WO2003002777A1 - Nonoriented electromagnetic steel sheet - Google Patents

Nonoriented electromagnetic steel sheet Download PDF

Info

Publication number
WO2003002777A1
WO2003002777A1 PCT/JP2002/006458 JP0206458W WO03002777A1 WO 2003002777 A1 WO2003002777 A1 WO 2003002777A1 JP 0206458 W JP0206458 W JP 0206458W WO 03002777 A1 WO03002777 A1 WO 03002777A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
steel
oriented electrical
annealing
Prior art date
Application number
PCT/JP2002/006458
Other languages
French (fr)
Japanese (ja)
Inventor
Masaaki Kohno
Masaki Kawano
Atsuhito Honda
Akio Fujita
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to EP02738812A priority Critical patent/EP1411138A4/en
Priority to JP2003508741A priority patent/JP4329538B2/en
Priority to KR1020037002839A priority patent/KR100956530B1/en
Priority to US10/481,919 priority patent/US20040149355A1/en
Publication of WO2003002777A1 publication Critical patent/WO2003002777A1/en
Priority to US11/978,406 priority patent/US20080060728A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14716Fe-Ni based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Definitions

  • the present invention relates to a non-oriented electrical steel sheet used as an iron core material in the Electric Sea.
  • non-oriented electrical steel sheets suitable for iron core materials such as reluctance motors or embedded magnet type DC brushless motors that require higher strength, which require high punching dimensional accuracy and high magnetic flux density, are also required. It concerns the manufacturing method.
  • Non-oriented electrical steel sheets are soft magnetic materials that are mainly used as iron core materials for electric motors and transformers. In order to improve the efficiency and reduce the size of these electrical devices, it is required that the magnetic steel sheets have low iron loss and high magnetic flux density.
  • Synchronous motors are generally surface magnet type (S PM) and embedded magnet type (I PM) DC brushless motors, and reluctance motors that use reluctance strikes generated by the magnetic saliency of the rotor and stator. are categorized. Above all, in the case of a reluctance motor, the amount of generated torque depends on the shapes of the rotor and the stator, the gap between the stator and the stator, and the magnetic flux density of the material. Therefore, as a core material for a reluctance motor, high magnetic flux density and high dimensional accuracy in punching are more important than other motors. In addition, with the progress of inverters, the number of poles tends to increase with higher speeds in order to improve motor efficiency and torque. Since these are all elements that increase the operating frequency, not only the conventional magnetic characteristics at the commercial frequency (50 to 60 Hz), but also 400 Hz It is also necessary to improve the magnetic characteristics in the high frequency range.
  • Si content In order to reduce the iron loss of non-oriented electrical steel sheets, it is common to increase the Si content.For example, about 3.5 mass% of Si is added to the highest grade non-oriented electrical steel sheets. There are ⁇ However, as the Si content increases, the iron loss decreases, but the magnetic flux density also decreases.
  • low-grade non-oriented electrical steel sheets have a relatively high magnetic flux density due to the reduced Si content, but have the problem of high iron loss.
  • Japanese Patent Application Laid-Open No. Sho 62-267421 discloses a non-directional steel sheet having an Si content of 0.6 mass% or less and an A1 content of 0.15 to 0.60 mass%.
  • the amount of impurities such as C, S, N, and O is regulated to reduce inclusions and harmlessness that hinder crystal grain growth, promote grain growth, and reduce iron loss. Techniques to achieve this have been proposed.
  • the grain growth of such a low Si steel involves a reduction in strength, there is a problem that the punching surface becomes droopy and has a large force during punching, resulting in a marked decrease in punching performance.
  • Japanese Patent Application Laid-Open No. 56-130425 discloses A technique for improving the punchability by adding less than 0.2 raass% of P is disclosed.
  • Japanese Patent Application Laid-Open No. 2-66138 discloses a technique for positively adding P to low-Si steel, in which the amount of Si is suppressed to 0.1 mass% or less and A1 is set to 0.1 to 1.0 mass%. % To the A1-added steel in the range of 0: 25% by mass, and the magnetic effect is improved by the combined effect of A1 and P. A method to improve is disclosed.
  • non-oriented electrical steel sheets are common properties desired for all applications of non-oriented electrical steel sheets such as various motors and transformers.
  • non-oriented electrical steel sheet material for reluctance motors particularly high magnetic flux density and high dimensional accuracy are important in terms of operation principle.
  • non-oriented electrical steel sheets that have been considered to be able to respond to the recent high-speed rotation of motors and the high frequencies associated with multi-polarization have been developed. Had not been found.
  • the present invention has been developed in view of the above-mentioned current situation, and is provided with iron core materials such as motors and transformers,
  • Electromagnetic steel sheet that combines high magnetic flux density, high-strength characteristics that are important from the viewpoint of high-speed rotation of the rotor and prevention of scattering of embedded magnets, along with dimensional accuracy
  • the sum of Si and A1 is about 0.03raass% or more and 0.5raass% or less for low Si steel, and those for which the sum of Si and A1 exceeds 0.5mass% are medium to high. It is called Si steel.
  • the inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, the amount of Si and A1 has been reduced to a low Si steel level, and the saturation magnetic flux density has been essentially reduced.
  • the average crystal grain size By adjusting the average crystal grain size to a predetermined range and adding an appropriate amount of P, it is possible to obtain excellent magnetic properties such as high magnetic flux density, low force, and low iron loss. It was found that the punching dimensional accuracy was significantly improved.
  • the addition of an appropriate amount of P has the effect of improving the punching dimensional accuracy.
  • the present invention is based on the above findings. That is, the gist configuration of the present invention is as follows. 1. in mass percentage
  • Si and Z or Al 0.03% or more, 0.5% or less in total
  • Average grain size ⁇ ⁇ or more, 80 m or less
  • Non-oriented electrical steel sheet with excellent magnetic properties and punching accuracy.
  • the steel sheet further increases by mass percentage.
  • the steel sheet further increases by mass percentage.
  • a non-oriented electrical steel sheet excellent in magnetic properties and punching accuracy characterized by containing:
  • a non-oriented electrical steel sheet according to 1, 2, or 3 above characterized in that the steel sheet has a thickness of 0.35 or less or less, and is excellent in magnetic properties and punching accuracy.
  • PA -0.2XSi + 0.12XMn- 0.32XA1 + 0.05XNi 2 +0.10 Ni + 0.36
  • the balance consists of Fe and inevitable impurities, and is a magnetic steel sheet with excellent magnetic properties and excellent punching accuracy.
  • a non-oriented electrical steel sheet with excellent strength, magnetic properties, and excellent punching accuracy In the above-mentioned steel types, as the secondary contained elements, Ca: 0.01% or less, B: 0.005% or less, Cr: 0.1% or less, Cu: 0.1% or less, Mo: 0.1% or less. It may contain at least one of 1% or less.
  • Hot rolling is performed on the steel slab having the composition described in any one of 1 to 3 above under the condition that the heating temperature is in the austenite single-phase region and the coil winding temperature is 650 or less. After descaling, after cold rolling once or twice including intermediate annealing, finish annealing in ferrite single phase region with 700 or more. Manufacturing method of excellent non-oriented electrical steel sheet.
  • Hot rolling was performed on the steel slab having the composition described in any of the above 1 to 3 under the following conditions: the heating temperature was in the austenite single phase region, and the coil winding temperature was 650: Then, when the Ni content is 0% (no addition) to 1.0 mass%, the hot-rolled sheet is annealed in a ferrite single-phase region of 900 or more or an austenite single-phase region of more than 3 points of Ac. Ni content exceeds 1.0 mass%, 2.3 mass 0 /.
  • Hot rolling is performed on the slab of 5 or 6 above at a hot rolling heating temperature of 100 000 ⁇ to 120 000 ° and a hot rolling coiling temperature of 65 O or less.
  • a method for producing a non-oriented electrical steel sheet having excellent strength, magnetic properties, and punching precision comprising performing cold rolling once or twice including intermediate annealing, and then performing finish annealing.
  • hot-rolled sheet annealing may be performed after hot-rolling.
  • a treatment for providing an insulating film may be performed.
  • FIG. 2 is a graph showing the effect of Si content and P content on the relationship between yield strength and punching anisotropy.
  • FIG. 3 is a graph showing the influence of the Si content and the P content on the relationship between the average crystal grain size and the punched diameter.
  • FIG. 4 is a graph showing the influence of the Si content and the P content on the relationship between the average grain size and the punching anisotropy.
  • FIG. 5 is a graph showing the effect of the Si content and the P content on the relationship between the average crystal grain size and iron loss.
  • FIG. 6 is a graph showing the influence of the Si content and the P content on the relationship between the average crystal grain size and the magnetic flux density.
  • FIG. 7 is a graph showing the effect of Si content and P content on the relationship between iron loss and magnetic flux density.
  • Figure 8 is a graph showing the effect of Si and P contents on the occurrence of layered cracks.
  • Figure 9 is a graph showing the effect of Si and Ni contents on the occurrence of layered cracks.
  • FIG. 10 is a graph showing the effect of Si content and Ni addition on the relationship between P content and punched diameter.
  • FIG. 11 is a graph showing the effect of Si content and Ni addition on the relationship between P content and punching anisotropy.
  • FIG. 12 is a graph showing the effect of the P content on the relationship between the tensile strength and the magnetic flux density.
  • FIG. 13 is a graph showing the relationship between and and high-frequency iron loss.
  • FIG. 14 is a graph showing the relationship between the plate thickness and the magnetic flux density.
  • these steel materials were heated at 1100 for 60 rains, hot-rolled to a plate thickness of 2 ram, kept at a uniform temperature equivalent to coil winding of 2 h at 600, and allowed to cool. Then, after hot-rolled sheet annealing at 900 for 60 s, pickling and then cold-rolled to a sheet thickness of 0.5 ram, finish annealing at various temperatures of 700 to 900 ⁇ , and recrystallized grains The particle size of was varied. Thereafter, a sample prepared by applying and baking semi-organic insulating material having an average film thickness of 0.6; / m to the finish annealed plate was prepared and subjected to a punching test. The average crystal grain size was defined as the equivalent circle diameter determined by the Jeffries method by observing a cross section in the thickness direction parallel to the rolling direction.
  • the punching test was performed using a circular mold having a diameter of 21 ⁇ , and the clearance was set to 8% of the plate thickness. Measure the diameter (inner diameter) of the punched circle in four directions with angles of 0 °, 45 °, 90 °, and 135 ° to the rolling direction, determine the average diameter of the four points, and determine the maximum diameter among the four points. The difference between the diameter and the minimum diameter was measured and used as an index of punching anisotropy.
  • Figures 1 and 2 summarize the results obtained in relation to the yield strength (YP) obtained from tensile test pieces (JIS No. 5) cut out in the rolling direction.
  • Figures 3 and 4 summarize these relationships in relation to the average grain size of the finish annealed sheet.
  • the steel with the varied amount of Si has poor punching dimensional accuracy and punching anisotropy as the grain size increases, while P is 0.13% or more.
  • the added steel has a good level of punching dimensional accuracy and punching anisotropy even if the grain size is large.
  • the inventors made the steel whose magnetic flux density was essentially high as a material, and examined the manufacturing conditions and magnetic properties. The relationship was discussed in detail.
  • Figure 5 shows the crystal grain size of the finished annealed sheet and iron loss in the commercial frequency range for samples with a steel thickness of 0.5 ram (Wis / 50: value at a frequency of 50 Hz and maximum magnetic flux density of 1.5 T). The results of an investigation on the relationship between and are shown.
  • low Si is disadvantageous for iron loss due to reduced electrical resistance, but iron loss varies greatly depending on the crystal grain size, so the grain size should be about 30 / zm or more. It can be seen that low iron loss can be obtained stably. Similarly, when the electric resistance was reduced to a low value of A1, it was also confirmed that setting the particle size to about 30 ⁇ or more was effective in reducing iron loss.
  • the average grain size of the finish-annealed sheet is limited to about 15 to 25 / z ra. It was customary. The reason for this is that, as shown in the example of 0.1% Si-0.07% P steel (marked in the figure) in Figs. .
  • Fig. 6 shows the relationship between the average crystal grain size and the magnetic flux density of each steel type
  • Fig. 7 shows the iron loss. The result of examining the relationship between and magnetic flux density is shown.
  • B 50 is a magnetic flux density at a magnetization force of 5000 A / m.
  • the slab heating temperature for hot rolling in the production of the steel sheet of the present invention should be in the austenite single phase region (or, if possible, the ferrite single phase). is important.
  • the austenite single phase region is further reduced due to the large amount of Si and A1, which are ferrite forming elements, and as a result, the ferrite austenite two phase region tends to be formed at the conventional heating temperature.
  • the problem became clear.
  • P exceeded 0.26% laminar cracking occurred under any composition conditions. Therefore, steels with various Si, Mn, AI, and P contents were manufactured at the research facility, and in the temperature range of about 100 to 1200 ⁇ 0, unbalanced P caused rolling failure.
  • the slab ripening temperature described above is a suitable temperature from the viewpoint of stabilizing the precipitation of carbon dioxide, nitride, sulfide and the like existing in the steel.
  • the amount of P added needs to be about 0.26% or less.
  • the amount of P added is within about 0.26% and the steel sheet is heated to the austenite single-phase or ferrite single-phase region during hot-rolling heating, layer cracks after cold rolling, etc.
  • the ferrite / austenite two-phase force B reduces the amount of P distribution to the ferrite phase even under heat conditions.
  • Ni which is an element suitable for improving magnetic properties and ensuring strength, is also effective in expanding the austenite region near the hot rolling temperature in P-added steel.
  • P F -0.34Si + 0.20Mn-0.54A1 + 0.24Ni 2 + 0.28Ni +0.76 ⁇ P (2) It was found that the degree of enrichment was small, and in each case, embrittlement due to P could be avoided.
  • Fig. 12 shows the relationship between the magnetic flux density B50 and the tensile strength TS of these samples.
  • TS was determined by the same tensile test as in Experiment 1, and the magnetic flux density was also measured by the method in Experiment 1.
  • the conditions for achieving both excellent magnetic flux density and punching dimensional accuracy include the amounts of Si, Al, P, and Ni in the steel, and the average crystal grain of the finish-annealed sheet for low-Si steel.
  • the diameter was specified in the following range. Low Si steel ⁇ ⁇ Si, Al 1 or 2 types total: about 0.03 ⁇ 0.5%
  • Si and Al have a deoxidizing effect when added to steel, they are used alone or in combination as deoxidizing agents. To achieve this effect, Si and Al must be used alone or in a total of about 0.03% or more. Also, Si and Al have the effect of increasing the specific resistance and improving the iron loss, but on the other hand, they lower the saturation magnetic flux density, so the upper limit was set to 0.5%. For medium to high Si steels, the sum of one or two types of Si and Al: more than 0.5% to about 2.5%
  • the total amount of Si + Al can be more than 0.5%.
  • the effect of the addition of P makes it possible to obtain a material with higher punching accuracy and strength / magnetic flux density compared to the conventional low P medium to high Si steel. can get.
  • the total amount of Si + Al exceeds 2.5%, ordinary cold rolling becomes difficult even by the method of the present invention, so the range is more than 0.5% to about 2.5%. %.
  • P is a particularly important element in the present invention.
  • P has a function of adjusting the material hardness by its high solid solution strengthening ability.
  • low-Si and low-Al steel sheets are relatively soft by nature, but in the present invention, the average grain size needs to be about 30 / m or more to reduce iron loss. There is a possibility that.
  • P is an essential element for improving the punching property of the steel sheet of the present invention, that is, for suppressing an increase in sagging and burrs due to insufficient strength of the steel sheet.
  • the effect of suppressing the total amount of deformation at the time of punching by increasing the breaking limit at the time of punching, and the effect of ⁇ 100 ⁇ w> Improve the punching dimensional accuracy by the combined effect of increasing the orientation and improving the anisotropy.
  • the strength of the steel sheet is increased, it does not lower the magnetic flux density. This effect is also exhibited in medium to high Si steel.
  • P In order to exhibit these effects, P must be contained in an amount of about 0.10% or more.
  • P is originally a brittle element to steel, and if added excessively, it tends to cause ear cracks and layer cracks, which lowers the manufacturability.
  • the content exceeds about 0.26%, the production of P-added steel becomes difficult even if the production method of the present invention is used, so the P content is limited to the range of about 0.10 to about 0.26%. did.
  • Ni about 2.3% or less (can be added as an option)
  • Ni not only has the effect of improving the texture of the steel to increase the magnetic flux density, but also has the effect of increasing the electrical resistance of the steel to reduce iron loss, and has the effect of increasing the strength of the steel by solid solution strengthening. Since it also has the effect of suppressing drooling during punching, it can be added positively.
  • Ni is an austenite-forming element, it has the effect of expanding the austenite region ( ⁇ loop in the phase diagram) in the vicinity of the preferred slab heating temperature of 1000 to 1200. In particular, it is effective to increase the operation stability for steels with a composition of Si + Al greater than 0.5%. By utilizing this effect, the rolling instability that can occur when the brittle element P is positively added as in the present invention can be significantly improved. In other words, the point of stable production of high-P steel is to suppress excessive P bias during hot rolling, and to prevent the slab heating temperature from being in the ferrite-no-austenite two-phase region as an effective means. If the sum of the Si content and the A1 content exceeds 0.5%, it is easy to separate into two phases at the slab heating temperature.
  • the average grain size of the finish annealed sheet In low Si steel, the average grain size of the finish annealed sheet: about 30; zm or more, about 80 ⁇ or less In order to obtain good iron loss characteristics in the low Si, low A1 non-oriented electrical steel sheet of the present invention, As shown in Fig. 5, the average grain size of the finish-annealed sheet must be about 30 // m or more. However, even if the grain size exceeds about 80 / m, no further improvement in iron loss can be expected.
