JPH03111516A - Production of grain-oriented electrical steel sheet - Google Patents

Production of grain-oriented electrical steel sheet

Info

Publication number
JPH03111516A
JPH03111516A JP24840689A JP24840689A JPH03111516A JP H03111516 A JPH03111516 A JP H03111516A JP 24840689 A JP24840689 A JP 24840689A JP 24840689 A JP24840689 A JP 24840689A JP H03111516 A JPH03111516 A JP H03111516A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
hot
grain
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24840689A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Yashiki
裕義 屋鋪
Teruo Kaneko
金子 輝雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP24840689A priority Critical patent/JPH03111516A/en
Publication of JPH03111516A publication Critical patent/JPH03111516A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To stably produce a grain-oriented electrical steel sheet having high magnetic flux density at a low cost by annealing at a specific temp. before or after cold-rolling of a hot-rolled steel sheet with an extremely low carbon content and a specific composition of C, Si, Mn, S, Al, N and Fe. CONSTITUTION:The hot-rolling is executed to a steel with extremely low carbon content composed of <=0.01wt.% C, 1.5-3.0% Si, 1.0-2.0% Mn, <=0.010% S, 0.003-0.015% sol.Al, 0.001-0.010% N and the balance Fe with inevitable impurities. This hot-rolled steel sheet is made to the finished sheet thickness by the cold- rolling at one time or two or more times including intermediate annealing in alpha range at >=700 deg.C. Successively, the cold-rolled steel sheet is continuously annealed in the alpha range at >=700 deg.C and desirably at a heating velocity of >=about 5 deg.C to generate a suitable primary recrystallization. After that, finish annealing is executed to the steel sheet to sufficiently develope the secondary recrystallization having (110) Miller indices direction. By this method, the grain- oriented electrical steel sheet having high magnetic flux density is obtd. without executing the decarbonizing annealing, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、fllol <001>方位を主方位とする
磁気特性に優れた方向性を磁鋼板の!!遣方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is directed to a magnetic steel plate having excellent magnetic properties with flol <001> orientation as the main orientation. ! It is related to the method of sending.

(従来の技術) 方向性im綱板は、主として電力用変圧器をはじめ発電
機、電動機等の鉄心材料や磁気シールド材に広く用いら
れている磁気材料である。その中でも珪素を3重量%前
後含んだものが比較的多く利用されている。方向性電磁
鋼板は、−Cにゴス方位(ミラー指数で(1101<o
ot>方位と表す)と呼ばれる結晶配向を持つ結晶粒か
ら構成されており、圧延方向に磁化容易軸である<00
1>軸が平行になるため、圧延方向に極めて良好な磁化
特性と鉄損特性を有している。
(Prior Art) Directional IM steel plates are magnetic materials that are widely used as core materials and magnetic shielding materials for power transformers, generators, electric motors, and the like. Among these, those containing around 3% by weight of silicon are used relatively often. The grain-oriented electrical steel sheet has -C Goss orientation (Miller index (1101<o
It is composed of crystal grains with a crystal orientation called ot> orientation), and the axis of easy magnetization is <00 in the rolling direction.
1> Since the axes are parallel, it has extremely good magnetization characteristics and iron loss characteristics in the rolling direction.

このようなゴス方位を主方位とする結晶mlとするには
、冷間圧延後の仕上げ焼鈍中に一次再結晶粒が選択的に
成長する、いわゆる二次再結晶を利用する方法がとられ
ている。従って、方向性電磁wA板の製造の要点は、い
かに安定して精度のよいゴス方位の二次再結晶を仕上げ
焼鈍中に発生さセるかに尽きる。ゴス方位の二次再結晶
を発生させるためにはゴス方位以外の粒の成長を抑える
インヒビターといわれる微細析出物が必要であり、一般
にMnS、 MnSeあるいはAlN等の析出物がイン
ヒビターとして用いられている。
In order to obtain such a crystal ml whose main orientation is the Goss orientation, a method is used that utilizes so-called secondary recrystallization, in which primary recrystallized grains selectively grow during finish annealing after cold rolling. There is. Therefore, the key point in manufacturing a directional electromagnetic wA plate is how to generate stable and accurate secondary recrystallization in the Goss orientation during finish annealing. In order to generate secondary recrystallization in the Goss orientation, fine precipitates called inhibitors are required to suppress the growth of grains other than in the Goss orientation, and precipitates such as MnS, MnSe, or AlN are generally used as inhibitors. .

例えば、特公昭40〜15644号公報および特公昭4
6−23820号公報には、AlNを主要なインヒビタ
ーとする方向性電磁鋼板の製造方法が開示されている。
For example, Japanese Patent Publication No. 40-15644 and Japanese Patent Publication No. 4
Japanese Patent No. 6-23820 discloses a method for producing a grain-oriented electrical steel sheet using AlN as a main inhibitor.

これらの製造方法では、圧延板の組織制御やAINの分
散状態を制御するためにある程度のCを含む普通鋼が母
材に用いられている。ところが、C含有量の多い綱を母
材に用いると最終成品の磁気特性が悪化したり、最終仕
上げの焼鈍での二次再結晶が生じ難くなるなどの問題が
あるので、これらの製造方法においては、二次再結晶を
発生させる仕上げ焼鈍前にコストのかかる脱炭焼鈍が行
われている。
In these manufacturing methods, ordinary steel containing a certain amount of C is used as the base material in order to control the structure of the rolled plate and the dispersion state of AIN. However, if a steel with a high C content is used as the base material, there are problems such as deterioration of the magnetic properties of the final product and difficulty in secondary recrystallization during final annealing. A costly decarburization annealing is performed before the final annealing, which causes secondary recrystallization.

