気特性にすぐれた無方向性電磁鋼
板およびその製造方法に関する。無方向性電磁鋼板に
は、鋼板の製造業者側で冷間圧延後の仕上焼鈍をおこな
い使用者側ではとくに焼鈍をおこなわず鉄心に使用する
フルプロセス材と、使用者側で打抜き加工後焼鈍するこ
とを前提に製造されるセミプロセス材とがあるが、本発
明はこれらいずれの場合にも適用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet having excellent magnetic properties, which is widely used as an iron core of electric equipment, and a method for producing the same. For non-oriented electrical steel sheets, the steel sheet manufacturer performs finish annealing after cold rolling, and the user side does not perform annealing in particular, a full process material used for the iron core, and the user side performs punching and annealing. However, the present invention is applicable to any of these cases.

【0002】[0002]

【従来の技術】電気機器の鉄心に使用される電磁鋼板に
は、無方向性電磁鋼板と方向性電磁鋼板とがある。方向
性電磁鋼板は主として電力用の変圧器に用いられるに対
し、無方向性電磁鋼板は汎用モーターや小形モーターあ
るいは小形変圧器などに広く使用される。電気機器に
は、たとえば発電機のように回転エネルギーを電気エネ
ルギーに変えるものもあり、変圧器のように電圧を昇降
して使用しやすい形に変るもの、あるいはモーターなど
電気エネルギーを回転その他の機械的エネルギーに変え
るものがある。このようなエネルギー変換をおこなう機
器においては、発熱などエネルギーの無駄な損失をでき
るだけ低く抑える必要があり、それに使用される鉄心は
損失が少なく高効率、すなわち低鉄損で高磁束密度であ
ることが要求される。
2. Description of the Related Art Magnetic steel sheets used for iron cores of electric equipment include non-oriented electrical steel sheets and grain-oriented electrical steel sheets. The grain-oriented electrical steel sheet is mainly used for electric power transformers, whereas the non-oriented electrical steel sheet is widely used for general-purpose motors, small motors and small transformers. Some electric devices, such as generators, convert rotational energy into electrical energy, and transformers, such as those that change voltage to a form that is easy to use, or motors that rotate electrical energy and other machinery. There is something that can be converted into dynamic energy. In equipment that performs such energy conversion, it is necessary to suppress wasteful loss of energy such as heat generation as low as possible, and the iron core used for it has low loss and high efficiency, that is, low iron loss and high magnetic flux density. Required.

【0003】電磁鋼板の鉄損は、渦電流損とヒシテリシ
ス損とに分けられる。渦電流損は電気抵抗を増せば低下
することから、鉄損の低い無方向性電磁鋼板を得るため
には、通常、電気抵抗を増す効果のあるSiを多く含有
させる。しかしながら、Siの添加は磁束密度を低下さ
せる傾向にあり、添加により、コスト上昇ばかりでな
く、鋼を硬くし、圧延の変形抵抗を増すなどの問題も生
じてくる。
Iron loss of electromagnetic steel sheets is divided into eddy current loss and hysteresis loss. Since the eddy current loss decreases as the electric resistance increases, in order to obtain a non-oriented electrical steel sheet with low iron loss, Si is usually contained in a large amount, which has the effect of increasing the electric resistance. However, the addition of Si tends to lower the magnetic flux density, and the addition of Si not only raises the cost, but also hardens the steel and increases the deformation resistance of rolling.

【0004】一方、ヒシテリシス損は、無方向性電磁鋼
板の場合、Siなどの化学組成が同じであれば、鋼板の
結晶粒径が大きくなるにつれて減少する。ただし、結晶
粒が大きくなると渦電流損は増加する傾向にあるので、
鉄損が最小値を示す最適結晶粒径があるとされている。
しかし、その最適結晶粒径は、数十%以上の冷間圧延と
その後の焼鈍による一般的な製造方法で得られるものよ
りは、かなり大きいところにある。したがって、通常の
無方向性電磁鋼板においては、鉄損低減のために焼鈍後
の結晶粒径ができるだけ大きくなるよう、経済性を配慮
しながら種々の工夫がなされている。
On the other hand, in the case of a non-oriented electrical steel sheet, the hysteresis loss decreases as the crystal grain size of the steel sheet increases if the chemical composition such as Si is the same. However, since the eddy current loss tends to increase as the crystal grain size increases,
It is said that there is an optimum crystal grain size at which the iron loss shows the minimum value.
However, the optimum crystal grain size is considerably larger than that obtained by a general manufacturing method by cold rolling several tens of percent or more and subsequent annealing. Therefore, in ordinary non-oriented electrical steel sheets, various measures have been taken in consideration of economic efficiency so that the crystal grain size after annealing is as large as possible in order to reduce iron loss.

【0005】Si含有量レベルの低い無方向性電磁鋼板
では、このように焼鈍時の結晶粒成長をできるだけ容易
にするために、粒成長を阻害する微細な析出物の低減が
計られる。例えば特開昭 63-195217号公報に提示された
発明のように、sol.Al(酸可溶Al)を 0.001〜 0.0
05%(重量%:以下%の記述は「重量」を省略)に限定
して微細なAlNの生成量を低減させている。
In a non-oriented electrical steel sheet having a low Si content level, in order to make crystal grain growth during annealing as easy as possible, it is possible to reduce fine precipitates that inhibit grain growth. For example, as in the invention disclosed in JP-A-63-195217, sol. Al (acid-soluble Al) is added in an amount of 0.001 to 0.0
The production amount of fine AlN is reduced to 05% (weight%: "%" is omitted for the following description).

