JPH0718335A - Manufacture of electromagnetic steel sheet having excellent magnetic property - Google Patents

Manufacture of electromagnetic steel sheet having excellent magnetic property

Info

Publication number
JPH0718335A
JPH0718335A JP5167656A JP16765693A JPH0718335A JP H0718335 A JPH0718335 A JP H0718335A JP 5167656 A JP5167656 A JP 5167656A JP 16765693 A JP16765693 A JP 16765693A JP H0718335 A JPH0718335 A JP H0718335A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
rolling
secondary recrystallization
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5167656A
Other languages
Japanese (ja)
Other versions
JP2819994B2 (en
Inventor
Hiroyoshi Yashiki
裕義 屋鋪
Takashi Tanaka
隆 田中
Mitsuyo Doi
光代 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5167656A priority Critical patent/JP2819994B2/en
Publication of JPH0718335A publication Critical patent/JPH0718335A/en
Application granted granted Critical
Publication of JP2819994B2 publication Critical patent/JP2819994B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a manufacturing method of an electromagnetic steel sheet having little anisotropy in magnetic property. CONSTITUTION:A steel slab containing <=0.010% C, 1.5 to 4.0% Si, 1.0 to 4.0% Mn, <=0.01% S, less than 0.003% sol.Al and 0.001 to 0.010% N is treated by the following (1) to (5) in which the electromagnetic steel sheet with low iron loss and excellent balance between magnetic properties in the rolling direction and in the direction orthogonally crossing with the rolling direction is manufactured. (1) Hot rolling process. (2) Cold rolling process continuously following the hot rolling or after annealing following the hot rolling. (3) First crystallizing process by continuous annealing. (4) Second crystallizing process by keeping for 4 to 100 hours in a temp. range of 800 to 950 deg.C in an N2 containing atmosphere. (5) Purifying process by keeping for 4 to 100 hours in a temp. range of 800 to 1000 deg.C in an H2 atmosphere. Thus, the electromagnetic steel sheet having iron loss anisotropy of <=2.0 and low iron loss in both of the rolling direction and the direction orthogonally crossing with rolling direction is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、大型回転機用の鉄心材
料として優れた磁気特性を有する電磁鋼板の製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an electromagnetic steel sheet having excellent magnetic properties as an iron core material for a large rotating machine.

【0002】[0002]

【従来の技術】発電機や大型モーターのような大型の回
転機用鉄心には、鋼板の圧延方向(L方向)と圧延直角
方向 (C方向)の磁気特性のバランスが重要である。一
般には、ハイグレードの無方向性電磁鋼板と方向性電磁
鋼板が使用されている。
2. Description of the Related Art In iron cores for large rotating machines such as generators and large motors, it is important to balance the magnetic properties of the steel sheet in the rolling direction (L direction) and the rolling orthogonal direction (C direction). Generally, high-grade non-oriented electrical steel sheets and grain-oriented electrical steel sheets are used.

【0003】しかし、無方向性電磁鋼板を用いるとL方
向の磁気特性が十分とは言えず、この特性改善が課題と
なっている。一方、方向性電磁鋼板を用いると磁気特性
の異方性が強く、L方向の磁気特性は優れているがC方
向の磁気特性が極端に悪いため、やはり現状では十分に
満足できる磁気特性とはなっていない。加えて、方向性
電磁鋼板の製造には脱炭焼鈍や1200℃前後の高温での仕
上焼鈍が必要であるため、極めてコストが高いものとな
る。
However, when a non-oriented electrical steel sheet is used, the magnetic properties in the L direction cannot be said to be sufficient, and improvement of this property is a problem. On the other hand, when the grain-oriented electrical steel sheet is used, the anisotropy of magnetic properties is strong and the magnetic properties in the L direction are excellent, but the magnetic properties in the C direction are extremely poor. is not. In addition, the production of grain-oriented electrical steel sheets requires decarburization annealing and finish annealing at a high temperature of around 1200 ° C, which makes the cost extremely high.

【0004】以上のような問題を解決するために、いく
つかの提案がなされている。例えば特開平5−9666号公
報には、C:0.01 %以下、Si:1.5〜3.0 %、Mn:1.0〜3.
0 %、酸可溶性Al:0.003〜0.015 %を含有する鋼スラブ
から製造された鋼板を用い、二次再結晶のための焼鈍を
窒素含有雰囲気で行うことにより、脱炭焼鈍や1050℃を
超える高温焼鈍を施すことなく低コストで、良好な磁気
特性を有する方向性電磁鋼板を製造する方法が示されて
いる。
Several proposals have been made to solve the above problems. For example, in JP-A-5-9666, C: 0.01% or less, Si: 1.5 to 3.0%, Mn: 1.0 to 3.
Decarburization annealing or high temperature exceeding 1050 ° C is performed by performing annealing for secondary recrystallization in a nitrogen-containing atmosphere using a steel sheet manufactured from a steel slab containing 0% and acid-soluble Al: 0.003 to 0.015%. A method for producing a grain-oriented electrical steel sheet having good magnetic properties at low cost without annealing has been shown.

【0005】しかしこの方法は、C方向の磁気特性が極
端に悪いという方向性電磁鋼板の欠点の解消を目的とす
るものではない。
However, this method is not intended to eliminate the drawback of the grain-oriented electrical steel sheet in which the magnetic properties in the C direction are extremely poor.