  • the steel according to the present invention is a transformed steel, and its slip single phase region is suitable for recrystallization annealing. Since the temperature is lower than that of ferritic single-phase steel with a high Si composition, excessive grain growth is disadvantageous in terms of productivity in continuous short-time annealing equipment. / im is the upper limit.
  • the alloy has an effect of improving electric resistance by the alloy and the like, and relatively low iron loss is easily obtained. Therefore, the grain size is not particularly limited and may be in a normal range. Generally, it is 20 to 200 / m.
  • the inventors studied a technique for improving magnetic characteristics in a high-frequency range, which has been gaining importance in recent years with the increase in the rotation speed and the number of poles of the motor. As a result, it was found that thickness reduction was effective, and the effect was particularly remarkable in low Si steel. The experiment which led to the result is shown below.
  • Figure 13 shows the loss of iron at 400Hz for 0.11% Si—0.18% P steel, 0.95% Si—0.02% P steel and 2.0% Si—0.5 ° / ⁇ 1 steel. The result of examining the thickness dependency is shown.
  • the high frequency iron loss tends to be improved because the eddy current loss of all samples decreases due to the reduction of the plate thickness. It can be seen that the effect is greater for the low Si steel.
  • non-oriented electrical steel sheets has so far been 0.50 mra, and further reductions in thickness are only applicable to some high-grade grades with high contents of Si and A1, which are specific resistance elements. As a result, there was no product example applied to non-oriented electrical steel sheets with low contents of Si and A1.
  • Fig. 14 shows the results of examining the dependence of the magnetic flux density of these materials on the plate thickness.
  • the magnetic flux density tends to decrease slightly, but the decrease is negligible, and the low Si steel is much higher at all sheet thicknesses. It has a magnetic flux density.
  • EV electric vehicle
  • HEV hybrid electric vehicle
  • high-speed rotation type reluctance motors are being studied.
  • high magnetic flux density and high frequency Low iron loss property is emphasized, but this can be dealt with by reducing the thickness of a steel sheet of low Si and low A1, which is essentially high in magnetic flux density as shown in the present invention.
  • the effect of reducing the thickness becomes significant when the thickness is about 0.35 or less, and becomes even more significant when the thickness is about 0.30 mm or less. Since the thinner the sheet, the more effective it is at reducing eddy current loss, no lower limit is set, but the number of man-hours for stacking the core increases and the cost increases, and it is difficult to caulk the laminated core. In the case of general production, the lower limit is preferably about 0.10 mm.
  • C is an element that deteriorates the magnetic properties (iron loss) with the passage of time after the steel machine due to the aging effect, and the degree becomes significant when the C content exceeds about 0.010%. Therefore, the C content was limited to 0.010% or less. In addition, as for the aging deterioration characteristics, the smaller the C content, the better. Therefore, in the present invention, the C content is substantially zero. Mouth (analysis limit full) shall be included.
  • Mn about 0.5% or less
  • n has the effect of fixing S as n S and suppressing embrittlement during hot rolling caused by Fe S.
  • the specific resistance increases and iron loss is improved.
  • an increase in the Mn content causes a decrease in the magnetic flux density, so the upper limit of the Mn content was set to about 0.5%.
  • S is an unavoidable impurity, and when precipitated as FeS as described above, it not only causes hot embrittlement but also deteriorates grain growth of finely precipitated ⁇ , reducing iron loss. From the viewpoint of, it is advantageous to reduce as much as possible.
  • the amount of S exceeds about 0.015%, the cost of iron loss deterioration becomes extremely large, so the upper limit was set to about 0.015%.
  • S also has the effect of improving the shear profile at the time of punching, so the extent of reduction is determined according to the application.
  • N is an inevitable contaminant impurity, and when finely precipitated as A1N, it inhibits grain growth and degrades iron loss. Therefore, N was restricted to about 0.010% or less.
  • the essential component and the suppressing component have been described.
  • the following elements can be appropriately contained as magnetic property improving components.
  • Sb and Sn are unevenly distributed at grain boundaries, and have the effect of improving magnetic flux density and iron loss by suppressing the generation of ⁇ 111 ⁇ oriented recrystallization nuclei from crystal grain boundaries during steel recrystallization.
  • Ca may be contained in a range of about 0.01% or less as an element for effectively trapping S present as an impurity together with Mn as a deoxidizing agent.
  • about 0.005% or less of B and about 0.1% or less of Cr can be added.
  • the effect of the present invention is not impaired by adding a known element such as Cu or Mo as an element which does not impair the magnetic properties, but the effect of the present invention is not impaired.
  • the content is about 0.1% or less.
  • the component is designed to be a single phase of either the austenite phase or the ferrite phase at the slab heating temperature, or it is in the two-phase state of austenite ferrite.
  • the composition is designed so that the amount of P enriched in the ferrite phase, which tends to enrich P more easily, is suppressed, excessive local segregation of P is suppressed, and a high-P-added steel is produced stably. It can be so.
  • the excess of P at the slab heating temperature (about 100 to 1200) that is suitable for the precipitation stability of carbides, nitrides, sulfides, etc. present in steel.
  • the slab heating temperature about 100 to 1200
  • P A -0. 2Si +0. 12Mn-0. 32A1 +0. Relationship between 05Ni 2 + 0. 10Ni + 0. 36 (1) and P content,
  • P F -0. 34Si +0. 20Mn-0. 54A1 + 0. 24Ni 2 + 0. 28Ni + 0. 76 (2) is,
  • PA was obtained by experimentally determining the upper limit of the P content of the austenitic single phase in the temperature range of about 1000 to 1200 for various Si, Mn, Al, and Ni compositions.
  • P F are those the P content is the lower limit that the ferrite single phase was determined experimentally.
  • this slab is subjected to hot rolling after heating.
  • the slab heating is preferably about 100 to 1200. Also, as mentioned above, the phase state during slab heating is extremely important for suppressing excessive local segregation of P.
  • P is a ferrite-forming element, it has the effect of reducing the austenite single-phase region near the slab heating temperature.However, in the case of low-Si steel, within the component range of the present invention, even if the slab heating temperature is about 1000 to 1200, For example, it can be a single phase of austenite. In the case of medium to high Si steel Further, if the component system satisfying the P ⁇ P A, the slab heating temperature is from about 1000: it can be single-phase austenite in the range of 1200O.
  • the segregation of P in the ferrite phase remains at a level that can avoid embrittlement even in the region where ferrite and austenite coexist. Further, even when the ferrite is heated in the single phase region of ferrite, if the P content is within about 0.26%, it can be produced without layer cracks or the like.
  • the coil winding temperature after hot rolling is also an important point in securing the productivity of high-P steel. That is, if the coil winding temperature is high, iron phosphating (Fe 3 P) is generated during cooling of the coil, and the bendability and rollability of the hot-rolled sheet are reduced.
  • the winding it is desirable to perform the winding at a temperature as low as possible, preferably about 600 ° or less, more preferably about 550 or less. It is also effective to accelerate the cooling of the coil by immersing the coil after winding into a water tank or by ifc-ing the coil. Then, the hot-rolled coil is subjected to cold rolling after descaling by a technique such as pickling, but hot-rolled sheet annealing can be performed to further improve the magnetic properties.
  • the hot-rolled sheet annealing temperature also avoid the ferrite-no-austenite coexistence region (two-phase region). This is because the growth of crystal grains does not easily progress in the annealing in the two-phase region, and improvement in magnetic properties such as magnetic flux density cannot be expected.
  • the preferred hot-rolled sheet annealing temperature in low Si steel will be described according to the amount of Ni.
  • the non-oriented electrical steel sheet is usually about 900% or more as in the case of hot-rolled sheet annealing.
  • ⁇ ⁇ ⁇ Can be annealed in the light single phase region.
  • the temperature of the slag can be increased to a single phase region of austenite (preferably about 1050 to 1100) with three or more Ac points. In short, it is important to avoid annealing (especially around 9503 ⁇ 4) in the two-phase region, which is the intermediate region between the two.
  • the austenite formation temperature during annealing decreases, so that a two-phase region is obtained even at an annealing temperature of about 900, The magnetic flux density decreases.
  • sufficient magnetic flux density cannot be obtained by annealing in the single phase region of ferrite below 900 due to insufficient grain growth. Therefore, the annealing condition of the hot rolled sheet in this component system is limited to the austenite single phase region (preferably about ⁇ ⁇ ⁇ ) above the Ac3 point. Limited.
  • the austenite single phase region preferably about ⁇ ⁇ ⁇
  • the annealing temperature of the hot-rolled sheet is not particularly limited, but is usually preferably in the range of 700 to 110 ⁇ . Then, after descaling, the obtained coil is rolled once in a cold or warm state, or is subjected to two or more cold (or warm) rolling steps with intermediate annealing to obtain a predetermined thickness. Finish.
  • finish annealing is performed.
  • this finish annealing is performed in the ferrite single phase region of 700: or more. This is because if the final annealing temperature is less than 700, it is difficult to stably grow the average grain size to about 30 m or more, and if austenite grains are formed beyond the ferrite single phase region, the aggregated yarn! ⁇ Is formed. This is because of deterioration, leading to deterioration of magnetic flux density and iron loss.
  • the grain growth during annealing is not as important as that of low Si steel, as described above.
  • the final annealing temperature is not particularly limited, but is usually in the range of 700 to 110. It is preferable that
  • the ferrite single-phase temperature range or austenite single-phase temperature range of the hot-rolled sheet and cold-rolled sheet is obtained by heating and water-cooling steel sheets of the same composition in various temperature ranges beforehand using an optical microscope. It can be determined by observing with such as. Alternatively, as another method, it can be estimated in advance from a calculation state diagram obtained by thermodynamic calculation software such as Thermo-Calc TM. After the finish annealing, an insulating coating can be applied in the same manner as a general non-oriented electrical steel sheet.
  • the application method is not particularly limited, but a method of performing a baking treatment after applying the treatment liquid is preferable.
  • the obtained coil is slit to the required width and dimensions, and then After punching into the shape of the motor stator and rotor, they are laminated and commercialized. Alternatively, in some cases, after punching, it is commercialized after being subjected to strain relief annealing (usually 750 Xl to 2 h).
  • Molten steel having the composition shown in Table 1 was smelted and incorporated in a laboratory, and then hot rolled to form a sheet par with a sheet thickness of 30 rara. Then, after heating for 1 min at 60 ° C, the plate was hot-rolled to a thickness of 2 mm, and at 600 at 2 hours for coil winding, and then allowed to cool. Then, after hot-rolled sheet annealing at 950 for 60 s, pickling is performed, then cold-rolled to 0.50 thickness (one-time cold-rolling), and finish annealing at various temperatures of 700 to 900 ⁇ . Thus, the recrystallized grain size was variously changed. In addition, during cold rolling, steel J with a P content exceeding the range of the present invention caused many layered cracks parallel to the sheet surface during cold rolling, and the subsequent processing was stopped and evaluation was not performed .
  • Nos. 56 to 59 were cold rolled by hot rolling twice without intermediate annealing at 800 without hot strip annealing.
  • samples were prepared by applying a semi-organic insulating film having an average film thickness of 0.6 to the obtained finish-annealed sheet and subjected to various tests.
  • the punching test was performed using a circular mold having a diameter of 21 ⁇ , and the clearance was 8% of the plate thickness.
  • the angle made with the rolling direction is 0. , 45 °, 90 °, 135.
  • the diameter of the circle (inner diameter) in four directions was measured, and the average diameter of the four points was determined.
  • the difference between the maximum diameter and the minimum diameter among the four points was taken as the index of punching anisotropy.
  • the magnetic properties were measured by the Epstein method using strip-shaped test pieces cut out to 180 mm x 30 mm so that the angles to the rolling direction were 0 ° and 90 °.
  • the YP As the diameter increases, the punching diameter tends to approach the die diameter.
  • steels G to H containing 0.10% or more of P as a low Si and A1 composition have good punching diameters even when YP is relatively low at 350 MPa or less. ⁇ Anisotropy of punch size is also small.
  • the average grain size of these steel grades was controlled to 30; zra or more (Nos. 37, 38, 39, 44, 45, 46, 47, 51, 52, 53, 53). 54, 59) have stable and low iron loss and high magnetic flux density.
  • Molten steel having the composition shown in Table 4 was smelted in a laboratory and made into a hot-rolled sheet with a thickness of 2 mm in the same manner as in Example 1. After annealing the hot-rolled sheet at 1100 ⁇ for 30 s After being pickled, it was cold rolled to a thickness of 0.50. Then, finish annealing was performed at various temperatures of 700 or more and in the ferrite single phase region to change the recrystallized grain size in various ways.
  • steels K to M have been subjected to deoxidation by A1 to reduce Si, and steel N, O, and steel Q, R are melted so that the effect of Ni addition can be evaluated. It was made.
  • any of the steel compositions satisfying the steel composition of the present invention and having an average crystal grain size of 30 ⁇ or more have excellent punching dimensional accuracy, low punching anisotropy, and magnetic properties.
  • steel ⁇ and steel 0 are compared, and steel Q and steel R are compared with each other, a remarkable improvement in magnetic flux density is observed in steel O and steel R to which Ni is added.
  • Example 3 Molten steel having the compositions shown in Table 1 (Steel F) and Table 4 (Steel N and Steel O) was smelted in a laboratory and made into a hot-rolled sheet with a thickness of 2 mm in the same manner as in Example 1. After the hot-rolled sheet was annealed at 1100 for 30 s, it was pickled and then cold-rolled to obtain various thicknesses of 0.50 to 0.2 rara. Next, finish annealing was performed at various temperatures of 700 ⁇ or more and in the ferrite single phase region, and the recrystallized grain size was controlled between 35 and 45 m.
  • the iron loss particularly at high frequencies tends to be remarkably improved.
  • the punching dimensional accuracy tends to improve with a decrease in the thickness, but steels N and O satisfying the composition range of the present invention are superior to comparative steel F.
  • the steel of the present invention is excellent in anisotropy of the punched size at any thickness.
  • Example 4 Molten steel having the composition shown in Table 7 was smelted in a laboratory and poured into a steel ingot, and was then soaked at 1150 X for 1 hour. And The obtained sheet bar was heated to the temperature (SRT) shown in Table 8 and held for 1 hour, then hot rolled to 2.0 mm, subjected to coil winding at 580 ° C for 1 hour, and allowed to cool. did. After that, except for some steels, hot-rolled sheet annealing was performed under the conditions shown in Table 8. Then, after pickling, they were cold rolled to 0.50 marauders.
  • the cold-rolled sheet was subjected to finish annealing at various temperatures of 700 or more, and then subjected to the same semi-organic insulation as in Example 1, and then subjected to various tests.
  • the strength was measured by cutting a JIS No. 5 test piece in the rolling direction and 5 mm, pulling it at a pulling speed of 10 ram / s, and evaluating the obtained tensile strength (TS). Table 8 shows the obtained results.
  • T Invention steel 0.0011 0.60 0.0011 0.19 0.0033 0.00 0.13 0.0032 ⁇ 0.001 ⁇ 0.001 0.262 OK 0.593 NG OK
  • the steels (Nos. 2 to 4, 7, 13, 14, 16 to 18, and 21 to 24) containing at least 0.1% of P as components within the scope of the present invention have excellent punching dimensional accuracy. Is shown. That is, for steels with less than 0.1% of P added ( ⁇ 1, 6, 10, and 15), the punching diameter tends to improve with the increase of Si + Al content, but Large anisotropy in diameter. On the other hand, it is clear that the steel of the present invention is excellent in both the punching diameter and the anisotropy of the punching diameter. Furthermore, these inventive steels have a magnetic flux density equal to or higher than that of comparative steels with a P content of less than 0.1%. Nevertheless, they have high strength, and have an excellent strength-to-magnetic flux density balance.
  • a bending test was performed on the obtained hot-rolled steel sheet at room temperature (at 23).
  • a test piece of 100 rara X 30 sq. was sampled from the hot-rolled sheet so that the rolling direction became longitudinal, and a repeated bending test with a bending radius of 15 mra was performed according to JIS-C2550.
  • Table 9 shows the number of times until the surface of the hot rolled sheet cracked.
  • the structure (phase) during slab heating and hot-rolled sheet annealing was investigated by the following method. After maintaining the sheet par and the hot rolled sheet for a predetermined time (described in Table 9) for a predetermined time (slab heating: 1 hour, annealing: 60 seconds), the structure at the time of heating is frozen by water quenching, and optical The phases were identified by microscopic observation of the yarn. The results are shown in Table 9.
  • the hot-rolled sheet was pickled and then cold-rolled to a thickness of 0.50 (one-time cold-rolling), and evaluated whether or not cold-rolling failure (lamellar cracking) due to embrittlement occurred.
  • the cold-rolled sheet with no layer cracks was subjected to finish annealing at various temperatures shown in Table 9 and then samples coated with the same semi-organic insulating coating as in Example 1 were prepared for various tests. Provided. Table 9 shows the obtained results.
  • the slab heating temperature of the present invention was in the two-phase region (Ntxl and 4), it was found that cold rolling failure due to embrittlement easily occurred and commercialization was difficult. Also, when the Koino scraping temperature was higher at 650 ( ⁇ 5), the workability of the hot rolled sheet was reduced, and the iron loss of the obtained electrical steel sheet was also reduced. Furthermore, when the hot-rolled sheet annealing temperature was in the two-phase region (Nos. 7 and 12), and in steels with more than 1.0 mass% Ni added, hot-rolled sheet annealing was performed in the ⁇ single-phase region. With ( ⁇ 13), the magnetic flux density of the obtained magnetic steel sheet decreased.
  • the non-oriented electrical steel sheet of the present invention is used as a core material for various motors, particularly a reluctance motor that requires particularly high dimensional accuracy and a high magnetic flux density, and an embedded magnet type DC brushless motor that requires further material strength. It is most suitable as iron core material.

