JP4929484B2 - Non-oriented electrical steel sheet and manufacturing method thereof - Google Patents

Non-oriented electrical steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP4929484B2
JP4929484B2 JP2009195952A JP2009195952A JP4929484B2 JP 4929484 B2 JP4929484 B2 JP 4929484B2 JP 2009195952 A JP2009195952 A JP 2009195952A JP 2009195952 A JP2009195952 A JP 2009195952A JP 4929484 B2 JP4929484 B2 JP 4929484B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
strength
electrical steel
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009195952A
Other languages
Japanese (ja)
Other versions
JP2011046997A (en
Inventor
雅昭 河野
善彰 財前
善彦 尾田
藤田  明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009195952A priority Critical patent/JP4929484B2/en
Publication of JP2011046997A publication Critical patent/JP2011046997A/en
Application granted granted Critical
Publication of JP4929484B2 publication Critical patent/JP4929484B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Description

本発明は、無方向性電磁鋼板、特にタービン発電機、電気自動車およびハイブリッド自動車の駆動モータ、或いはロボットや工作機械のサーボモータなど、高速回転機のロータを典型例とする、大きな応力がかかる部品に用いて好適な、高強度で疲労特性に優れ、しかも優れた磁気特性を有する無方向性電磁鋼板およびその製造方法を従来よりも低コストで提供するものである。   The present invention is a non-oriented electrical steel sheet, particularly a component subjected to a large stress such as a rotor of a high-speed rotating machine, such as a drive motor of a turbine generator, an electric vehicle and a hybrid vehicle, or a servo motor of a robot or a machine tool. The present invention provides a non-oriented electrical steel sheet having a high strength, excellent fatigue properties, and excellent magnetic properties, and a method for producing the same, at a lower cost than in the past.

近年、モータの駆動システムの発達により、駆動電源の周波数制御が可能となり、可変速運転を行うモータや商用周波数以上で高速回転を行うモータが増加している。このような高速回転を行うモータでは、回転体に作用する遠心力は回転半径に比例し、回転速度の2乗に比例して大きくなるため、特に中・大型の高速モータのロータ材には高強度が必要となる。   In recent years, with the development of motor drive systems, it is possible to control the frequency of the drive power supply, and motors that perform variable speed operation and motors that rotate at a higher speed than the commercial frequency are increasing. In motors that perform such high-speed rotation, the centrifugal force acting on the rotating body is proportional to the radius of rotation and increases in proportion to the square of the rotational speed. Strength is required.

また、近年、ハイブリッド自動車の駆動モータやコンプレッサモータなどでの採用が増加している、埋め込み磁石型DCインバータ制御モータ(IPM)では、ロータ内の磁石埋設用溝とロータ外周との間や、磁石埋設溝間の幅数mm程度の狭いブリッジ部に応力が集中する。モータは高速回転とすることで小型化が可能となるため、スペースや重量制約のあるハイブリッド自動車の駆動モータなどでは、モータの高速回転化が指向されており、高速回転ロータに使用されるコア材料には高強度材が有利となる。   Further, in recent years, in the embedded magnet type DC inverter control motor (IPM), which is increasingly used in drive motors and compressor motors of hybrid vehicles, between the magnet embedding groove in the rotor and the outer periphery of the rotor, and in the magnet Stress concentrates in a narrow bridge portion with a width of several millimeters between the buried grooves. Since motors can be reduced in size by high-speed rotation, drive motors for hybrid vehicles with space and weight constraints are aimed at high-speed rotation of the motor, and the core material used for high-speed rotation rotors For this, a high strength material is advantageous.

一方で、こうしたモータや発電機などの回転機器は、電磁気現象を利用するため、その鉄心コア素材には磁気特性に優れることも求められる。特に、高速回転モータのロータにおいては、高周波磁束で発生する渦電流によりコア温度が上昇し、埋設されている永久磁石の熱減磁の原因となったり、モータ効率が低下する要因ともなるため、高周波において低鉄損であることが求められている。従って、高強度でかつ磁気特性に優れる電磁鋼板がロータ用素材として要望されている。   On the other hand, rotating devices such as motors and generators use an electromagnetic phenomenon, and therefore, the iron core material is required to have excellent magnetic properties. In particular, in the rotor of a high-speed rotary motor, the core temperature rises due to eddy currents generated by high-frequency magnetic flux, which may cause thermal demagnetization of the embedded permanent magnet, or may cause the motor efficiency to decrease. There is a demand for low iron loss at high frequencies. Therefore, there is a demand for a magnetic steel sheet having high strength and excellent magnetic properties as a rotor material.