一方、このようなコストのかかる脱炭焼鈍を必要としな
い、極低炭素鋼でもAlNが適当に分散し、インヒビタ
ー効果を発揮できるようにした製造方法も幾つか提案さ
れている0例えば、特開昭58〜100627号公報に
は、母材にCが0.02%以下のスラブを用い、2次再
結晶を住しさせる仕上げ焼鈍で鋼板表面に平行な101
11当たり2°C以上の温度差を与える方向性電磁鋼板
の製造方法が提案されている。しかし、実生産でこのよ
うな特殊な仕上げ焼鈍を実施するのは非常に困難である
うえに、得られる方向性電磁鋼板の磁気特性もバラツキ
が大きくなると考えられる。
On the other hand, several manufacturing methods have been proposed that do not require such costly decarburization annealing and allow AlN to be appropriately dispersed and exert an inhibitor effect even in ultra-low carbon steel. Publication No. 58-100627 discloses that a slab containing 0.02% or less of C is used as the base material, and 101 mm parallel to the surface of the steel plate is subjected to finish annealing to allow secondary recrystallization.
A method for manufacturing a grain-oriented electrical steel sheet that provides a temperature difference of 2° C. or more per 11°C has been proposed. However, it is very difficult to carry out such special finish annealing in actual production, and it is thought that the magnetic properties of the obtained grain-oriented electrical steel sheets will also vary widely.

ところで、本願発明者は先に、c:o、o1%以下、S
i : 0.5〜2.5%、Mn : 1.0〜2.0
%、Sol、Al :0゜003〜0.015%を含む
極低炭素鋼の熱延鋼板を母材とし、これに1回又は中間
焼鈍を挟む2回以上の冷間圧延を施して最終板厚となし
た後、−次頁結晶を行わしめるための連続焼鈍および二
次再結晶を行わしめるための仕上げ焼鈍を施す方向性電
磁鋼板の製造方法を提案した(特開平1−119644
号)。
By the way, the inventor of the present application previously discovered that c:o, o1% or less, S
i: 0.5-2.5%, Mn: 1.0-2.0
%, Sol, Al: 0°003 to 0.015% as a base material, and the final plate is cold rolled once or twice or more with intermediate annealing in between. We proposed a method for manufacturing grain-oriented electrical steel sheets in which after the thickness is increased, continuous annealing is performed to achieve crystallization and finish annealing is performed to perform secondary recrystallization (Japanese Patent Application Laid-Open No. 1-119644).
issue).

先願発明では、母材の熱延鋼板はCが0.01%以下の
極低炭素鋼であるので、仕上げ焼鈍前にコストのかかる
脱炭焼鈍を施す必要がないうえに、前記のような特殊な
仕上げ焼鈍をとらすともインヒビターとなるAffiN
を安定して適正な微細分散形態とすることができるので
、圧延方向に優れた磁気特性を有する方向性it if
f綱板が得られる。その理由は鋼中のMnが一次再結晶
のインヒビターとなるAlNの分散状態を均一化し、二
次再結晶の安定性を促す形となるためと推定される。
In the prior invention, since the base metal hot-rolled steel sheet is an ultra-low carbon steel with a C content of 0.01% or less, there is no need to perform costly decarburization annealing before final annealing, and the above-mentioned AffiN becomes an inhibitor even after special finish annealing.
Since it is possible to stably form the appropriate finely dispersed form, it is possible to obtain a directional it if it has excellent magnetic properties in the rolling direction.
f steel plate is obtained. The reason for this is presumed to be that Mn in the steel homogenizes the dispersion state of AlN, which is an inhibitor of primary recrystallization, and promotes stability of secondary recrystallization.

ところが、近年、コスト低減をはかるうえから発電機、
電動機等の電気機器の小型化が進められており、それに
ともないより高い磁束密度を有した方向性電iff鋼板
が求められているが、先願の発明方法でも近年求められ
ているような高磁束密度を十分達成するのが困難である
However, in recent years, in order to reduce costs, generators,
As electrical equipment such as electric motors continues to become smaller, grain-oriented electrical steel sheets with higher magnetic flux density are required. It is difficult to achieve sufficient density.

(発明が解決しようとする課題) 本発明の課題は、上記要望に応えることにあり、詳しく
は、脱炭焼鈍や特殊な仕上げ焼鈍をとることなく、安価
に且つ安定してより高い磁束密度を有する方向性電磁鋼
板を製造することができる方法を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to meet the above-mentioned needs. Specifically, it is possible to inexpensively and stably achieve higher magnetic flux density without decarburizing annealing or special finishing annealing. An object of the present invention is to provide a method capable of manufacturing a grain-oriented electrical steel sheet having the following properties.