Abstract

A nonoriented electromagnetic steel sheet, wherein it has the following chemical composition, in mass %: C: 0 to 0.010 %, Si and/or Al: 0.03 to 0.5 or more than 0.5 % and not more than 2.5 %, Mn: 0.5% or less, P: 0.10 % to 0.26 %, S: 0.015 % or less, N: 0.010 % or less and balance: Fe and inevitable impurities. The nonoriented electromagnetic steel sheet exhibits excellent dimensional precision in blanking, and further, exhibits excellent magnetic balance of high magnetic flux density-low iron loss in a low Si steel, and excellent high magnetic flux density-high strength balance in a middle to high Si steel.

Description

明細書 無方向性電磁鋼板およびその製造方法 技術分野 本発明は、電気灘の鉄心材料として用いられる無方向性電磁鋼板に関するもの である。 中でも、 高い打ち抜き寸法精度と、 高磁束密度とが併せて求められる、 リ ラクタンスモータやあるいはさらに強度が要求される埋め込み磁石型の D Cブラ シレスモータなどの鉄心素材として好適な無方向性電磁鋼板およびその製造方法 に関するものである。 背景技術 無方向性電磁鋼板は、主にモータやトランスなどの電気 ½の鉄心材料として使 用される軟磁性材料である。これらの電気機器の効率改善や小型化を図るためには、 電磁鋼板の鉄損が低く磁束密度が高いことが要求される。電動モータの分野でも、 鉄心素材である電磁鋼板の磁気特性の改善、すなわち低鉄損、高磁束密度化が進め られており、またモータ自体も従来の非同期型の A C誘導モータから、 より高効率 な同期モータへの置き換えや、 高特性化が急速に進行している。  TECHNICAL FIELD The present invention relates to a non-oriented electrical steel sheet used as an iron core material in the Electric Sea. In particular, non-oriented electrical steel sheets suitable for iron core materials such as reluctance motors or embedded magnet type DC brushless motors that require higher strength, which require high punching dimensional accuracy and high magnetic flux density, are also required. It concerns the manufacturing method. BACKGROUND ART Non-oriented electrical steel sheets are soft magnetic materials that are mainly used as iron core materials for electric motors and transformers. In order to improve the efficiency and reduce the size of these electrical devices, it is required that the magnetic steel sheets have low iron loss and high magnetic flux density. In the field of electric motors, the magnetic properties of magnetic steel sheets, which are core materials, are being improved, that is, lower iron loss and higher magnetic flux density are being pursued.The motors themselves are also more efficient than conventional asynchronous AC induction motors. The use of synchronous motors and the improvement of characteristics are rapidly progressing.
同期モータは、一般的に、表面磁石型(S PM)および埋め込み磁石型 ( I PM) の D Cブラシレスモータと、ローターとステーターの磁気的な突極性により発生す るリラクタンストノレクを利用するリラクタンスモータに分類される。中でもリラク タンスモータの場合、 トルクの発生量は、 ロータ一およびステーターの形状と、 口 一ター ステーター間のギャップおよび素材の磁束密度に依存する。従って、 リラ クタンスモータ用の鉄心素材としては、高磁束密度と共に、打ち抜きにおける寸法 精度が高いことが、 他のモータ以上に重要とされる。 さらに、ィンバーター化の進展に伴い、モータ効率やトルク等の改善のために、 高速回転化と共に極数が増加する傾向にある。これらはいずれも動作周波数を高め る要素であるため、モータ素材である無方向性電磁鋼板に対しても、従来からの商 用周波数 (50〜60Hz) での磁気特性だけでなく、 400 Hz以上の高周波域での磁気 特性を改善することも必要となってきている。 Synchronous motors are generally surface magnet type (S PM) and embedded magnet type (I PM) DC brushless motors, and reluctance motors that use reluctance strikes generated by the magnetic saliency of the rotor and stator. are categorized. Above all, in the case of a reluctance motor, the amount of generated torque depends on the shapes of the rotor and the stator, the gap between the stator and the stator, and the magnetic flux density of the material. Therefore, as a core material for a reluctance motor, high magnetic flux density and high dimensional accuracy in punching are more important than other motors. In addition, with the progress of inverters, the number of poles tends to increase with higher speeds in order to improve motor efficiency and torque. Since these are all elements that increase the operating frequency, not only the conventional magnetic characteristics at the commercial frequency (50 to 60 Hz), but also 400 Hz It is also necessary to improve the magnetic characteristics in the high frequency range.
これまで、上記したような無方向性電磁鋼板の磁束密度および鉄損の改善に関し ては、 種々の努力が払われてきた。  Until now, various efforts have been made to improve the magnetic flux density and iron loss of the non-oriented electrical steel sheet as described above.
無方向性電磁鋼板の鉄損を低減するためには、 Si含有量を高める手法が一般的 であり、 例えば最高級グレ一ドの無方向性電磁鋼板では約 3. 5mass%程度の Siが 添カ卩される ^がある。 しかしながら、 Si含有量の増加に伴い、 鉄損は低減する ものの磁束密度も同時に低下してしまう。  In order to reduce the iron loss of non-oriented electrical steel sheets, it is common to increase the Si content.For example, about 3.5 mass% of Si is added to the highest grade non-oriented electrical steel sheets. There are ^^ However, as the Si content increases, the iron loss decreases, but the magnetic flux density also decreases.
—方、 低級グレードの無方向性電磁鋼板では、 Si含有量を抑制しているため、 比較的高い磁束密度が得られるが、 鉄損が高いという問題がある。 このような低 Si鋼の鉄損改善方法として、 特開昭 62—267421号公報には、 Si 量を 0. 6 mass%以下、 A1量を 0, 15〜0. 60mass%とした無方向性電磁鋼板において、 C, S , Nおよび Oといった不純物の量を規制し、結晶粒成長の阻害要因となる介 在物の低減および無害ィ匕を図り、粒成長を促進して、低鉄損化を達成する技術が提 案されている。 しかしながら、 このような低 Si鋼の粒成長には強度低下が伴うた め、 打ち抜き加工時に打ち抜き面のだれや、 力えりが大きくなり、打ち抜き性の著 しい低下を招くという問題があった。  —On the other hand, low-grade non-oriented electrical steel sheets have a relatively high magnetic flux density due to the reduced Si content, but have the problem of high iron loss. As a method for improving iron loss of such low Si steel, Japanese Patent Application Laid-Open No. Sho 62-267421 discloses a non-directional steel sheet having an Si content of 0.6 mass% or less and an A1 content of 0.15 to 0.60 mass%. In electrical steel sheets, the amount of impurities such as C, S, N, and O is regulated to reduce inclusions and harmlessness that hinder crystal grain growth, promote grain growth, and reduce iron loss. Techniques to achieve this have been proposed. However, since the grain growth of such a low Si steel involves a reduction in strength, there is a problem that the punching surface becomes droopy and has a large force during punching, resulting in a marked decrease in punching performance.
なお、低 Si鋼の硬度を調整して打ち抜き性を改善する方法としては、 0. 08〜0. 1 mass%程度の Pを添加する技術があり、例えば特開昭 56—130425号公報には、 0. 2 raass%未満の Pを添加して打ち抜き性を改善する技術が開示されている。また、低 Si鋼に Pを積極的に添加する技術として、 特開平 2— 66138 号公報には、 Si量を 0. 1 mass%以下に抑制し、 かつ A1を 0. 1〜1. 0 mass%の範囲で含有させた A1添加 鋼に、 0.:!〜 0. 25mass%の Pを添加し、 A1 と Pの複合効果によって磁気特性を改 善する方法が開示されている。 Incidentally, as a method of improving the punching property by adjusting the hardness of the low Si steel, there is a technique of adding P of about 0.08 to 0.1 mass%, and for example, Japanese Patent Application Laid-Open No. 56-130425 discloses A technique for improving the punchability by adding less than 0.2 raass% of P is disclosed. Japanese Patent Application Laid-Open No. 2-66138 discloses a technique for positively adding P to low-Si steel, in which the amount of Si is suppressed to 0.1 mass% or less and A1 is set to 0.1 to 1.0 mass%. % To the A1-added steel in the range of 0: 25% by mass, and the magnetic effect is improved by the combined effect of A1 and P. A method to improve is disclosed.
し力 しながら、 これらの技術において、 P添加による打ち抜き性の改善は、その 硬度調整による鋼板のだれ抑制に着目したのみであり、打ち抜き後の寸法精度につ いては何ら考慮が払われていなかった。  However, in these technologies, the improvement in punchability by adding P only focused on suppressing the drooping of the steel sheet by adjusting its hardness, and no consideration was given to the dimensional accuracy after punching. Was.
—方、埋め込み磁石型の D Cブラシレスモータにおいても、高トルク化、および 小型ィヒの観点から、打ち抜き精度および高磁束密度が要求されるが、 さらに、 ロー ターの高速回転に耐え、あるいは埋め込まれた磁石の離脱を防ぐために、電磁鋼板 の強度を高く維持する必要がある。 既に述べたように強度の観点からも高級 Si鋼 が有利であるが、 磁束密度の観点からは低 Si化が望ましく、 強度および磁束密度 の両立は従来困難であった。 発明の開示 On the other hand, in the case of embedded magnet type DC brushless motors as well, punching accuracy and high magnetic flux density are required from the viewpoints of high torque and compact size. In order to prevent the detached magnet, the strength of the electrical steel sheet must be kept high. As mentioned above, high-grade Si steel is advantageous from the viewpoint of strength, but low Si is desirable from the viewpoint of magnetic flux density, and it has been difficult to achieve both strength and magnetic flux density. Disclosure of the invention
(発明が解決しょうとする 上述したとおり、 無方向性電磁鋼板における高磁束密度および低鉄損特性は、 各種モータ、 トランスなど無方向性電磁鋼板の全ての用途に望まれる共通の特性で あるが、中でもリラクタンスモータ用無方向性電磁鋼板素材としては、その動作原 理上、 特に高い磁束密度と高い寸法精度が重要となってくる。 (As described above, high magnetic flux density and low iron loss characteristics of non-oriented electrical steel sheets are common properties desired for all applications of non-oriented electrical steel sheets such as various motors and transformers. In particular, as a non-oriented electrical steel sheet material for reluctance motors, particularly high magnetic flux density and high dimensional accuracy are important in terms of operation principle.
しかしながら、 これまでのところ、高磁束密度でかつ低鉄損という優れた磁気特 性を有しつつ、 しかも打ち抜き性、特に打ち抜きにおける寸法精度に優れた無方向 性電磁鋼板は見出されていなかった。 また、 これらの特性に加え、埋め込み磁石型 の D Cブラシレスモータ等に要求される強度の要請を、さらに満たす無方向性電磁 鋼板も、 見出されていなかった。  However, to date, no non-oriented electrical steel sheet has been found that has excellent magnetic properties such as high magnetic flux density and low iron loss, and yet has excellent punching properties, especially dimensional accuracy in punching. . In addition to these characteristics, no non-oriented electrical steel sheet has been found that further satisfies the strength requirements required for embedded magnet type DC brushless motors.
さらに、 これらの磁気特性や打ち抜き性などに加えて、近年のモータの高速回転 化や多極化に伴う高周波化にも対応できるように考慮された無方向性電磁鋼板は 見出されていなかった。 本発明は、上記の現状に鑑み開発されたもので、モータやトランス等の鉄心素材、 とくに、 Furthermore, in addition to these magnetic properties and punching properties, non-oriented electrical steel sheets that have been considered to be able to respond to the recent high-speed rotation of motors and the high frequencies associated with multi-polarization have been developed. Had not been found. The present invention has been developed in view of the above-mentioned current situation, and is provided with iron core materials such as motors and transformers,
• リラクタンスモータのように特に高い磁束密度と高い寸法精度が要求される鉄 心素材として最適な、これまでにない優れた高磁束密度一低鉄損の磁性パランスを 有し、 しかも打ち抜き寸法精度にも優れた無方向性電磁鋼板、 および、  • It has an unprecedented high magnetic flux density and low iron loss magnetic balance that is ideal as a core material that requires particularly high magnetic flux density and high dimensional accuracy like a reluctance motor. Excellent non-oriented electrical steel sheet, and,
•高磁束密度とローターの高速回転や埋め込み磁石の飛散防止の観点で重要な高' 強度特性を、 打ち抜き寸法精度と共に兼ね備えた電磁鋼板  • Electromagnetic steel sheet that combines high magnetic flux density, high-strength characteristics that are important from the viewpoint of high-speed rotation of the rotor and prevention of scattering of embedded magnets, along with dimensional accuracy
を、 その有利な製造方法と共に提案することを目的とする。 With its advantageous manufacturing method.
なお、 以後、 便宜上、 Siと A1の和が約 0. 03raass%以上、 0. 5raass%以下である ものを低 Si鋼、 Siと A1の和が 0. 5mass%を超えるものは、 中〜高 Si鋼と呼ぶも のとする。  For convenience, hereafter, the sum of Si and A1 is about 0.03raass% or more and 0.5raass% or less for low Si steel, and those for which the sum of Si and A1 exceeds 0.5mass% are medium to high. It is called Si steel.
(課題を解決するための手段) さて、発明者らは、 上記の目的を達成すべく鋭意研究を重ねた結果、 Siや A1量 を低 Si鋼レベルに低減して本質的に飽和磁束密度が高い鋼とした上で、 平均結晶 粒径を所定の範囲に調整すると共に、適正量の Pを添加することによって、高磁束 密度で力、つ低鉄損という優れた磁気特性が得られるだけでなく、打ち抜き寸法精度 が格段に向上することの知見を得た。また、 Siおよび A1を合計 0. 05raass%超〜約 2. 5raass°/oの範囲に制御することに加え、 適正量の Pを添加することによって、 打 ち抜き寸法精度の向上効果に加えて磁束密度を維持したまま強度を大幅に向上で き、 従来にない磁性一強度パランスを達成できるという知見も得た。 (Means for Solving the Problems) The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, the amount of Si and A1 has been reduced to a low Si steel level, and the saturation magnetic flux density has been essentially reduced. By adjusting the average crystal grain size to a predetermined range and adding an appropriate amount of P, it is possible to obtain excellent magnetic properties such as high magnetic flux density, low force, and low iron loss. It was found that the punching dimensional accuracy was significantly improved. In addition to controlling the total amount of Si and A1 in the range of more than 0.05 raass% to about 2.5 raass ° / o, the addition of an appropriate amount of P has the effect of improving the punching dimensional accuracy. We have also learned that the strength can be greatly improved while maintaining the magnetic flux density, and that an unprecedented magnetic strength balance can be achieved.
本発明は、 上記の知見に立脚するものである。 すなわち、 本発明の要旨構成は次のとおりである。 1. 質量百分率で The present invention is based on the above findings. That is, the gist configuration of the present invention is as follows. 1. in mass percentage
C : O〜0.010 %、  C: O to 0.010%,
Siおよび Zまたは Al:合計で 0.03%以上、 0.5 %以下、  Si and Z or Al: 0.03% or more, 0.5% or less in total,
Mn: 0.5 。/。以下、  Mn: 0.5. /. Less than,
P: 0.10%以上、 0.26%以下、  P: 0.10% or more, 0.26% or less,
S : 0.015 %以下および  S: 0.015% or less and
N: 0.010 %以下  N: 0.010% or less
を含有し、 残部は Feおよび不可避的不純物の組成になり、 かつ And the remainder is composed of Fe and unavoidable impurities, and
平均結晶粒径: ΖΟμπι以上、 80 m以下  Average grain size: 以上 μπι or more, 80 m or less
としたことを特徴とする、磁気特性および打ち抜き精度に優れた無方向性電磁鋼板。 Non-oriented electrical steel sheet with excellent magnetic properties and punching accuracy.
2. 上記 1において、 鋼板がさらに、 質量百分率で 2. In (1) above, the steel sheet further increases by mass percentage.
Sbおよび /"または Sn:合計で 0.40%以下  Sb and / "or Sn: 0.40% or less in total
を含有することを特徴とする、磁気特性およぴ打ち抜き精度に優れた無方向性電磁 Non-directional electromagnetic with excellent magnetic properties and punching accuracy characterized by containing
3. 上記 1または 2において、 鋼板がさらに、 質量百分率で 3. In 1 or 2 above, the steel sheet further increases by mass percentage.
Ni: 2.3 %以下  Ni: 2.3% or less
を含有することを特徴とする、磁気特性および打ち抜き精度に優れた無方向性電磁 鋼板。 A non-oriented electrical steel sheet excellent in magnetic properties and punching accuracy, characterized by containing:
4. 上記 1、 2または 3において、 鋼板の板厚が 0.35蘭以下であることを特徴と する、 磁気特性および打ち抜き精度に優れた無方向性電磁鋼板。 4. A non-oriented electrical steel sheet according to 1, 2, or 3 above, characterized in that the steel sheet has a thickness of 0.35 or less or less, and is excellent in magnetic properties and punching accuracy.
5. 質量百分率で 5. In mass percentage
C : O〜0.010 %、  C: O to 0.010%,
Siおよび/または A1:合計で 0.5超〜 2.5%、 Mn: 0.5 %以下、 Si and / or A1:> 0.5-2.5% in total, Mn: 0.5% or less,
P : 0.10%以上、 0.26%以下、  P: 0.10% or more, 0.26% or less,
S : 0.015 %以下および  S: 0.015% or less and
N: 0.010 %以下、 および、  N: 0.010% or less, and
必要に応じ Ni: 2.3 %以下  Ni as required: 2.3% or less
を含有し、 力つ、 Containing, power,
以下の式で表される指数 PAAn index P A represented by the following formula:
PA=-0.2XSi+0.12XMn— 0.32XA1+0.05XNi2+0.10 Ni+0.36 PA = -0.2XSi + 0.12XMn- 0.32XA1 + 0.05XNi 2 +0.10 Ni + 0.36
(1) (1)
(ただし、 各元素含有量の単位は mass%。 (2) 式においても同様) と P含有量の間の関係が、 (However, the unit of the content of each element is mass%. The same applies to equation (2).)
P≤PA P≤P A
を満足するか、 あるいは、 Or
以下の式で表される指数 PFAn index P F represented by the following formula:
Pp=-0.34XSi+0.20XMn-0.54XA1+0.24XNi2+0.28XNi + 0.76 Pp = -0.34XSi + 0.20XMn-0.54XA1 + 0.24XNi 2 + 0.28XNi + 0.76
(2) が、  (2)
Pp≤0.26  Pp≤0.26
を満足するかのいずれかであり、  Is either satisfied,
残部は F eおよび不可避不純物からなることを特徴とする磁気特性、打ち抜き精 度に優れる電磁鋼板。  The balance consists of Fe and inevitable impurities, and is a magnetic steel sheet with excellent magnetic properties and excellent punching accuracy.
6. 上記 5において、 鋼板がさらに、 質量百分率で 6. In 5 above, the steel sheet further increases by mass percentage.
Sbおよび Zまたは Sn:合計で 0.40%以下  Sb and Z or Sn: 0.40% or less in total
を含有することを特徴とする、強度、磁気特性おょぴ打ち抜き精度に優れた無方向 性電磁鋼板。 なお、以上の鋼種において、副次的含有元素として、 Ca: 0. 01%以下、 B: 0. 005% 以下、 Cr: 0. 1 %以下、 Cu: 0. 1 %以下、 Mo: 0. 1 %以下の少なくともいずれかを 含有しても良い。 A non-oriented electrical steel sheet with excellent strength, magnetic properties, and excellent punching accuracy. In the above-mentioned steel types, as the secondary contained elements, Ca: 0.01% or less, B: 0.005% or less, Cr: 0.1% or less, Cu: 0.1% or less, Mo: 0.1% or less. It may contain at least one of 1% or less.
7 .上記 1〜 3のいずれかに記載の成分組成になる鋼スラブに対し、熱間圧延を、 加熱温度がオーステナイト単相域で、かつコイル卷き取り温度が 650 以下の条件 で行い、ついで脱スケール処理後、 1回または中間焼鈍を含む 2回以上の冷間圧延 を行ったのち、 700で以上のフェライト単相域で仕上げ焼鈍を行うことを特徴とす る、 磁気特性および打ち抜き精度に優れた無方向性電磁鋼板の製造方法。 7.Hot rolling is performed on the steel slab having the composition described in any one of 1 to 3 above under the condition that the heating temperature is in the austenite single-phase region and the coil winding temperature is 650 or less. After descaling, after cold rolling once or twice including intermediate annealing, finish annealing in ferrite single phase region with 700 or more. Manufacturing method of excellent non-oriented electrical steel sheet.
8 . 上記 1〜 3のいずれかに記載の成分組成になる鋼スラブに対し、熱間圧延を、 加熱温度がオーステナイト単相域で、かつコイル卷き取り温度が 650 :以下の条件 で行ったのち、 熱延板焼鈍を、 Ni 含有量が 0 % (無添加) 〜1· 0 mass%の場合に は、 900で以上のフェライト単相域または Ac3点以上のオーステナイト単相域で、 一方 Ni含有量が 1. 0mass%超え、 2. 3 mass0 /。以下の場合には、 Ac3点以上のォー ステナイト単相域で行い、ついで脱スケール処理後、 1回または中間焼鈍を含む 2 回以上の冷間圧延を行ったのち、 700 ^以上のフェライト単相域で仕上げ焼鈍を行 うことを特徴とする、磁気特性および打ち抜き精度に優れた無方向性電磁鋼板の製 造方法。 8. Hot rolling was performed on the steel slab having the composition described in any of the above 1 to 3 under the following conditions: the heating temperature was in the austenite single phase region, and the coil winding temperature was 650: Then, when the Ni content is 0% (no addition) to 1.0 mass%, the hot-rolled sheet is annealed in a ferrite single-phase region of 900 or more or an austenite single-phase region of more than 3 points of Ac. Ni content exceeds 1.0 mass%, 2.3 mass 0 /. In the following cases, it is performed in the austenite single-phase region of 3 points or more of Ac, then, after descaling, cold-rolled once or twice or more including intermediate annealing, and then A method for producing non-oriented electrical steel sheets with excellent magnetic properties and punching accuracy, characterized by performing finish annealing in the phase region.
9 . 上記 5または 6のスラブに対し、熱延加熱温度を 1 0 0 0 ^〜1 2 0 0¾、熱 延卷き取り温度を 6 5 O 以下で熱間圧延を行い、ついで脱スケール後、 1回また は中間焼鈍を含む 2回以上の冷間圧延を行つたのち、仕上げ焼鈍を行うことを特徴 とする、強度、磁気特性および打ち抜き精度に優れた無方向性電磁鋼板の製造方法。 なお、上記 9の電磁鋼板の製造方法において、熱延後に熱延板焼鈍を施しても良 い。 また、上記 7、 8または 9の何れかの電磁鋼板の製造方法において、仕上げ焼鈍 の後、 絶縁被膜を付与する処理を施しても良い。 図面の簡単な説明 図 1は、 降伏強度と打ち抜き径との関係に及ぼす Si含有量および P含有量の影 響を示すグラフである。 9. Hot rolling is performed on the slab of 5 or 6 above at a hot rolling heating temperature of 100 000 ^ to 120 000 ° and a hot rolling coiling temperature of 65 O or less. A method for producing a non-oriented electrical steel sheet having excellent strength, magnetic properties, and punching precision, comprising performing cold rolling once or twice including intermediate annealing, and then performing finish annealing. In the method for producing an electromagnetic steel sheet in the above item 9, hot-rolled sheet annealing may be performed after hot-rolling. Further, in the method for producing an electromagnetic steel sheet according to any one of the above items 7, 8, and 9, after the finish annealing, a treatment for providing an insulating film may be performed. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the influence of Si content and P content on the relationship between yield strength and punched diameter.
図 2は、 降伏強度と打ち抜き異方性との関係に及ぼす Si含有量および P含有量 の影響を示すグラフである。  FIG. 2 is a graph showing the effect of Si content and P content on the relationship between yield strength and punching anisotropy.
図 3は、 平均結晶粒径と打ち抜き径との関係に及ぼす Si含有量および P含有量 の影響を示すグラフである。  FIG. 3 is a graph showing the influence of the Si content and the P content on the relationship between the average crystal grain size and the punched diameter.
図 4は、 平均結晶粒径と打ち抜き異方性との関係に及ぼす Si含有量および P含 有量の影響を示すグラフである。  FIG. 4 is a graph showing the influence of the Si content and the P content on the relationship between the average grain size and the punching anisotropy.
図 5は、 平均結晶粒径と鉄損との関係に及ぼす Si含有量おょぴ P含有量の影響 を示すグラフである。  FIG. 5 is a graph showing the effect of the Si content and the P content on the relationship between the average crystal grain size and iron loss.
図 6は、 平均結晶粒径と磁束密度との関係に及ぼす Si含有量および P含有量の 影響を示すグラフである。  FIG. 6 is a graph showing the influence of the Si content and the P content on the relationship between the average crystal grain size and the magnetic flux density.