【0006】特開平5−70833 号公報には、スラブ加熱
温度1150〜1250℃で熱間圧延を行い、次いで中間焼鈍を
含む1〜2回の冷間圧延を行った後、脱炭焼鈍を施し、
その後必要に応じて 0.5〜5.0 %の圧下率で冷間圧延を
施した後、連続焼鈍を行う磁気特性の異方性のバランス
に優れた電磁鋼板の製造方法が示されている。
Japanese Unexamined Patent Publication (Kokai) No. 5-70833 discloses hot rolling at a slab heating temperature of 1150 to 1250 ° C., followed by cold rolling 1 to 2 times including intermediate annealing, followed by decarburizing annealing. ,
After that, a method for producing an electrical steel sheet having an excellent balance of anisotropy of magnetic properties is shown, in which cold rolling is performed at a reduction rate of 0.5 to 5.0% if necessary and continuous annealing is performed.

【0007】しかしこの場合も、一般の方向性電磁鋼板
に比べると異方性は減少しているが、鉄損のC/L(C
方向の鉄損W15/50 をL方向のそれで割った値)が2倍
を超えるレベルにあり、異方性の改善が十分に行われて
いるとは言えない。しかも、この方法では脱炭焼鈍や場
合により2〜3回の冷間圧延が必要であり、十分なコス
ト低減効果がない。
However, in this case as well, although the anisotropy is reduced as compared with the general grain-oriented electrical steel sheet, the C / L (C
The iron loss W 15/50 in the direction is divided by that in the L direction), and the anisotropy is not sufficiently improved. Moreover, this method requires decarburization annealing and, depending on the case, 2-3 times of cold rolling, and does not have a sufficient cost reduction effect.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、鉄損
のC/Lが2.0 以下で極度の異方性がなく、しかもL方
向とC方向の鉄損がともに低いレベルにある、回転機用
の鉄心材料として優れた磁気特性を有する電磁鋼板を低
コストで製造する方法を提供することにある。
The object of the present invention is to provide a C / L of iron loss of 2.0 or less, no extreme anisotropy, and a low iron loss in both the L and C directions. An object of the present invention is to provide a method of manufacturing an electromagnetic steel sheet having excellent magnetic properties as an iron core material for a machine at low cost.

【0009】[0009]

【課題を解決するための手段】本発明の要旨は次の製造
方法にある。
The gist of the present invention resides in the following manufacturing method.

【0010】重量%で、C:0.010%以下、Si:1.5〜4.0
%、Mn:1.0〜4.0 %、S: 0.01%以下、酸可溶性Al:0.0
03%未満、N:0.001〜0.010 %を含有し、残部はFeおよ
び不可避的不純物からなる鋼スラブを、下記〜の工
程で処理することを特徴とする、鉄損が低く圧延方向と
圧延直角方向の磁気特性のバランスに優れた電磁鋼板の
製造方法。
% By weight, C: 0.010% or less, Si: 1.5 to 4.0
%, Mn: 1.0 to 4.0%, S: 0.01% or less, acid-soluble Al: 0.0
A steel slab containing less than 03% and N: 0.001 to 0.010%, the balance being Fe and unavoidable impurities, is processed in the following steps to have a low iron loss and a direction perpendicular to the rolling direction. Manufacturing method of magnetic steel sheet with excellent balance of magnetic properties of.

【0011】熱間圧延を行う工程 熱間圧延のまま、または熱間圧延後に焼鈍してから、
冷間圧延を行う工程 連続焼鈍により一次再結晶を起こさせる工程 N2含有雰囲気中で 800〜950 ℃の温度域に4〜100 時
間保持し、二次再結晶を起こさせる工程 H2雰囲気中で 800〜1000℃の温度域に4〜100 時間保
持し、純化する工程 本発明が狙いとする適度の磁気特性の異方性は、焼鈍時
の二次再結晶により形成された集合組織の影響によるも
のである。この二次再結晶は、一般にインヒビターと呼
ばれる析出物により、結晶粒の成長が抑制された状況下
で、ミラー指数の{110}<001>で表示されるゴ
ス方位の結晶粒が選択的に成長する現象である。
Step of performing hot rolling After hot rolling, or after annealing after hot rolling,
Process of cold rolling Process of causing primary recrystallization by continuous annealing Process of maintaining secondary temperature in the temperature range of 800 to 950 ° C for 4 to 100 hours in an atmosphere containing N 2 and causing secondary recrystallization in H 2 atmosphere Process of purifying by holding in the temperature range of 800 to 1000 ° C. for 4 to 100 hours The moderate anisotropy of magnetic properties aimed by the present invention is due to the influence of the texture formed by secondary recrystallization during annealing. It is a thing. In this secondary recrystallization, crystal grains with a Goss orientation indicated by Miller index {110} <001> selectively grow under the condition that crystal grain growth is suppressed by precipitates generally called inhibitors. It is a phenomenon.

【0012】通常の方向性電磁鋼板においては、析出物
のインヒビター効果が極めて強く、ゴス方位集積度の高
い二次再結晶が発生する。このため、この場合はL方向
の磁気特性は著しく良好になるが、C方向のそれは極端
に劣化する。
In a normal grain-oriented electrical steel sheet, the inhibitor effect of precipitates is extremely strong, and secondary recrystallization with a high degree of Goss orientation integration occurs. Therefore, in this case, the magnetic characteristic in the L direction is remarkably good, but that in the C direction is extremely deteriorated.

【0013】本発明は次の知見に基づくものである。す
なわち、Si、Mnの各含有量の制御と二次再結晶焼鈍の雰
囲気の制御により、比較的弱いインヒビター析出物を生
成させ、二次再結晶のゴス方位への集積度を適正化する
と、L方向とC方向の磁気特性の差が小さく、かつL方
向とC方向の平均の磁気特性は高水準のものが得られ
る。
The present invention is based on the following findings. That is, by controlling the respective contents of Si and Mn and controlling the atmosphere of the secondary recrystallization annealing, relatively weak inhibitor precipitates are generated and the degree of integration of the secondary recrystallization in the Goss orientation is optimized. The difference between the magnetic properties in the C and C directions is small, and the average magnetic properties in the L and C directions are high.