鋼の強化機構には、固溶強化、析出強化、結晶粒微細化および加工硬化などがあり、これまでに、このようなニーズに対応した高強度の無方向性電磁鋼板がいくつか検討、そして提案されている。
ここに、固溶強化を活用したものとして、例えば特許文献1には、Si含有量を3.5〜7.0%と高めることを基本として、さらに固溶強化のためにTi,W,Mo,Mn,Ni,CoおよびAlなどの元素を添加して高強度化を図る方法が提案されている。さらに、特許文献2には、上記強化法に加え、仕上げ焼鈍条件の工夫により結晶粒径を0.01〜5.0mmに制御して磁気特性を改善する方法が提案されている。
Steel strengthening mechanisms include solid solution strengthening, precipitation strengthening, grain refinement, and work hardening, and so far, several high-strength non-oriented electrical steel sheets that meet these needs have been studied, and Proposed.
Here, for example, in Patent Document 1, the use of solid solution strengthening is based on increasing the Si content to 3.5 to 7.0%, and for further solid solution strengthening, Ti, W, Mo, Mn, Ni. A method of increasing the strength by adding elements such as Co, Al and Al has been proposed. Furthermore, Patent Document 2 proposes a method for improving magnetic properties by controlling the crystal grain size to 0.01 to 5.0 mm by devising finish annealing conditions in addition to the above-described strengthening method.

しかしながら、これらの方法を工場生産に適用した場合、熱延後の圧延ラインでの板破断などのトラブルが生じやすく、歩留まり低下やライン停止が余儀なくされる場合があった。なお、冷間圧延を板温数百℃の温間で行えば、板破断は軽減されるものの、温間圧延のための設備対応が必要となること、生産上の制約が大きくなることなど、工程管理上の問題を無視できなくなる。   However, when these methods are applied to factory production, troubles such as plate breakage in a rolling line after hot rolling are likely to occur, and yield reduction and line stoppage may be forced. In addition, if cold rolling is performed at a plate temperature of several hundreds of degrees Celsius, the plate breakage is reduced, but it is necessary to deal with equipment for warm rolling, and restrictions on production increase. Process management problems cannot be ignored.

また、炭窒化物の析出を利用する技術として、特許文献3には、Si含有量が2.0%以上4.0%未満の鋼において、Cを0.05%以下とし、Nb、Zr、TiおよびVのうち、1種または2種を、0.1<(Nb+Zr)/8(C+N) <1.0、0.4<(Ti+V)/4(C+N) <4.0の範囲で含有して、炭窒化物による析出硬化および細粒化効果を利用する技術が提案されている。
同様に、特許文献4には、前記特許文献3に記載された事項に加えて、NiおよびMnを合計で0.3%以上10%以下添加して固溶強化した上で、前記特許文献3に記載されたと同様の比率のNb、Zr、TiおよびVを添加して、高強度並びに磁気特性の両立をはかる技術が提案されている。
In addition, as a technique using precipitation of carbonitride, Patent Document 3 discloses that in a steel having an Si content of 2.0% or more and less than 4.0%, C is set to 0.05% or less, and among Nb, Zr, Ti, and V, Carbonitride containing 1 or 2 in the range of 0.1 <(Nb + Zr) / 8 (C + N) <1.0, 0.4 <(Ti + V) / 4 (C + N) <4.0 Techniques have been proposed that utilize the precipitation hardening and grain refining effects produced by the process.
Similarly, in Patent Document 4, in addition to the matters described in Patent Document 3, Ni and Mn are added in a total solution of 0.3% or more and 10% or less to enhance the solid solution, and then described in Patent Document 3. A technique has been proposed in which Nb, Zr, Ti and V are added in the same ratio as described above to achieve both high strength and magnetic properties.