図 7は、 鉄損と磁束密度との関係に及ぼす Si含有量および P含有量の影響を示 すグラフである。  FIG. 7 is a graph showing the effect of Si content and P content on the relationship between iron loss and magnetic flux density.
図 8は、 層状割れの発生に及ぼす Si含有量および P含有量の影響を示すダラフ である。  Figure 8 is a graph showing the effect of Si and P contents on the occurrence of layered cracks.
図 9は、層状割れの発生に及ぼす Si含有量および Ni含有量の影響を示すダラフ である。  Figure 9 is a graph showing the effect of Si and Ni contents on the occurrence of layered cracks.
図 1 0は、 P含有量と打ち抜き径との関係に及ぼす Si含有量および Ni添加の影 響を示すグラフである。  FIG. 10 is a graph showing the effect of Si content and Ni addition on the relationship between P content and punched diameter.
図 1 1は、 P含有量と打ち抜き異方性との関係に及ぼす Si含有量および Ni添加 の影響を示すグラフである。 図 1 2は、引張強度と磁束密度との関係に及ぼす P含有量の影響を示すグラフで ある。 FIG. 11 is a graph showing the effect of Si content and Ni addition on the relationship between P content and punching anisotropy. FIG. 12 is a graph showing the effect of the P content on the relationship between the tensile strength and the magnetic flux density.
図 1 3は、 と高周波鉄損との関係を示すグラフである。  FIG. 13 is a graph showing the relationship between and and high-frequency iron loss.
図 1 4は、 板厚と磁束密度との関係を示すグラフである。 発明を実施するための最良の形態 以下、本発明を由来するに至った実験結果について鋭明する。 なお、以下に示す 成分組成の%表示はいずれも 「mass%」 である。  FIG. 14 is a graph showing the relationship between the plate thickness and the magnetic flux density. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, experimental results that led to the present invention will be described in detail. The percentages of the component compositions shown below are all “mass%”.
〔実験 1〕 (Experiment 1)
まず、無方向性電磁鋼板の鋼成分と打ち抜き寸法精度との関係を明らかにするた め、 C: 0. 0016〜0. 0028%、 Mn: 0. 20〜0. 22%、 A1: 0. 0007〜0. 0014%、 N: 0. 0012 〜0. 0022%および Sb: 0. 03%とほぼ一定にした成分を基本組成とし、 P量を 0. 02% と一定にして Si量を 0. 03〜1. 49%の範囲で変化させた鋼、 および Si量を 0. 10〜 0. 11%と一定にして P含有量を 0· 02〜0. 29%の範囲で変化させた鋼を、 それぞれ 実験室的に溶製した。 ついで、 これらの鋼材を、 1100でで 60rain加熱後、 板厚: 2 ramまで熱延し、 600 で 2 hのコイル卷き取り相当の均熱保持を行ったのち、 放冷した。 ついで、 900でで 60 sの熱延板焼鈍後、 酸洗してから、 板厚:0. 5 ram まで冷延した後、 700〜900 ^の種々の温度で仕上げ焼鈍を施し、 再結晶粒の粒径 を種々に変化させた。 その後、 この仕上げ焼鈍板に、 平均膜厚: 0. 6;/ mの半有機 絶縁 を塗布し焼き付けしたサンプルを作製して、 打ち抜き試験に供した。 なお、 平均結晶粒径は圧延方向に平行な、 板厚方向断面を観察し、 Jeffries 法 により求めた円相当径とした。  First, in order to clarify the relationship between the steel composition of the non-oriented electrical steel sheet and the punching dimensional accuracy, C: 0.0016 to 0.240%, Mn: 0.20 to 0.22%, A1: 0.20%. 0007 ~ 0.0014%, N: 0.0012 ~ 0.0022% and Sb: 0.03%, and the basic composition was the basic composition. The P content was constant at 0.02% and the Si content was 0%. Steel with a range of 03 to 1.49%, and steel with a P content of 0.02 to 0.29% with a constant Si content of 0.10 to 0.11% Was produced in a laboratory. Next, these steel materials were heated at 1100 for 60 rains, hot-rolled to a plate thickness of 2 ram, kept at a uniform temperature equivalent to coil winding of 2 h at 600, and allowed to cool. Then, after hot-rolled sheet annealing at 900 for 60 s, pickling and then cold-rolled to a sheet thickness of 0.5 ram, finish annealing at various temperatures of 700 to 900 ^, and recrystallized grains The particle size of was varied. Thereafter, a sample prepared by applying and baking semi-organic insulating material having an average film thickness of 0.6; / m to the finish annealed plate was prepared and subjected to a punching test. The average crystal grain size was defined as the equivalent circle diameter determined by the Jeffries method by observing a cross section in the thickness direction parallel to the rolling direction.
打ち抜き試験は、 直径: 21πιιη ψの円形金型を用いて行い、 クリアランスは板厚の 8 %とした。 圧延方向となす角度が 0 ° , 45° , 90° , 135° の 4方向の、 打ち抜 き円形の直径 (内径) を測定し、 その 4点の平均径を求めると共に、 4点中の最大 径と最小径の差を測定し、 打ち抜き異方性の指標とした。 得られた結果を、 圧延方向に切り出した引張試験片 (JIS 5号) より求めた降伏 強度 (Y P) との関係で整理して図 1, 図 2に示す。 The punching test was performed using a circular mold having a diameter of 21πιιηψ, and the clearance was set to 8% of the plate thickness. Measure the diameter (inner diameter) of the punched circle in four directions with angles of 0 °, 45 °, 90 °, and 135 ° to the rolling direction, determine the average diameter of the four points, and determine the maximum diameter among the four points. The difference between the diameter and the minimum diameter was measured and used as an index of punching anisotropy. Figures 1 and 2 summarize the results obtained in relation to the yield strength (YP) obtained from tensile test pieces (JIS No. 5) cut out in the rolling direction.
図 1 , 2から明らかなように、 ^^的に、 Y Pが低い軟質な材料は、金型径に対 して打ち抜き径の差が大きく、 Y Pの上昇に伴い打ち抜き径は金型寸法に近づいて、 寸法精度は改善する傾向にある。 これは従来から知られていたように、強度上昇に より打ち抜き時のだれ変形が抑制された効果であると考えられる。  As is evident from Figs. 1 and 2, the difference in the punching diameter of a soft material with a low YP is large compared to the die diameter, and the punching diameter approaches the die size as the YP rises. Therefore, dimensional accuracy tends to improve. This is considered to be the effect of suppressing the sagging at the time of punching by increasing the strength, as was conventionally known.
しかしながら、ここで注目すべきは、 Pの添加により強度調整を行った試料は、 Si 量の変化により強度が変化した従来型の電磁鋼板と比較して、 同程度の強度レ ベルでも優れた寸法精度を示し、しかも比較的低 Y P域でも金型との寸法差が抑制 されていることである (図 1 )。  However, it should be noted here that the samples whose strength was adjusted by adding P had excellent dimensions even at the same level of strength compared to conventional magnetic steel sheets whose strength changed due to the change in the amount of Si. It shows high accuracy, and the dimensional difference from the mold is suppressed even in the relatively low YP range (Fig. 1).
また、 Si 量を変化させた鋼は、 強度の上昇に伴い打ち抜き径は金型寸法に近づ くものの、図 2に示されるとおり、最大径と最小径の差で表される異方性が大きい ままである。 これに対し、 P量増加により強度上昇を図った鋼は、 打ち抜き形状の 異方性も改善されている。  In the case of steel with a varied amount of Si, the punching diameter approaches the die size as the strength increases, but as shown in Fig. 2, the anisotropy represented by the difference between the maximum diameter and the minimum diameter is reduced. It remains large. On the other hand, steel with increased strength by increasing the P content also has improved anisotropy in the punched shape.
これらの関係を仕上げ焼鈍板の平均結晶粒径との関係で整理したものが、図 3、 図 4である。  Figures 3 and 4 summarize these relationships in relation to the average grain size of the finish annealed sheet.
図 3 , 4から明らかなように、 Si 量を変化させた鋼は、 粒径が大きくなると打 ち抜き寸法精度および打ち抜き異方性とも劣ィ匕するのに対し、 Pを 0. 13%以上添 加した鋼は、結晶粒径が大きいものでも打ち抜き寸法精度および打ち抜き異方性と も良好なレベルにある。  As is evident from Figs. 3 and 4, the steel with the varied amount of Si has poor punching dimensional accuracy and punching anisotropy as the grain size increases, while P is 0.13% or more. The added steel has a good level of punching dimensional accuracy and punching anisotropy even if the grain size is large.
Pを一定量以上含有させることによって打ち抜き寸法精度や打ち抜き異方性が 効果的に改善される理由について、 その詳細は明らかではないが、 Although the details of the reason why punching dimensional accuracy and punching anisotropy are effectively improved by including P in a certain amount or more are not clear,
(1) Pの添加により強度が上昇し、打ち抜き時のだれ変形が緩和される効果に加え て、 (2)鋼に対して脆ィヒ元素として知られている Pを適正量添加することにより、打ち 抜き時の破断限界が早まる効果、 および (1) In addition to the effect of increasing the strength due to the addition of P and reducing the sag deformation during punching, (2) Addition of an appropriate amount of P, which is known as a brittle element, to the steel has the effect of shortening the fracture limit during punching, and
(3) Pの添加により仕上げ焼鈍板の集合組織中の { 1 0 0 } く u v w >方位が増加 する傾向にあり、これが異方性を緩和する効果などが複合的に作用した結果による ものと考えている。 次に、 磁気特性の面から検討した結果について説明する。  (3) The addition of P tends to increase the {100} and uvw> orientations in the texture of the finish-annealed sheet, and this is due to the combined effect of the effect of relaxing anisotropy, etc. thinking. Next, a description will be given of the results of an examination in terms of magnetic characteristics.
発明者らは、鉄損を改善するものの飽和磁束密度を低下させる Siや A1の含有量 を極力制限することにより、本質的に磁束密度を高くした鋼を素材として、製造条 件と磁気特性の関係について詳細に検討した。  By limiting the content of Si and A1 as much as possible, which improves the core loss but lowers the saturation magnetic flux density, the inventors made the steel whose magnetic flux density was essentially high as a material, and examined the manufacturing conditions and magnetic properties. The relationship was discussed in detail.
図 5に、 各鋼材の板厚:0. 5 ramのサンプルについて、 仕上げ焼鈍板の結晶粒径 と商用周波域での鉄損 (Wis/50:周波数 50Hz、最大磁束密度 1. 5Tにおける値)と の関係について調査した結果を示す。  Figure 5 shows the crystal grain size of the finished annealed sheet and iron loss in the commercial frequency range for samples with a steel thickness of 0.5 ram (Wis / 50: value at a frequency of 50 Hz and maximum magnetic flux density of 1.5 T). The results of an investigation on the relationship between and are shown.
同図から明らかなように、 低 Siにすると電気抵抗が減少するため鉄損には不利 となるが、 鉄損は結晶粒径により大きく変化するため、 粒径を約 30 /z m以上とす れば安定的に低鉄損となることが分かる。 また、 低 A1として電気抵抗を減少させ た場合にも、 同様に、 粒径を約 30μ πι以上とすることが低鉄損化に有効であるこ とが確認された。  As is evident from the figure, low Si is disadvantageous for iron loss due to reduced electrical resistance, but iron loss varies greatly depending on the crystal grain size, so the grain size should be about 30 / zm or more. It can be seen that low iron loss can be obtained stably. Similarly, when the electric resistance was reduced to a low value of A1, it was also confirmed that setting the particle size to about 30 μπι or more was effective in reducing iron loss.
しかしながら、 これまでは、 本発明のような低 Si, A1組成の低級グレードに属 する無方向性電磁鋼板の場合、 仕上げ焼鈍板の平均結晶粒径は 15〜25 /z ra程度に 制限されているのが通例であった。 この理由は、 図 3 , 4の 0. ll%Si— 0.07% P 鋼 (図中の會印) の例に示すように、粒成長させると強度低下により打ち抜き性の 劣化が著しくなるからである。  However, until now, in the case of non-oriented electrical steel sheets belonging to the low grade of low Si and A1 composition as in the present invention, the average grain size of the finish-annealed sheet is limited to about 15 to 25 / z ra. It was customary. The reason for this is that, as shown in the example of 0.1% Si-0.07% P steel (marked in the figure) in Figs. .
これに対し、 P添加量を高めた鋼は、 平均結晶粒径を約 30/x m以上としても、 良好な打ち抜き寸法精度が維持されている。 次に、 図 6に、各鋼種の平均結晶粒径と磁束密度との関係、 また図 7には、鉄損 と磁束密度との関係について調べた結果を示す。 ここで、 B50 は磁化力 5000A/m における磁束密度である。 On the other hand, steel with increased P content maintains good punching dimensional accuracy even when the average grain size is about 30 / xm or more. Next, Fig. 6 shows the relationship between the average crystal grain size and the magnetic flux density of each steel type, and Fig. 7 shows the iron loss. The result of examining the relationship between and magnetic flux density is shown. Here, B 50 is a magnetic flux density at a magnetization force of 5000 A / m.
Si を添加した試料は、 鉄損は改善されるものの磁束密度の低下が大きい。 これ に対し、 Pを添加した試料は、結晶粒が成長して鉄損が改善された後も高い磁束密 度を維持している。 ところで、 Pは脆化元素であり、本発明のように P添加量が多い場合、主に冷延 工程において耳割れや層状割れなどの欠陥が発生することがある。本発明者らはこ の現象を鋭意調査し、熱間圧延に際してスラブ加熱時に温度がフェライト オース テナイト共存領域となると、フェライト粒とオーステナイト粒間で Pの分配が起こ り、 フェライト粒中で著しい Pの偏析が生じ、鋼の脆化が促進されることを究明し た。 このような脆化現象を防止するためには、本発明の鋼板の製造に当たり、熱間 圧延のためのスラブ加熱の温度を、オーステナイト単相領域(あるいは可能であれ ばフェライト単相) とすることが重要である。  In the sample added with Si, the iron loss is improved, but the magnetic flux density is greatly reduced. In contrast, the sample to which P is added maintains a high magnetic flux density even after the crystal grains have grown and the iron loss has been improved. By the way, P is an embrittlement element, and when a large amount of P is added as in the present invention, defects such as edge cracks and layer cracks may occur mainly in the cold rolling process. The present inventors investigated this phenomenon diligently, and when the temperature in the slab heating during hot rolling was in the coexistence region of ferrite and austenite, distribution of P occurred between the ferrite grains and the austenite grains, and significant P in the ferrite grains. Segregation of the steel and promoted the embrittlement of steel. In order to prevent such embrittlement, the slab heating temperature for hot rolling in the production of the steel sheet of the present invention should be in the austenite single phase region (or, if possible, the ferrite single phase). is important.
なお、 Pはフェライト形成元素であるため、スラブ加熱温度付近でのオーステナ イト単相域を縮小する作用を有するが、 低 Si鋼の成分範囲では、 スラブ加熱温度 が 1000〜: 1200 であればオーステナイト単相とすることができる。 以上のように、低 S i鋼に約 0 . 1 %以上の Pの添加が非常に有効であることが 明らかになった。 そこで、 0. 5 %以上の S iを含有する鋼板にも Pの積極的な 添加を検討した。  Since P is a ferrite forming element, it has the effect of reducing the austenite single-phase region near the slab heating temperature. However, in the low Si steel component range, if the slab heating temperature is 1000 to 1200, the austenite It can be single phase. As described above, it became clear that the addition of about 0.1% or more of P to the low Si steel was very effective. Therefore, the active addition of P to steel sheets containing 0.5% or more of Si was studied.
〔実験 2〕 (Experiment 2)
C: 0. 0013〜0. 0026、 Mn:0. 18〜0. 23%、 A1 : 0. 0001〜0. 0011%、 N:0.0020〜0. 0029% とほぼ一定とした成分として、 S i量を 0. 60〜2. 42、 および P量を 0. 04〜0. 29% まで変化させた種々の鋼を溶製し、 1 1 0 0度で 60分加熱後、 板厚 2mraまで熱延 し、 酸洗後板厚 0. 50醒まで冷延した。 その結果、 鋼組成によっては圧延後の鋼 板内部で板面と平行に層状の割れが発生する、不具合が発生した。 その結果を図C: 0.0013 to 0.0026, Mn: 0.18 to 0.23%, A1: 0.0001 to 0.0011%, N: 0.0020 to 0.0029% A variety of steels with varying amounts of 0.60 to 2.42 and P amounts of 0.04 to 0.29% were melted, heated at 110 ° C for 60 minutes, and then heated to a sheet thickness of 2 mra. After pickling, the plate was cold rolled to a thickness of 0.50 awake. As a result, depending on the steel composition, A defect occurred in which a layered crack was generated inside the plate parallel to the plate surface. Fig.
8に示す。 See Figure 8.
層状割れ発生部分を E PMAによりマツビング分析したところ、割れ発生部分に は Pが偏析または濃化していることが観察された。 そこでこの Pの偏析条件を詳 細に検討したところ、熱延に際して、鋼片 (スラブ)加熱時にフェライトとオース テナイト相の 2相領域に均■持される条件となっており、フェライト相中に Pが 分配されて濃化したことがわかった。  When the layered cracked portion was analyzed by mupping using EPMA, it was observed that P was segregated or concentrated in the cracked portion. Therefore, we examined the segregation conditions of P in detail, and found that during hot rolling, the conditions were such that when the steel slab (slab) was heated, it was balanced in the two-phase region of the ferrite and austenite phases. It was found that P was distributed and concentrated.
すなわち、 中〜高 Si鋼領域においてはフェライト形成元素である S i、 A1量が 多いためにオーステナイト単相域がより縮小し、その結果、従来の加熱温度ではフ ェライト オーステナイト 2相域となりやすいという問題が明らかとなった。 また、 Pが 0 . 2 6 %を超えると、 どのような組成条件であっても層状割れが発 生していた。 そこで、 種々の S i, Mn , A I、 P量を持つ鋼を研究設備にて作製し、約 1 0 0 0〜1 2 0 0 ^0の温度域で、 Pの偏祈が圧延不良を発生しない程度に抑制できる 条件を調査した。なお、上記のスラブ加熟温度は、鋼中に存在する炭ィヒ物 ·窒化物 · 硫化物などの析出安定化の観点から好適な温度である。  That is, in the middle to high Si steel region, the austenite single phase region is further reduced due to the large amount of Si and A1, which are ferrite forming elements, and as a result, the ferrite austenite two phase region tends to be formed at the conventional heating temperature. The problem became clear. When P exceeded 0.26%, laminar cracking occurred under any composition conditions. Therefore, steels with various Si, Mn, AI, and P contents were manufactured at the research facility, and in the temperature range of about 100 to 1200 ^ 0, unbalanced P caused rolling failure. We investigated the conditions that can be controlled to the extent that they do not. The slab ripening temperature described above is a suitable temperature from the viewpoint of stabilizing the precipitation of carbon dioxide, nitride, sulfide and the like existing in the steel.
まず、スラブ加熱温度がオーステナイト単相域あるいはフェライト単相域となる 条件下では、相分配による偏析は生じないので、 P添加量そのものが所定量より少 なければ層状割れは回避できると考えられる。 前記実験より、 Pの添加量は約 0 . 2 6 %以下とすることが必要である。  First, under the condition that the slab heating temperature is in the austenite single phase region or the ferrite single phase region, segregation due to phase distribution does not occur, so it is considered that layered cracking can be avoided if the P addition amount itself is less than the predetermined amount. According to the above experiment, the amount of P added needs to be about 0.26% or less.
そこでまず、 中〜高 Si鋼がオーステナイト単相となる条件を調査した。  Therefore, the conditions under which the medium- to high-Si steels become a single austenite phase were investigated first.
その結果、 Si+Alを 0. 5%より多く含有する鋼においては、 P添加量が、  As a result, in steels containing more than 0.5% of Si + Al,
P≤PA\ ただし P≤P A \ where
PA' = -0. 2Si + 0. 12Mn-0. 32A1 +0. 36 ( 1 ) , P A '= -0.2Si + 0.12Mn-0.32A1 +0.36 (1),
(Si, Mn, Al, Pの各含有量は mass %で表す)  (Each content of Si, Mn, Al and P is expressed in mass%)
の範囲であればオーステナイト単相域にあることが分かった。 したがって、上の条 件を満たし、 かつ P≤約 0 . 2 6 %に限定すれば、 Pによる脆化を抑制することが できる。 It was found that the temperature was within the austenitic single-phase region when the range was within the range. Therefore, the above article If the condition is satisfied and P≤about 0.26%, embrittlement due to P can be suppressed.
次に、 中〜高 Si鋼がフェライト単相となる条件を調査し、 同様に、 P添加量が、 P≥PF,、 ただし Next, the conditions under which the medium- to high-Si steel becomes a ferrite single phase were investigated. Similarly, when the amount of P added was P≥P F ,
Ρρ' = -0. 34Si+0. 20Mn-0. 54A1+0. 76 ( 2 ),  Ρρ '= -0.34Si + 0.20Mn-0.54A1 + 0.76 (2),
(Si, Mn, Al, Pの各含有量は mass%で表す)  (Each content of Si, Mn, Al and P is represented by mass%)
の範囲であればフェライト単相域にあることが分かった。 したがって、 この条件を 満たし、 かつ 約 0. 2 6 %に限定しても、 Pによる脆化を抑制することができ る。 It was found that the range was within the ferrite single phase range. Therefore, even if this condition is satisfied and the content is limited to about 0.26%, embrittlement due to P can be suppressed.
次に、オーステナイト単相域あるいはフェライト単相域でのスラブ加熱が困難な 場合に、 Pの偏析を抑制する条件を調査した。 フェライト オーステナイト 2相域 において P濃度の分配が生じた場合の、フェライト相中の P濃度も上記 PF'となる 力 S、 調査の結果、 この PF'を約 0 . 2 6以下とすれば、 Pによる脆化が回避できる ことがわかった。 上記の 2相領域における脆化回避条件と、フェライト単相域における脆化回 件を整理すると、 P≤約 0. 2 6 %かっ?1?' ^約0. 2 6とまとめることができる。 以上の関係をまとめると、 P による脆化の回 5 ^件は、 P≤約 0. 2 6 %で、 か つ、 P PA,または PF,≤約 0 . 2 6となる。 Next, we investigated the conditions for suppressing P segregation when slab heating in the austenite single phase region or ferrite single phase region is difficult. When the distribution of P concentration occurs in the two-phase region of ferrite and austenite, the P concentration in the ferrite phase also becomes the above P F ′ Force S. As a result of investigation, if this P F ′ is set to about 0.26 or less, It was found that embrittlement by P could be avoided. When the embrittlement avoidance conditions in the two-phase region and the embrittlement conditions in the ferrite single-phase region are summarized, P ≤ about 0.26%? 1? '^ About 0.26. Summarizing the above relations, embrittlement times 5 ^ matter by the P, in P≤ about 0.2 6% One or become PP A or P F, ≤ about 0. 2 6.
以上の結果より、 P添加量が約 0. 2 6 %以内であり、 力つ熱延加熱時にオース テナイト単相あるいはフェライト単相域に加熱される条件であれば、冷延後の層状 割れなどのトラブルなく製造可能であること、 さらに、フェライト /オーステナイ ト 2相力 B熱となる条件であってもフェライト相への P分配量が低くなる、 S i, A From the above results, if the amount of P added is within about 0.26% and the steel sheet is heated to the austenite single-phase or ferrite single-phase region during hot-rolling heating, layer cracks after cold rolling, etc. In addition, the ferrite / austenite two-phase force B reduces the amount of P distribution to the ferrite phase even under heat conditions.
1量が比較的高い成分系では製造可能となることがわかった。 さらに、約 0 . 1 %以上の Pを添加しても熱延時のスラブ加熱温度域(1 0 0 0 〜1 2 0 O ^C付近)でオーステナイトあるいはフェライト単相組織となるような鋼 組成を種々検討した。 It has been found that a component system having a relatively high amount of 1 can be produced. Furthermore, even if about 0.1% or more of P is added, a steel with an austenite or ferrite single phase structure in the slab heating temperature range (around 100 to 120 O ^ C) during hot rolling. Various compositions were studied.
その結果、磁気特性の改善および強度確保に好適な元素である N iの添加が、 P 添加鋼において熱延温度付近でのオーステナイト領域を拡大する目的にも有効で あることがわかった。  As a result, it was found that the addition of Ni, which is an element suitable for improving magnetic properties and ensuring strength, is also effective in expanding the austenite region near the hot rolling temperature in P-added steel.