(課題を解決するための手段) 前掲の先願発明に開示した如く、脱炭焼鈍を不要とする
ためには鋼中のCを0.01%以下とし、がつ安定した
二次再結晶を発生させるためにはSol。
(Means for Solving the Problem) As disclosed in the prior invention mentioned above, in order to eliminate the need for decarburization annealing, the C content in the steel should be reduced to 0.01% or less, and stable secondary recrystallization should be achieved. Sol to generate.

AJ2を0.003〜0.015%およびFInを1.
0〜2.0%含有させた極低炭素鋼を母材に用いる必要
がある。しかし、これだけでは近年求められている磁束
密度を満たすのが困難である。ところが、本発明者らは
この先願発明を基に種々検討を加えたところ、冷間圧延
前に熱延鋼板を700°C以上のα域で焼鈍してやると
、最終製品の磁束密度が著しく向上することを見出した
0.003-0.015% of AJ2 and 1.0% of FIn.
It is necessary to use ultra-low carbon steel containing 0 to 2.0% as the base material. However, with this alone, it is difficult to satisfy the magnetic flux density that has been required in recent years. However, the present inventors conducted various studies based on this prior invention and found that if a hot-rolled steel sheet is annealed in the alpha region of 700°C or higher before cold rolling, the magnetic flux density of the final product is significantly improved. I discovered that.

ここに本発明の要旨は「重量%で、c:o、ot%以下
、Si : 1.5〜3.0%、Mn : 1.0〜2
.0%、S:0.010%以下、So j! 、A l
 : 0.003〜0.015%、N:0.001〜0
.010%、残部がFe及び不可避不純物からなる極低
炭素鋼の熱延鋼板を、、  700°C以上のα域で焼
鈍した後、1回または中間焼鈍を挟む2回以上の冷間圧
延を施して最終板J7となし、次いで、700°C以上
のα域で連続焼鈍を行い、その後、仕上げ焼鈍すること
を特徴とする方向性電磁鋼板の製造方法Jにある。
Here, the gist of the present invention is ``in weight %, c: o, ot% or less, Si: 1.5 to 3.0%, Mn: 1.0 to 2
.. 0%, S: 0.010% or less, So j! , A l
: 0.003~0.015%, N:0.001~0
.. 010%, the balance being Fe and unavoidable impurities. After annealing in the α region of 700°C or higher, cold rolling is performed once or twice or more with intermediate annealing in between. The method J for producing a grain-oriented electrical steel sheet is characterized in that the final sheet J7 is obtained by heating, followed by continuous annealing in the α region of 700° C. or higher, followed by finish annealing.

以下、本発明の詳細な説明する (作用) まず、母材熱延鋼板の各成分を前記のとおり限定した理
由を作用効果とともに説明する。
Hereinafter, the present invention will be described in detail (effects) First, the reason why each component of the base material hot rolled steel sheet is limited as described above will be explained together with the effects.

■ C: Cは本発明では積極的に含有させる必要がない。■ C: In the present invention, it is not necessary to actively include C.

従来の方向性1m綱板の製造では、良好な二次再結晶を
発生させるための金属&ll影形成ある程度のCを必要
とした。このため、最終製品の磁気特性劣化作用や最終
の仕上げ焼鈍での二次再結晶を生し難くするCの悪影響
を除くために仕上げ焼鈍前に脱炭焼鈍を施す必要があっ
た。
Conventional production of oriented 1m steel sheet required some degree of metal &ll shadow formation to cause good secondary recrystallization to occur. Therefore, it has been necessary to perform decarburization annealing before final annealing in order to eliminate the adverse effects of C, which deteriorate the magnetic properties of the final product and make secondary recrystallization difficult to occur in final final annealing.

本発明ではこのような脱炭処理を熱延以降の工程におい
て積極的にとらないので、仕上げ焼鈍での二次再結晶や
最終製品の磁気時効に悪影響のでない範囲まで製鋼段階
で極力Cを減少させることが必要である。製鋼段階での
脱Cが不」−分で鋼中の含有量が0.01%を超えると
、仕上げ焼鈍での二次再結晶が生じ難くなり最終製品の
け気時効劣化が顕著となることから、C含有量をo、o
i%以下とした。
In the present invention, such decarburization treatment is not actively performed in the processes after hot rolling, so C is reduced as much as possible at the steelmaking stage to the extent that it does not adversely affect secondary recrystallization in finish annealing or magnetic aging of the final product. It is necessary to do so. If the C content in the steel exceeds 0.01% when carbon removal during the steelmaking stage is insufficient, secondary recrystallization during final annealing becomes difficult to occur, and deterioration due to air aging in the final product becomes significant. From, the C content is o, o
i% or less.

■ Si: Siは磁気特性に影響を与える元素であり、−1に含有
量が増すにつれて鉄損は改善される。しかし、含有量が
1.5%未満では鉄損を低下させる効果が乏しく、3.
0%を趙えると二次再結晶が不安定になる他に、加工性
が低下して冷間圧延が困難となることから、Si含有量
を1.5〜3.0%とした。
■Si: Si is an element that affects magnetic properties, and as the content increases to -1, iron loss improves. However, if the content is less than 1.5%, the effect of reducing iron loss is poor;
If the Si content is less than 0%, secondary recrystallization becomes unstable and workability decreases, making cold rolling difficult. Therefore, the Si content was set to 1.5 to 3.0%.