【0014】[0014]

【作用】本発明の方法の対象となる鋼スラブの化学組
成、製造工程および製造条件を前記のように限定した理
由を説明する。以下、%は重量%を意味する。
The reason why the chemical composition, the manufacturing process and the manufacturing conditions of the steel slab to which the method of the present invention is applied are limited as described above will be explained. Hereinafter,% means% by weight.

【0015】(1)スラブの組成 C:0.010 %以下 製品中のCは鉄損に悪影響を及ぼすため、C含有量はス
ラブの段階で 0.010%以下、望ましくは0.005 %以下と
する必要がある。製品段階で残存したCは炭化物を生成
し、これが磁壁移動の障害物となり、鉄損が増加するか
らである。
(1) Composition of slab C: 0.010% or less C in the product adversely affects iron loss, so the C content must be 0.010% or less, preferably 0.005% or less at the slab stage. This is because C remaining in the product stage forms carbides, which become obstacles for domain wall movement and increase iron loss.

【0016】Si: 1.5〜4.0 % Siは磁気特性に大きな影響を与える元素であり、その含
有量が増加するほど鋼板の電気抵抗が上昇して渦電流損
が低下し、結果として鉄損が減少する。しかし、Si含有
量が4.0 %を超えると加工性が劣化して冷間圧延が困難
となる。一方、1.5 %未満では鋼板の電気抵抗が低く、
鉄損の低減ができない。よって、Si含有量の範囲は 1.5
〜4.0 %とした。
Si: 1.5 to 4.0% Si is an element having a great influence on the magnetic properties, and as its content increases, the electrical resistance of the steel sheet increases and the eddy current loss decreases, resulting in a decrease in iron loss. To do. However, if the Si content exceeds 4.0%, the workability deteriorates and cold rolling becomes difficult. On the other hand, if it is less than 1.5%, the electrical resistance of the steel sheet is low,
Iron loss cannot be reduced. Therefore, the range of Si content is 1.5
It was set to ~ 4.0%.

【0017】Mn: 1.0〜4.0 % MnはSiと同様に鋼板の電気抵抗を上昇させるのに有効な
元素であるが、Mn含有量が1.0 %未満ではその効果が小
さい。
Mn: 1.0 to 4.0% Mn is an element effective for increasing the electric resistance of the steel sheet as with Si, but if the Mn content is less than 1.0%, its effect is small.

【0018】またMnは、インヒビター析出物である(A
l、Si、Mn)窒化物を形成し、二次再結晶焼鈍で、本発
明の狙いとする適度の異方性を有する磁気特性が得られ
る集合組織の形成に不可欠な元素である。この作用もMn
含有量が1.0 %以上で顕著となるので、この面からも1.
0 %以上とした。
Mn is an inhibitor precipitate (A
L, Si, Mn) nitride is formed, and secondary recrystallization annealing is an element indispensable for forming a texture capable of obtaining magnetic properties having appropriate anisotropy, which is the aim of the present invention. This action is also Mn
Since it becomes remarkable when the content is 1.0% or more, from this aspect as well 1.
It was set to 0% or more.

【0019】一方、Mn含有量が4.0 %を超えると鋼中に
生成する(Al、Si、Mn)窒化物の分散状態が不適切にな
り、良好な磁気特性が得られない。よって、Mn含有量の
範囲は、 1.0〜4.0 %とした。
On the other hand, if the Mn content exceeds 4.0%, the dispersed state of (Al, Si, Mn) nitride formed in steel becomes unsuitable, and good magnetic properties cannot be obtained. Therefore, the range of Mn content was 1.0 to 4.0%.

【0020】S:0.01%以下 SはMnと結合してMnS を形成する。本発明では焼鈍時の
集合組織を制御する主要なインヒビター析出物として、
(Al、Si、Mn)窒化物を用いる。したがって、一般の方
向性電磁鋼板のようにMnS をインヒビターとして使用し
ないので、Sを多量に含有させる必要はない。製品段階
で多量のMnS 粒子が鋼中に残存すると鉄損の劣化をもた
らす。このため、S含有量は0.01%以下とした。なお、
鉄損低減の観点から望ましいのは0.005 %以下である。
S: 0.01% or less S combines with Mn to form MnS. In the present invention, as a main inhibitor precipitate that controls the texture during annealing,
(Al, Si, Mn) nitride is used. Therefore, since MnS is not used as an inhibitor unlike general grain-oriented electrical steel sheets, it is not necessary to contain a large amount of S. If a large amount of MnS particles remain in the steel at the product stage, iron loss will be deteriorated. Therefore, the S content is set to 0.01% or less. In addition,
From the viewpoint of reducing iron loss, 0.005% or less is desirable.

【0021】酸可溶性Al(sol.Al): 0.003%未満 Alを含有させるとMnSiN2の形成が妨げられ、析出物は
(Al、Si、Mn)窒化物に変化し、インヒビター効果が強
くなりすぎて二次再結晶時に所望の集合組織が得られな
い。このようなAlの悪影響はsol.Al含有量として0.003
%を超えると顕著となるので、0.003 %未満とした。
Acid-soluble Al (sol.Al): Less than 0.003% When Al is contained, the formation of MnSiN 2 is hindered, the precipitate changes to (Al, Si, Mn) nitride, and the inhibitor effect becomes too strong. Therefore, the desired texture cannot be obtained during the secondary recrystallization. Such adverse effect of Al is 0.003 as sol.Al content.
%, It becomes remarkable, so less than 0.003%.