〔実験 3〕 (Experiment 3)
C : 0. 0013〜0. 0026%、 Mn: 0. 18〜 23%、 A1 : 0. 0007〜0. 0013%, N: 0. 0014 〜0. 0025%および P : 0. 16〜0. 18%とほぼ一定にした成分を基本組成とし、 Si 量 を 0.95〜2.44%、 Ni量を 0〜2. 20%までそれぞれ変化させた試料を、 実験 2と同 様に 0. 50腿まで圧延し、 得られた冷延鋼板の層状割れの発生状況を調査した。 その結果を図 9に示す。  C: 0.0013 to 0.0026%, Mn: 0.18 to 23%, A1: 0.0007 to 0.0013%, N: 0.0014 to 0.0025%, and P: 0.16 to 0. Samples with a basic composition of 18% and a Si content of 0.95 to 2.44% and a Ni content of 0 to 2.20% were rolled to 0.50 thighs as in Experiment 2. Then, the state of occurrence of layered cracks in the obtained cold-rolled steel sheet was investigated. Figure 9 shows the results.
Ni無添加では割れていた 1. 1〜1. 5%Si鋼力 s、 Niの添加により割れ発生なく圧延 可能となっている。 一方、 Ni無添加では圧延できていた 1. 95%Si鋼や 2.4%Si鋼 では Niの増加により割れを発生する場合も生じており、 Niの効果には適正領域が 存在することがわかる。  Cracked without Ni addition 1.1-1.5% Si steel rolls The addition of Ni enables rolling without cracking. On the other hand, in 1.95% Si steel and 2.4% Si steel that could be rolled without Ni addition, cracking may occur due to an increase in Ni, indicating that there is an appropriate region for the effect of Ni.
Niの影響を加味して前記式を拡張すると、 Si+Alを 0.5%より多く含有する鋼 においては、 P添加量が約 0. 2 6 %以下で、 かつ、 Extending the above equation taking into account the effect of Ni, in steels containing more than 0.5% of Si + Al, the amount of P added is about 0.26% or less, and
P≤PA、 ただし P≤P A , where
PA=-0. 2Si +0. 12Mn-0. 32A1 + 0. 05Ni2+0. 10Ni +0. 36 ( 1 ) の範囲であれば 1 0 0 0〜 1 2 0 のスラブ加熱温度がオーステナィト単相域 にあり、 P A = -0.2Si + 0.12Mn-0.32A1 + 0.05Ni 2 + 0.10Ni +0.36 If the range is (1), the slab heating temperature of 1 0 0 to 1 2 0 is austenite In the single-phase region,
PF≤約 0 . 2 6、 ただし P F ≤about 0.26, but
PF=-0. 34Si + 0. 20Mn-0.54A1 +0.24Ni2 + 0.28Ni +0. 76≤ P ( 2 ) の範囲であれば、 2相領域あるいはフェライト単相域であっても Pの濃化程度が少 なく、 いずれの場合も Pによる脆化が回避できることがわかつた。 P F = -0.34Si + 0.20Mn-0.54A1 + 0.24Ni 2 + 0.28Ni +0.76 ≤ P (2) It was found that the degree of enrichment was small, and in each case, embrittlement due to P could be avoided.
なお、 上記の 2つの式において、 Si, Mn, Al, P, Niの各含有量は mass %で表す ものとする。 また、 PFおよび PAの技術的意味は、 前記 PF,および PA,と同じで ある。 In the above two equations, the contents of Si, Mn, Al, P, and Ni are represented by mass%. Shall be. The technical meanings of PF and PA are the same as those of PF and PA.
〔実験 4〕 (Experiment 4)
実験 2および 3で 0. 50腿まで圧延された冷延鋼板について、 仕上げ焼鈍を施し たのち、 平均鹏 0. 6 ; mの半有機絶縁纏を塗布し、 焼き付けを行った。 これ らのサンプルに対して、実験 1に記載の方法による打ち抜き試験を行い、打ち抜き 径とその異方性を調査して、その結果を図 1 0およぴ図 1 1に示した。 これらの 図より、 Si+Alを 0. 5%より多く含有する鋼においても、 P≥0 . 1 0 %を含有し た鋼は、 いずれも優れた打ち抜き寸法精度を示した。 ここで、 Ni 添加鋼におい ては、 添加量は 0. 38〜2. 20%の間で変化させた。  The cold-rolled steel sheet rolled to 0.50 thighs in Experiments 2 and 3 was subjected to finish annealing, and then semi-organic insulation with an average thickness of 0.6 m was applied and baked. Punching tests were performed on these samples by the method described in Experiment 1 to investigate the punching diameter and its anisotropy, and the results are shown in FIGS. 10 and 11. From these figures, it can be seen that even with steel containing more than 0.5% of Si + Al, the steel containing P≥0.10% showed excellent punching dimensional accuracy. Here, the addition amount of Ni-added steel was varied between 0.38 and 2.20%.
さらにこれらの試料の磁束密度 B 50 と引張強度 T Sの関係を図 1 2に示す。 ここで、 T Sは実験 1と同様の引張試験により求め、磁束密度も実験 1の方法で測 定した。 Fig. 12 shows the relationship between the magnetic flux density B50 and the tensile strength TS of these samples. Here, TS was determined by the same tensile test as in Experiment 1, and the magnetic flux density was also measured by the method in Experiment 1.
約 0 . 1 %以上の Pを含有する鋼は従来の中〜高 S i組成 (すなわち Si +Al > 0. 5%) の電磁鋼板と比較して優れた B 50— T Sパランスを示している。 特に P の添加量の増大に伴い、 T Sは増大するが磁束密度には低下が見られず、むしろ向 上する傾向にあった。 これは、従来の電磁鋼板に関して通常行われていた S i , A 1といった強磁性体以外の合金元素の添加による鋼板の強化が、磁束密度の低下 を伴うことと比較して特徴的である。 Steels containing about 0.1% or more of P show superior B50-TS balance compared to conventional medium to high Si steel sheets (ie, Si + Al> 0.5 %) . In particular, as the amount of P added increased, TS increased but the magnetic flux density did not decrease, but tended to increase. This is characteristic in that the strengthening of the steel sheet by the addition of alloying elements other than ferromagnetic materials such as S i and A 1, which is usually performed for conventional magnetic steel sheets, is accompanied by a decrease in magnetic flux density.
これらの特性はモータの高トルク化、小型化、高速回転化といった要求のある D cブラシレスモータやリラクタンスモータなど各種回転機(モータ、発 sa) の口 ータ素材として好適なものである。 以上の知見により、優れた磁束密度と打ち抜き寸法精度を両立するための条件と して、鋼中の Si, Al, P、 Ni量、 さらには低 Si鋼の は仕上げ焼鈍板の平均結 晶粒径を次の範囲に規定した。 低 Si鋼の^ \ Si, Alの 1種または 2種の合計:約 0. 03〜0. 5 %These characteristics are suitable for motor materials such as Dc brushless motors and reluctance motors, which are required to have high torque, small size, and high speed rotation of motors. Based on the above findings, the conditions for achieving both excellent magnetic flux density and punching dimensional accuracy include the amounts of Si, Al, P, and Ni in the steel, and the average crystal grain of the finish-annealed sheet for low-Si steel. The diameter was specified in the following range. Low Si steel ^ \ Si, Al 1 or 2 types total: about 0.03 ~ 0.5%
Siおよび Alは、鋼に添加すると脱酸効果を有するので脱酸剤として単独あるい は併用して使用される。 その効果を発揮させるためには、 Si, Al それぞれ単独あ るいは両者の合計で約 0. 03%以上が必要である。 また、 Si, Alは比抵抗を増加さ せ鉄損を改善する作用もあるが、一方で飽和磁束密度の低下をもたらすので、その 上限を 0. 5 %に定めた。 中〜高 Si鋼の場合、 Si, Alの 1種または 2種の合計: 0. 5%超〜約 2. 5% Since Si and Al have a deoxidizing effect when added to steel, they are used alone or in combination as deoxidizing agents. To achieve this effect, Si and Al must be used alone or in a total of about 0.03% or more. Also, Si and Al have the effect of increasing the specific resistance and improving the iron loss, but on the other hand, they lower the saturation magnetic flux density, so the upper limit was set to 0.5%. For medium to high Si steels, the sum of one or two types of Si and Al: more than 0.5% to about 2.5%
優れた寸法精度とともに、機械的強度や低鉄損性が重視される場合には、 Si +Al の合計量が 0. 5%を超えて含有することができる。 既に述べたように、 中〜高 Si 鋼の場合でも、 P添加の効果により、 従来の低 Pの中〜高 Si鋼と比較して、 高い 打ち抜き精度おょぴ強度一磁束密度パランスの材料が得られる。 し力 しながら、 Si+Al の合計量が 2. 5%を超えると本発明の方法によっても通常の冷間圧延が困 難になるので、 その範囲を 0. 5%超〜約 2. 5%に規定した。  When mechanical strength and low iron loss are important together with excellent dimensional accuracy, the total amount of Si + Al can be more than 0.5%. As already mentioned, even in the case of medium to high Si steel, the effect of the addition of P makes it possible to obtain a material with higher punching accuracy and strength / magnetic flux density compared to the conventional low P medium to high Si steel. can get. However, if the total amount of Si + Al exceeds 2.5%, ordinary cold rolling becomes difficult even by the method of the present invention, so the range is more than 0.5% to about 2.5%. %.
P:約 0. 10%以上、 約 0. 26%以下 P: About 0.10% or more, about 0.26% or less
Pは、本発明において特に重要な元素である。 Pは、従来から知られていたよう に、 その高い固溶強化能により材料硬度を調整する機能を有している。 特に低 Si, 低 Al鋼板は本来、 比較的軟質であるが、 本発明では低鉄損化のために平均結晶粒 径を約 30 / m以上とする必要があるので、 鋼板がさらに軟質ィヒするおそれがある。  P is a particularly important element in the present invention. As has been known, P has a function of adjusting the material hardness by its high solid solution strengthening ability. In particular, low-Si and low-Al steel sheets are relatively soft by nature, but in the present invention, the average grain size needs to be about 30 / m or more to reduce iron loss. There is a possibility that.
Pは、 このような本発明鋼板の打ち抜き性の改善、すなわち鋼板の強度不足による だれやかえりの増加を抑制するために必須の元素である。このような材料強度増加 能に加えて、打ち抜き時の破断限界を早めることによつて打ち抜き時の総変形量を 抑制する効果や、仕上げ焼鈍板の集合繊中の { 1 0 0 } く u V w >方位を増加さ せて異方性を改善する効果、などの複合的な作用によって打ち抜き寸法精度を改善 する。 また、鋼板の強度を増加させるにもかかわらず磁束密度を低下させない特性があ り、 この効果は中〜高 Si鋼においても発揮される。 P is an essential element for improving the punching property of the steel sheet of the present invention, that is, for suppressing an increase in sagging and burrs due to insufficient strength of the steel sheet. In addition to the ability to increase the strength of the material, the effect of suppressing the total amount of deformation at the time of punching by increasing the breaking limit at the time of punching, and the effect of {100} w> Improve the punching dimensional accuracy by the combined effect of increasing the orientation and improving the anisotropy. In addition, despite the fact that the strength of the steel sheet is increased, it does not lower the magnetic flux density. This effect is also exhibited in medium to high Si steel.
これらの効果を発揮させるためには、 Pは約 0. 10%以上含有させる必要がある。 一方、 Pは元来、鋼に対して脆ィヒ元素であり、過剰に添加すると耳割れや層状割れ を起こし易くなり、製造性が低下する。 この点、本発明では、製造方法に工夫を加 えたり、 Ni を添加することによって、 従来困難とされた高 P添加鋼の製造を可能 とすることができる。 しかしながら、 含有量が約 0. 26%を超えると、 本発明の製 造方法を採用しても P添加鋼の製造が難しくなるので、 P量は約 0. 10〜約 0.26% の範囲に限定した。  In order to exhibit these effects, P must be contained in an amount of about 0.10% or more. On the other hand, P is originally a brittle element to steel, and if added excessively, it tends to cause ear cracks and layer cracks, which lowers the manufacturability. In this regard, in the present invention, it is possible to manufacture a high-P-added steel, which has been conventionally difficult, by modifying the manufacturing method or adding Ni. However, if the content exceeds about 0.26%, the production of P-added steel becomes difficult even if the production method of the present invention is used, so the P content is limited to the range of about 0.10 to about 0.26%. did.
Ni:約 2. 3 %以下 (ォブションとして添加可) Ni: about 2.3% or less (can be added as an option)
Ni は、 鋼の集合組織を改善して磁束密度を高める効果があるだけでなく、 鋼の 電気抵抗を増加して鉄損を低下させる効果や、固溶強化により鋼の強度を高めて打 ち抜き加工時のだれを抑制する効果などを併せ持つので、積極的に添加することが できる。  Ni not only has the effect of improving the texture of the steel to increase the magnetic flux density, but also has the effect of increasing the electrical resistance of the steel to reduce iron loss, and has the effect of increasing the strength of the steel by solid solution strengthening. Since it also has the effect of suppressing drooling during punching, it can be added positively.
また、 Ni はオーステナイト形成元素であることから、 好適なスラブ加熱温度で ある 1000〜1200で付近でのオーステナイト域 (状態図中の γループ) を拡大する 効果がある。 とくに、 Si+Al量が 0. 5%より多い組成の鋼に対しては、操業安定性 を増大するのに有効となる。 この効果を活用すると、本発明の様に脆化元素である Pを積極的に添加する場合に生じ得る圧延不安定性を大幅に改善することができ る。すなわち、高 P鋼の安定製造のポイントは熱延時の過剰な P偏祈の抑制であり、 その有力な手段としてスラブ加熱温度がフェライトノオーステナイト 2相域とな ることを回避することである。 Si含有量と A1含有量の合計が 0. 5%を超えるとス ラブ加熱温度で 2相に分離し易くなるが、 Ni の γ域拡大効果により、 このような Si、 A1組成でも、 スラブ加熱時にオーステナイト単相とすることが可能となる。 し力 しながら、 Ni含有量が約 2. 3%を超えると、 フェライト (a ) →オーステ ナイト (γ )変態開始温度が低下し、仕上げ焼鈍中にオーステナイト変態を起こし て磁束密度の低下を招くおそれが生じる。また、変態温度以下の低温の仕上げ焼鈍 温度では低 Si鋼において約 30/ ra以上の平均粒径を確保することが難しくなり、 鉄損も劣ィ匕するようになる。従って、 Niは約 2. 3%以下で含有させるものとした。 なお、 Niを添加する場合は、 約 0. 5 0 %以上の添加が好ましい。 低 Si鋼において、 仕上げ焼鈍板の平均結晶粒径:約 30 ;z m以上、 約 80μ ηι以下 本発明の低 Si、低 A1無方向性電磁鋼板において良好な鉄損特性を得るためには、 図 5にも示したとおり、 仕上げ焼鈍板の平均結晶粒径を約 30 // m以上にする必要 がある。 しかしながら、 約 80 / m を超える粒経としてもそれ以上の鉄損改善効果 は望めず、また本発明に属する鋼はレ、ずれも変態鋼で再結晶焼鈍に適したフヱライ ト単相域はおおむね 700〜900 ^の範囲であり、 高 Si組成のフェライト単相鋼と 比較すると低温であるため、過度に粒成長させるのは連続短時間焼鈍設備における 生産性の点で不利となるので、 約 80/i m を上限とした。 Since Ni is an austenite-forming element, it has the effect of expanding the austenite region (γ loop in the phase diagram) in the vicinity of the preferred slab heating temperature of 1000 to 1200. In particular, it is effective to increase the operation stability for steels with a composition of Si + Al greater than 0.5%. By utilizing this effect, the rolling instability that can occur when the brittle element P is positively added as in the present invention can be significantly improved. In other words, the point of stable production of high-P steel is to suppress excessive P bias during hot rolling, and to prevent the slab heating temperature from being in the ferrite-no-austenite two-phase region as an effective means. If the sum of the Si content and the A1 content exceeds 0.5%, it is easy to separate into two phases at the slab heating temperature. Occasionally, it becomes possible to form an austenitic single phase. However, when the Ni content exceeds about 2.3%, the transformation start temperature of ferrite (a) → austenite (γ) decreases, and austenite transformation occurs during finish annealing. As a result, the magnetic flux density may be reduced. Also, at a low finish annealing temperature lower than the transformation temperature, it becomes difficult to secure an average grain size of about 30 / ra or more in low Si steel, and iron loss also deteriorates. Therefore, it is assumed that Ni is contained at about 2.3% or less. In addition, when adding Ni, it is preferable to add about 0.5% or more. In low Si steel, the average grain size of the finish annealed sheet: about 30; zm or more, about 80 μηι or less In order to obtain good iron loss characteristics in the low Si, low A1 non-oriented electrical steel sheet of the present invention, As shown in Fig. 5, the average grain size of the finish-annealed sheet must be about 30 // m or more. However, even if the grain size exceeds about 80 / m, no further improvement in iron loss can be expected.In addition, the steel according to the present invention is a transformed steel, and its slip single phase region is suitable for recrystallization annealing. Since the temperature is lower than that of ferritic single-phase steel with a high Si composition, excessive grain growth is disadvantageous in terms of productivity in continuous short-time annealing equipment. / im is the upper limit.
なお、 中〜高 Si鋼においては、 合金による電気抵抗の向上効果等を有すること 力^、比較的低鉄損が得られ易いため、粒径はとくに限定せず、通常の範囲で良い。 一般的には 20〜200 / m である。 次に、発明者らは、モータの高速回転化および極数増加などに伴い、近年重視さ れつつある、高周波域での磁気特' 14を改善する手法について検討した。その結果、 板厚低減が有効であり、 とくに低 Si鋼においてその効果が顕著であることがわか つた。 以下にその結果を導いた実験を示す。  In addition, in the medium to high Si steel, the alloy has an effect of improving electric resistance by the alloy and the like, and relatively low iron loss is easily obtained. Therefore, the grain size is not particularly limited and may be in a normal range. Generally, it is 20 to 200 / m. Next, the inventors studied a technique for improving magnetic characteristics in a high-frequency range, which has been gaining importance in recent years with the increase in the rotation speed and the number of poles of the motor. As a result, it was found that thickness reduction was effective, and the effect was particularly remarkable in low Si steel. The experiment which led to the result is shown below.
〔実験 5〕 (Experiment 5)
図 1 3に、 0. 11%Si— 0. 18% P鋼と 0. 95%Si— 0· 02% P鋼および 2. 0%Si— 0. 5°/οΑ1鋼の 400Hzにおける鉄損の板厚依存性について調べた結果を示す。  Figure 13 shows the loss of iron at 400Hz for 0.11% Si—0.18% P steel, 0.95% Si—0.02% P steel and 2.0% Si—0.5 ° / οΑ1 steel. The result of examining the thickness dependency is shown.
同図に示したとおり、いずれの試料も板厚の減少により渦電流損が低下するため、 高周波鉄損は改善される傾向にあること、そして板厚減少による高周波鉄損の改善 効果は低 Si鋼の方が大きいことが分かる。 As shown in the figure, the high frequency iron loss tends to be improved because the eddy current loss of all samples decreases due to the reduction of the plate thickness. It can be seen that the effect is greater for the low Si steel.
ところが、 これまで無方向性電磁鋼板の板厚は 0. 50mraが主流で、 それ以上の板 厚低減は比抵抗元素である Siや A1の含有量が高い高級グレードの一部に適用され るだけで、 Siや A1の含有量の少ない無方向性電磁鋼板に適用した製品例は見られ なかった。  However, the thickness of non-oriented electrical steel sheets has so far been 0.50 mra, and further reductions in thickness are only applicable to some high-grade grades with high contents of Si and A1, which are specific resistance elements. As a result, there was no product example applied to non-oriented electrical steel sheets with low contents of Si and A1.
また、図 1 4に、 これらの素材の磁束密度の板厚依存性について調べた結果を示 す。  Fig. 14 shows the results of examining the dependence of the magnetic flux density of these materials on the plate thickness.
同図に示されているとおり、板厚を低減すると磁束密度がやや低下する傾向があ るものの、 その低下はごく僅かであり、 またいずれの板厚においても低 Si鋼の方 が格段に高い磁束密度を有している。 特に電気自動車(E V)やハイプリッド電気 自動車(H E V) の駆動用モータなどの用途に対しては、高速回転型のリラクタン スモータが検討されていて、かような用途では、高磁束密度でかつ高周波における 低鉄損性が重視されるが、 これに対しては、 本発明に示すような低 Si、 低 A1の本 質的に磁束密度が高い鋼板を薄くすることで対処することができる。  As shown in the figure, when the sheet thickness is reduced, the magnetic flux density tends to decrease slightly, but the decrease is negligible, and the low Si steel is much higher at all sheet thicknesses. It has a magnetic flux density. In particular, for applications such as electric vehicle (EV) and hybrid electric vehicle (HEV) drive motors, high-speed rotation type reluctance motors are being studied. In such applications, high magnetic flux density and high frequency Low iron loss property is emphasized, but this can be dealt with by reducing the thickness of a steel sheet of low Si and low A1, which is essentially high in magnetic flux density as shown in the present invention.
図 1 3に示したとおり、 板厚低減の効果は約 0. 35匪以下とすることで著しくな り、 約 0. 30mm以下とすることで一層顕著となる。 なお、 板厚は、 薄いほど渦電流 損の低減に有効であるため、特に ί¾?の下限は設けないが、一方でコアの積み工数 が増大してコスト高となり、また積層コアのかしめが困難になるなどの弊害もある ので、 一般的な生産に供する場合には下限は 0. 10mm程度とするのが望ましい。  As shown in Fig. 13, the effect of reducing the thickness becomes significant when the thickness is about 0.35 or less, and becomes even more significant when the thickness is about 0.30 mm or less. Since the thinner the sheet, the more effective it is at reducing eddy current loss, no lower limit is set, but the number of man-hours for stacking the core increases and the cost increases, and it is difficult to caulk the laminated core. In the case of general production, the lower limit is preferably about 0.10 mm.
以下、本発明鋼における Si, Al, Pおよび Ni以外の成分の限定理由について説 明する。 The reasons for limiting the components other than Si, Al, P and Ni in the steel of the present invention will be described below.
C: 0〜約 0. 010 %  C: 0 to about 0.010%
Cは、 時効効果作用により、 鋼機造後、 時間の経過に伴って磁気特性 (鉄損) を劣化させる元素であり、 その程度は C含有量が 約 0. 010%を超えると著しくな るので、 C含有量は 0. 010%以下に制限した。 なお、 この時効劣化特性に関しては、 C量が少なければ少ないほど好ましいので、本発明では C量については実質的にゼ 口 (分析限界 満) の場合を含むものとする。 C is an element that deteriorates the magnetic properties (iron loss) with the passage of time after the steel machine due to the aging effect, and the degree becomes significant when the C content exceeds about 0.010%. Therefore, the C content was limited to 0.010% or less. In addition, as for the aging deterioration characteristics, the smaller the C content, the better. Therefore, in the present invention, the C content is substantially zero. Mouth (analysis limit full) shall be included.
Mn:約 0. 5 %以下Mn: about 0.5% or less
n は、 n Sとして Sを固定し、 Fe Sに起因する熱間圧延中の脆化を抑制する効 果がある。 また、 Mn含有量が増加するに伴い、 比抵抗が増加し鉄損を改善する。 しかしながらその一方で、 Mn含有量の増加は磁束密度の低下を招くので、 Mn含有 量の上限を約 0. 5%に定めた。  n has the effect of fixing S as n S and suppressing embrittlement during hot rolling caused by Fe S. In addition, as the Mn content increases, the specific resistance increases and iron loss is improved. However, on the other hand, an increase in the Mn content causes a decrease in the magnetic flux density, so the upper limit of the Mn content was set to about 0.5%.
S :約 0. 015 %以下 S: about 0.015% or less
Sは、 不可避的不純物であり、 上述のように Fe Sとして析出した場合、 熱間脆 性の原因となるだけでなく、微細に析出した^には粒成長性を劣化させるので、 鉄損低減の観点からはできる限り低減することが有利である。 ここに、 S量が 約 0. 015%を超えると鉄損の劣化代が著しく大きくなるため、その上限を 約 0. 015% に定めた。 しかしその一方で、 Sは打ち抜き時の剪断面形状を改善する効果も有し ているため、 どの程度まで低減するかは用途に応じて決定される。  S is an unavoidable impurity, and when precipitated as FeS as described above, it not only causes hot embrittlement but also deteriorates grain growth of finely precipitated ^, reducing iron loss. From the viewpoint of, it is advantageous to reduce as much as possible. Here, if the amount of S exceeds about 0.015%, the cost of iron loss deterioration becomes extremely large, so the upper limit was set to about 0.015%. However, on the other hand, S also has the effect of improving the shear profile at the time of punching, so the extent of reduction is determined according to the application.
N:約 0. 010 %以下 N: about 0.010% or less