しかしながら、これらの方法で高い強度を得た場合、磁気特性の劣化が避けられないのに加え、析出物に起因するヘゲなどの表面欠陥や内部欠陥が生じやすく製品品質の低下を招き、さらに欠陥除去のための歩留まり落ちや鋼板製造時の破断トラブルを生じやすいため、コスト高となるといった問題がある。また、特許文献4に記載の技術では、Niのような高価な固溶強化元素を添加しているため、一層大幅なコスト高を招くこととなる。   However, when high strength is obtained by these methods, in addition to inevitable deterioration of magnetic properties, surface defects such as heges and internal defects due to precipitates are likely to occur, resulting in a decrease in product quality. There is a problem in that the cost is high because a yield drop for defect removal and a rupture trouble at the time of manufacturing a steel sheet are likely to occur. Moreover, in the technique described in Patent Document 4, since an expensive solid solution strengthening element such as Ni is added, the cost is further increased.

さらに、加工硬化を利用した技術として、特許文献5には、0.2〜3.5%のSiを含有する鋼に対して、鋼材内部に加工組織を残存させることにより高強度化を図る技術が提案されている。具体的には、冷間圧延後に熱処理を行わないか、行っても750℃で30秒保持に相当する程度を超えるものではなく、好ましくは700℃以下、さらに好ましくは650℃以下、600℃以下、550℃以下および500℃以下とする手段が開示されている。ここでは、750℃×30秒の焼鈍で加工組織率5%、同700℃×30秒で20%、同600℃×30秒で50%を実績として例示している。この場合、焼鈍温度が低温であるために、圧延ストリップの形状矯正が十分に行われないという問題があった。鋼板形状が不良であると、モータ用のコアなどに積層加工した後の占積率が低下すること、ロータとして高速回転したときの応力分布が不均一となること、などの問題が生じる。また、鋼組成および焼鈍温度によって加工粒と再結晶粒の比率が大幅に変化するため、安定した特性が得がたいという、問題もある。さらに、一般に無方向性電磁鋼板の仕上げ焼鈍は連続焼鈍炉を用いて行われており、炉内は鋼板表面の酸化を抑制するために数%以上の水素ガスを含む雰囲気に調整されているのが通例である。こうした連続焼鈍設備において、700℃を下回るような低温焼鈍を実施するには、炉温設定の切り替えに時間を要するだけでなく、水素爆発を回避するために炉内雰囲気の置換が必要となるなどの、多大な操業上の制約が生じることとなる。   Furthermore, as a technique using work hardening, Patent Document 5 proposes a technique for increasing the strength of steel containing 0.2 to 3.5% Si by leaving a processed structure inside the steel material. Yes. Specifically, no heat treatment is performed after cold rolling, or even if it does not exceed the extent corresponding to holding at 750 ° C. for 30 seconds, preferably 700 ° C. or less, more preferably 650 ° C. or less, 600 ° C. or less , 550 ° C. or lower and 500 ° C. or lower are disclosed. Here, as a result, annealing is performed at 750 ° C. × 30 seconds, and the work structure ratio is 5%, 700% × 30 seconds is 20%, and 600 ° C. × 30 seconds is 50%. In this case, since the annealing temperature is low, there has been a problem that shape correction of the rolled strip is not sufficiently performed. If the shape of the steel plate is poor, problems such as a decrease in the space factor after lamination processing on a motor core or the like, and a non-uniform stress distribution when rotating as a rotor at high speeds arise. In addition, since the ratio of processed grains and recrystallized grains varies greatly depending on the steel composition and annealing temperature, there is a problem that it is difficult to obtain stable characteristics. Furthermore, in general, finish annealing of non-oriented electrical steel sheets is performed using a continuous annealing furnace, and the inside of the furnace is adjusted to an atmosphere containing hydrogen gas of several percent or more in order to suppress oxidation of the steel sheet surface. Is customary. In such continuous annealing equipment, in order to perform low-temperature annealing below 700 ° C, it takes time to switch the furnace temperature setting, and it is necessary to replace the furnace atmosphere to avoid a hydrogen explosion, etc. As a result, there will be great operational restrictions.

発明者らは、以上の技術背景から、特許文献6において、CおよびNを低減した珪素鋼において、TiをCおよびNに対して十分過剰に添加することで珪素鋼の再結晶温度を高め、仕上げ焼鈍での鋼板形状矯正と未再結晶組織による強化を両立した高強度電磁鋼板を提案した。この方法は、Tiの添加量が比較的に高いために合金コストが高くなること、また未再結晶組織が残存するため機械的特性がばらつく可能性があること、などに課題が残されていた。   Inventors have raised the recrystallization temperature of silicon steel by adding Ti excessively with respect to C and N in the silicon steel which reduced C and N in patent document 6 from the above technical background, We proposed a high-strength electrical steel sheet that combines steel plate shape correction in finish annealing and strengthening by non-recrystallized structure. This method had problems such as high alloying costs due to the relatively high amount of Ti added, and mechanical properties may vary due to the remaining non-recrystallized structure. .