【0006】SもMnSのような硫化物系析出物となっ
て粒成長を阻害する。この微細に析出するMnSを、そ
の形態を変えて無害化するるため、例えば特開昭 63-10
3023号公報には、低Siの無方向性電磁鋼板にてCaと
Sの含有量の比(Ca/S)を 0.3〜 2.0となるよう、
Caを添加する方法の発明が示されている。この場合、
微細なAlNの析出による害を避けるためsol.Alを
0.002%以下に抑えている。また、特開平 3-126845 号
公報の発明では、Alを十分に添加してもCaを0.001
〜 0.005%の範囲で、かつ、Ca/Sを 0.1〜 1.5とな
るよう含有させると、MnSの微細析出を抑制し、でき
たCaSを核にしてAlNが析出、凝集させ、その上、
Al2 3 のB系介在物をC系介在物に変え磁気特性を
改善することができるとしている。
S also becomes a sulfide-based precipitate such as MnS and inhibits grain growth. In order to make the finely precipitated MnS harmless by changing its form, for example, JP-A-63-10
No. 3023 discloses that in a low Si non-oriented electrical steel sheet, the ratio of the Ca and S contents (Ca / S) is 0.3 to 2.0.
The invention of the method of adding Ca is shown. in this case,
In order to avoid the damage caused by the precipitation of fine AlN, sol.Al
It is kept below 0.002%. Further, in the invention of Japanese Patent Laid-Open No. 3-126845, even if Al is sufficiently added, Ca is 0.001
In the range of up to 0.005% and Ca / S in an amount of 0.1 to 1.5, fine precipitation of MnS is suppressed, AlN is precipitated and aggregated with CaS as a nucleus, and moreover,
It is said that the B type inclusions of Al 2 O 3 can be changed to C type inclusions to improve the magnetic characteristics.

【0007】窒化物や硫化物の微細析出物の他に、酸化
物系の介在物も結晶粒の成長を阻害する。軟化温度の低
い酸化物系介在物が存在していると、これが圧延中に伸
ばされて分散し、焼鈍時の結晶粒成長を妨げるようにな
るためといわれている。これに対して、例えば特開平7-
150248号公報には、鋼中の介在物SiO2 、MnO、A
2 3 の3種の総重量に対するMnOの重量の割合が
15%以下、SiO2 の重量の割合を75%以上に規制すれ
ば介在物は球状になり、そうなると結晶粒成長を抑制す
る作用は小さいので、粒成長性は改善されるとする発明
が提示されている。
Besides fine precipitates of nitride and sulfide, oxide-based inclusions also hinder the growth of crystal grains. It is said that the presence of oxide-based inclusions having a low softening temperature is elongated and dispersed during rolling, which hinders crystal grain growth during annealing. On the other hand, for example, Japanese Patent Laid-Open No. 7-
No. 150248 discloses that inclusions in steel such as SiO 2 , MnO and A
The ratio of the weight of MnO to the total weight of the three types of l 2 O 3 is
If the content of SiO 2 is regulated to 15% or less and the weight ratio of SiO 2 is regulated to 75% or more, the inclusions will be spherical, and if so, the effect of suppressing the crystal grain growth is small, so an invention is proposed that grain growth is improved. ing.

【0008】このようなN、SあるいはO(酸素)によ
る析出物または介在物は、微細に分散して粒成長を阻害
するばかりでなく、そのものの存在も磁化の際の磁壁移
動を阻害してヒシテリシス損を大きくし、磁気特性を悪
くする。したがって、これらの不純物元素はその混入を
できる限り低く抑えなければならない。
Such precipitates or inclusions of N, S or O (oxygen) not only finely disperse and hinder grain growth, but also the presence thereof hinders domain wall movement during magnetization. Increases hysteresis loss and deteriorates magnetic properties. Therefore, the mixing of these impurity elements must be suppressed as low as possible.

【0009】Sは溶銑または溶鋼の処理により低減で
き、Nは溶鋼の真空処理により脱Nされた後、大気から
の混入を極力阻止することにより低下できる。しかしな
がら酸素については、とくに磁気特性を悪くするもう一
つの元素のCを溶鋼の真空処理により気体のCOとして
脱炭させるので、ある程度残存することは避け難い。健
全な鋳塊を得るために、この酸素はsol.AlやSiなど
の脱酸剤を添加して安定化、すなわち脱酸され、酸化物
系介在物となる。脱酸剤の種類、添加時期、あるいは処
理方法等により鋼中に残存するOの形態は異ってくる
が、鋼中の合計の酸素量は真空処理の後は大きくは変ら
ない。また酸化物系介在物のSiO2 、MnOおよびA
2 3 の組成比が結晶粒の成長に大きく影響するとし
ても、AlやSiの含有量など鋼組成が限定されると、
これら介在物の組成を好ましい状態にすることが困難な
場合がある。
[0009] S can be reduced by the treatment of hot metal or molten steel, and N can be reduced by removing as much as possible from the atmosphere after denitrification by vacuum treatment of molten steel. However, with respect to oxygen, since C, which is another element particularly deteriorating the magnetic properties, is decarburized as gaseous CO by vacuum treatment of molten steel, it is unavoidable to remain to some extent. In order to obtain a sound ingot, this oxygen is stabilized by adding a deoxidizing agent such as sol.Al or Si, that is, deoxidized, and becomes an oxide inclusion. Although the form of O remaining in the steel varies depending on the type of deoxidizer, the timing of addition, the treatment method, etc., the total amount of oxygen in the steel does not change significantly after vacuum treatment. Further, oxide inclusions such as SiO 2 , MnO and A
Even if the composition ratio of l 2 O 3 has a great influence on the growth of crystal grains, if the steel composition such as the content of Al or Si is limited,
It may be difficult to make the composition of these inclusions into a preferable state.

【0010】[0010]

【発明が解決しようとする課題】本発明は、鋼中の酸化
物系介在物の形態が磁気特性向上に影響していることに
着目し、その形態を変えることにより磁気特性を改善し
た、Si含有量の低い無方向性電磁鋼板、およびその製
造方法を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention focuses on the fact that the morphology of oxide inclusions in steel influences the improvement of magnetic properties, and the magnetic properties are improved by changing the morphology. An object of the present invention is to provide a non-oriented electrical steel sheet having a low content and a method for producing the same.

【0011】[0011]

【課題を解決するための手段】本発明者らは、製鋼段階
にて脱炭してC含有量を0.01%以下とし、Si 1.0%以
下、Sを 0.005%以下、sol.Alを 0.002%以下とした
純鉄系の無方向性電磁鋼板において、磁気特性の劣るも
のがしばしば出現することに遭遇した。sol.Al含有量
を低く抑えてAlNの微細析出を抑止し、さらに硫化物
系析出物の影響を小さくしており、結晶粒成長阻害は低
減できたと考えられるものである。それにもかかわらず
磁気特性が悪く結晶粒の成長がよくないのは、前述の酸
化物系介在物の形態によると推定された。
[Means for Solving the Problems] The inventors of the present invention decarburized steel in the steelmaking stage to make the C content 0.01% or less, Si 1.0% or less, S 0.005% or less, and sol.Al 0.002% or less. It was discovered that the pure iron-based non-oriented electrical steel sheet often had inferior magnetic properties. It is considered that the sol.Al content was suppressed to a low level to suppress the fine precipitation of AlN, and the influence of the sulfide-based precipitates was reduced, so that the inhibition of crystal grain growth could be reduced. Nevertheless, it was presumed that the poor magnetic properties and poor crystal grain growth were due to the morphology of the oxide inclusions.