Nは、不可避的混入不純物であり、 A1Nとして微細に析出した場合、粒成長を阻 害し鉄損を劣化させるので、 約 0. 010%以下に規制した。 以上、必須成分および抑制成分について説明したが、本発明では、その他にも磁 気特性改善成分として、 以下に述べる元素を適宜含有させることができる。  N is an inevitable contaminant impurity, and when finely precipitated as A1N, it inhibits grain growth and degrades iron loss. Therefore, N was restricted to about 0.010% or less. As described above, the essential component and the suppressing component have been described. In the present invention, the following elements can be appropriately contained as magnetic property improving components.
Sbおよび/"または Sn:合計で約 0. 40%以下 Sb and / or Sn: about 0.40% or less in total
Sb, Snは、 粒界に偏在し、 鋼の再結晶に際して結晶粒界からの { 1 1 1 } 方位 の再結晶核の生成を抑制することにより、磁束密度および鉄損を改善する効果があ る。 この効果を得るためには、 単独使用または併用いずれの場合にも合計で約 0. 01%以上含有することが望ましい。 とはいえ、過剰に含有させてもその効果は飽 和に達し、 むしろ含有量が 0. 40%を超えると脆化して冷間圧延の際に割れを生じ るようになるので、 戦虫使用または併用いずれの場合でも合計で約 0.40%以下で 含有させることが望ましい。 その他の副次的含有元素について説明する。 Sb and Sn are unevenly distributed at grain boundaries, and have the effect of improving magnetic flux density and iron loss by suppressing the generation of {111} oriented recrystallization nuclei from crystal grain boundaries during steel recrystallization. You. In order to obtain this effect, it is desirable to contain about 0.01% or more in total when used alone or in combination. However, even if it is contained excessively, its effect is not satisfied. If the content exceeds 0.40%, embrittlement occurs and cracks occur during cold rolling.Therefore, the content is less than about 0.40% in total when using warworms or in combination. It is desirable to make it. Other secondary contained elements will be described.
本発明では、 脱酸剤として、 また不純物として存在する Sを Mnと共に効果的に 捕捉する元素として約 0. 01%以下の範囲で Caを含有させることもできる。 また、 歪み取り焼鈍時の酸化、 窒化を緩和するために約 0. 005%以下の B、 約 0. 1 %以 下の Crを添加することもできる。  In the present invention, Ca may be contained in a range of about 0.01% or less as an element for effectively trapping S present as an impurity together with Mn as a deoxidizing agent. In addition, to reduce oxidation and nitridation during strain relief annealing, about 0.005% or less of B and about 0.1% or less of Cr can be added.
また、 この他にも、 磁気特性を損なわない元素として公知の Cu、 Moなどの元素 を添カ卩しても本発明の効果は損なわれないが、添加コストの面からは、各々の元素 の含有量は約 0. 1%以下とすることが好ましい。  In addition to this, the effect of the present invention is not impaired by adding a known element such as Cu or Mo as an element which does not impair the magnetic properties, but the effect of the present invention is not impaired. Preferably, the content is about 0.1% or less.
その他の成分について、 例えば Ti、 Nb、 Vなどの炭窒化物形成元素は少量の存 在が許容されるが、 極力少ない方が鉄損を低く維持するため好ましい。 なお、 中〜高 Siにおいては、 既に述べたように、 スラブ加熱温度でオーステナ ィト相かフェライト相のいずれか単相にあるよう成分設計する力、あるいはオース テナイトノフェライトの 2相状態にある場合には、より Pが濃化しやすいフェライ ト相への Pの分配濃化量が抑制されるよう成分設計を行い、 Pの過剰な局所偏析を 抑制し、 安定的に高 P添加鋼を製造できるようにする。  With respect to other components, for example, a small amount of carbonitride forming elements such as Ti, Nb, and V is allowed, but it is preferable to keep the iron loss as low as possible. As described above, in medium to high Si, the component is designed to be a single phase of either the austenite phase or the ferrite phase at the slab heating temperature, or it is in the two-phase state of austenite ferrite. In this case, the composition is designed so that the amount of P enriched in the ferrite phase, which tends to enrich P more easily, is suppressed, excessive local segregation of P is suppressed, and a high-P-added steel is produced stably. It can be so.
具体的には、鋼中に存在する炭化物、窒化物、硫化物などの析出安定ィヒのため好 適であるスラブ加熱温度 (約 1 0 0 0〜1 2 0 0で) における、 Pの過剰な局所偏 析を抑制するために、  Specifically, the excess of P at the slab heating temperature (about 100 to 1200) that is suitable for the precipitation stability of carbides, nitrides, sulfides, etc. present in steel. In order to suppress local segregation,
以下の式で表される指数 PAAn index P A represented by the following formula:
PA=-0. 2Si +0. 12Mn-0. 32A1 +0. 05Ni2 + 0. 10Ni + 0. 36 ( 1 ) と P含有量の間の関係が、 P A = -0. 2Si +0. 12Mn-0. 32A1 +0. Relationship between 05Ni 2 + 0. 10Ni + 0. 36 (1) and P content,
P≤PA を満足するか、 あるいは、 P≤PA Or
以下の式で表される指数 PF: ... An index P F represented by the following formula: ...
PF=-0. 34Si +0. 20Mn-0. 54A1 + 0. 24Ni2 + 0. 28Ni+0. 76 ( 2 ) が、 P F = -0. 34Si +0. 20Mn-0. 54A1 + 0. 24Ni 2 + 0. 28Ni + 0. 76 (2) is,
PF≤約 0 . 2 6 P F ≤about 0.26
(Si、 Mn、 Al、 Ni、 Pの単位は mass%)  (Si, Mn, Al, Ni, P units are mass%)
であればよい。 ここで PAは種々の Si, Mn, Al, Ni組成において約 1 0 0 0〜1 2 0 0での温度域でオーステナイト単相である上限の P含有量を実験的に求めた ものであり、 PFはフェライト単相となる下限の P含有量を実験的に求めたもので ある。 次に、 本発明の製造条件について鋭明する。 Should be fine. Here, PA was obtained by experimentally determining the upper limit of the P content of the austenitic single phase in the temperature range of about 1000 to 1200 for various Si, Mn, Al, and Ni compositions. P F are those the P content is the lower limit that the ferrite single phase was determined experimentally. Next, the production conditions of the present invention will be elucidated.
上記の好適成分組成に調整した溶鋼を、転炉精練法あるいは電気炉溶解法などで 溶製したのち、 連続錄造法や造塊一分塊圧延法によってスラブとする。  After smelting the molten steel adjusted to the above-mentioned preferable component composition by a converter refining method or an electric furnace melting method, it is formed into a slab by a continuous casting method or an ingot lump rolling method.
ついで、 このスラブは、加熱後、熱間圧延に供される。 ここで、鋼中に存在する 炭化物、窒化物、硫化物などの析出安定ィ匕のためには、 スラブ加熱 は約 1 0 0 0〜1 2 0 0 が好適である。 また、前述のように、 スラブ加熱時の相状態が Pの 過剰な局所偏析の抑制に極めて重要である。  Next, this slab is subjected to hot rolling after heating. Here, in order to stabilize the precipitation of carbides, nitrides, sulfides, and the like existing in the steel, the slab heating is preferably about 100 to 1200. Also, as mentioned above, the phase state during slab heating is extremely important for suppressing excessive local segregation of P.
Pはフェライト形成元素であるため、スラブ加熱温度付近でのオーステナイト単 相域を縮小する作用を有するが、 低 Si鋼の場合、 本発明の成分範囲では、 スラブ 加熱温度が約 1000〜1200 であればオーステナイト単相とすることができる。 また中〜高 Si鋼の場合も、 前記 P≤PAを満足する成分系であれば、 スラブ加熱 温度が約 1000〜: 1200Όの範囲においてオーステナイト単相とすることができる。 さらに、 中〜高 Si
Figure imgf000025_0001
0 . 2 6を満足する成分系の:^は、 フエ ライト オーステナイト共存域となっても、フェライト相への Pの偏析の程度は、 脆化を回避できるレベルにとどまる。また、 フェライト単相域で加熱される場合に も、 P含有量が約 0 . 2 6 %以内であれば層状割れ等なく製造することができる。 熱延後のコイル卷き取り温度も、本発明では、高 P鋼の製造性を確保する上で重 要なポイントである。すなわち、 コイル卷き取り温度が高いと、 コイル冷却中に鉄 燐ィ匕物 (Fe 3 P) が生成し、 熱延板の曲げ性や圧延性を低下させるので、 卷き取り 温度は約 650で以下、 好ましくは約 600Ό以下、 さらに好ましくは約 550 以下と できるだけ低温で卷き取りを行うことが望ましい。また、卷き取り後のコイルを水 槽に浸漬、あるいはコイルに; ifc するなどの手段により、 コイルを加速冷却する方 法も有効である。 ついで、熱延コイルは、酸洗などの手法により脱スケール後、冷間圧延に供され るが、 磁気特性をさらに向上させるために熱延板焼鈍を施すこともできる。
Since P is a ferrite-forming element, it has the effect of reducing the austenite single-phase region near the slab heating temperature.However, in the case of low-Si steel, within the component range of the present invention, even if the slab heating temperature is about 1000 to 1200, For example, it can be a single phase of austenite. In the case of medium to high Si steel Further, if the component system satisfying the P≤P A, the slab heating temperature is from about 1000: it can be single-phase austenite in the range of 1200O. Furthermore, medium to high Si
Figure imgf000025_0001
In the component system that satisfies 0.26: ^, the segregation of P in the ferrite phase remains at a level that can avoid embrittlement even in the region where ferrite and austenite coexist. Further, even when the ferrite is heated in the single phase region of ferrite, if the P content is within about 0.26%, it can be produced without layer cracks or the like. In the present invention, the coil winding temperature after hot rolling is also an important point in securing the productivity of high-P steel. That is, if the coil winding temperature is high, iron phosphating (Fe 3 P) is generated during cooling of the coil, and the bendability and rollability of the hot-rolled sheet are reduced. It is desirable to perform the winding at a temperature as low as possible, preferably about 600 ° or less, more preferably about 550 or less. It is also effective to accelerate the cooling of the coil by immersing the coil after winding into a water tank or by ifc-ing the coil. Then, the hot-rolled coil is subjected to cold rolling after descaling by a technique such as pickling, but hot-rolled sheet annealing can be performed to further improve the magnetic properties.
ここで、 Si含有量と A1含有量の合計が 0. 5%以下である、低 Si鋼においては、 熱延板焼鈍温度もフェライトノオーステナイト共存域(2相領域) を避けることが 好ましい。 これは、 2相領域の焼鈍では結晶粒成長が進行しにくく、磁束密度等の 磁気特性の向上が望めないためである。 以下、 低 Si鋼における好適な熱延板焼 鈍温度を、 Ni量別に説明する。 Here, in a low Si steel in which the total of the Si content and the A1 content is 0.5% or less, it is preferable that the hot-rolled sheet annealing temperature also avoid the ferrite-no-austenite coexistence region (two-phase region). This is because the growth of crystal grains does not easily progress in the annealing in the two-phase region, and improvement in magnetic properties such as magnetic flux density cannot be expected. Hereinafter, the preferred hot-rolled sheet annealing temperature in low Si steel will be described according to the amount of Ni.
i無添加鋼または Ni量が 1. 0 %以下と比較的少ない Ni含有量の場合には、 無 方向性電磁鋼板に対して通常、 熱延板焼鈍を施す場合と同様、約 900 以上のフヱ ライト単相域で焼鈍することができる。 また、 焼鎚 ^をより高温とし、 Ac 3点 以上のオーステナイト単相域 (望ましくは 1050〜1100 程度) とすることもでき る。 要は、 両者の中間領域である 2相領域での焼鈍 (とくに 950¾付近) を避ける ことが重要である。  i When the additive-free steel or the Ni content is relatively low (1.0% or less), the non-oriented electrical steel sheet is usually about 900% or more as in the case of hot-rolled sheet annealing.で き る Can be annealed in the light single phase region. In addition, the temperature of the slag can be increased to a single phase region of austenite (preferably about 1050 to 1100) with three or more Ac points. In short, it is important to avoid annealing (especially around 950¾) in the two-phase region, which is the intermediate region between the two.
—方、 Ni量が 1. 0超〜 2. 3 %と比較的多い Ni含有量の場合には、焼鈍中のォー ステナイト生成温度が低下するため 900 程度の焼鈍温度でも 2相領域となり、磁 束密度が低下する。 とはいえ、 900で以下のフェライト単相域での焼鈍では粒成長 性不足のため、十分な磁束密度が得られない。従って、 この成分系での熱延板焼鈍 条件は、 Ac3点以上のオーステナイト単相域 (望ましくは ΙΟδΟ ΙΙΟΟ^程度) に 限定した。 なお、 中〜高 Si鋼の場合は前述のように細粒でも低鉄損が得られ易いので、 焼 鈍における粒成長は低 Si鋼ほど重要ではない。 したがって、 熱延板焼鈍温度はと くに限定しないが、 通常は 7 0 0〜1 1 0 0 ^の範囲内とすることが好ましい。 ついで、得られたコイルは、脱スケール後、 冷間あるいは温間で 1回の圧延、 あ るいは中間焼鈍を挟む 2回以上の冷間 (あるいは温間)圧延を行い、所定の板厚に 仕上げる。 On the other hand, when the Ni content is relatively high, that is, more than 1.0 to 2.3%, the austenite formation temperature during annealing decreases, so that a two-phase region is obtained even at an annealing temperature of about 900, The magnetic flux density decreases. However, sufficient magnetic flux density cannot be obtained by annealing in the single phase region of ferrite below 900 due to insufficient grain growth. Therefore, the annealing condition of the hot rolled sheet in this component system is limited to the austenite single phase region (preferably about ΙΟδΟ ΙΙΟΟ ^) above the Ac3 point. Limited. In the case of medium to high Si steels, as described above, low iron loss is easily obtained even with fine grains, so that grain growth during annealing is not as important as low Si steels. Therefore, the annealing temperature of the hot-rolled sheet is not particularly limited, but is usually preferably in the range of 700 to 110 ^. Then, after descaling, the obtained coil is rolled once in a cold or warm state, or is subjected to two or more cold (or warm) rolling steps with intermediate annealing to obtain a predetermined thickness. Finish.
その後、 仕上げ焼鈍を行うが、 低 Si鋼の場合は、 この仕上げ焼鈍を 700 :以上 のフェライト単相域で行う。 というのは、仕上げ焼鈍温度が 700 未満では、安定 して平均結晶粒径を約 30^ m以上に成長させることが難しく、 一方フェライト単 相域を超えてオーステナィト粒が生成すると集合糸!^が劣化し、磁束密度および鉄 損の劣化を招くからである。  After that, finish annealing is performed. In the case of low Si steel, this finish annealing is performed in the ferrite single phase region of 700: or more. This is because if the final annealing temperature is less than 700, it is difficult to stably grow the average grain size to about 30 m or more, and if austenite grains are formed beyond the ferrite single phase region, the aggregated yarn! ^ Is formed. This is because of deterioration, leading to deterioration of magnetic flux density and iron loss.
なお、中〜高 Si鋼の場合は前述のように焼鈍における粒成長は低 Si鋼ほど重要 ではないので、仕上げ焼鈍温度もとくに限定しないが、通常は 7 0 0〜1 1 0 0 の範囲内とすることが好ましい。  In the case of medium to high Si steel, the grain growth during annealing is not as important as that of low Si steel, as described above.Therefore, the final annealing temperature is not particularly limited, but is usually in the range of 700 to 110. It is preferable that
なお、熱延板おょぴ冷延板のフェライト単相温度域、あるいはオーステナイト単 相温度域は、予め同組成の鋼板を種々の温度域で加熱一水冷して得られた組織を光 学顕微鏡などで観察して決定することができる。 あるいは、 他の方法として、 Thermo-Calc™等の熱力学計算ソフトウエアにより求めた計算状態図により、 予め 推定することもできる。 仕上げ焼鈍の後は、一般的な無方向性電磁鋼板と同様に、絶縁被膜の付与を行う ことができる。付与方法はとくに限定しないが、処理液の塗布後、焼付け処理を施 す方法が好適である。  The ferrite single-phase temperature range or austenite single-phase temperature range of the hot-rolled sheet and cold-rolled sheet is obtained by heating and water-cooling steel sheets of the same composition in various temperature ranges beforehand using an optical microscope. It can be determined by observing with such as. Alternatively, as another method, it can be estimated in advance from a calculation state diagram obtained by thermodynamic calculation software such as Thermo-Calc ™. After the finish annealing, an insulating coating can be applied in the same manner as a general non-oriented electrical steel sheet. The application method is not particularly limited, but a method of performing a baking treatment after applying the treatment liquid is preferable.
なお、得られたコイルは、必要な幅、寸法にスリット加工されたのち、ユーザー にてモータ固定子や、 回転子の形状に打ち抜き加工後、積層され、製品化される。 あるいは、 場合によっては、 打ち抜き後、 歪み取り焼鈍 (通常 750 X l〜2 h ) を施した後に製品化される。 The obtained coil is slit to the required width and dimensions, and then After punching into the shape of the motor stator and rotor, they are laminated and commercialized. Alternatively, in some cases, after punching, it is commercialized after being subjected to strain relief annealing (usually 750 Xl to 2 h).
(実施例) (Example)
〔実施例 1〕 (Example 1)
表 1に示す成分組成になる溶鋼を、実験室的に溶製し铸込んだ後、熱延により板 厚: 30raraのシートパーとした。 ついで、 1100^で 60minのカ卩熱後、 板厚: 2 mmま で熱延し、 600でで 2 hのコイル卷き取り相当の均舰持を行ったのち、放冷した。 その後、 950でで 60 sの熱延板焼鈍後、 酸洗したのち、 0. 50讓厚までの冷延 ( 1 回冷延) を行い、 700〜900 ^の種々の温度で仕上げ焼鈍を施して、 再結晶粒径を 種々に変化させた。 なお、冷間圧延の際、 P含有量が本発明の範囲を超える鋼 Jは 冷延中に板面と平行に層状の割れが多数発生したため、以降の処理を中止し、評価 を行っていない。  Molten steel having the composition shown in Table 1 was smelted and incorporated in a laboratory, and then hot rolled to form a sheet par with a sheet thickness of 30 rara. Then, after heating for 1 min at 60 ° C, the plate was hot-rolled to a thickness of 2 mm, and at 600 at 2 hours for coil winding, and then allowed to cool. Then, after hot-rolled sheet annealing at 950 for 60 s, pickling is performed, then cold-rolled to 0.50 thickness (one-time cold-rolling), and finish annealing at various temperatures of 700 to 900 ^. Thus, the recrystallized grain size was variously changed. In addition, during cold rolling, steel J with a P content exceeding the range of the present invention caused many layered cracks parallel to the sheet surface during cold rolling, and the subsequent processing was stopped and evaluation was not performed .
なお、 No. 56〜59は熱延後、 熱延板焼鈍を施さずに、 800ででの中間焼鈍を挟む 2回冷延法で冷延したものである。  Nos. 56 to 59 were cold rolled by hot rolling twice without intermediate annealing at 800 without hot strip annealing.
ついで、 得られた仕上げ焼鈍板に平均膜厚: 0. 6 の半有機絶縁被膜を塗布し たサンプルを作製し、 各種試験に供した。  Next, samples were prepared by applying a semi-organic insulating film having an average film thickness of 0.6 to the obtained finish-annealed sheet and subjected to various tests.
打ち抜き試験は、 直径: 21ηιπι φの円形金型を用いて行い、 クリアランスは板厚の 8 % した。 圧延方向となす角度が 0。 , 45° , 90° , 135。 の 4方向の打ち抜き 円形の直径 (内径) を測定して、 その 4点の平均径を求めた。 また、 4点中最大径 および最小径の差を取り、 打ち抜き異方性の指標とした。  The punching test was performed using a circular mold having a diameter of 21ηιπιφ, and the clearance was 8% of the plate thickness. The angle made with the rolling direction is 0. , 45 °, 90 °, 135. The diameter of the circle (inner diameter) in four directions was measured, and the average diameter of the four points was determined. The difference between the maximum diameter and the minimum diameter among the four points was taken as the index of punching anisotropy.
磁気特性は、 圧延方向となす角度が 0° および 90° となるように 180mraX 30mm に切り出した短冊状試験片を用いて、 ェプスタイン法で測定した。  The magnetic properties were measured by the Epstein method using strip-shaped test pieces cut out to 180 mm x 30 mm so that the angles to the rolling direction were 0 ° and 90 °.
降伏応力 (Y P ) は、 圧延方向と平行に切り出した JIS 5号試験片を用いて速 度 lOmm/rainの条件で引張試験を行い、 上降伏点を採用した。 得られた結果を表 2および表 3に示す。 For the yield stress (YP), a tensile test was performed at a speed of lOmm / rain using a JIS No. 5 test piece cut out parallel to the rolling direction, and the upper yield point was adopted. The obtained results are shown in Tables 2 and 3.
表 1 鋼 成分組成 (mass%) Table 1 Composition of steel components (mass%)
記 π Al M上 n Q p M α Note π Al M on n Q p M α
Number
A 0.0027 0.03 0.0008 0.21 0.0040 0.02 0.0015 0.030 く 0.001 A 0.0027 0.03 0.0008 0.21 0.0040 0.02 0.0015 0.030 less 0.001
B 0.0026 0.10 0.0008 0.22 0.0035 0.02 0.0020 0.032 <0.001B 0.0026 0.10 0.0008 0.22 0.0035 0.02 0.0020 0.032 <0.001
C 0.0019 0.53 0.0012 0.22 0.D023 0.02 0.0018 0.030 く 0.001C 0.0019 0.53 0.0012 0.22 0.D023 0.02 0.0018 0.030 less 0.001
D 0.0019 0.95 0.0007 0.20 0.0033 0.02 0.0012 0.030 <0.001D 0.0019 0.95 0.0007 0.20 0.0033 0.02 0.0012 0.030 <0.001
E 0.0022 1.48 0.0014 0.21 0.0041 0.02 0.0022 0.033 <0.001E 0.0022 1.48 0.0014 0.21 0.0041 0.02 0.0022 0.033 <0.001
F 0.0016 0.11 0.0015 0.20 0.0074 0.07 0.0019 0.030 く 0.001F 0.0016 0.11 0.0015 0.20 0.0074 0.07 0.0019 0.030 less 0.001
G 0.0017 0.11 0.0008 0.21 0.0036 0.13 0.0022 0.031 <0.001G 0.0017 0.11 0.0008 0.21 0.0036 0.13 0.0022 0.031 <0.001
H 0.0023 0.11 0.0011 0.22 0.0022 0.18 0.0014 0.030 <0.001H 0.0023 0.11 0.0011 0.22 0.0022 0.18 0.0014 0.030 <0.001
I 0.0028 0.11 0.0006 0.22 0.0075 0.25 0.0018 0.031 <0.001I 0.0028 0.11 0.0006 0.22 0.0075 0.25 0.0018 0.031 <0.001
J 0.0016 0.11 0.0014 0.21 0.0060 0.29 0.0016 0.032 く 0.001 J 0.0016 0.11 0.0014 0.21 0.0060 0.29 0.0016 0.032
Figure imgf000030_0001
Figure imgf000030_0001
St'90/iOdf/X3d LLLZOOm OAV 表 3 St'90 / iOdf / X3d LLLZOOm OAV Table 3
Figure imgf000031_0001
Figure imgf000031_0001
P含有量が本発明の適正範囲に満たず、 また Si量および結晶粒径の変化により 強度が変ィ匕している鋼 A〜F (No. 1〜33, 56, 57) では、 Y Pの増加につれて打ち 抜き径は金型径に近づく傾向にある力 最大径と最小径の差で表される打ち抜き寸 法の異方性は 10〜20 m程度と比較的大きレ、。 また、 Si量が増加すると磁束密度 が低下するという問題もある。 In steels A to F (No. 1 to 33, 56, 57) whose P content is less than the proper range of the present invention and whose strength is changed due to changes in the Si content and crystal grain size, the YP As the diameter increases, the punching diameter tends to approach the die diameter. The anisotropy of the punching dimension, expressed by the difference between the maximum diameter and the minimum diameter, is relatively large, about 10 to 20 m. Also, there is a problem that the magnetic flux density decreases as the amount of Si increases.
これに対して、 本発明に従い、 低 Si, A1組成として Pを 0. 10%以上含有させた 鋼 G〜Hは、 Y Pが 350 MPa以下と比較的低くても良好な打ち抜き径となり、 し 力 ^打ち抜き寸法の異方性も小さい。 また、磁気特性の面からも、 これらの鋼種で 平均結晶粒径を 30 ;z ra以上に制御したもの (No. 37, 38, 39, 44, 45, 46, 47, 51, 52, 53, 54, 59) はいずれも、 安定して低鉄損でかつ高磁束密度が得られている。  On the other hand, according to the present invention, steels G to H containing 0.10% or more of P as a low Si and A1 composition have good punching diameters even when YP is relatively low at 350 MPa or less. ^ Anisotropy of punch size is also small. In terms of magnetic properties, the average grain size of these steel grades was controlled to 30; zra or more (Nos. 37, 38, 39, 44, 45, 46, 47, 51, 52, 53, 53). 54, 59) have stable and low iron loss and high magnetic flux density.
〔実施例 2〕 (Example 2)