■ PIns Mnは本発明のような極低Cの材料においては、熱延鋼
板&11織、熱延鋼板焼鈍組織及び−次回結晶組織の均
質化を促進して、ゴス方位への集積度の高い二次再結晶
の発生を容易にする好ましい元素である。またMnには
Mn5tNtやMn、 Si、  Aj!、Feを同時
に含む窒化物の析出を促進し、これらの析出物がAIN
とともに二次再結晶のためのインヒビター効果を発揮し
、ゴス方位への集積度の高い二次再結晶を生じさせる効
果もあると考えられる。
■ In ultra-low C materials like the present invention, PINs Mn promotes homogenization of hot-rolled steel plate &11 weave, hot-rolled steel plate annealing structure, and -next crystal structure, resulting in a high degree of accumulation in the Goss orientation. It is a preferable element that facilitates the occurrence of subsequent recrystallization. Also, Mn includes Mn5tNt, Mn, Si, Aj! , promotes the precipitation of nitrides containing Fe at the same time, and these precipitates become AIN
It is also thought that it exerts an inhibitory effect on secondary recrystallization and causes secondary recrystallization with a high degree of accumulation in the Goss orientation.

これらの効果は1.0%未満の含有量では十分に得られ
ず、一方、2.0%を超えると加工性の低下を招き、冷
間圧延が置敷となることから、Mnの含有量を1.0〜
2.0に限定した。
These effects cannot be sufficiently obtained with a content of less than 1.0%, while on the other hand, if it exceeds 2.0%, workability will decrease and cold rolling will be delayed. 1.0~
It was limited to 2.0.

■ S: 本発明でば、iNやMnSi N、および−n、、Si
、 Aj!、Feを同時に含む窒化物を二次再結晶前の
結晶粒粗大化防止のための・インヒビターとしているの
で、MnSを主要なインヒビターとする場合のような多
量のS (0,020〜0.030%)を添加する必要
がない。
■ S: In the present invention, iN, MnSi N, and -n, Si
, Aj! Since nitride containing Fe at the same time is used as an inhibitor to prevent crystal grain coarsening before secondary recrystallization, a large amount of S (0.020 to 0.030 %) is not required.

むしろMnSが多量に存在すると二次再結晶が不安定と
なり鉄1員劣化をきたすので、含有量はその悪影響ので
ない0.010%以下とするのがよい。
Rather, if a large amount of MnS is present, secondary recrystallization becomes unstable and iron 1-member deterioration occurs, so the content is preferably 0.010% or less to avoid such negative effects.

■ So l 、A I Alは、主要なインヒビターであるA2間を形成する重
要な元素である。^2の含有量を5off、Al量で0
.003〜0.015%と定めたのは、0.003%未
満ではインヒビターとしての八βNの絶対量が不足し、
十分なインヒビター効果が期待できないからであり、0
.015%を超えるとインヒビターの■が多くなり過ぎ
るとともに、分布の形態も適当でなくなり、安定した二
次再結晶が生じ難くなるからである。
■Sol, A I Al is an important element that forms A2, which is the main inhibitor. ^2 content is 5 off, Al content is 0
.. The reason why it was set at 0.003% to 0.015% is that if it is less than 0.003%, the absolute amount of 8βN as an inhibitor is insufficient.
This is because a sufficient inhibitor effect cannot be expected, and 0
.. This is because if it exceeds 0.015%, the number of inhibitors becomes too large and the distribution form becomes inappropriate, making it difficult for stable secondary recrystallization to occur.

■ N NはAlNやMr+SiNxおよび、Mn、 Si、^
2、Feを同時に含む窒化物を形成し、二次再結晶が生
じるまでの粒成長を抑制するインヒビターとなる重要な
元素である。しかし、その含有量がo、ooi%未満で
は所望のインヒビター効果が得られず、0.010%を
超えて含有させてもインヒビターとしての効果が飽和す
ることから、N含有量をo、ooi〜0.010%の範
囲と定めた。
■ N N is AlN, Mr+SiNx, Mn, Si, ^
2. It is an important element that forms nitrides containing Fe at the same time and acts as an inhibitor that suppresses grain growth until secondary recrystallization occurs. However, if the N content is less than o, ooi%, the desired inhibitor effect cannot be obtained, and even if the content exceeds 0.010%, the inhibitory effect is saturated. The range was set at 0.010%.

なお、残部はFe及び不可避不純物である。Note that the remainder is Fe and unavoidable impurities.

本発明では、前記化学組成の熱延鋼板を母材に使用し、
これを700°C以上のα域で焼鈍した後、1回または
中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚と
なし、次いで、−次頁結晶を行わしめるための700°
C以上のα域での連続焼鈍と二次再結晶を行わしめるた
めの仕上げ焼鈍を施して、方向性を磁s板とするのであ
る。
In the present invention, a hot rolled steel plate having the above chemical composition is used as a base material,
After annealing this in the alpha range of 700°C or higher, it is cold rolled once or twice or more with an intermediate annealing in between to obtain the final plate thickness, and then at 700° for crystallization.
Continuous annealing in the α region of C or higher and final annealing for secondary recrystallization are performed to make the orientation a magnetic S plate.

各焼鈍条件を上記のように限定する理由は下記のとおり
である。
The reason why each annealing condition is limited as described above is as follows.