【0022】N: 0.001〜0.010 % Nはインヒビター窒化物を形成するために必要な元素で
ある。N含有量がスラブ段階で0.001 %未満では窒化物
の析出量が不足し、所望のインヒビター効果が得られな
い。一方、0.010 %を超えるとその効果は飽和する。よ
って、スラブ段階でのN含有量の範囲は 0.001〜0.010
%とした。
N: 0.001 to 0.010% N is an element necessary for forming an inhibitor nitride. If the N content is less than 0.001% in the slab stage, the amount of nitride precipitation is insufficient, and the desired inhibitor effect cannot be obtained. On the other hand, if it exceeds 0.010%, the effect is saturated. Therefore, the range of N content in the slab stage is 0.001 to 0.010.
%.

【0023】(2)製造工程および製造条件 素材の鋼スラブは上記の組成を持つものである。これは
転炉、電気炉などで溶製し、必要があれば真空脱ガスな
どの処理を施した溶鋼を、連続鋳造でスラブとしたも
の、またはインゴットにして分塊圧延しスラブとしたも
ののいずれでもよい。
(2) Manufacturing Process and Manufacturing Conditions The raw material steel slab has the above composition. This is either a slab made by continuous casting of molten steel that has been melted in a converter, an electric furnace, etc. and, if necessary, vacuum degassed, or slabs made by slabbing and rolling. But it's okay.

【0024】(a)第の工程(熱間圧延) 熱間圧延の条件については特に制約はないが、望ましい
のは、加熱温度1100〜1270℃、仕上温度 700〜950 ℃で
ある。
(A) Second Step (Hot Rolling) The hot rolling conditions are not particularly limited, but the heating temperature is preferably 1100 to 1270 ° C. and the finishing temperature is 700 to 950 ° C.

【0025】(b)第の工程(熱延板焼鈍、冷間圧延) 熱延板は、所定の製品板厚まで冷間圧延する。このと
き、冷間圧延開始前に焼鈍(いわゆる熱延板焼鈍)を行
ってもよい。この熱延板焼鈍は、析出物の分散状態の適
正化と熱延板の再結晶によるミクロ組織の均質化を促進
し、二次再結晶の発生を安定化するのに有効である。
(B) First Step (Hot Rolled Sheet Annealing, Cold Rolling) The hot rolled sheet is cold rolled to a predetermined product sheet thickness. At this time, annealing (so-called hot rolled sheet annealing) may be performed before the start of cold rolling. This hot-rolled sheet annealing is effective in optimizing the dispersion state of precipitates, promoting homogenization of the microstructure by recrystallization of the hot-rolled sheet, and stabilizing the occurrence of secondary recrystallization.

【0026】熱延板焼鈍を連続焼鈍で行う場合は 750〜
1100℃で10秒から5分の均熱、箱焼鈍で行う場合は 600
〜850 ℃で30分〜24時間の均熱とするのが望ましい。
When the hot-rolled sheet is annealed continuously, it is 750-
600 at the time of soaking at 1100 ℃ for 10 seconds to 5 minutes and box annealing
It is desirable to soak at 850 ℃ for 30 minutes to 24 hours.

【0027】(c)第の工程(仕上焼鈍前の連続焼鈍、
一次再結晶焼鈍) 後述する仕上焼鈍で安定した二次再結晶を発生させるた
めには、急速加熱による一次再結晶が必要である。この
ために連続焼鈍が有効であり、焼鈍温度は 700〜1000℃
とするのが望ましい。
(C) First step (continuous annealing before finish annealing,
Primary Recrystallization Annealing) In order to generate stable secondary recrystallization in finish annealing described later, primary recrystallization by rapid heating is necessary. For this reason, continuous annealing is effective, and the annealing temperature is 700 to 1000 ° C.
Is desirable.

【0028】(d)第の工程(仕上焼鈍の中の第一の焼
鈍、すなわち二次再結晶焼鈍) 仕上焼鈍は、二次再結晶を目的とする前半の焼鈍(第一
の焼鈍)とその後の析出物の除去(純化)を目的とする
焼鈍(第二の焼鈍)とに分けられる。
(D) Second Step (First Annealing in Finish Annealing, ie, Secondary Recrystallization Annealing) Finishing annealing is the first half annealing (first annealing) for the purpose of secondary recrystallization, and thereafter. Annealing (second annealing) for the purpose of removing (purifying) the precipitates.

【0029】適度のゴス方位集積度を持つ二次再結晶を
発生させるためには、二次再結晶の発生する温度域でイ
ンヒビター強度を適切に制御することが重要である。
In order to generate secondary recrystallization having an appropriate degree of Goth orientation integration, it is important to appropriately control the inhibitor strength in the temperature range in which secondary recrystallization occurs.

【0030】二次再結晶焼鈍において、 800〜950 ℃の
温度域で4〜100 時間保持するのは、この温度域で最も
適切なインヒビター強度が得られ、適度にゴス方位へ集
積した二次再結晶が発生するからである。800 ℃未満で
はインヒビターの効果、すなわち粒成長抑制力が強すぎ
て二次再結晶が発生しない。一方、950 ℃を超える温度
域ではインヒビター強度が弱すぎて二次再結晶が発生せ
ず、一次再結晶粒の正常粒の成長が進行するだけであ
る。
In the secondary recrystallization annealing, keeping the temperature in the temperature range of 800 to 950 ° C. for 4 to 100 hours is the reason why the most suitable inhibitor strength is obtained in this temperature range and the secondary recrystallization is appropriately accumulated in the Goss orientation. This is because crystals are generated. If the temperature is less than 800 ° C, the effect of the inhibitor, that is, the grain growth suppressing force is too strong and secondary recrystallization does not occur. On the other hand, in the temperature range above 950 ° C, the inhibitor strength is too weak to cause secondary recrystallization, and only the growth of normal primary recrystallized grains proceeds.