表 4に示す成分組成になる溶鋼を、実験室的に溶製し、実施例 1と同様にして板 厚: 2 mmの熱延板としたのち、 1100^で 30 sの熱延板焼鈍後、酸洗してから、 0. 50膽 厚まで冷延した。 ついで、 700 以上でかつフェライト単相域の種々の温度で仕上 げ焼鈍を施し、 再結晶粒径を種々に変化させた。  Molten steel having the composition shown in Table 4 was smelted in a laboratory and made into a hot-rolled sheet with a thickness of 2 mm in the same manner as in Example 1. After annealing the hot-rolled sheet at 1100 ^ for 30 s After being pickled, it was cold rolled to a thickness of 0.50. Then, finish annealing was performed at various temperatures of 700 or more and in the ferrite single phase region to change the recrystallized grain size in various ways.
ついで、実施例 1と同様の半有機絶縁 ¾ ^を塗布したサンプルを作製して、各種 試験に供した。  Subsequently, samples coated with the same semi-organic insulating layer as in Example 1 were prepared and subjected to various tests.
得られた結果を表 5に示す。  Table 5 shows the obtained results.
ここで、 鋼 K〜Mは、 Siを低減し A1による脱酸を行ったものであり、 鋼 N, O の組おょぴ鋼 Q、 Rの組は Ni添加の影響を評価できるように溶製したものである。 Here, steels K to M have been subjected to deoxidation by A1 to reduce Si, and steel N, O, and steel Q, R are melted so that the effect of Ni addition can be evaluated. It was made.
Figure imgf000033_0001
Figure imgf000033_0001
表 5 Table 5
Figure imgf000034_0001
本発明の鋼組成を満足し、 かつ平均結晶粒径を 30μ πι以上と適正化したものは いずれも、優れた打ち抜き寸法精度を有し、また打ち抜き異方性が小さいだけでな く、磁気特性にも優れていた。 特に、鋼 Νと鋼 0、 および鋼 Qと鋼 Rをそれぞれ比 較すると、 Niを添加した鋼 Oおよび鋼 Rでは磁束密度の顕著な向上が認められる。
Figure imgf000034_0001
Any of the steel compositions satisfying the steel composition of the present invention and having an average crystal grain size of 30 μπι or more have excellent punching dimensional accuracy, low punching anisotropy, and magnetic properties. Was also excellent. In particular, when steel Ν and steel 0 are compared, and steel Q and steel R are compared with each other, a remarkable improvement in magnetic flux density is observed in steel O and steel R to which Ni is added.
〔実施例 3〕 表 1の鋼 F、表 4の鋼 Nおよび鋼 Oに示した組成になる溶鋼を、実験室的に溶製 し、 実施例 1と同様にして板厚: 2 mmの熱延板としたのち、 1100 で 30 sの熱延 板焼鈍後、 酸洗したのち、 冷延圧延により 0. 50〜0. 2 raraの種々の厚みに仕上げた。 ついで、 700 ^以上でかつフェライト単相域の種々の温度で仕上げ焼鈍を施し、 再 結晶粒径を 35〜45 mの間に制御した。 (Example 3) Molten steel having the compositions shown in Table 1 (Steel F) and Table 4 (Steel N and Steel O) was smelted in a laboratory and made into a hot-rolled sheet with a thickness of 2 mm in the same manner as in Example 1. After the hot-rolled sheet was annealed at 1100 for 30 s, it was pickled and then cold-rolled to obtain various thicknesses of 0.50 to 0.2 rara. Next, finish annealing was performed at various temperatures of 700 ^ or more and in the ferrite single phase region, and the recrystallized grain size was controlled between 35 and 45 m.
ついで、実施例 1と同様の半有機絶縁 を塗布したサンプルを作製して、各種 試験に供した。 また、 これらのサンブルについては 400Hz での高周波鉄損につい ても調査した。  Next, samples coated with the same semi-organic insulation as in Example 1 were prepared and subjected to various tests. In addition, we investigated high frequency iron loss at 400Hz for these samples.
得られた結果を表 6に併記する。 表 6 The results obtained are also shown in Table 6. Table 6
Figure imgf000035_0001
Figure imgf000035_0001
板厚を薄くするにつれて特に高周波での鉄損が改善される傾向が顕著である。ま た、打ち抜き寸法精度も板厚減に伴って改善する傾向にあるが、本発明の成分範囲 を満足する鋼 N, Oの方が比較鋼 Fよりも優れている。 さらに、本発明鋼はいずれ の板厚でも、 打ち抜き寸法の異方性にも優れている。 As the plate thickness is reduced, the iron loss particularly at high frequencies tends to be remarkably improved. Also, the punching dimensional accuracy tends to improve with a decrease in the thickness, but steels N and O satisfying the composition range of the present invention are superior to comparative steel F. Furthermore, the steel of the present invention is excellent in anisotropy of the punched size at any thickness.
〔実施例 4〕 表 7に示す成分組成になる溶鋼を、 実験室的に溶製して鋼塊に铸込んだのち、 1150で X 1時間の均熱を施し、 その後熱延により板厚 30画のシ一トパーとした。 得られたシートバーを、表 8に示す温度 (SRT) に加熱して 1時間保持したのち、 2. 0mmまで熱延し、 580°C X 1時間のコイル卷き取り相当処理を施し、 放冷した。 そののち、 一部の鋼を除き、表 8に示す条件で熱延板焼鈍を施した。 その後、酸洗 ののち、 0. 50匪まで冷延を行った。 (Example 4) Molten steel having the composition shown in Table 7 was smelted in a laboratory and poured into a steel ingot, and was then soaked at 1150 X for 1 hour. And The obtained sheet bar was heated to the temperature (SRT) shown in Table 8 and held for 1 hour, then hot rolled to 2.0 mm, subjected to coil winding at 580 ° C for 1 hour, and allowed to cool. did. After that, except for some steels, hot-rolled sheet annealing was performed under the conditions shown in Table 8. Then, after pickling, they were cold rolled to 0.50 marauders.
冷間圧延に際し、冷延中の板の状況、およぴ冷延後の断面組織観察の結果より、 冷間圧延時の加工性を評価した。 高 P (≥0. 10%) でかつ本発明の成分範囲を満 たさない鋼 (W、 Z、 a、 c , d、 k、 および 1 )、 および、 成分範囲は本発明を 満たすものの、 スラブ加熱 (SRT) あるいは熱延卷き取り温度 (CT) が本発明 の範囲を外れるもの (N( 25、 26) では、板面に平行に層状の割れが多数観察され、 —部の試料 (Νο· 5、 19、 25) においては圧延途中に層状に分離し、 以降の圧延が困 難となった。 これらの結果では、工業的に安定製造を行うことが困難であるため、 これらの試料については以降の処理および評価を行わなかった。  During cold rolling, the workability during cold rolling was evaluated based on the condition of the sheet during cold rolling and the results of observation of the cross-sectional structure after cold rolling. Steel (W, Z, a, c, d, k, and 1) with high P (≥0.10%) and not satisfying the composition range of the present invention, and the composition range satisfying the present invention, When the slab heating (SRT) or hot rolling coiling temperature (CT) is out of the range of the present invention (N (25, 26), many layered cracks are observed parallel to the plate surface, Νο · 5, 19, 25) separated into layers during rolling, making subsequent rolling difficult.These results indicate that it is difficult to carry out industrially stable production, so these samples Was not subjected to the subsequent processing and evaluation.
ついで、 冷延板に 700 以上の種々の温度で仕上げ焼鈍を施したのち、 実施例 1 と同様の半有機絶縁 を施したのち、各種試験に供した。 ここで強度は圧延方 向と5 Ρίϊに JIS5号試験片を切り出し、引張速度 10ram/sで引張り、得られた引張強 度 (TS) で評価した。 得られた結果を表 8に併記した。 Next, the cold-rolled sheet was subjected to finish annealing at various temperatures of 700 or more, and then subjected to the same semi-organic insulation as in Example 1, and then subjected to various tests. Here, the strength was measured by cutting a JIS No. 5 test piece in the rolling direction and 5 mm, pulling it at a pulling speed of 10 ram / s, and evaluating the obtained tensile strength (TS). Table 8 shows the obtained results.
表 7 3 鋼組成 C Si A1 Mn S Ni P N Sb Sn PA PA≥P PF PP≤ 式の判Table 7 3 Steel composition C Si A1 Mn S Ni PN Sb Sn P A P A ≥PP F P P
No % % % % % % % % % % 0.26 定結果No%%%%%%%%%% 0.26 Fixed result
S 比較鋼 0.0018 0.60 0.0010 0.18 0.0041 0.00 0.05 0.0022 <0.001 <0.001 0.261 OK 0.591 NG OKS Comparative steel 0.0018 0.60 0.0010 0.18 0.0041 0.00 0.05 0.0022 <0.001 <0.001 0.261 OK 0.591 NG OK
T 発明鋼 0.0011 0.60 0.0011 0.19 0.0033 0.00 0.13 0.0032 <0.001 <0.001 0.262 OK 0.593 NG OKT Invention steel 0.0011 0.60 0.0011 0.19 0.0033 0.00 0.13 0.0032 <0.001 <0.001 0.262 OK 0.593 NG OK
U 発明鋼 0.0014 0.60 0.0006 0.22 0.0028 0.00 0.19 0.0015 <0.001 <0.001 0.266 OK 0.600 NG OKU Invented steel 0.0014 0.60 0.0006 0.22 0.0028 0.00 0.19 0.0015 <0.001 <0.001 0.266 OK 0.600 NG OK
V 発明鋼 0.0032 0.60 0.0005 0.18 0.0032 0.00 0.26 0.0018 <0.001 く 0.001 0.261 OK 0.592 NG OK w 比較鋼 0.0031 0.63 0.0006 0.19 0.0041 0.00 0.29 0.0021 <0.001 <0.001 0.257 NG 0.585 NG NGV Invention steel 0.0032 0.60 0.0005 0.18 0.0032 0.00 0.26 0.0018 <0.001 0.001 0.261 OK 0.592 NG OK w Comparative steel 0.0031 0.63 0.0006 0.19 0.0041 0.00 0.29 0.0021 <0.001 <0.001 0.257 NG 0.585 NG NG
X 比較鋼 0.0011 1.02 0.0010 0.19 0.0032 0.00 0.04 0.0018 <0.001 0.023 0.178 OK 0.451 NG OKX Comparative steel 0.0011 1.02 0.0010 0.19 0.0032 0.00 0.04 0.0018 <0.001 0.023 0.178 OK 0.451 NG OK
Y 発明鋼 0.0011 1.00 0.0011 0.21 0.0032 0.00 0.15 0.0020 <0.001 0.036 0.185 OK 0.461 NG OK z 比較鋼 0.0011 0.98 0.0004 0.19 0.0032 0.00 0.21 0.0022 <0.001 0.025 0.187 NG 0.465 NG NG a 比較鋼 0.0011 1.01 0.0006 0.18 0.0032 0.00 0.25 0.0025 <0.001 0.032 0.179 NG 0.452 NG NG b 比較鋼 0.0019 1.52 0.0009 0.20 0.0050 0.00 0.04 0.0019 0.018 0.002 0.080 OK 0.283 NG OK c 比較鋼 0.0025 1.54 0.0011 0.19 0.0041 0.00 0.12 0.0012 0.022 <0.001 0.074 NG 0.274 NG NG d 比較鋼 0.0016 1.48 0.0008 0.22 0.0028 0.00 0.17 0.0031 0.023 く 0.001 0.090 NG 0.300 NG NG e 発明鋼 0.0018 1.63 0.0007 0.18 0.0019 0.00 0.19 0.0026 0.019 く 0.001 0.056 NG 0.242 OK OK f 発明鋼 0.0024 1.60 0.0006 0.18 0.0032 0.00 0.25 0.0014 0.022 <0.001 0.061 NG 0.252 OK OK g 比較鋼 0.0008 2.18 0.25 0.20 0.0008 0.00 0.03 0.0018 <0.001 0.035 -0.132 NG -0.076 OK OK h 発明鋼 0.0011 2.20 0.26 0.18 0.0004 0.00 0.13 0.0022 0.002 0.036 -0.142 NG -0.092 OK OK i 発明鋼 0.0016 2.11 0.25 0.18 0.0013 0.00 0.19 0.0021 <0.001 0.034 -0.120 NG -0.056 OK OK j 発明鋼 0.0017 2.08 0.27 0.19 0.0017 0.00 0.24 0.0035 <0.001 0.032 -0.120 NG -0.055 OK OK k 比較鋼 0.0024 2.11 0.27 0.22 0.0023 0.00 0.29 0.0028 <0.001 0.035 -0.122 NG -0.059 OK OKY Invented steel 0.0011 1.00 0.0011 0.21 0.0032 0.00 0.15 0.0020 <0.001 0.036 0.185 OK 0.461 NG OK z Comparative steel 0.0011 0.98 0.0004 0.19 0.0032 0.00 0.21 0.0022 <0.001 0.025 0.187 NG 0.465 NG NGa Comparative steel 0.0011 1.01 0.0006 0.18 0.0032 0.00 0.25 0.0025 < 0.001 0.032 0.179 NG 0.452 NG NG b Comparative steel 0.0019 1.52 0.0009 0.20 0.0050 0.00 0.04 0.0019 0.018 0.002 0.080 OK 0.283 NG OK c Comparative steel 0.0025 1.54 0.0011 0.19 0.0041 0.00 0.12 0.0012 0.022 <0.001 0.074 NG 0.274 NG NG d Comparative steel 0.0016 1.48 0.0008 0.22 0.0028 0.00 0.17 0.0031 0.023 0.00 0.001 0.090 NG 0.300 NG NG e Invention steel 0.0018 1.63 0.0007 0.18 0.0019 0.00 0.19 0.0026 0.019 1 0.001 0.056 NG 0.242 OK OK f Invention steel 0.0024 1.60 0.0006 0.18 0.0032 0.00 0.25 0.0014 0.022 <0.001 0.061 NG 0.252 OK OK g Comparative steel 0.0008 2.18 0.25 0.20 0.0008 0.00 0.03 0.0018 <0.001 0.035 -0.132 NG -0.076 OK OK h Invention steel 0.0011 2.20 0.26 0.18 0.0004 0.00 0.13 0.0022 0.002 0.036 -0.142 NG -0.092 OK OK i Invention steel 0.0016 2.11 0.25 0.18 0.0013 0.00 0.19 0.002 1 <0.001 0.034 -0.120 NG -0.056 OK OK j Invention steel 0.0017 2.08 0.27 0.19 0.0017 0.00 0.24 0.0035 <0.001 0.032 -0.120 NG -0.055 OK OK k Comparative steel 0.0024 2.11 0.27 0.22 0.0023 0.00 0.29 0.0028 <0.001 0.035 -0.122 NG- 0.059 OK OK
1 比較銅 0.0026 1.50 0.0010 0.20 0.0032 0.50 0.18 0.0026 <0.001 0.022 0.146 NG 0.489 NG NG m 発明鋼 0.0033 1.45 0.0005 0.19 0.0015 1.09 0.16 0.0021 0.002 0.021 0.261 OK 0.894 NG OK n 発明鋼 0.0036 1.56 0.0010 0.19 0.0032 1.57 0.17 0.0019 <0.001 0.021 0.351 OK 1.296 NG OK1 Comparative copper 0.0026 1.50 0.0010 0.20 0.0032 0.50 0.18 0.0026 <0.001 0.022 0.146 NG 0.489 NG NG m Invention steel 0.0033 1.45 0.0005 0.19 0.0015 1.09 0.16 0.0021 0.002 0.021 0.261 OK 0.894 NG OK n Invention steel 0.0036 1.56 0.0010 0.19 0.0032 1.57 0.17 0.0019 <0.001 0.021 0.351 OK 1.296 NG OK
0 発明鋼 0.0038 1.50 0.0006 0.21 0.0022 2.13 0.19 0.0025 <0.001 0.026 0.525 OK 1.978 NG OK 0 Inventive steel 0.0038 1.50 0.0006 0.21 0.0022 2.13 0.19 0.0025 <0.001 0.026 0.525 OK 1.978 NG OK
Figure imgf000038_0001
Figure imgf000038_0001
本発明の範囲の成分とし、 とくに Pを 0. 1%以上添加した鋼 (No.2〜4、 7、 13、 14、 16〜18、 および 21〜24) は、 いずれも優れた抜き打ち寸法精度を示す。 す なわち、 P添加量が 0. 1%に満たない鋼 (Να 1, 6、 10および 15) では、 打ち抜 き径は Si +Al量の増加に伴い改善する傾向が見られるものの、 打ち抜き径の異方 性が大きい。一方、本発明鋼は打ち抜き径並びに打ち抜き径の異方性ともに優れて いるのが明らかである。 さらに、 これらの発明鋼は P含有量が 0. 1%に満たない 比較鋼と同等以上の磁束密度を有する ίこも関わらず高強度であり、優れた強度一磁 束密度パランスを有する。 The steels (Nos. 2 to 4, 7, 13, 14, 16 to 18, and 21 to 24) containing at least 0.1% of P as components within the scope of the present invention have excellent punching dimensional accuracy. Is shown. That is, for steels with less than 0.1% of P added (Να1, 6, 10, and 15), the punching diameter tends to improve with the increase of Si + Al content, but Large anisotropy in diameter. On the other hand, it is clear that the steel of the present invention is excellent in both the punching diameter and the anisotropy of the punching diameter. Furthermore, these inventive steels have a magnetic flux density equal to or higher than that of comparative steels with a P content of less than 0.1%. Nevertheless, they have high strength, and have an excellent strength-to-magnetic flux density balance.
〔実施例 5〕 (Example 5)
表 4の鋼 Μ、鋼 Νおよび鋼 Οに示した組成になる溶鋼を、実験室的に溶製 '铸込 みの後、 熱延により板厚: 30讓 のシートパーとした。 ついで、 表 9に示す各温度 The molten steel having the compositions shown in Table 4, Steel 溶, Steel Ν and Steel Ο was smelted in a laboratory and then hot rolled to form a sheet par with a sheet thickness of 30 cm. Then, each temperature shown in Table 9
(SRT) に 60分間加熱した後、 板厚: 2 ramまで熱延し、 表 9に示す各温度 (CT) にてコイル巻き取り相当の均熱保持を 1時間行ったのち、放冷した。その後、一部. の鋼を除き、 表 9に示す各温度で 60秒の熱延板焼鈍を施した。 After heating to (SRT) for 60 minutes, it was hot-rolled to a plate thickness of 2 ram, kept at a constant temperature equivalent to coil winding for 1 hour at each temperature (CT) shown in Table 9, and then allowed to cool. After that, except for some steels, hot-rolled sheet annealing was performed for 60 seconds at each temperature shown in Table 9.
得られた熱延鋼板について、 室温 (23で) で曲げ試験を行った。 曲げ試験は、熱 延板より 100raraX30讓の試験片を圧延方向が長手となるように採取し、 JIS-C 2550 に準じて曲げ半径 15mraの繰り返し曲げ試験を行った。 熱延板表面に亀裂の入るま での回数を表 9に示す。  A bending test was performed on the obtained hot-rolled steel sheet at room temperature (at 23). In the bending test, a test piece of 100 rara X 30 sq. Was sampled from the hot-rolled sheet so that the rolling direction became longitudinal, and a repeated bending test with a bending radius of 15 mra was performed according to JIS-C2550. Table 9 shows the number of times until the surface of the hot rolled sheet cracked.
また、 スラブ加熱時、熱延板焼鈍時の組織 (相) を次の方法で調査した。 シート パー、 熱延板とも、 それぞれ所定 (表 9に記載) に所定時間 (スラブ加熱: 1 時間、焼鈍: 6 0秒) 保持した後、水焼き入れして加熱時の組織を凍結し、光学顕 微鏡による糸 観察により、 相を同定した。 結果を表 9に併記する。  The structure (phase) during slab heating and hot-rolled sheet annealing was investigated by the following method. After maintaining the sheet par and the hot rolled sheet for a predetermined time (described in Table 9) for a predetermined time (slab heating: 1 hour, annealing: 60 seconds), the structure at the time of heating is frozen by water quenching, and optical The phases were identified by microscopic observation of the yarn. The results are shown in Table 9.
上記熱延板は酸洗したのち、 0. 50醒厚までの冷延 (1回冷延) を行い、 脆化に よる冷延不良 (層状割れ) が発生していないかを評価した。層状割れの発生してい ない冷延板については、表 9に示す種々の温度で仕上げ焼鈍を施し、ついで、実施 例 1と同様の半有機絶縁被膜を塗布したサンプルを作製して、各種試験に供した。 得られた結果を表 9に示す。 The hot-rolled sheet was pickled and then cold-rolled to a thickness of 0.50 (one-time cold-rolling), and evaluated whether or not cold-rolling failure (lamellar cracking) due to embrittlement occurred. The cold-rolled sheet with no layer cracks was subjected to finish annealing at various temperatures shown in Table 9 and then samples coated with the same semi-organic insulating coating as in Example 1 were prepared for various tests. Provided. Table 9 shows the obtained results.
表 9 Table 9
No m 銅組成 備考 SRT ス ラ ブ CT 熱延板 熱延 板 熱延板 製造可否 仕上げ 粒径 Β50 W15/50 YPNo m Copper composition Remarks SRT slab CT Hot rolled sheet Hot rolled sheet Hot rolled sheet Manufacturability Finishing Grain size Β50 W15 / 50 YP
No (C) 加熱時 (C0) 焼鈍温 焼 鈍 の 曲げ回 焼鈍温 (μιη) (Τ) (W kg) (MPa) の組織 度 (c。) 組織 数 度 (c。) No (C) Heating (C 0 ) Annealing temperature Annealing bending temperature Annealing temperature (μιη) (Τ) (W kg) (MPa) Microstructure (c.) Microstructure Several degrees (c.)
1 M 発明銷 比較例 1250 α + 7 520 なし 4 層状割れ - - - - - 1 M Invention comparative example 1250 α + 7 520 None 4 Layered crack-----
2 M 発明銷 発明例 1150 単相 520 なし - 30 〇 800 46.2 1.765 4.47 2752 M Invention promotion Invention example 1150 Single phase 520 None-30 〇 800 46.2 1.765 4.47 275
3 M 発明銷 発明例 1050 " 単相 520 なし 28 〇. 800 38.2 1.762 4.75 2883 M Invention Sale Invention Example 1050 "Single phase 520 None 28 〇. 800 38.2 1.762 4.75 288
4 M 発明鋼 比較例 950 α + V 520 なし - 5 層状割れ - -4 M Invention steel Comparative example 950 α + V 520 None-5 Layer crack--
5 M 発明銷 比較例 1150 Υ単相 720 900 単相 3 曲げ性低下 850 45.1 1.762 6.83 2885 M Invention promotion Comparative example 1150 Υ Single phase 720 900 Single phase 3 Degradation of bendability 850 45.1 1.762 6.83 288
6 N 発明銷 発明例 1150 y単相 620 900 α ft 17 〇 850 65.2 1.764 4.31 2426 N Invention promotion Invention example 1150 y Single phase 620 900 α ft 17 〇 850 65.2 1.764 4.31 242
7 N 発明銷 比較例 1150 " 単相 550 960 α + 7 20 〇 850 53.8 1.736 4.33 2447 N Invention Promotion Comparative Example 1150 "Single-Phase 550 960 α + 7 20 850 850 53.8 1.736 4.33 244
8 . N 発明銅 発明例 1150 y単相 550 1100 γ単相 22 〇 850 52.1 1.768 4.36 2468.N invention copper invention example 1150 y single phase 550 1100 γ single phase 22 〇 850 52.1 1.768 4.36 246
9 N 発明錮 比較例 1150 γ単相 500 900 a単相 27 〇 670 16.0 1.766 7.38 3459 N Invention penalty Comparative example 1150 γ single phase 500 900a single phase 27 〇 670 16.0 1.766 7.38 345
10 0 発明銷 発明例 1100 y単相 600 1100 γ単相 26 Ο 800 36.5 1.777 4.12 29010 0 Invention promotion Invention example 1100 y single phase 600 1100 γ single phase 26 Ο 800 36.5 1.777 4.12 290
11 0 発明鋼 発明例 1100 y単相 600 1000 " 単相 33 〇 800 38.5 1.780 4.02 28611 0 Invention steel Invention example 1100 y Single phase 600 1000 "Single phase 33 〇 800 38.5 1.780 4.02 286
CD 12 0 発明鋼 比較例 1100 y単相 550 900 a + y 28 Ο 800 32.6 1.733 4.34 298 CD 12 0 Inventive steel Comparative example 1100 y Single phase 550 900 a + y 28 Ο 800 32.6 1.733 4.34 298
13 0 発明鋼 比較例 1100 y単相 550 800 α単相 24 ο 800 36.8 1.733 4.10 289 13 0 Inventive steel Comparative example 1100 y single phase 550 800 α single phase 24 ο 800 36.8 1.733 4.10 289
本発明の鋼組成 (低 Si鋼) において、本発明の製造条件を満足した場合(N( 2、 3、 6、 8、 10および 11)、 高 P添加にもかかわらず、 問題なく鋼板が製造され、 特性も良好であった。 When the steel composition of the present invention (low Si steel) satisfies the manufacturing conditions of the present invention (N (2, 3, 6, 8, 10, and 11)), steel sheets can be manufactured without problems despite the addition of high P. The properties were also good.
他方、本発明のスラブ加熱温度が 2相領域となった (Ntx lおよび 4 ) は、脆 化による冷延不良が発生し易く製品化が困難であることがわかる。 また、コイノ き取り温度が 650でより高い (Ν 5 ) した場合は、 熱延板の加工性が低下し、 得ら れた電磁鋼板の鉄損も低下した。さらに、熱延板焼鈍温度が 2相域となった場合 (No. 7および 12)、 および、 Niを 1. 0 mass%より多く添加した鋼において α単相域で 熱延板焼鈍を行った (Να13) は、得られた電磁鋼板の磁束密度が低下した。 さ らにまた、仕上げ焼鈍温度が本発明の製造条件を外れ、再結晶粒径を 30 // m以上と するのに不十分な場合 (Ν 9 ) も、 磁気特性が劣化した。 産業上の利用の可能性 かくして、本発明によれば、高磁束密度かつ低鉄損という優れた磁気特性を有し、 しかも高い打ち抜き寸法精度を有する無方向性電磁鋼板、およびさらに高強度を有 する無方向性電磁鋼板を安定して得ることができる。  On the other hand, when the slab heating temperature of the present invention was in the two-phase region (Ntxl and 4), it was found that cold rolling failure due to embrittlement easily occurred and commercialization was difficult. Also, when the Koino scraping temperature was higher at 650 (Ν5), the workability of the hot rolled sheet was reduced, and the iron loss of the obtained electrical steel sheet was also reduced. Furthermore, when the hot-rolled sheet annealing temperature was in the two-phase region (Nos. 7 and 12), and in steels with more than 1.0 mass% Ni added, hot-rolled sheet annealing was performed in the α single-phase region. With (Να13), the magnetic flux density of the obtained magnetic steel sheet decreased. Furthermore, when the finish annealing temperature was outside the production conditions of the present invention and was not sufficient to make the recrystallized grain size equal to or more than 30 // m (Ν9), the magnetic properties were also deteriorated. Industrial Applicability Thus, according to the present invention, a non-oriented electrical steel sheet having excellent magnetic properties such as high magnetic flux density and low iron loss, high punching dimensional accuracy, and high strength A stable non-oriented electrical steel sheet can be obtained.
そして、本発明の無方向性電磁鋼板は、各種モータの鉄心素材、 中でも特に高い 寸法精度と高磁束密度が併せて要求されるリラクタンスモータや、さらに素材強度 を要する埋め込み磁石型の D Cブラシレスモータなどの鉄心素材として最適であ る。  The non-oriented electrical steel sheet of the present invention is used as a core material for various motors, particularly a reluctance motor that requires particularly high dimensional accuracy and a high magnetic flux density, and an embedded magnet type DC brushless motor that requires further material strength. It is most suitable as iron core material.