【0012】しかしながら、Si含有量を低くしsol.A
l量を抑制して、しかもMnをやや多めに含有させる鋼
では、安定して酸化物系介在物の形態を制御することは
容易ではない。そこで、このような鋼の化学組成の制約
の中で、製鋼条件を含め添加元素や熱処理の効果を種々
検討した結果、Caの添加が効果的であることを見出し
たのである。
However, when the Si content is lowered, sol.A
It is not easy to stably control the morphology of oxide-based inclusions in steel containing a small amount of Mn and containing a relatively large amount of Mn. Under such restrictions on the chemical composition of steel, it was found that the addition of Ca is effective as a result of various studies on the effect of the additive elements and the heat treatment including the steelmaking conditions.

【0013】このCaの添加の効果とその限界を明確に
するため、C:0.002〜0.005%、Si: 0.2〜 0.3%、
Mn: 0.2〜 0.3%、P:0.07〜0.08%、S: 0.003%
以下、Al: 0.002%以下の含有をベースとし、酸素は
その含有量を高、中、低の3水準を狙いにして、Ca量
を変えた鋼を実験室的に溶製し、工場における製造を模
擬した製造工程および条件にて 0.5mm厚の電磁鋼板を試
作した。これらの鋼板により、所定の試験片を鋼板から
切出した後 700℃にて 2hの歪み取り焼鈍を施し、JIS-
C-2550に準じたエプスタイン枠を用いた試験法にて磁気
特性の測定をおこなった。
In order to clarify the effect of adding Ca and its limit, C: 0.002 to 0.005%, Si: 0.2 to 0.3%,
Mn: 0.2-0.3%, P: 0.07-0.08%, S: 0.003%
Below, based on the content of Al: 0.002% or less, oxygen is produced in the laboratory by laboratory melting of steel with varying Ca content aiming at three levels of high, medium, and low contents. A 0.5 mm thick electrical steel sheet was prototyped under the manufacturing process and conditions simulating the above. These steel plates were used to cut out the prescribed test pieces from the steel plates and then subjected to strain relief annealing at 700 ° C for 2 hours, and JIS-
Magnetic properties were measured by a test method using an Epstein frame according to C-2550.

【0014】図1にCa含有量と磁気特性の鉄損との関
係をプロットした試験結果を示す。これから明らかなよ
うに、Caの添加は酸素量が高すぎる場合や低くすぎる
場合は磁気特性の改善効果がないかあってもわずかであ
るが、特定の範囲の酸素量の場合においては、Caの0.
01%前後の含有にて著しく低鉄損化されることがわか
る。
FIG. 1 shows the test results plotting the relationship between the Ca content and the iron loss of magnetic properties. As is clear from this, when the oxygen content is too high or too low, there is little or no effect of improving the magnetic properties, but when the oxygen content is within a specific range, Ca 0.
It can be seen that the iron loss is remarkably reduced when the content is around 01%.

【0015】Caの鋼への添加は、通常は鋼中のMnS
など硫化物系の介在物の存在形態制御の目的でおこなわ
れる。電磁鋼板においても、特公昭58-17249号公報や、
前出の特公昭 63-103023号公報または特開平 3-126845
号公報にてCaを添加する発明が提示されているが、い
ずれもCa/Sの範囲を規制しており、硫化物の形態制
御を目的としている。これに対し、硫化物ではなく、酸
化物の形態を変える目的で添加した結果、低Siの無方
向性電磁鋼板の磁気特性を安定して向上させ得ることを
見出したのである。酸素とCaが適量存在するこれらの
鋼板は、焼鈍後の結晶粒が十分成長しており、磁気特性
の向上は結晶粒成長性の改善によるものであることが明
らかであった。
The addition of Ca to steel is usually done by adding MnS in the steel.
It is carried out for the purpose of controlling the existence form of sulfide-based inclusions. Also in electromagnetic steel sheets, Japanese Patent Publication No. 58-17249 and
JP-B-63-103023 or JP-A-3-126845
Although the invention of adding Ca is disclosed in Japanese Patent Laid-Open Publication No. 2005-242242, both of them regulate the range of Ca / S and aim at controlling the morphology of sulfides. On the other hand, as a result of adding it for the purpose of changing the form of an oxide, not a sulfide, it was found that the magnetic properties of a low Si non-oriented electrical steel sheet can be stably improved. In these steel sheets in which oxygen and Ca were present in appropriate amounts, the crystal grains after annealing were sufficiently grown, and it was clear that the improvement in magnetic properties was due to the improvement in crystal grain growth.

【0016】このような組成を有する鋼により電磁鋼板
を製造する場合、従来の熱間圧延、冷間圧延、焼鈍等の
条件を採用しても良好な磁気特性の最終製品が得られる
が、熱間圧延の際の巻取温度を高めに設定することによ
り、さらに磁気特性を向上させることができる。また、
熱間圧延の巻取温度を低く抑え、その後、冷間圧延前に
熱延板を焼鈍することによっても、最終製品の磁気特性
をより一層向上させることができることも確かめられ
た。
When a magnetic steel sheet is produced from a steel having such a composition, a final product having good magnetic properties can be obtained even if the conventional conditions such as hot rolling, cold rolling and annealing are adopted. By setting the coiling temperature at the time of hot rolling to be higher, the magnetic characteristics can be further improved. Also,
It was also confirmed that the magnetic properties of the final product can be further improved by suppressing the coiling temperature of hot rolling to a low value and then annealing the hot rolled sheet before cold rolling.

【0017】本発明は以上のような知見に基づいて完成
されたものであり、その要旨は次のとおりである。
The present invention has been completed based on the above findings, and its gist is as follows.

【0018】(1) 重量%にて、C:0.01%以下、Si:
0.05〜 1.0%、Mn:0.05〜 1.0%、P:0.15%以下、
S: 0.005%以下、O(酸素): 0.008〜0.02%、sol.
Al: 0.002%未満、およびCa: 0.003〜 0.018%
で、残部はFeおよび不可避的不純物からなることを特
徴とする磁気特性にすぐれた無方向性電磁鋼板。
(1) C: 0.01% or less, Si:
0.05 to 1.0%, Mn: 0.05 to 1.0%, P: 0.15% or less,
S: 0.005% or less, O (oxygen): 0.008 to 0.02%, sol.
Al: less than 0.002%, and Ca: 0.003 to 0.018%
And the balance is Fe and inevitable impurities, which is a non-oriented electrical steel sheet with excellent magnetic properties.