特開昭60−238421号公報JP-A-60-238421 特開昭62-112723号公報JP-A-62-112723 特開平6−330255号公報JP-A-6-330255 特開平2−8346号公報Japanese Patent Laid-Open No. 2-8346 特開2005−113185号公報JP 2005-113185 A 特開2007-186790号公報JP 2007-186790 A

以上、高強度の無方向性電磁鋼板に関していくつかの提案がなされてきているものの、これまでの提案では、高い引張強さや高い疲労強度に加えて、良好な磁気特性を有し、さらに表面欠陥および内部欠陥や板形状といった、鋼板品質の課題をも満足する、高強度無方向性電磁鋼板を、通常の電磁鋼板製造設備を用いて工業的に安定して、歩留まり良く安価に製造することは達成出来ていないのが現状である。特に、これまでに高速回転ロータ用に提供されている、高強度の電磁鋼板では、磁気特性すなわち高周波鉄損が高いためロータの発熱が避けられず、モータの設計仕様の制限が余儀なくされる状況にあった。   Although several proposals have been made regarding high-strength non-oriented electrical steel sheets, previous proposals have good magnetic properties in addition to high tensile strength and high fatigue strength, and surface defects. It is also possible to manufacture high-strength non-oriented electrical steel sheets that satisfy steel plate quality issues such as internal defects and plate shapes, industrially stable with normal electromagnetic steel sheet manufacturing equipment, with good yield and low cost. The current situation has not been achieved. In particular, high-strength electrical steel sheets that have been provided for high-speed rotors so far have a high magnetic property, that is, high-frequency iron loss, so heat generation of the rotor is unavoidable, and the motor design specifications must be restricted. It was in.

そこで、本発明の目的は、磁気特性や鋼板品質にも優れる無方向性電磁鋼板、およびその製造方法を低コストで提供すること、具体的には、引張強さ650MPa以上、望ましくは700MPa以上で、良好な高周波低鉄損特性、例えば板厚0.35mm材のW10/400値が40W/kg以下、望ましくは35W/kg以下を両立する、無方向性電磁鋼板を、工業的に安定して、しかも低コストで製造するための手段を提供することである。 Accordingly, an object of the present invention is to provide a non-oriented electrical steel sheet having excellent magnetic properties and steel sheet quality and a manufacturing method thereof at a low cost, specifically, a tensile strength of 650 MPa or more, preferably 700 MPa or more. , Non-oriented electrical steel sheet with good high frequency and low iron loss characteristics, for example, W10 / 400 value of 0.35mm thickness material is 40W / kg or less, preferably 35W / kg or less, industrially stable Moreover, it is to provide a means for manufacturing at low cost.