(a)  熱延鋼板焼鈍 母材熱延綱板の製造プロセスは特に限定する必要がない
、前記化学組成のものであれば何れの方法で得られたも
のであってもよい0重要なことは、前記化学組成の熱延
綱板を次の冷間圧延に先立って700℃以上のα域で焼
鈍することである。
(a) Hot-rolled steel sheet annealing base material The manufacturing process of the hot-rolled steel sheet does not need to be particularly limited; it may be obtained by any method as long as it has the above chemical composition.0 Important points: , the hot-rolled steel sheet having the above chemical composition is annealed in the alpha range of 700° C. or higher prior to the next cold rolling.

第1図は、C: 0.002%、Si : 2.25%
、Mn : 1.51%、S : 0.004%、So
 j! 、A ll弓0.008%、N : 0.00
38%、残部はpe及び不可避不純物からなるスラブを
、熱間圧延して得た板厚2.3mmの熱延綱板に種々の
温度で1分間の連続焼鈍を施し、次いで酸洗処理してか
ら冷間圧延を行い板厚0.51の冷延鋼板とした後、9
00℃で30秒の連続焼鈍と870°Cで48時間の仕
上げ焼鈍を施して得た試験片の圧延方向の磁束密度B 
*(800A/sの磁化力で磁化した時の磁束密度)を
測定した結果である。
Figure 1 shows C: 0.002%, Si: 2.25%
, Mn: 1.51%, S: 0.004%, So
j! , All bow 0.008%, N: 0.00
A hot-rolled steel plate with a thickness of 2.3 mm obtained by hot rolling a slab consisting of 38% and the remainder consisting of PE and unavoidable impurities was subjected to continuous annealing at various temperatures for 1 minute, and then pickled. After cold rolling to obtain a cold rolled steel plate with a plate thickness of 0.51,
Magnetic flux density B in the rolling direction of a test piece obtained by continuous annealing at 00°C for 30 seconds and final annealing at 870°C for 48 hours
*This is the result of measuring (magnetic flux density when magnetized with a magnetizing force of 800 A/s).

なお、仕上げ焼鈍は前半の24時間は50%N8と50
%USの混合ガス雰囲気で行い、後半の24時間は10
0%■震雰囲気で行った。
In addition, for the first 24 hours of finish annealing, 50% N8 and 50
It was carried out in a mixed gas atmosphere of %US, and the second half was 10
0% ■ Conducted in an earthquake atmosphere.

第1図から明らかなように、熱延鋼板焼鈍温度は700
℃未満では磁束密度の向上が小さいが、?00゛C以上
で大きく向上している。  700℃以上の熱延鋼板焼
鈍で磁束密度が大きく上昇するのは、熱延鋼板の再結晶
が進行し組織の均一化が促進されるとともに、インヒビ
ターとなるAffiNやMnSi N 2およびMn、
 5iSAffi、Feを同時に含む窒化物の分散状態
が改善され、その結果、仕上げ焼鈍で精度のよいゴス方
位粒の二次再結晶が生じるためと考えられる。
As is clear from Figure 1, the hot rolled steel plate annealing temperature is 700
Below ℃, the improvement in magnetic flux density is small, but? There is a significant improvement at temperatures above 00°C. The reason why the magnetic flux density increases greatly when hot-rolled steel sheet is annealed at 700°C or higher is that the recrystallization of the hot-rolled steel sheet progresses and the homogenization of the structure is promoted, and the inhibitors AffiN, MnSi N 2 and Mn,
This is considered to be because the dispersion state of nitrides containing 5iSAffi and Fe at the same time is improved, and as a result, secondary recrystallization of Goss-oriented grains occurs with high precision in final annealing.

以上のようなことから本発明では熱延鋼板焼鈍を700
°C以上とし、たのである。
For the above reasons, in the present invention, hot rolled steel sheet annealing is performed at 700°C.
It was set to above °C.

なお、1000℃を超える温度で熱延鋼板を焼鈍しても
よいが、焼鈍の効果が飽和し磁束密度の向上はみられず
、寧ろ経済的に不利となるので、望ましい焼鈍温度は7
00〜1000℃である。また、この熱延鋼板焼鈍は連
続焼鈍でも箱焼鈍でもよい、連続焼鈍の場合は800〜
1000℃1箱焼鈍の場合は700〜850°Cが組織
の均一化のために望ましい温度域である。
Note that hot-rolled steel sheets may be annealed at a temperature exceeding 1000°C, but the effect of annealing is saturated and no improvement in magnetic flux density is observed, which is rather economically disadvantageous, so the desirable annealing temperature is 7.
00-1000°C. In addition, this hot rolled steel plate annealing may be continuous annealing or box annealing, and in the case of continuous annealing, 800~
In the case of one-box annealing at 1000°C, the desired temperature range is 700 to 850°C for uniformity of the structure.

(b)  中間焼鈍 中間焼鈍は、熱延鋼板を2回以上の冷間圧延によって最
終板厚となす場合に、冷間圧延と冷間圧延の間で圧延材
の軟化を目的に実施される。中間焼鈍の条件は特に限定
する必要がないが、中間焼鈍温度は次に述べる冷間圧延
後の連続焼鈍温度と同じとするのが望ましい。
(b) Intermediate annealing Intermediate annealing is performed for the purpose of softening the rolled material between cold rolling when a hot rolled steel plate is cold rolled twice or more to reach its final thickness. Although there is no need to particularly limit the conditions for intermediate annealing, it is desirable that the intermediate annealing temperature be the same as the continuous annealing temperature after cold rolling described below.