【0019】(2) 鋼スラブに熱間圧延、冷間圧延、焼鈍
を施して最終製品とする製造工程において、熱間圧延の
巻取温度を 650℃以上とすることを特徴とする上記(1)
の無方向性電磁鋼板の製造方法。
(2) In the manufacturing process in which a steel slab is hot-rolled, cold-rolled, and annealed to obtain a final product, the coiling temperature for hot-rolling is 650 ° C. or higher. )
Manufacturing method of non-oriented electrical steel sheet.

【0020】(3) 鋼スラブを熱間圧延、熱延板焼鈍、冷
間圧延、焼鈍を施して最終製品とする製造工程におい
て、熱間圧延の巻取温度を 650℃未満とし、冷間圧延前
の熱延板焼鈍を 650〜1000℃にておこなうことを特徴と
する上記(1) の無方向性電磁鋼板の製造方法。
(3) In a manufacturing process in which a steel slab is hot-rolled, hot-rolled sheet annealed, cold-rolled, and annealed to obtain a final product, the rolling temperature of the hot-rolling is set to less than 650 ° C, and the cold-rolling is performed. The method for producing a non-oriented electrical steel sheet according to the above (1), characterized in that the preceding hot-rolled sheet annealing is performed at 650 to 1000 ° C.

【0021】[0021]

【発明の実施の形態】本発明の実施に際し、各要因や条
件を限定した理由を以下に述べる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting each factor and condition in implementing the present invention will be described below.

【0022】(1) C Cは磁気特性を大きく劣化させる元素なので、製品の鋼
板においては少ないほどよく、その顕著な悪影響が現わ
れない限界として、 0.010%以下に限定する。溶鋼の真
空処理による脱炭ないしは脱酸素の段階においては、到
達真空度にもよるが溶鋼中のCが低下しすぎると、酸素
量を0.02%以下に低減できなくなるので多少の残存が望
ましい。しかし、鋳片を最終の電磁鋼板にする製造途中
の工程において、たとえば焼鈍工程などで雰囲気による
脱炭が生じて低減することがあるので、電磁鋼板の化学
組成としてC量の下限はとくには規制しない。
(1) C C is an element that greatly deteriorates the magnetic properties, so the less it is, the better it is in the steel sheet of the product, and it is limited to 0.010% or less as the limit at which no significant adverse effect appears. At the stage of decarburization or deoxidation of molten steel by vacuum treatment, if the C in the molten steel is too low, depending on the ultimate vacuum degree, the amount of oxygen cannot be reduced to 0.02% or less, so some residual amount is desirable. However, in the process of manufacturing the slab into the final electrical steel sheet, decarburization due to the atmosphere may occur in the annealing step, for example, and therefore it may be reduced. Therefore, the lower limit of the C content as a chemical composition of the electrical steel sheet is particularly regulated. do not do.

【0023】(2) Si Siは含有量が増すほど鋼の電気抵抗が高くなり、鉄損
低減に有効である。しかし一方では、含有量が増すと磁
束密度の低下を来すので、十分な磁束密度を確保するた
め、その含有量の上限を 1.0%とする。また、sol.Al
が 0.002%未満でMnOの量を多くしないようにするに
は、Siの脱酸効果が重要であり、そのためには少なく
とも0.05%以上の含有が必要である。したがって、Si
の含有範囲を0.05〜 1.0%とする。
(2) Si As the content of Si increases, the electrical resistance of steel increases and it is effective in reducing iron loss. However, on the other hand, as the content increases, the magnetic flux density decreases, so in order to secure a sufficient magnetic flux density, the upper limit of the content is 1.0%. Also, sol.Al
Of less than 0.002% does not increase the amount of MnO, the deoxidizing effect of Si is important, and at least 0.05% or more is required for this purpose. Therefore, Si
Content range of 0.05 to 1.0%.

【0024】(3) Mn 本発明の場合、MnはSの存在による熱間圧延時の割れ
すなわち熱間脆性の抑止と、結晶粒成長阻害の低減を主
目的にその含有量を調整する。この効果を得るために
は、少なくともMnを0.05%以上含有していることが必
要である。Mnの含有は電気抵抗を増すので鉄損の低減
にも有意であるが、その効果はSiに比較して小さく、
上記のSの害の抑止効果は含有量を増しても飽和してし
まい、多く含有させるとコスト上昇を来すので、上限を
0.75%とする。
(3) Mn In the present invention, the content of Mn is adjusted mainly for the purpose of suppressing cracking during hot rolling due to the presence of S, that is, hot embrittlement, and reducing grain growth inhibition. In order to obtain this effect, it is necessary to contain at least 0.05% Mn. Since Mn content increases electric resistance, it is also significant in reducing iron loss, but its effect is smaller than that of Si,
Even if the content of S is increased, the effect of suppressing the harmful effects of S is saturated, and increasing the content of S causes an increase in cost.
0.75%

【0025】(4) P Pは鋼に不可避的に混入してくる不純物の一つである
が、低Siの無方向性電磁鋼板の場合、電気抵抗を増
し、硬さを高くして打抜き性を向上させる効果があるの
で、積極的に添加する。ただし鋼を脆化させる傾向があ
るため、その含有量は多くても0.15%までとする。下限
はとくには規制しないが、硬さ向上の目的に望ましい含
有量は0.02%以上である。
(4) P P is one of the impurities that are inevitably mixed in the steel, but in the case of a low Si non-oriented electrical steel sheet, the electrical resistance is increased, the hardness is increased, and the punchability is increased. Since it has the effect of improving However, since it tends to embrittle steel, its content should be at most 0.15%. The lower limit is not particularly limited, but the desirable content is 0.02% or more for the purpose of improving hardness.

【0026】(5) S Sは、微細な硫化物系の析出物の形成による結晶粒成長
阻害や、介在物の形成により磁気特性を劣化させるの
で、その含有量は少なければ少ないほどよい。磁気特性
への影響がそれほど大きくならない限界として、多くて
も 0.005%までとする。
(5) Since S S deteriorates the magnetic properties due to the inhibition of crystal grain growth due to the formation of fine sulfide-based precipitates and the formation of inclusions, the smaller the content, the better. The maximum limit is 0.005%, which does not significantly affect the magnetic properties.