【0031】800〜950 ℃の温度域での保持時間が4時
間未満では、二次再結晶の発生に十分ではない。一方、
100 時間を超える保持は意味がなく、経済的にも不利で
ある。これらの理由で、二次再結晶焼鈍の条件を 800〜
950 ℃の温度域で4〜100 時間保持とした。
If the holding time in the temperature range of 800 to 950 ° C. is less than 4 hours, the secondary recrystallization is not sufficient. on the other hand,
Retaining more than 100 hours is meaningless and economically disadvantageous. For these reasons, the condition of the secondary recrystallization annealing is set to 800 ~
The temperature was maintained at 950 ° C for 4 to 100 hours.

【0032】二次再結晶焼鈍の雰囲気は窒素含有雰囲気
とすることが必要である。窒素含有ガスの場合には、雰
囲気ガスによる鋼板の窒化が生じてMnSiN2の析出量が増
加し、適正なインヒビター効果が生じ、適度にゴス方位
へ集積した二次再結晶が発生するからである。ところ
が、100 %H2雰囲気の場合には、二次再結晶が発生する
800 〜 950℃の温度域で脱窒反応が進行してMnSiN2が徐
々に減少し、インヒビター効果が弱すぎて二次再結晶が
発生しない。
The atmosphere for the secondary recrystallization annealing needs to be a nitrogen-containing atmosphere. This is because in the case of a nitrogen-containing gas, nitriding of the steel sheet due to the atmospheric gas occurs, the amount of MnSiN 2 precipitated increases, an appropriate inhibitor effect occurs, and secondary recrystallization that appropriately accumulates in the Goss orientation occurs. . However, secondary recrystallization occurs in the 100% H 2 atmosphere.
The denitrification reaction proceeds in the temperature range of 800 to 950 ℃, MnSiN 2 is gradually reduced, and the inhibitor effect is too weak to cause secondary recrystallization.

【0033】望ましい窒素含有率の範囲はvol.%で5〜
100 %であり、残部は水素である。
The desirable nitrogen content range is 5% by volume.
100% with the balance hydrogen.

【0034】窒素含有率がvol.%で5%未満では窒化反
応が十分進行せず、インヒビター強度が弱くなる場合が
あるからである。
This is because if the nitrogen content is less than 5% by volume, the nitriding reaction may not proceed sufficiently and the inhibitor strength may be weakened.

【0035】(e)第の工程(仕上焼鈍の中の第二の焼
鈍、すなわち純化焼鈍) インヒビターである析出物(MnSiN2)の存在は、二次再
結晶の発生には必須の条件であるが、析出物は磁壁の移
動を阻害するため、磁気特性には有害である。
(E) First Step (Second Annealing in Finish Annealing, that is, Purification Annealing) The presence of precipitates (MnSiN 2 ) as an inhibitor is an essential condition for the occurrence of secondary recrystallization. However, the precipitate hinders the movement of the domain wall, which is harmful to the magnetic properties.

【0036】したがって、二次再結晶が完了した後は、
純化により析出物を除去する必要がある。この目的で行
う脱窒焼鈍が純化焼鈍工程である。
Therefore, after the secondary recrystallization is completed,
It is necessary to remove the precipitate by purification. The denitrification annealing performed for this purpose is a purification annealing step.

【0037】脱窒反応を進行させるためには、H2雰囲気
( 工業的な意味での純水素雰囲気 )中で 800〜1000℃の
温度域で4〜100 時間保持する焼鈍が必要である。800
℃未満では脱窒反応が進行せず、一方、1000℃を超える
温度では脱窒効果が飽和し、経済的に不利である。
To promote the denitrification reaction, an H 2 atmosphere is used.
It is necessary to anneal for 4 to 100 hours in the temperature range of 800 to 1000 ° C in (pure hydrogen atmosphere in the industrial sense). 800
If the temperature is less than ℃, the denitrification reaction does not proceed, while if the temperature exceeds 1000 ℃, the denitrification effect is saturated, which is economically disadvantageous.

【0038】純化焼鈍時間が4時間未満では、十分な脱
窒は行われない。一方、100 時間を超える保持を行って
も、脱窒効果はほとんど飽和するので意味がない。
When the refining annealing time is less than 4 hours, sufficient denitrification is not performed. On the other hand, holding for more than 100 hours is meaningless because the denitrification effect is almost saturated.

【0039】なお、仕上焼鈍の前に焼鈍時の焼付防止の
ために焼鈍分離剤を塗布することは、通常の方向性電磁
鋼板の製造の場合と同じである。仕上焼鈍後の工程とし
てはやはり同様に、焼鈍分離剤を除去した後、必要に応
じて絶縁コーティングを施したり、平坦化焼鈍を行うこ
とになる。
The application of the annealing separating agent before the finish annealing for preventing the seizure during the annealing is the same as in the case of the production of the ordinary grain-oriented electrical steel sheet. Similarly, in the step after finish annealing, after removing the annealing separating agent, an insulating coating is applied or flattening annealing is performed if necessary.

【0040】[0040]

【実施例】【Example】

(試験1)転炉で溶製し、真空処理で成分調整した後、
連続鋳造して得たC:0.0032 %、Si:2.63 %、Mn:2.12
%、S:0.005%、sol.Al:0.0008 %、N:0.0045 %を含
有し、残部はFeおよび不可避的不純物からなる鋼スラブ
を、1220℃に加熱して仕上温度835 ℃で熱間圧延し、板
厚2.3mm に仕上げた。
(Test 1) After melting in a converter and adjusting the components by vacuum treatment,
C: 0.0032%, Si: 2.63%, Mn: 2.12 obtained by continuous casting
%, S: 0.005%, sol.Al: 0.0008%, N: 0.0045%, with the balance being Fe and inevitable impurities, a steel slab heated to 1220 ° C and hot rolled at a finishing temperature of 835 ° C. The plate thickness is 2.3mm.