(C)  冷間圧延後の連続焼鈍 一次再結晶を生じさせるためのこの連続焼鈍は700°
C以上のα域で実施する。−次回結晶焼鈍でのAINや
MnSi N 、およびMn、 Si、 Aj!、 F
eを同時に含む窒化物の析出及び−次再結晶粒径と一次
再結晶集合組織は、次の仕上げ焼鈍で望ましい二次再結
晶を起こさせるうえで重要となる。そのためには、焼鈍
温度を700℃以上のα領域にとって、5℃/秒以上の
加熱速度で連続焼鈍するのがよい。
(C) Continuous annealing after cold rolling This continuous annealing to cause primary recrystallization is performed at 700°
Conducted in the α range of C or higher. -AIN, MnSi N, and Mn, Si, Aj in the next crystal annealing! , F
The precipitation of nitrides containing e at the same time, the secondary recrystallization grain size, and the primary recrystallization texture are important for causing desirable secondary recrystallization in the subsequent final annealing. For this purpose, it is preferable to set the annealing temperature in the α range of 700° C. or higher and perform continuous annealing at a heating rate of 5° C./sec or higher.

焼鈍温度が700°C未満では一次再結晶が十分に生じ
ない場合がある。一方、T相の生じるような高温で焼鈍
すると、良好なA7!Nの分散状態、−次再結晶粒径お
よび一次再結晶集合組織が得られない。
If the annealing temperature is less than 700°C, primary recrystallization may not occur sufficiently. On the other hand, when annealing is performed at a high temperature that produces the T phase, a good A7! The dispersion state of N, the -order recrystallized grain size, and the first-order recrystallization texture cannot be obtained.

なお、この焼鈍温度に5秒以上保持するのが望ましいが
、10分以上保持しても効果に差はなく連続焼鈍炉の生
産性を低下させるだけである。
Although it is desirable to hold this annealing temperature for 5 seconds or more, holding it for 10 minutes or more does not make any difference in the effect and only reduces the productivity of the continuous annealing furnace.

(d)  仕上げ焼鈍 仕上げ焼鈍は、鋼板メーカーにおいて実施し得ることは
勿論であるが、ユーザーにおける歪取り焼鈍として行う
ことも可能である。
(d) Finish annealing Finish annealing can of course be carried out by the steel sheet manufacturer, but it can also be carried out by the user as strain relief annealing.

仕上げ焼鈍ではゴス方位の二次再結晶を十分に発達させ
ることがことが重要となる。仕上げ焼鈍の条件としては
、800°C以上のα領域で10〜60時間程度保持す
るのが一般的である。
In final annealing, it is important to sufficiently develop secondary recrystallization in the Goss orientation. As conditions for final annealing, it is common to maintain the temperature in the α region of 800° C. or higher for about 10 to 60 hours.

仕上げ焼鈍は二次再結晶が完了するまではNz含有雰囲
気中で行うのが望ましい0本発明では、AINやMn5
iNzおよびMn、 Si、 Al、 Feを同時に含
む窒化物をインヒビターとして使用するため、二次再結
晶を発生させる前に脱窒が生じると窒化物の析出量が減
少し、二次再結晶が不安定となる。
Finish annealing is preferably carried out in an Nz-containing atmosphere until secondary recrystallization is completed.In the present invention, AIN and Mn5
Since a nitride containing iNz and Mn, Si, Al, and Fe at the same time is used as an inhibitor, if denitrification occurs before secondary recrystallization occurs, the amount of nitride precipitation decreases, and secondary recrystallization becomes ineffective. It becomes stable.

以下、実施例により本発明を更に説明する。The present invention will be further explained below with reference to Examples.

(実施例1) 第1表に示す化学組成の熱延鋼板(板厚2.3ma+)
を、900°Cで1分間連続焼鈍した後、酸洗してがら
1回の冷間圧延で板厚0.35I1mに仕上げ、次いで
、−次回結晶を行わせるため900°Cで1分間の連続
焼鈍を行い、更に焼鈍分離剤を塗布してから880°C
で48時間の二次再結晶を行わせる仕上げ焼鈍を行った
。仕上げ焼鈍は、二次再結晶が発生する均熱の前半24
時間は75%Nよと25%■8の混合ガス雰囲気で行い
、後半24時間は純化焼鈍を目的に100%H2雰囲気
中で行った。
(Example 1) Hot-rolled steel plate with the chemical composition shown in Table 1 (plate thickness 2.3ma+)
was continuously annealed at 900°C for 1 minute, then cold-rolled once while pickling to give a plate thickness of 0.35I1m, and then continuously annealed at 900°C for 1 minute for next crystallization. After annealing and applying an annealing separator, heat to 880°C.
Finish annealing was performed to perform secondary recrystallization for 48 hours. Finish annealing is the first half of soaking where secondary recrystallization occurs.
The annealing was performed in a mixed gas atmosphere of 75% N and 25% x8, and the latter 24 hours was performed in a 100% H2 atmosphere for the purpose of purification annealing.