【0027】(6) sol.Al(酸可溶Al) Alは健全な鋳片を得るための脱酸剤として溶鋼に添加
する。添加により脱酸生成物の一部は浮上するが、残余
は酸化物系介在物を形成し、さらに過剰のAlはsol.A
lとして鋼中に残存する。sol.AlはAlNの微細析出
物を形成しやすく、その量が増すと結晶粒成長や磁壁移
動の障害になるので、できるだけ少なくするべきで、そ
の上限を0.0020%未満とする。
(6) sol.Al (acid-soluble Al) Al is added to molten steel as a deoxidizing agent for obtaining sound cast pieces. Although a part of the deoxidized product floats by the addition, the balance forms oxide inclusions, and the excess Al is sol.A.
It remains in the steel as l. Since sol.Al easily forms fine precipitates of AlN, and if the amount increases, it hinders crystal grain growth and domain wall movement, so it should be made as small as possible, and its upper limit is made less than 0.0020%.

【0028】なお、sol.Al量を低く限定することによ
り、Nが多く含有されてもAlNの生成は抑制できる
が、SiとMnの存在により有害なSi−Mn−N系の
微細析出物が発生してくる。したがって、不純物として
混入してくるNはできるだけ少なくすべきで、 0.005%
以下とするのが望ましい。
By limiting the amount of sol.Al to a low level, the formation of AlN can be suppressed even if a large amount of N is contained, but the presence of Si and Mn may cause harmful Si--Mn--N-based fine precipitates. Will occur. Therefore, the amount of N mixed as impurities should be reduced as much as possible, and 0.005%
It is desirable to do the following.

【0029】(7) 酸素 鋼中の酸素量を 0.008〜0.02%とする。0.02%を超える
ようになると、酸化物系介在物の量が多くなりすぎ、そ
の形態を如何に変えても磁気特性におよぼす悪影響を抑
止できなくなる。また、耐火物やノズルの溶損などの製
造状の問題も多発してくるので0.02%以下に限定する。
一方、低くなりすぎると、図1に見られるようにCa添
加による改善効果が小さくなる。この理由は明らかでは
ないが、結晶粒径が大きくならないことから、Ca添加
による酸化物の粗大化ないしは無害化が不十分になった
ためと推測される。したがって、酸素含有量の下限値を
0.008%とする。
(7) Oxygen The amount of oxygen in the steel is set to 0.008 to 0.02%. If it exceeds 0.02%, the amount of oxide inclusions becomes too large, and no matter how the form is changed, the adverse effect on the magnetic properties cannot be suppressed. In addition, manufacturing problems such as melting damage of refractories and nozzles often occur, so the content is limited to 0.02% or less.
On the other hand, if it becomes too low, the improvement effect by the addition of Ca becomes small as shown in FIG. The reason for this is not clear, but since the crystal grain size does not increase, it is presumed that the coarsening or detoxification of the oxide due to the addition of Ca was insufficient. Therefore, the lower limit of oxygen content should be
It is 0.008%.

【0030】酸素を 0.008〜0.02%とするには、溶鋼真
空処理の際の減圧下でのCO発生による脱酸を活用し、
到達真空度および処理時間を制御して、望ましくは溶鋼
中のC量を 0.002〜 0.005%になるようにする。到達真
空度は0.01気圧程度が望ましいが、0.05気圧程度でも処
理時間を長くすることにより所要の酸素量範囲に低下で
きる。その後Alを添加し、次いでSiおよびMnを添
加して鋼成分を調整するのがよい。溶鋼の真空処理前、
ないしは真空処理中の脱酸昇熱を目的とするAlの添加
は極力避ける。これは、Alを真空処理による脱酸が終
了する前に添加すると酸素量が目標範囲に入らなくな
り、Caの添加による改善効果が得られなくなるためで
ある。
In order to adjust the oxygen content to 0.008 to 0.02%, deoxidation by CO generation under reduced pressure during molten steel vacuum treatment is utilized,
The ultimate vacuum and the processing time are controlled so that the amount of C in the molten steel is desirably 0.002 to 0.005%. The ultimate vacuum is preferably about 0.01 atm, but even at about 0.05 atm, it can be reduced to the required oxygen amount range by lengthening the treatment time. After that, Al is preferably added, and then Si and Mn are added to adjust the steel composition. Before vacuum treatment of molten steel,
Or, the addition of Al for the purpose of heating deoxidation during vacuum treatment is avoided as much as possible. This is because if Al is added before the completion of deoxidation by vacuum treatment, the amount of oxygen will not fall within the target range, and the improvement effect due to the addition of Ca will not be obtained.

【0031】(8) Ca 適量の酸素の存在下にて添加すると、磁気特性が向上す
る。その最適な含有量の範囲は、図1に示されるように
0.003〜 0.018%である。 0.018%を超えると効果がな
くなるのは、CaはFeにはほとんど固溶しないため、
過剰に存在すると介在物のような形で存在し、結晶粒の
成長を阻害して磁気特性に悪影響をおよぼすためと思わ
れる。また、 0.003を下回るとよくないのは、酸化物系
介在物の形態制御の効果が低下するためと考えられる。
なお、図1から分るように鉄損の改善効果から、より望
ましい範囲は 0.006〜0.017%である。
(8) Ca Addition in the presence of an appropriate amount of oxygen improves the magnetic characteristics. Its optimum content range is as shown in FIG.
It is 0.003 to 0.018%. When it exceeds 0.018%, the effect disappears because Ca hardly dissolves in Fe.
It is considered that when it is present in excess, it is present in the form of inclusions, which hinders the growth of crystal grains and adversely affects the magnetic properties. Further, it is considered that the reason why the ratio is less than 0.003 is not good because the effect of controlling the morphology of oxide inclusions is reduced.
As can be seen from FIG. 1, a more desirable range is 0.006 to 0.017% from the effect of improving iron loss.