発明者らは、上記の目的を高い次元で達成可能な高強度電磁鋼板およびその製造方法について種々の検討を行った。その結果、TiとCの添加量並びに添加比率が電磁鋼板の強度特性および磁気特性のバランスに深く関与することを突き止め、Ti炭化物の析出量を適正化することによって、優れた特性を有する高強度電磁鋼板を安定して低コストで製造出来ることを見出した。
すなわち、本発明は以下の知見に立脚するものである。
(イ)比較的少量のTi炭化物の存在により、電磁鋼板の仕上げ焼鈍における結晶粒の成長は抑制でき、結晶粒の微細化による強化が図れること。
(ロ)Ti炭化物の量が多すぎても結晶粒成長の抑制効果には寄与しないばかりか、表面欠陥や内部欠陥が増加し鋼板品質が低下したり、破壊起点となる等の悪影響をもたらすこと。一方、Tiの添加を適正範囲に制御することにより、ヘゲなどの表面欠陥や内部欠陥は大幅に減少すること。
一方、Ti窒化物はTi炭化物より高温で生成するため、結晶粒成長を抑制する効果が弱く、本発明の目的とする結晶粒の微細化制御には有用でないこと。従って、Ti炭化物量を制御することで結晶粒成長を抑制する手法においては、Nは安定的に低減することが望ましいこと。これは、CおよびNの効果が同様に扱われている従来の析出強化手法とは異なるものである。
(ハ)結晶粒を微細化した鋼板において、固溶Cは、引張強さを高めるだけでなく、高速回転するロータ材に本質的に必要である疲労特性を向上させる効果を有すること。
(ニ)電磁鋼板の電気抵抗を高めて低鉄損化を図る目的にて通常添加されている主要合金成分はSi,AlおよびMnの3元素であるが、これらの置換型合金元素には鋼を固溶強化する効果もある。従って、高強度と低鉄損を両立するためには、これらの元素による固溶強化をベースとするのが有効であること。一方、これらの元素の過剰添加は鋼を脆化して製造が困難になるため、添加には限界があり、固溶強化、低鉄損化および製造性の3点を、最も効率良く充足するには、Siを主体とした添加が望ましいこと。
The inventors conducted various studies on a high-strength electrical steel sheet that can achieve the above-described object at a high level and a method for manufacturing the same. As a result, it has been found that the addition amount and addition ratio of Ti and C are deeply involved in the balance of strength and magnetic properties of the electrical steel sheet, and by optimizing the precipitation amount of Ti carbide, high strength with excellent properties It was found that electrical steel sheets can be manufactured stably and at low cost.
That is, the present invention is based on the following knowledge.
(A) The presence of a relatively small amount of Ti carbide can suppress the growth of crystal grains in the final annealing of electrical steel sheets, and can be strengthened by refinement of crystal grains.
(B) Too much Ti carbide not only contributes to the effect of suppressing grain growth, but also causes adverse effects such as increased surface defects and internal defects, resulting in decreased steel sheet quality and a starting point for fracture. . On the other hand, by controlling the addition of Ti to an appropriate range, surface defects such as scabs and internal defects should be greatly reduced.
On the other hand, since Ti nitride is produced at a higher temperature than Ti carbide, the effect of suppressing crystal grain growth is weak, and it is not useful for controlling grain refinement, which is the object of the present invention. Therefore, it is desirable that N is stably reduced in a method for suppressing grain growth by controlling the amount of Ti carbide. This is different from conventional precipitation strengthening techniques in which the effects of C and N are treated similarly.
(C) In a steel plate with refined crystal grains, the solid solution C not only increases the tensile strength, but also has the effect of improving the fatigue characteristics that are essentially necessary for a rotor material that rotates at high speed.
(D) The main alloy components usually added for the purpose of increasing the electric resistance of the electrical steel sheet and reducing the iron loss are three elements of Si, Al and Mn. There is also an effect of strengthening solid solution. Therefore, in order to achieve both high strength and low iron loss, it is effective to base on solid solution strengthening with these elements. On the other hand, excessive addition of these elements embrittles steel and makes it difficult to manufacture. Therefore, there is a limit to the addition, and the three points of solid solution strengthening, low iron loss and manufacturability are most efficiently satisfied. It is desirable to add mainly Si.

これらの知見より、Siを主体とした置換型合金元素による固溶強化、Ti炭化物による結晶粒微細化、侵入型元素であるCによる固溶強化、をバランス良く活用することで、鋼板製造上の制約や新たな工程を、通常の無方向性電磁鋼板の製造に実質的に加えることなく、高強度で使用条件下での疲労特性に優れ、さらに磁気特性や鋼板品質にも優れる無方向性電磁鋼板が得られることを見出すとともに、そのために必要な製造方法をも見出し、本発明を完成するに至った。   From these findings, by utilizing in a well-balanced manner, solid solution strengthening with substitutional alloy elements mainly composed of Si, grain refinement with Ti carbide, and solid solution strengthening with C, an interstitial element, Non-directional electromagnetics that have high strength, excellent fatigue properties under operating conditions, and excellent magnetic properties and steel plate quality without substantially adding restrictions and new processes to the production of ordinary non-oriented electrical steel plates While finding that a steel plate can be obtained, the inventors have found a manufacturing method necessary for this purpose, and have completed the present invention.