【0041】次に、酸洗により脱スケールしてから、70
0 ℃で1時間均熱の箱焼鈍方式の熱延板焼鈍を行った
後、0.35mmに冷間圧延し、875 ℃で30秒均熱の連続焼鈍
で一次再結晶させた。次いで、焼鈍分離剤を塗布してか
ら、表1に示す条件で仕上焼鈍を行った。
Next, after descaling by pickling, 70
After carrying out box annealing type hot-rolled sheet annealing of soaking at 0 ° C. for 1 hour, it was cold-rolled to 0.35 mm and primary recrystallized by continuous annealing at 875 ° C. for 30 seconds. Then, after applying an annealing separator, finish annealing was performed under the conditions shown in Table 1.

【0042】[0042]

【表1】 [Table 1]

【0043】仕上焼鈍は40℃/hの加熱速度で二次再結晶
焼鈍の均熱温度まで昇温し、二次再結晶焼鈍の均熱完了
後に雰囲気を純化焼鈍条件に切り換えて、40℃/hの加熱
速度で純化焼鈍の均熱温度まで昇温し、純化焼鈍の均熱
完了後、40℃/hの冷却速度で室温まで冷却した。
In the finish annealing, the temperature is raised to the soaking temperature of the secondary recrystallization annealing at a heating rate of 40 ° C./h, the atmosphere is switched to the purification annealing condition after completion of the soaking of the secondary recrystallization annealing, and the annealing is performed at 40 ° C./h. The temperature was raised to the soaking temperature of the purification annealing at a heating rate of h, and after soaking of the purification annealing was completed, it was cooled to room temperature at a cooling rate of 40 ° C / h.

【0044】次に、焼鈍分離剤を除去後、800 ℃で30秒
均熱の平坦化のための連続焼鈍を行い、コーティングを
施して製品とした。これらの製品からエプスタイン試験
片を採取し、L方向とC方向の磁気測定を行った。エプ
スタイン試験片は一般のフルプロセス無方向性電磁鋼板
と同様に、応力除去焼きなましを実施せずに磁気測定に
供した。これらの測定結果を表2に示す。
Next, after removing the annealing separating agent, continuous annealing for flattening soaking for 30 seconds at 800 ° C. was performed, and a coating was applied to obtain a product. Epstein test pieces were sampled from these products and magnetic measurements were performed in the L and C directions. The Epstein test piece was subjected to the magnetic measurement without performing the stress relief annealing like the general full-process non-oriented electrical steel sheet. The results of these measurements are shown in Table 2.

【0045】[0045]

【表2】 [Table 2]

【0046】二次再結晶焼鈍の均熱温度が本発明で定め
る範囲外である試験番号1および試験番号4、ならびに
二次再結晶焼鈍の雰囲気を本発明で定める範囲外の100
%H2とした試験番号5では、二次再結晶しなかったため
にC/L比は小さいが、L方向の磁気特性は改善されて
おらず、L、C両方向平均の磁気特性も劣っている。
Test No. 1 and Test No. 4 in which the soaking temperature of the secondary recrystallization annealing is outside the range defined by the present invention, and the atmosphere of the secondary recrystallization annealing outside the range defined by the present invention is 100.
In the test No. 5 in which% H 2 was used, the C / L ratio was small because secondary recrystallization was not performed, but the magnetic properties in the L direction were not improved, and the magnetic properties in both L and C averages were also inferior. .

【0047】仕上焼鈍の全工程の雰囲気を窒素含有雰囲
気とした試験番号6では、純化ができていないため鉄損
が悪化している。
In Test No. 6 in which the atmosphere of all the steps of finish annealing was a nitrogen-containing atmosphere, the iron loss was deteriorated because purification was not performed.

【0048】本発明で定める条件を満たす試験番号2、
3では、L、C両方向の磁気特性の差が小さく、両方向
平均の磁気特性も良好である。
Test No. 2 satisfying the conditions defined in the present invention,
In No. 3, the difference between the magnetic properties in both the L and C directions is small, and the average magnetic properties in both directions are also good.

【0049】(試験2)表3に示す化学組成の5種類の
鋼を対象として試験1と同様の方法で板厚2.3mm の熱延
板に仕上げた。これらの板を860 ℃で1分均熱の連続焼
鈍方式の熱延板焼鈍を行ってから酸洗して脱スケールし
た後、冷間圧延により板厚0.35mmにした。
(Test 2) A hot-rolled sheet having a plate thickness of 2.3 mm was finished in the same manner as in Test 1 using 5 types of steels having the chemical compositions shown in Table 3. These sheets were annealed at 860 ° C. for 1 minute in a continuous annealing method, hot-rolled and then descaled by pickling, and then cold-rolled to a thickness of 0.35 mm.