【0032】(9) 熱間圧延の巻取温度 一般に、熱間圧延、冷間圧延、および焼鈍をおこなって
最終製品とする通常の無方向性電磁鋼板の製造工程にお
いて、熱間圧延の巻取温度を高くすると磁気特性の向上
効果がえられる。低Si含有にてsol.Alを低減させ、
これにCaを添加して結晶粒成長性を向上させた本発明
の鋼において、この巻取温度を高くすることは、とくに
その効果が顕著である。そこで、本発明鋼にてより一層
磁気特性を向上させる方法として巻取温度を 650℃以上
とする。
(9) Winding temperature of hot rolling Generally, in the manufacturing process of a normal non-oriented electrical steel sheet which is hot rolled, cold rolled, and annealed to obtain a final product, the winding temperature of hot rolling is used. When the temperature is raised, the effect of improving the magnetic characteristics can be obtained. Low Si content reduces sol.Al,
In the steel of the present invention in which Ca is added to improve the crystal grain growth property, increasing the coiling temperature is particularly effective. Therefore, as a method for further improving the magnetic properties of the steel of the present invention, the coiling temperature is set to 650 ° C or higher.

【0033】巻取温度は高くなれば磁気特性はより改善
されるので、上限はとくには定めないが、仕上げ温度や
コイルの変形、酸化によるスケールの多発により自ずか
ら限界がある。巻取温度を高くすることによりにより磁
気特性が改善されるのは、Ca添加により変化した酸化
物系介在物を核にして、硫化物や窒化物の析出が促進さ
れ、その無害化がさらに進んだためと考えられる。 650
℃未満では改善効果が小さいのは無害化が不十分なため
であろう。
The higher the winding temperature, the better the magnetic properties, so the upper limit is not specified, but there is a natural limit due to the finishing temperature, coil deformation, and frequent scale generation due to oxidation. The magnetic properties are improved by increasing the coiling temperature because the precipitation of sulfides and nitrides is promoted by the oxide inclusions changed by the addition of Ca as the nuclei, and their detoxification proceeds further. It is thought to be because of this. 650
If the temperature is lower than 0 ° C, the improvement effect is small because the detoxification is insufficient.

【0034】(10) 熱延板焼鈍 熱間圧延の後、冷間圧延前にて焼鈍をおこなうと最終製
品の磁気特性がさらに向上する。その場合、熱間圧延の
巻取温度を 650℃未満とし、焼鈍温度を 650〜1000℃と
する。巻取温度を 650℃未満とするのは、焼鈍の効果が
より一層顕著になるからである。これは低温巻取にした
時の析出物などの分散状態が、焼鈍時の変化を加速させ
たものと思われる。焼鈍温度を限定するのは 650℃未満
では効果が不十分であり、1000℃を超えると結晶粒が粗
大化し、冷間圧延時に割れを発生することがあるためで
ある。なお、焼鈍は材料温度が上記範囲に到達すればよ
く、とくに焼鈍方法や加熱の時間は定めないが、望まし
いのは箱焼鈍法の場合 650〜 800℃にて30 min〜10h程
度の加熱、連続焼鈍法では 750〜10000℃にて10s〜 5
min 程度の加熱である。このように冷間圧延前の焼鈍
が、本発明鋼において磁気特性向上にとくに効果的なの
は、前述のように有害な窒化物や硫化物が、Caの添加
によって形態変化した酸化物のために析出が促進された
ためと考えられる。
(10) Annealing of hot-rolled sheet Annealing after hot rolling and before cold rolling further improves the magnetic properties of the final product. In that case, the coiling temperature for hot rolling shall be less than 650 ° C and the annealing temperature shall be 650-1000 ° C. The reason why the coiling temperature is lower than 650 ° C is that the effect of annealing becomes more remarkable. This seems to be because the dispersed state of precipitates and the like during low-temperature winding accelerated the change during annealing. The reason why the annealing temperature is limited is that the effect is insufficient at less than 650 ° C, and the crystal grains become coarser at more than 1000 ° C and cracks may occur during cold rolling. It should be noted that, as long as the material temperature reaches the above range for annealing, the annealing method and heating time are not specified, but it is desirable to use the box annealing method at 650 to 800 ° C for about 30 min to 10 h for continuous heating. In the annealing method, it is 10s to 5 at 750 to 1000 ℃.
The heating is about min. As described above, the annealing before cold rolling is particularly effective for improving the magnetic properties in the steel of the present invention, as described above, because harmful nitrides and sulfides are precipitated due to oxides whose shape is changed by the addition of Ca. It is thought that this is due to the promotion of.

【0035】[0035]

【実施例】【Example】

〔実施例1〕表1に示す化学組成の鋼を用い、いずれの
場合も1200℃に加熱し熱間圧延して1.8mm厚に仕上げ、
約 670℃にて巻取った。脱スケール後、 0.5mm厚まで冷
間圧延し、 850℃にて 1 minの焼鈍をおこなって電磁鋼
板とした。これからJIS-C-2550に示された方法に基づ
き、幅30mm、長さ 280mmの試験片を打抜き加工により採
取し、エプスタイン枠を用いて磁気特性を調査した。こ
れらの鋼板の周波数50Hz、最大磁束密度 1.5Tの時の
鉄損W15/50 (W/kg)、および磁化力5000A/m にお
ける磁束密度B50(T)の測定結果を併せて表1に示
す。
[Example 1] Using steels having the chemical compositions shown in Table 1, in each case, heating to 1200 ° C and hot rolling to finish to a thickness of 1.8 mm,
It was wound at about 670 ° C. After descaling, it was cold-rolled to a thickness of 0.5 mm and annealed at 850 ° C for 1 min to obtain a magnetic steel sheet. Based on the method described in JIS-C-2550, a test piece having a width of 30 mm and a length of 280 mm was punched out and the magnetic properties were investigated using an Epstein frame. Table 1 shows the measurement results of the iron loss W 15/50 (W / kg) at a frequency of 50 Hz and a maximum magnetic flux density of 1.5 T, and the magnetic flux density B 50 (T) at a magnetizing force of 5000 A / m. Show.