このようにして得られた方向性電磁鋼板の磁気特性につ
いて、圧延方向の磁束密度と鉄損を調べた。その結果を
第1表に併せて示す。
Regarding the magnetic properties of the thus obtained grain-oriented electrical steel sheet, the magnetic flux density and iron loss in the rolling direction were investigated. The results are also shown in Table 1.

(以下、余白) 第1表において、供試鋼(a) 〜(e)はSol、A
lを除く他の元素の含有量かは6ぼ同一のものである。
(Hereinafter, blank space) In Table 1, test steels (a) to (e) are Sol, A
The contents of all the other elements except 1 are the same.

この中でSol、AI!が本発明で規定する範囲から低
目に外れた供試鋼(a)及び高目に外れた供試N (e
)から製造した試験Nαlおよび5のものは著しく磁気
特性に劣る。同様に供試鋼(f)と(g)はS、供試M
(h)と(i)はNおよび供試鋼(j)と(k)は−〇
を除く他の元素の含有量がほぼ同一のものであるが、S
が高目である試験NQ7、Nが低目である試験Nα8お
よびinが低目である試験Na1lのものはいずれも磁
気特性に劣る。試験Nα12の鋼種(1)はSiが低目
に外れたものである。このものは磁束密度については本
発明例のものと差はないが鉄損が劣り、また、試験k1
3の鋼種に)はCが高目に外れたものであるが、このも
のはC以外はほぼ同一組成である本発明例の鋼種(b)
、(C)、(d)を用いた試験Nα2〜4と比べると鉄
を員に劣る。これら比較例に対して、本発明例のものは
いずれも良好な磁気特性である。
Among them, Sol, AI! Test steel (a) with a lower value than the range specified by the present invention and sample N (e with a higher value)
) and those of test Nαl and 5 produced from Nαl and 5 had significantly inferior magnetic properties. Similarly, test steels (f) and (g) are S and test M
(h) and (i) have almost the same content of N, and the test steels (j) and (k) have almost the same content of other elements except -〇, but S
Test NQ7 where N is high, test Nα8 where N is low, and test Na1l where in is low are all inferior in magnetic properties. The steel type (1) of test Nα12 has a low Si content. Although this product has no difference in magnetic flux density from the example of the present invention, it has inferior iron loss, and test k1
Steel type (b) of the present invention example, which has almost the same composition except for C, has a high C value.
, (C), and (d) are compared with tests Nα2 to Nα4 using iron. In contrast to these comparative examples, all of the inventive examples have good magnetic properties.

(実施例2) 実施例1で用いた鋼種0)と同一組成の板厚2.3m1
1の熱延板を母材とし、これを第2表に示すような種々
の条件で最終板厚となした後、−次回結晶を行わせる焼
鈍を行い、更に焼鈍分離剤を塗布した後、二次再結晶を
行わせる仕上げ焼鈍を行った。
(Example 2) Plate thickness 2.3 m1 with the same composition as steel type 0 used in Example 1
After using the hot rolled sheet of No. 1 as the base material and making it to the final thickness under various conditions as shown in Table 2, annealing is performed to cause crystallization, and an annealing separator is applied. Finish annealing was performed to perform secondary recrystallization.

仕上げ焼鈍は、実施例1と同じ雰囲気とした。The final annealing was performed in the same atmosphere as in Example 1.

このようにして得られた方向性電磁鋼板の磁気特性につ
いて、圧延方向の磁束密度と鉄損を調べた。その結果を
同じく第2表に示す。
Regarding the magnetic properties of the thus obtained grain-oriented electrical steel sheet, the magnetic flux density and iron loss in the rolling direction were investigated. The results are also shown in Table 2.

(以下、余白) 第2表から明らかなように、試験No、16〜19の本
発明例のものはすべて良好な磁気特性であるのに対し、
熱延鋼板焼鈍を省略した試験No、 14、熱延鋼板焼
鈍温度が低い試験Nα15および一次再結晶焼鈍温度が
低い試験No、20の比較例のものは磁気特性が劣って
いる。
(Hereinafter, blank space) As is clear from Table 2, all of the inventive examples of Test Nos. 16 to 19 had good magnetic properties, whereas
Comparative examples of Test No. 14 in which hot-rolled steel sheet annealing was omitted, Test Nα15 in which hot-rolled steel sheet annealing temperature was low, and Test No. 20 in which primary recrystallization annealing temperature was low were inferior in magnetic properties.

(発明の効果) 以上説明した如く、本発明方法によれば精度のよいゴス
方位の二次再結晶Mi繊をもった磁気特性に優れた方向
性電磁鋼板を安定して製造することができる。
(Effects of the Invention) As explained above, according to the method of the present invention, it is possible to stably produce a grain-oriented electrical steel sheet having excellent magnetic properties and having secondary recrystallized Mi fibers with a highly accurate Goss orientation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、熱延鋼板焼鈍温度と最終製品の磁束密度との
関係を示すグラフである。
FIG. 1 is a graph showing the relationship between hot rolled steel sheet annealing temperature and magnetic flux density of the final product.