【0050】[0050]

【表3】 [Table 3]

【0051】これらの冷延板を875 ℃で30秒均熱の連続
焼鈍で一次再結晶させた後、焼鈍分離剤を塗布して仕上
焼鈍を施した。仕上焼鈍は、50%H2+50%N2雰囲気中で
加熱速度40℃/hで二次再結晶焼鈍の均熱温度である880
℃まで昇温し、8時間の均熱完了後に雰囲気を100 %H2
に切り換えて、さらに24時間均熱の純化焼鈍を実施し、
その後40℃/hの冷却速度で室温まで冷却した。
These cold-rolled sheets were subjected to primary annealing by continuous annealing with uniform heating at 875 ° C. for 30 seconds, and then an annealing separator was applied to finish annealing. The finish annealing is a soaking temperature of secondary recrystallization annealing at a heating rate of 40 ° C / h in an atmosphere of 50% H 2 + 50% N 2 880
The temperature is raised to ℃ and after heating for 8 hours, the atmosphere is heated to 100% H 2
Switch to, and carry out purification annealing with soaking for 24 hours,
Then, it was cooled to room temperature at a cooling rate of 40 ° C / h.

【0052】このようにして得られた鋼板に、焼鈍分離
剤を除去後、800 ℃で30秒均熱の平坦化のための連続焼
鈍を行い、コーティングを施して製品とした。これらの
製品からエプスタイン試験片を採取し、L方向とC方向
の磁気測定を行った。これらの製品を用いて試験1と同
じ方法で磁気特性を調査した。結果を表4に示す。
After removing the annealing separator, the steel sheet thus obtained was continuously annealed at 800 ° C. for 30 seconds for soaking, and coated to obtain a product. Epstein test pieces were sampled from these products and magnetic measurements were performed in the L and C directions. The magnetic properties were investigated in the same manner as in Test 1 using these products. The results are shown in Table 4.

【0053】[0053]

【表4】 [Table 4]

【0054】Mn、Siの含有量が本発明で定める範囲外
の、それぞれ試験番号7および試験番号9では、二次再
結晶が発生せず、異方性は小さいが、L方向の磁気特性
が劣っている。Al含有量が本発明で定める上限を超える
試験番号11では、インヒビター効果が強すぎてゴス方位
への集積度が高すぎる二次再結晶が発生したため、L方
向の磁気特性は良好であるが、C方向のそれは著しく劣
っており、異方性が大きい。一方、本発明で定める条件
を満たす試験番号8および試験番号10では、磁気特性の
異方性が比較的小さく、L、C各方向の磁気特性がとも
に良好な優れたものとなっている。
In the test numbers 7 and 9 in which the contents of Mn and Si were out of the ranges defined by the present invention, respectively, secondary recrystallization did not occur, and the anisotropy was small, but the magnetic characteristics in the L direction were small. Inferior In the test number 11 in which the Al content exceeds the upper limit defined in the present invention, the inhibitor effect is too strong, and secondary recrystallization in which the degree of integration in the Goss direction is too high occurs, so that the magnetic properties in the L direction are good, It is remarkably inferior in the C direction and has large anisotropy. On the other hand, in Test No. 8 and Test No. 10 satisfying the conditions defined in the present invention, the anisotropy of the magnetic characteristics is relatively small, and the magnetic characteristics in the L and C directions are both excellent and excellent.

【0055】(試験3)転炉で溶製し、真空処理で成分
調整した後、連続鋳造して得たC:0.0045 %、Si:3.08
%、Mn:2.56 %、S:0.003%、sol.Al:0.001%、N:0.0
045 %を含有し、残部はFeおよび不可避的不純物からな
る鋼スラブを、1210℃に加熱して仕上温度845 ℃で熱間
圧延し、板厚2.1mm に仕上げた。
(Test 3) C: 0.0045%, Si: 3.08, obtained by melting in a converter, adjusting the components by vacuum treatment, and then continuously casting.
%, Mn: 2.56%, S: 0.003%, sol.Al:0.001%, N: 0.0
A steel slab containing 045% and the balance of Fe and inevitable impurities was heated to 1210 ° C. and hot-rolled at a finishing temperature of 845 ° C. to finish a plate thickness of 2.1 mm.

【0056】次に、酸洗により脱スケールしてから、厚
さ0.50mmに冷間圧延し、875 ℃で30秒均熱の連続焼鈍で
一次再結晶させた。次いで、焼鈍分離剤を塗布してから
表5に示す条件で仕上焼鈍を行った。
Next, after descaling by pickling, cold rolling was performed to a thickness of 0.50 mm, and primary recrystallization was performed by continuous annealing at 875 ° C. for 30 seconds soaking. Next, after applying the annealing separator, finish annealing was performed under the conditions shown in Table 5.

【0057】仕上焼鈍は40℃/hの加熱速度で二次再結晶
焼鈍の均熱温度である880 ℃まで昇温し、16時間の均熱
完了後に雰囲気を100 %H2に切り換えて、さらに24時間
均熱の純化焼鈍を実施し、その後40℃/hの冷却速度で室
温まで冷却した。
In the finish annealing, the temperature was raised to 880 ° C. which is the soaking temperature of the secondary recrystallization annealing at a heating rate of 40 ° C./h, the atmosphere was switched to 100% H 2 after completion of the soaking for 16 hours, and further, Purification annealing with soaking was performed for 24 hours, and then cooled to room temperature at a cooling rate of 40 ° C / h.

【0058】次に、焼鈍分離剤を除去後、800 ℃で30秒
均熱の平坦化のための連続焼鈍を行い、コーティングを
施して製品とした。これらの製品を用いて試験1と同じ
方法で磁気特性を調査した。これらの測定結果を表5に
併せて示す。
Next, after removing the annealing separator, continuous annealing was performed at 800 ° C. for 30 seconds for soaking and flattening, and a coating was applied to obtain a product. The magnetic properties were investigated in the same manner as in Test 1 using these products. The results of these measurements are also shown in Table 5.