【0036】[0036]

【表1】 [Table 1]

【0037】試験No.6はSiが高いので鉄損は低いが、
磁束密度が大きくならない。試験No.7、No.8、No.9およ
び No.10は、それぞれMn、Ca、Alおよび酸素が本
発明で定める範囲を超えており、いずれも焼鈍後の結晶
粒成長がよくない。鉄損が大きく、磁束密度が低いのは
このためと思われる。酸素の高い鋼による試験 No.10で
はノズル閉塞を生じて製品の表面疵が多くなり、出荷で
きる製品は得られなかった。試験 No.11および No.12は
酸素またはCaの含有量が本発明の定める範囲よりも低
く、酸化物系介在物が粒成長を阻害していた。P含有量
が高すぎる試験No.13は冷間圧延途中で割れが発生した
ため、製品化を中止した。試験No.14 はSが高すぎ磁気
特性が向上しなかったものと思われる。これらに比し、
各化学組成が本発明に定める範囲を満足する試験No.1〜
No.5の鋼板は優れた磁気特性を示すことがわかる。
In Test No. 6, since the Si content is high, the iron loss is low,
The magnetic flux density does not increase. In Test Nos. 7, No. 8, No. 9 and No. 10, Mn, Ca, Al and oxygen exceeded the ranges defined by the present invention, respectively, and all the crystal grain growth after annealing was not good. This is the reason why the iron loss is large and the magnetic flux density is low. In the test No. 10 using steel with high oxygen content, the nozzle was clogged, the surface defects of the product increased, and a product that could be shipped could not be obtained. In Test Nos. 11 and 12, the oxygen or Ca content was lower than the range defined by the present invention, and the oxide inclusions inhibited the grain growth. Test No. 13, which had an excessively high P content, cracked during cold rolling and was discontinued from commercialization. In Test No. 14, it is considered that S was too high and the magnetic properties were not improved. Compared to these,
Test No. 1 to which each chemical composition satisfies the range defined in the present invention
It can be seen that the No. 5 steel plate exhibits excellent magnetic properties.

【0038】〔実施例2〕表1に化学組成を示した鋼
C、鋼Kおよび鋼Lのスラブを用い、熱間圧延の際の巻
取温度を変え、得られた熱延鋼板を脱スケール後冷間圧
延して 0.5mm厚とし、 700℃で30sの焼鈍をおこない電
磁鋼板とした。これらの鋼板から幅30mm、長さ 280mmの
試験片を切出し、 750℃にて2時間の歪み取り焼鈍をお
こなった後、JIS-C-2550に基づくエプスタイン試験によ
り磁気特性を調査した。各試験片の熱間圧延時の巻取温
度、および磁気特性の結果をまとめて表2に示す。
Example 2 Using the slabs of steel C, steel K and steel L whose chemical compositions are shown in Table 1, the winding temperature at the time of hot rolling was changed and the obtained hot rolled steel sheet was descaled. It was post-cold rolled to a thickness of 0.5 mm and annealed at 700 ° C for 30 s to obtain a magnetic steel sheet. A test piece with a width of 30 mm and a length of 280 mm was cut out from these steel sheets, subjected to strain relief annealing at 750 ° C. for 2 hours, and then the magnetic properties were investigated by an Epstein test based on JIS-C-2550. Table 2 shows the results of the winding temperature and magnetic properties of each test piece during hot rolling.

【0039】[0039]

【表2】 [Table 2]

【0040】発明の鋼Cは、熱間圧延の巻取温度を 650
℃より高くすることによってさらに鉄損が改善されるこ
とがわかる。しかしながら、化学組成が本発明の定める
範囲を外れる鋼Kまたは鋼Lの場合は、巻取温度を高め
ることにより多少の改善効果は認められるが、鋼Cに比
し得られた特性ははるかに劣ったものである。
Steel C of the invention has a coiling temperature of 650 during hot rolling.
It can be seen that iron loss is further improved by making the temperature higher than ° C. However, in the case of steel K or steel L having a chemical composition outside the range defined by the present invention, some improvement effect can be recognized by increasing the coiling temperature, but the obtained characteristics are far inferior to those of steel C. It is a thing.

【0041】〔実施例3〕表1に化学組成を示した鋼C
および鋼Kのスラブを用い、熱間圧延の際の巻取温度を
550〜 560℃とし、得られた熱延鋼板を脱スケールして
から種々の温度で焼鈍した後、 0.5mm厚まで冷間圧延
し、 850℃にて 1 minの焼鈍をおこなって電磁鋼板とし
た。得られた鋼板は実施例1と同様にして磁気特性を測
定した。これらの結果を併せて表3に示す。
Example 3 Steel C whose chemical composition is shown in Table 1
And the slab of steel K, the winding temperature during hot rolling
After descaling the obtained hot-rolled steel sheet at 550 to 560 ℃, annealed at various temperatures, cold rolled to 0.5 mm thickness, and annealed at 850 ℃ for 1 min to obtain a magnetic steel sheet. . The magnetic properties of the obtained steel sheet were measured in the same manner as in Example 1. The results are shown together in Table 3.

【0042】[0042]

【表3】 [Table 3]

【0043】本発明で定める化学組成の鋼では、低めの
巻取温度と 650℃以上の熱延板焼鈍によって、得られた
電磁鋼板の磁気特性が大きく向上している。ただし1000
℃を超える温度で焼鈍しても効果は飽和し、エネルギー
コストの増大や表面疵の多発など無意味な損失を増すだ
けである。
In the steel having the chemical composition defined in the present invention, the magnetic properties of the obtained electromagnetic steel sheet are greatly improved by the low coiling temperature and the hot rolled sheet annealing at 650 ° C. or higher. However 1000
Even if it is annealed at a temperature higher than ℃, the effect is saturated, and it only increases meaningless loss such as an increase in energy cost and frequent occurrence of surface defects.

【0044】[0044]

【発明の効果】本発明は、酸素量の管理とCa添加で鋼
中の酸化物系介在物の形態を変えることにより、高価な
合金元素や特殊な製造工程を用いることなく、低鉄損で
高磁束密度の磁気特性が安定して得られる低Si系の無
方向性電磁鋼板とその製造方法を提供するものであり、
実用上きわめて有意義である。
INDUSTRIAL APPLICABILITY According to the present invention, by controlling the amount of oxygen and changing the form of oxide inclusions in steel by adding Ca, it is possible to reduce iron loss without using expensive alloying elements or special manufacturing processes. The present invention provides a low Si non-oriented electrical steel sheet and a method for producing the same, in which magnetic characteristics of high magnetic flux density are stably obtained.
It is extremely useful in practice.