Claims

請求の範囲 The scope of the claims
1 . 質量百分率で 1. In mass percentage
C: 0〜0.010 %、  C: 0 to 0.010%,
Siおよび A1の少なくとも 1種:合計で 0.03%以上、 0.5 %以下、 At least one of Si and A1: 0.03% or more, 0.5% or less in total,
Mn: 0.5 %以下、 Mn: 0.5% or less,
P: 0.10%以上、 0.26%以下、  P: 0.10% or more, 0.26% or less,
S : 0.015 %以下および  S: 0.015% or less and
N: 0.010 %以下  N: 0.010% or less
を含有し、 残部は Feおよび不可避的不純物の組成になり、 かつ And the remainder is composed of Fe and unavoidable impurities, and
平均結晶粒径: 30 / m以上、 80μ πι以下  Average grain size: 30 / m or more, 80μπι or less
としたことを特徴とする無方向性電磁鋼板。 Non-oriented electrical steel sheet characterized by the following.
2. 請求項 1において、 鋼板がさらに、 質量百分率で 2. The steel sheet according to claim 1, wherein the steel sheet further comprises:
Sbおよび Snの少なくとも 1種:合計で 0.40%以下  At least one of Sb and Sn: 0.40% or less in total
を含有することを特徴とする無方向性電磁鋼板。 A non-oriented electrical steel sheet comprising:
3 . 請求項 1または 2において、 鋼板がさらに、 質量百分率で 3. The steel sheet according to claim 1 or 2, further comprising:
Ni: 2.3 %以下  Ni: 2.3% or less
を含有することを特徴とする無方向性電磁鋼板。 A non-oriented electrical steel sheet comprising:
4 . 請求項 1〜 3のいずれかにおいて、 鋼板がさらに、 質量百分率で Ca: 0.01%以下、 B : 0.005%以下、 4. The steel sheet according to any one of claims 1 to 3, wherein the steel sheet further comprises, by mass percentage, Ca: 0.01% or less, B: 0.005% or less,
Cr: 0.1 %以下、 Cu: 0.1 %以下  Cr: 0.1% or less, Cu: 0.1% or less
Mo: 0.1 %以下  Mo: 0.1% or less
の少なくともいずれかを含有することを特徴とする無方向性電磁鋼板。 A non-oriented electrical steel sheet comprising at least one of the following.
5 . 請求項 1〜 4のいずれかにおいて、 鋼板の板厚が 0.35mm以下であること を特徴とする無方向性電磁鋼板。 5. The non-oriented electrical steel sheet according to any one of claims 1 to 4, wherein the thickness of the steel sheet is 0.35 mm or less.
6 . 質量百分率で 6. In mass percentage
C: 0〜0.010 %、  C: 0 to 0.010%,
Siおよび A1の少なくとも 1種:合計で 0.5%超え、 2.5%以下、  At least one of Si and A1: over 0.5%, up to 2.5%,
Mn: 0.5 %以下、  Mn: 0.5% or less,
P : 0.10%以上、 0.26%以下、  P: 0.10% or more, 0.26% or less,
S : 0.015 %以下、  S: 0.015% or less,
N: 0.010 %以下、 および  N: 0.010% or less, and
必要に応じ Ni: 2.3 %以下  Ni as required: 2.3% or less
を含有し、 残部は Feおよび不可避的不純物の組成になり、 かつ、 And the remainder is composed of Fe and inevitable impurities, and
P≤PAおよび PF≤0.26の少なくとも一方の関係を満足する、 Satisfies at least one of P≤P A and P F ≤0.26,
ただし、 However,
PA= -0.2Si+0.12Mn-0.32Al+0.05Ni2+0.10Ni+0.36 ( 1 )PA = -0.2Si + 0.12Mn-0.32Al + 0.05Ni 2 + 0.10Ni + 0.36 (1)
PF= -0.34Si+0.20Mn-0.54Al+0.24Ni2 + 0.28Ni+0.76 ( 2 ) ここで、 各元素含有量の単位は mass% PF = -0.34Si + 0.20Mn-0.54Al + 0.24Ni 2 + 0.28Ni + 0.76 (2) where unit of each element content is mass%
ことを特徴とする無方向性電磁鋼板。 Non-oriented electrical steel sheet characterized by the above-mentioned.
7 . 請求項 6において、 鋼板がさらに、 質量百分率で 7. The steel sheet according to claim 6, wherein the steel sheet further comprises:
Sbおよび Snの少なくとも 1種:合計で 0.40%以下  At least one of Sb and Sn: 0.40% or less in total
を含有することを特徴とする無方向性電磁鋼板。 A non-oriented electrical steel sheet comprising:
8 . 請求項 6または 7において、 鋼板がさらに、 質量百分率で 8. The steel sheet according to claim 6 or 7, wherein the steel sheet further comprises:
Ca: 0.01%以下、 B: 0.005%以下、  Ca: 0.01% or less, B: 0.005% or less,
Cr: 0.1 %以下、 Cu: 0.1 %以下  Cr: 0.1% or less, Cu: 0.1% or less
Mo: 0.1 %以下 の少なくともいずれかを含有することを特徴とする無方向性電磁鋼板。 Mo: 0.1% or less A non-oriented electrical steel sheet comprising at least one of the following.
9 . 請求項 1〜 4のいずれかに記載の成分組成になる鋼スラブに対し、 9. For a steel slab having the composition described in any one of claims 1 to 4,
熱間圧延を、 加熱温度がオーステナイト単相域で、 かつコイル卷き取り温度が 650 以下の条件で行い、  The hot rolling is performed under the condition that the heating temperature is in the austenite single phase region and the coil winding temperature is 650 or less.
ついで脱スケール処理後、 1回または中間焼鈍を含む 2回以上の冷間圧延を行つ たのち、 700 以上のフェライト単相域で仕上げ焼鈍を行うことを特徴とする、 無方向性電磁鋼板の製造方法。  Then, after descaling, after one or two or more cold rollings including intermediate annealing, finish annealing is performed in a ferrite single phase region of 700 or more. Production method.
1 0 . 請求項 1〜4のいずれかに記載の成分組成になる鋼スラブに対し、 熱間圧延を、 加熱温度がオーステナイト単相域で、 かつコイル卷き取り温度が 650 以下の条件で行ったのち、 10. Hot rolling is performed on the steel slab having the composition as defined in any one of claims 1 to 4 under the condition that the heating temperature is in the austenite single phase region and the coil winding temperature is 650 or less. After a while
Niが無添加であるか、 Ni含有量が 1.0 mass%以下の場合には、 900 ^以上の フェライト単相域または Ac 3点以上のオーステナイト単相域のいずれかで熱延板 焼鈍を行い、  If Ni is not added or the Ni content is 1.0 mass% or less, hot-rolled sheet annealing is performed in either the ferrite single-phase region of 900 ^ or more or the austenitic single-phase region of Ac 3 points or more,
Ni含有量が 1.0mass%超え、 2.3 mass%以下の場合には、 Ac 3点以上のォー ステナイト単相域で熱延板焼鈍を行い、  When the Ni content exceeds 1.0 mass% and is 2.3 mass% or less, hot-rolled sheet annealing is performed in the austenite single-phase region with three or more Ac points.
ついで脱スケール処理後、 1回または中間焼鈍を含む 2回以上の冷間圧延を行つ たのち、  Next, after descaling, cold rolling is performed once or twice or more including intermediate annealing.
700 以上のフェライト単相域で仕上げ焼鈍を行うことを特徴とする、 無方向 性電磁鋼板の製造方法。  A method for producing a non-oriented electrical steel sheet, comprising performing finish annealing in a ferrite single phase region of 700 or more.
1 1 . 請求項 6〜 8のいずれかに記載の成分組成になる鋼スラブに対し、 熱間圧延を、 加熱温度が 1000〜: 1200 、 かつコイル卷き取り温度が 650^以下 の条件で行ったのち、 11 1. Hot rolling is performed on the steel slab having the composition described in any one of claims 6 to 8 under the conditions of a heating temperature of 1000 to 1200 and a coil winding temperature of 650 ^ or less. After a while
必要に応じ熱延板焼鈍を施し、  Perform hot rolled sheet annealing as necessary,
ついで脱スケール処理後、 1回または中間焼鈍を含む 2回以上の冷間圧延を行つ たのち、 Then, after descaling, cold rolling is performed once or twice or more including intermediate annealing. After a while
仕上げ焼鈍を行うことを特徴とする、 無方向性電磁鋼板の製造方法。  A method for producing a non-oriented electrical steel sheet, comprising performing finish annealing.
PCT/JP2002/006458 2001-06-28 2002-06-27 Nonoriented electromagnetic steel sheet WO2003002777A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP02738812A EP1411138A4 (en) 2001-06-28 2002-06-27 Nonoriented electromagnetic steel sheet
JP2003508741A JP4329538B2 (en) 2001-06-28 2002-06-27 Non-oriented electrical steel sheet and manufacturing method thereof
KR1020037002839A KR100956530B1 (en) 2001-06-28 2002-06-27 Nonoriented electromagnetic steel sheet
US10/481,919 US20040149355A1 (en) 2001-06-28 2002-06-27 Nonoriented electromagnetic steel sheet
US11/978,406 US20080060728A1 (en) 2001-06-28 2007-10-29 Method of manufacturing a nonoriented electromagnetic steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001195832 2001-06-28
JP2001-195832 2001-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/978,406 Division US20080060728A1 (en) 2001-06-28 2007-10-29 Method of manufacturing a nonoriented electromagnetic steel sheet

Publications (1)

Publication Number Publication Date
WO2003002777A1 true WO2003002777A1 (en) 2003-01-09

Family

ID=19033747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006458 WO2003002777A1 (en) 2001-06-28 2002-06-27 Nonoriented electromagnetic steel sheet

Country Status (7)

Country Link
US (2) US20040149355A1 (en)
EP (1) EP1411138A4 (en)
JP (1) JP4329538B2 (en)
KR (1) KR100956530B1 (en)
CN (1) CN1318627C (en)
TW (1) TW555863B (en)
WO (1) WO2003002777A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100334246C (en) * 2004-05-28 2007-08-29 宝山钢铁股份有限公司 False-proof coinage steel and producing method thereof
JP2009185357A (en) * 2008-02-07 2009-08-20 Jfe Steel Corp Non-oriented electrical steel sheet, and method for producing the same
JP2018003049A (en) * 2016-06-28 2018-01-11 新日鐵住金株式会社 Electrical steel sheet excellent in space factor and manufacturing method therefor
JP2019504193A (en) * 2015-12-11 2019-02-14 ポスコPosco Non-oriented electrical steel sheet and manufacturing method thereof
WO2020188783A1 (en) 2019-03-20 2020-09-24 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10153234A1 (en) * 2001-10-31 2003-05-22 Thyssenkrupp Stahl Ag Hot-rolled steel strip intended for the production of non-grain-oriented electrical sheet and method for its production
DE10221793C1 (en) * 2002-05-15 2003-12-04 Thyssenkrupp Electrical Steel Ebg Gmbh Non-grain oriented electrical steel or sheet and process for its manufacture
PT1662010E (en) 2004-11-24 2009-03-03 Giovanni Arvedi Magnetic hot rolled steel strip particularly suited for the production of electromagnetic lamination packs
CN101218362B (en) * 2005-07-07 2010-05-12 住友金属工业株式会社 Non-oriented electromagnetic steel sheet and its manufacturing method
JP4464889B2 (en) * 2005-08-11 2010-05-19 株式会社神戸製鋼所 Soft magnetic steel materials with excellent cold forgeability, machinability and magnetic properties, and soft magnetic steel parts with excellent magnetic properties
WO2007063581A1 (en) * 2005-11-30 2007-06-07 Sumitomo Metal Industries, Ltd. Nonoriented electromagnetic steel sheet and process for producing the same
KR100797895B1 (en) * 2006-12-22 2008-01-24 성진경 Method of forming cube-on-face texture on surface, method of manufacturing non-oriented electrical steel sheets using the same and non-oriented electrical steel sheets manufactured by using the same
KR101325369B1 (en) * 2009-01-26 2013-11-08 신닛테츠스미킨 카부시키카이샤 Non-oriented electromagnetic steel sheet
US9051622B2 (en) 2009-03-13 2015-06-09 Nippon Steel & Sumitomo Metal Corporation Non-oriented magnetic steel sheet and method for producing the same
JP5041084B2 (en) * 2010-03-31 2012-10-03 Jfeスチール株式会社 High-tensile hot-rolled steel sheet excellent in workability and manufacturing method thereof
CN102453837B (en) * 2010-10-25 2013-07-17 宝山钢铁股份有限公司 Method for preparing non-oriented silicon steel with high magnetic induction
JP5668460B2 (en) * 2010-12-22 2015-02-12 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheet
PL3173503T3 (en) * 2011-08-18 2019-04-30 Nippon Steel & Sumitomo Metal Corp Manufacturing method of non-oriented electrical steel sheet
US9728312B2 (en) * 2011-11-11 2017-08-08 Nippon Steel & Sumitomo Metal Corporation Non-oriented electrical steel sheet and manufacturing method thereof
US10096414B2 (en) 2011-12-28 2018-10-09 Posco Non-oriented electrical steel sheet and method of manufacturing the same
KR101638715B1 (en) 2012-01-31 2016-07-11 제이에프이 스틸 가부시키가이샤 Hot-rolled steel for power generator rim and method for manufacturing same
JP6127440B2 (en) * 2012-10-16 2017-05-17 Jfeスチール株式会社 Hot rolled steel sheet for manufacturing non-oriented electrical steel sheet and method for manufacturing the same
JP6057082B2 (en) * 2013-03-13 2017-01-11 Jfeスチール株式会社 Non-oriented electrical steel sheet with excellent magnetic properties
JP5790953B2 (en) 2013-08-20 2015-10-07 Jfeスチール株式会社 Non-oriented electrical steel sheet and its hot-rolled steel sheet
JP5995002B2 (en) 2013-08-20 2016-09-21 Jfeスチール株式会社 High magnetic flux density non-oriented electrical steel sheet and motor
US10158268B2 (en) * 2013-09-17 2018-12-18 Panasonic Intellectual Property Management Co., Ltd. Brushless DC motor and ventilation device having same mounted therein
JP2015131993A (en) * 2014-01-14 2015-07-23 Jfeスチール株式会社 Non-oriented silicon steel sheet having excellent magnetic property
US10199910B2 (en) * 2014-10-03 2019-02-05 Ford Global Technologies, Llc Motor core formed from a single steel source and having separately processed rotor and stator laminations
US11225699B2 (en) 2015-11-20 2022-01-18 Jfe Steel Corporation Method for producing non-oriented electrical steel sheet
CN105925884B (en) * 2016-05-30 2018-03-09 宝山钢铁股份有限公司 A kind of high magnetic strength, low iron loss non-oriented silicon steel sheet and its manufacture method
WO2018079059A1 (en) * 2016-10-27 2018-05-03 Jfeスチール株式会社 Nonoriented electromagnetic steel sheet and method for producing same
JP6665794B2 (en) 2017-01-17 2020-03-13 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
CN110249063A (en) 2017-02-07 2019-09-17 杰富意钢铁株式会社 The manufacturing method of non orientation electromagnetic steel plate and the manufacturing method of motor iron core and motor iron core
EP3572535B1 (en) * 2017-03-30 2022-04-27 JFE Steel Corporation Method for manufacturing non-oriented electromagnetic steel plate, and method for manufacturing motor core
KR102043525B1 (en) * 2017-12-26 2019-11-12 주식회사 포스코 Thin non-oriented electrical steel sheet having excellent magnetic properties and shape and method of manufacturing the same
US11111567B2 (en) 2018-03-26 2021-09-07 Nippon Steel Corporation Non-oriented electrical steel sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425346B2 (en) * 1986-04-28 1992-04-30 Nippon Steel Corp
JP2599529B2 (en) * 1992-02-21 1997-04-09 新日本製鐵株式会社 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPH09263908A (en) * 1996-03-26 1997-10-07 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet and its production
JPH1112700A (en) * 1997-06-27 1999-01-19 Nkk Corp Non-oriented electrical sheet having low iron loss
US6340399B1 (en) * 1999-06-16 2002-01-22 Sumitomo Metal Industries, Ltd. Non-oriented electrical steel sheet and method for producing the same
JP6086648B2 (en) * 2012-03-12 2017-03-01 国立研究開発法人産業技術総合研究所 Phototransistor and imaging device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63317627A (en) * 1987-06-18 1988-12-26 Kawasaki Steel Corp Semiprocessing non-oriented silicon steel sheet combining low iron loss with high magnetic permeability and its production
JPH01112700A (en) * 1987-10-26 1989-05-01 Hitachi Medical Corp Inverter type x-ray device
JPH0686648B2 (en) * 1990-09-27 1994-11-02 住友金属工業株式会社 Non-oriented electrical steel sheet with excellent magnetic properties
CN1047207C (en) * 1994-06-24 1999-12-08 新日本制铁株式会社 Method of manufacturing non-oriented electromagnetic steel plate having high magnetic flux density and low iron loss
US6139650A (en) * 1997-03-18 2000-10-31 Nkk Corporation Non-oriented electromagnetic steel sheet and method for manufacturing the same
US6436199B1 (en) * 1999-09-03 2002-08-20 Kawasaki Steel Corporation Non-oriented magnetic steel sheet having low iron loss and high magnetic flux density and manufacturing method therefor
JP4258918B2 (en) * 1999-11-01 2009-04-30 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425346B2 (en) * 1986-04-28 1992-04-30 Nippon Steel Corp
JP2599529B2 (en) * 1992-02-21 1997-04-09 新日本製鐵株式会社 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPH09263908A (en) * 1996-03-26 1997-10-07 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet and its production
JPH1112700A (en) * 1997-06-27 1999-01-19 Nkk Corp Non-oriented electrical sheet having low iron loss
US6340399B1 (en) * 1999-06-16 2002-01-22 Sumitomo Metal Industries, Ltd. Non-oriented electrical steel sheet and method for producing the same
JP6086648B2 (en) * 2012-03-12 2017-03-01 国立研究開発法人産業技術総合研究所 Phototransistor and imaging device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1411138A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100334246C (en) * 2004-05-28 2007-08-29 宝山钢铁股份有限公司 False-proof coinage steel and producing method thereof
JP2009185357A (en) * 2008-02-07 2009-08-20 Jfe Steel Corp Non-oriented electrical steel sheet, and method for producing the same
JP2019504193A (en) * 2015-12-11 2019-02-14 ポスコPosco Non-oriented electrical steel sheet and manufacturing method thereof
US11299791B2 (en) 2015-12-11 2022-04-12 Posco Non-oriented electrical steel sheet and manufacturing method therefor
JP2018003049A (en) * 2016-06-28 2018-01-11 新日鐵住金株式会社 Electrical steel sheet excellent in space factor and manufacturing method therefor
WO2020188783A1 (en) 2019-03-20 2020-09-24 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same
KR20210125074A (en) 2019-03-20 2021-10-15 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
US20040149355A1 (en) 2004-08-05
CN1520464A (en) 2004-08-11
CN1318627C (en) 2007-05-30
EP1411138A1 (en) 2004-04-21
JP4329538B2 (en) 2009-09-09
EP1411138A4 (en) 2005-01-12
TW555863B (en) 2003-10-01
JPWO2003002777A1 (en) 2004-10-21
US20080060728A1 (en) 2008-03-13
KR20040014960A (en) 2004-02-18
KR100956530B1 (en) 2010-05-07

Similar Documents

Publication Publication Date Title
WO2003002777A1 (en) Nonoriented electromagnetic steel sheet
US11279985B2 (en) Non-oriented electrical steel sheet
JP6891682B2 (en) Electrical steel sheet and its manufacturing method, rotor motor core and its manufacturing method, stator motor core and its manufacturing method, and motor core manufacturing method
JP5995002B2 (en) High magnetic flux density non-oriented electrical steel sheet and motor
JP5884153B2 (en) High strength electrical steel sheet and manufacturing method thereof
EP3533890B1 (en) Non-oriented electrical steel sheet and method for producing same
KR102248323B1 (en) Non-oriented electrical steel sheet and method of producing same
JP5028992B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2011084761A (en) Non-oriented electromagnetic steel sheet for rotor and manufacturing method therefor
KR101628193B1 (en) High-strength electrical steel sheet and method of producing the same
JP7054074B2 (en) Manufacturing method of non-oriented electrical steel sheet, manufacturing method of motor core and motor core
CA2993594C (en) Non-oriented electrical steel sheet and method of producing same
JP2008240104A (en) High-strength non-oriented electromagnetic steel sheet and method for producing the same
EP3926060A1 (en) Non-oriented electromagnetic steel sheet
JP5939190B2 (en) Electrical steel sheet
JP6048282B2 (en) Electrical steel sheet
JP6123234B2 (en) Electrical steel sheet
JP5614063B2 (en) High tension non-oriented electrical steel sheet with excellent high-frequency iron loss
JP4568999B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR101110257B1 (en) Non-oriented electrical steel sheet with high magnetic flux density and manufacturing method thereof
CN116888295B (en) Non-oriented electromagnetic steel sheet, motor core, method for manufacturing non-oriented electromagnetic steel sheet, and method for manufacturing motor core
WO2024080140A1 (en) Nonoriented electromagnetic steel sheet and method for manufacturing same
CN111465709B (en) Multilayer electromagnetic steel sheet
KR20240021880A (en) Non-oriented electrical steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 1020037002839

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003508741

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002738812

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10481919

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 028128907

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020037002839

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002738812

Country of ref document: EP