Claims (1)

【特許請求の範囲】 重量%で、 C:0.01%以下、Si:1.5〜3.0%、Mn:
1.0〜2.0%、S:0.010%以下、Sol.A
l:0.003〜0.015%、N:0.001〜0.
010%、残部:Fe及び不可避不純物 からなる極低炭素鋼の熱延鋼板を、700℃以上のα域
で焼鈍した後、1回または中間焼鈍を挟む2回以上の冷
間圧延を施して最終板厚となし、次いで、700℃以上
のα域で連続焼鈍を行い、その後、仕上げ焼鈍すること
を特徴とする方向性電磁鋼板の製造方法。
[Claims] In weight%, C: 0.01% or less, Si: 1.5 to 3.0%, Mn:
1.0-2.0%, S: 0.010% or less, Sol. A
l: 0.003-0.015%, N: 0.001-0.
010%, remainder: Fe and unavoidable impurities A hot-rolled ultra-low carbon steel plate is annealed in the alpha range of 700°C or higher, and then cold-rolled once or twice or more with an intermediate annealing in between to form the final product. A method for producing a grain-oriented electrical steel sheet, comprising: reducing the thickness of the sheet, then continuously annealing in the α region at 700° C. or higher, and then finishing annealing.
JP24840689A 1989-09-25 1989-09-25 Production of grain-oriented electrical steel sheet Pending JPH03111516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24840689A JPH03111516A (en) 1989-09-25 1989-09-25 Production of grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24840689A JPH03111516A (en) 1989-09-25 1989-09-25 Production of grain-oriented electrical steel sheet

Publications (1)

Publication Number Publication Date
JPH03111516A true JPH03111516A (en) 1991-05-13

Family

ID=17177639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24840689A Pending JPH03111516A (en) 1989-09-25 1989-09-25 Production of grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JPH03111516A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0503680A2 (en) * 1991-03-15 1992-09-16 Sumitomo Metal Industries, Ltd. Oriented silicon steel sheets and production process therefor
US5486407A (en) * 1993-06-08 1996-01-23 General Electric Co. High rubber backing multi-layer ABS system which exhibits improved chemical resistance to HCFC blowing agents
KR20020023897A (en) * 2001-12-27 2002-03-29 윤수용 BioCircuit
US7371291B2 (en) 2001-01-19 2008-05-13 Jfe Steel Corporation Grain-oriented magnetic steel sheet having no undercoat film comprising forsterite as primary component and having good magnetic characteristics

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030732A (en) * 1973-07-20 1975-03-27
JPS5129496A (en) * 1974-09-03 1976-03-12 Nippon Soda Co Kisanchin no seizoho
JPS5813605A (en) * 1981-07-20 1983-01-26 Showa Denko Kk Preparation of ethylenic copolymer
JPH01119644A (en) * 1987-10-30 1989-05-11 Sumitomo Metal Ind Ltd Directional electromagnetic steel plate and its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030732A (en) * 1973-07-20 1975-03-27
JPS5129496A (en) * 1974-09-03 1976-03-12 Nippon Soda Co Kisanchin no seizoho
JPS5813605A (en) * 1981-07-20 1983-01-26 Showa Denko Kk Preparation of ethylenic copolymer
JPH01119644A (en) * 1987-10-30 1989-05-11 Sumitomo Metal Ind Ltd Directional electromagnetic steel plate and its manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0503680A2 (en) * 1991-03-15 1992-09-16 Sumitomo Metal Industries, Ltd. Oriented silicon steel sheets and production process therefor
EP0503680A3 (en) * 1991-03-15 1995-01-11 Sumitomo Metal Ind Oriented silicon steel sheets and production process therefor
US5486407A (en) * 1993-06-08 1996-01-23 General Electric Co. High rubber backing multi-layer ABS system which exhibits improved chemical resistance to HCFC blowing agents
US7371291B2 (en) 2001-01-19 2008-05-13 Jfe Steel Corporation Grain-oriented magnetic steel sheet having no undercoat film comprising forsterite as primary component and having good magnetic characteristics
KR20020023897A (en) * 2001-12-27 2002-03-29 윤수용 BioCircuit

Similar Documents

Publication Publication Date Title
JPH03111516A (en) Production of grain-oriented electrical steel sheet
KR20190078160A (en) Grain oriented electrical steel sheet and method for manufacturing the same
JP3065853B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JPH0121851B2 (en)
JPH08134551A (en) Production of grain oriented silicon steel sheet excellent in iron loss and magnetostrictive characteristic
JPH02294428A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH042723A (en) Production of double oriented silicon steel sheet having high magnetic flux density
EP0468819A1 (en) Method for manufacturing an oriented silicon steel sheet having improved magnetic flux density
JP3492965B2 (en) Cold rolling method to obtain unidirectional electrical steel sheet with excellent magnetic properties
JPH02228425A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JP2819993B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JPH05230534A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
KR20020033021A (en) Method f0r producing a grain-oriented electrode steel sheet of sheet shaping having the high magnetic flux density
JPH10273725A (en) Manufacture of grain oriented silicon steel sheet
WO2022210504A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet
WO2022210503A1 (en) Production method for grain-oriented electrical steel sheet
JPH0230714A (en) Production of grain-oriented electrical steel sheet
JP3287488B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH10183249A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
KR20030053154A (en) Method for manufacturing non-oriented electrical steel sheet with superior magnetic property
JP2758543B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties
KR100876181B1 (en) Manufacturing method of thin oriented electrical steel sheet
JPH10110217A (en) Production of grain oriented silicon steel sheet