【図面の簡単な説明】[Brief description of drawings]

【図1】低Si系電磁鋼板の鋼中のCa量および合計酸
素量と磁気特性の鉄損との関係を示す図である。
FIG. 1 is a diagram showing a relationship between Ca content and total oxygen content in a low Si electromagnetic steel sheet and iron loss of magnetic characteristics.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】重量%にて、C:0.01%以下、Si:0.05
〜 1.0%、Mn:0.05〜 1.0%、P:0.15%以下、S:
0.005%以下、O(酸素): 0.008〜0.02%、sol.A
l: 0.002%未満、およびCa: 0.003〜 0.018%で、
残部はFeおよび不可避的不純物からなることを特徴と
する磁気特性にすぐれた無方向性電磁鋼板。
1. In weight%, C: 0.01% or less, Si: 0.05
~ 1.0%, Mn: 0.05 ~ 1.0%, P: 0.15% or less, S:
0.005% or less, O (oxygen): 0.008 to 0.02%, sol.A
l: less than 0.002% and Ca: 0.003 to 0.018%,
The balance is Fe and inevitable impurities, which is a non-oriented electrical steel sheet with excellent magnetic properties.
【請求項2】鋼スラブに熱間圧延、冷間圧延、焼鈍を施
して最終製品とする製造工程において、熱間圧延の巻取
温度を 650℃以上とすることを特徴とする請求項1の無
方向性電磁鋼板の製造方法。
2. A coiling temperature of hot rolling is set to 650 ° C. or higher in a manufacturing process of hot rolling, cold rolling, and annealing a steel slab to obtain a final product. Manufacturing method of non-oriented electrical steel sheet.
【請求項3】鋼スラブを熱間圧延、熱延板焼鈍、冷間圧
延、焼鈍を施して最終製品とする製造工程において、熱
間圧延の巻取温度を 650℃未満とし、冷間圧延前の熱延
板焼鈍を 650〜1000℃にておこなうことを特徴とする請
求項1の無方向性電磁鋼板の製造方法。
3. In a manufacturing process in which a steel slab is hot-rolled, hot-rolled sheet annealed, cold-rolled, and annealed to obtain a final product, the coiling temperature of the hot-rolling is set to less than 650 ° C. before cold-rolling. The method for producing a non-oriented electrical steel sheet according to claim 1, wherein the hot rolled sheet annealing is performed at 650 to 1000 ° C.
JP6976196A 1996-03-26 1996-03-26 Nonoriented silicon steel sheet and its production Pending JPH09263908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6976196A JPH09263908A (en) 1996-03-26 1996-03-26 Nonoriented silicon steel sheet and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6976196A JPH09263908A (en) 1996-03-26 1996-03-26 Nonoriented silicon steel sheet and its production

Publications (1)

Publication Number Publication Date
JPH09263908A true JPH09263908A (en) 1997-10-07

Family

ID=13412118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6976196A Pending JPH09263908A (en) 1996-03-26 1996-03-26 Nonoriented silicon steel sheet and its production

Country Status (1)

Country Link
JP (1) JPH09263908A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003002777A1 (en) * 2001-06-28 2003-01-09 Jfe Steel Corporation Nonoriented electromagnetic steel sheet
WO2004013365A1 (en) * 2002-08-06 2004-02-12 Jfe Steel Corporation Nonoriented magnetic steel sheet, member for rotary machine and rotary machine
EP2975152A4 (en) * 2013-03-13 2016-04-06 Jfe Steel Corp Non-directional electromagnetic steel plate with excellent magnetic characteristics
KR20180089500A (en) * 2016-01-15 2018-08-08 제이에프이 스틸 가부시키가이샤 Non-oriented electric steel sheet and manufacturing method thereof
WO2022113263A1 (en) * 2020-11-27 2022-06-02 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, method for manufacturing same, and hot-rolled steel sheet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003002777A1 (en) * 2001-06-28 2003-01-09 Jfe Steel Corporation Nonoriented electromagnetic steel sheet
CN1318627C (en) * 2001-06-28 2007-05-30 杰富意钢铁株式会社 Nonoriented electromagnetic steel sheet
WO2004013365A1 (en) * 2002-08-06 2004-02-12 Jfe Steel Corporation Nonoriented magnetic steel sheet, member for rotary machine and rotary machine
EP2975152A4 (en) * 2013-03-13 2016-04-06 Jfe Steel Corp Non-directional electromagnetic steel plate with excellent magnetic characteristics
US10102951B2 (en) 2013-03-13 2018-10-16 Jfe Steel Corporation Non-oriented electrical steel sheet having excellent magnetic properties
KR20180089500A (en) * 2016-01-15 2018-08-08 제이에프이 스틸 가부시키가이샤 Non-oriented electric steel sheet and manufacturing method thereof
WO2022113263A1 (en) * 2020-11-27 2022-06-02 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, method for manufacturing same, and hot-rolled steel sheet
EP4253574A4 (en) * 2020-11-27 2024-01-24 Nippon Steel Corp Non-oriented electromagnetic steel sheet, method for manufacturing same, and hot-rolled steel sheet

Similar Documents

Publication Publication Date Title
EP3404124B1 (en) Non-oriented electrical steel sheet and production method thereof
EP0743370B1 (en) Grain oriented electrical steel having high volume resistivity and method for producing same
EP0076109B1 (en) Method of producing grain-oriented silicon steel sheets having excellent magnetic properties
JP2639226B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JPH09263908A (en) Nonoriented silicon steel sheet and its production
EP0486707B1 (en) A Process for Producing an Ultrahigh Silicon, Grain-Oriented Electrical Steel Sheet and Steel Sheet obtainable with said Process
JP2000017330A (en) Production of nonoriented silicon steel sheet low in iron loss
JP3252692B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same
JPH05186828A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JPH11158550A (en) Production of nonoriented silicon steel sheet excellent in magnetic property after stress relieving annealing
JP2713028B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP2501219B2 (en) Non-oriented electrical steel sheet manufacturing method
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
KR100276307B1 (en) The manufacturing method of oriented electric steelsheet with thick plate
KR100530047B1 (en) A non-oriented electrical steel sheet having improved core loss after stress relief annealing and a method for manufacturing it
JPH10102219A (en) Nonoriented silicon steel sheet excellent in magnetic property, and its production
JP4277529B2 (en) Method for producing grain-oriented electrical steel sheet having no undercoat
KR100368722B1 (en) Non-oriented electrical steel sheet with excellent magnetic properties and its manufacturing method
JP3507232B2 (en) Manufacturing method of unidirectional electrical steel sheet with large product thickness
CN115003845A (en) Non-oriented electrical steel sheet and method for manufacturing the same
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
KR910006012B1 (en) Making process for electric plate
JPH1112699A (en) Non-oriented electrical sheet having excellent magnetic characteristic and its manufacture
JPH04362138A (en) Manufacture of grain-oriented thick electrical steel sheet excellent in magnetic property
JPH0718335A (en) Manufacture of electromagnetic steel sheet having excellent magnetic property