【0059】[0059]

【表5】 [Table 5]

【0060】二次再結晶焼鈍の雰囲気が本発明で定める
条件外の試験番号13では、二次再化粧が発生せず、異方
性は小さいもののL方向の磁気特性の改善はみられず、
L、C両方向平均の磁気特性も悪い。本発明で定める条
件を満たす試験番号12では、L、C両方向の磁気特性の
差が小さく、両方向平均の磁気特性も良好である。
In the test No. 13 in which the atmosphere of the secondary recrystallization annealing is outside the conditions defined by the present invention, the secondary remake does not occur and although the anisotropy is small, the improvement of the magnetic properties in the L direction is not observed.
The magnetic properties of both L and C averages are also poor. In Test No. 12, which satisfies the conditions defined by the present invention, the difference in the magnetic properties in both the L and C directions is small, and the average magnetic properties in both directions are also good.

【0061】[0061]

【発明の効果】本発明の方法によれば、鉄損のC/Lが
2.0 以下で極度の異方性がなく、しかもL方向とC方向
の鉄損がともに低いレベルにある電磁鋼板を低コストで
製造することができる。
According to the method of the present invention, the C / L of iron loss is
It is possible to manufacture at low cost an electromagnetic steel sheet having an anisotropy of 2.0 or less and having a low level of iron loss in both the L and C directions.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.010%以下、Si:1.5〜4.0
%、Mn:1.0〜4.0 %、S: 0.01%以下、酸可溶性Al:0.0
03%未満、N:0.001〜0.010 %を含有し、残部はFeおよ
び不可避的不純物からなる鋼スラブを、下記〜の工
程で処理することを特徴とする、鉄損が低く圧延方向と
圧延直角方向の磁気特性のバランスに優れた電磁鋼板の
製造方法。 熱間圧延を行う工程 熱間圧延のまま、または熱間圧延後に焼鈍してから、
冷間圧延を行う工程 連続焼鈍により一次再結晶を起こさせる工程 N2含有雰囲気中で 800〜950 ℃の温度域に4〜100 時
間保持し、二次再結晶を起こさせる工程 H2雰囲気中で 800〜1000℃の温度域に4〜100 時間保
持し、純化する工程
1. By weight%, C: 0.010% or less, Si: 1.5 to 4.0
%, Mn: 1.0 to 4.0%, S: 0.01% or less, acid-soluble Al: 0.0
A steel slab containing less than 03% and N: 0.001 to 0.010%, the balance being Fe and unavoidable impurities, is processed in the following steps to have a low iron loss and a direction perpendicular to the rolling direction. Manufacturing method of magnetic steel sheet with excellent balance of magnetic properties of. Process of hot rolling, as hot rolling, or after annealing after hot rolling,
Process of cold rolling Process of causing primary recrystallization by continuous annealing Process of maintaining secondary temperature in the temperature range of 800 to 950 ° C for 4 to 100 hours in an atmosphere containing N 2 and causing secondary recrystallization in H 2 atmosphere Process of keeping the temperature in the temperature range of 800-1000 ℃ for 4-100 hours and purifying
JP5167656A 1993-07-07 1993-07-07 Manufacturing method of electrical steel sheet with excellent magnetic properties Expired - Lifetime JP2819994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5167656A JP2819994B2 (en) 1993-07-07 1993-07-07 Manufacturing method of electrical steel sheet with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5167656A JP2819994B2 (en) 1993-07-07 1993-07-07 Manufacturing method of electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH0718335A true JPH0718335A (en) 1995-01-20
JP2819994B2 JP2819994B2 (en) 1998-11-05

Family

ID=15853805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5167656A Expired - Lifetime JP2819994B2 (en) 1993-07-07 1993-07-07 Manufacturing method of electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP2819994B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038595A1 (en) * 1999-11-26 2001-05-31 Kawasaki Steel Corporation Non-oriented electromagnetic steel sheet having reduced magnetic anisotropy in high frequency region and excellent press workability
EP2602346A4 (en) * 2010-08-06 2017-06-07 JFE Steel Corporation Directional magnetic steel plate and production method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038595A1 (en) * 1999-11-26 2001-05-31 Kawasaki Steel Corporation Non-oriented electromagnetic steel sheet having reduced magnetic anisotropy in high frequency region and excellent press workability
US6428632B1 (en) 1999-11-26 2002-08-06 Kawasaki Steel Corporation Non-oriented electromagnetic steel sheet having reduced magnetic anisotropy in high frequency region and excellent press workability
EP2602346A4 (en) * 2010-08-06 2017-06-07 JFE Steel Corporation Directional magnetic steel plate and production method therefor

Also Published As

Publication number Publication date
JP2819994B2 (en) 1998-11-05

Similar Documents

Publication Publication Date Title
JP3172439B2 (en) Grain-oriented silicon steel having high volume resistivity and method for producing the same
US4994120A (en) Process for production of grain oriented electrical steel sheet having high flux density
US4938807A (en) Process for production of grain oriented electrical steel sheet having high flux density
KR950005793B1 (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
JPH0885825A (en) Production of grain oriented silicon steel sheet excellent in magnetic property over entire length of coil
CN111417737B (en) Grain-oriented electromagnetic steel sheet with low iron loss and method for producing same
JP2639226B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
CN114829657A (en) Oriented electrical steel sheet and method for manufacturing the same
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JPH05186828A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JP2713028B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP2712913B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP2819993B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JPH09104923A (en) Production of grain-oriented silicon steel sheet
JP2671717B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JPH03111516A (en) Production of grain-oriented electrical steel sheet
JPH10183249A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP6228956B2 (en) Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
WO2022210504A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet
JPH10158740A (en) Manufacture of grain oriented silicon steel sheet excellent in magnetic property
JPH10273725A (en) Manufacture of grain oriented silicon steel sheet
WO2022210503A1 (en) Production method for grain-oriented electrical steel sheet
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property