すなわち、本発明の要旨は、次の通りである。
(i)質量%で、
Si:5.0%以下、
Mn:2.0%以下、
Al:2.0%以下および
P:0.05%以下
を、下記式(1)を満足する範囲において含み、さらに
C:0.008%以上0.040%以下、
N:0.003%以下および
Ti:0.04%以下
を、下記式(2)を満足する範囲において含有し、残部Feおよび不可避的不純物からなることを特徴とする無方向性電磁鋼板。

300≦85[Si%]+16[Mn%]+40[Al%]+490[P%]≦430 …(1)
0.008≦Ti*<1.2[C%] …(2)
但し、Ti*=Ti−3.4[N%]
ここで、前記[Si%]、[Mn%]、[Al%]、[P%]、[C%]および[N%]は、それぞれ表示元素の含有量(質量%)を示す。
That is, the gist of the present invention is as follows.
(I)% by mass
Si: 5.0% or less,
Mn: 2.0% or less,
Al: 2.0% or less and P: 0.05% or less are included within the range satisfying the following formula (1), and C: 0.008% or more and 0.040% or less,
N: 0.003% or less and
A non-oriented electrical steel sheet comprising Ti: 0.04% or less in a range satisfying the following formula (2) and comprising the balance Fe and inevitable impurities.
Record
300 ≦ 85 [Si%] + 16 [Mn%] + 40 [Al%] + 490 [P%] ≦ 430 (1)
0.008 ≦ Ti * <1.2 [C%] (2)
However, Ti * = Ti-3.4 [N%]
Here, [Si%], [Mn%], [Al%], [P%], [C%], and [N%] each indicate the content (% by mass) of the display element.

(ii)前記(i)において、Si、Mn、AlおよびPの含有量が、質量%で、
Si:3.5%超5.0%以下、
Mn:0.3%以下、
Al:0.1%以下および
P:0.05%以下
であることを特徴とする無方向性電磁鋼板。
(Ii) In the above (i), the contents of Si, Mn, Al and P are mass%,
Si: more than 3.5% and less than 5.0%
Mn: 0.3% or less,
A non-oriented electrical steel sheet characterized by Al: 0.1% or less and P: 0.05% or less.

(iii)前記(i)または(ii)において、さらに、質量%で
Sb:0.0005%以上0.1%以下、
Sn:0.0005%以上0.1%以下、
B:0.0005%以上0.01%以下、
Ca:0.001%以上0.01%以下、
REM:0.001%以上0.01%以下、
Co:0.05%以上5%以下、
Ni:0.05%以上5%以下および
Cu:0.2%以上4%以下
の1種または2種以上を含むことを特徴とする無方向性電磁鋼板。
(Iii) In the above (i) or (ii),
Sb: 0.0005% or more and 0.1% or less,
Sn: 0.0005% to 0.1%,
B: 0.0005% or more and 0.01% or less,
Ca: 0.001% to 0.01%,
REM: 0.001% to 0.01%,
Co: 0.05% or more and 5% or less,
Ni: 0.05% to 5% and
Cu: A non-oriented electrical steel sheet comprising one or more of 0.2% to 4%.


(iv)質量%で、
Si:5.0%以下、
Mn:2.0%以下、
Al:2.0%以下および
P:0.05%以下
を、下記式(1)を満足する範囲において含み、さらに
C:0.008%以上0.040%以下、
N:0.003%以下および
Ti:0.04%以下
を、下記式(2)を満足する範囲において含有し、残部Feおよび不可避的不純物からなる、鋼スラブを、1000〜1200℃で均熱保持した後熱間圧延し、次いで1回または中間焼鈍を挟む2回以上の冷間圧延または温間圧延にて最終板厚とした後、仕上げ焼鈍を施すに当たり、前記仕上げ焼鈍に先立ち、800℃以上950℃以下の温度に30秒以上保持する熱処理を少なくとも1回は施し、その後、仕上げ焼鈍を700℃以上850℃以下で行うことを特徴とする無方向性電磁鋼板の製造方法。

300≦85[Si%]+16[Mn%]+40[Al%]+490[P%]≦430 …(1)
0.008≦Ti*<1.2[C%] …(2)
但し、Ti*=Ti−3.4[N%]

(Iv)% by mass
Si: 5.0% or less,
Mn: 2.0% or less,
Al: 2.0% or less and P: 0.05% or less are included within the range satisfying the following formula (1), and C: 0.008% or more and 0.040% or less,
N: 0.003% or less and
Ti: 0.04% or less is contained in a range satisfying the following formula (2), and the steel slab consisting of the remaining Fe and inevitable impurities is soaked at 1000 to 1200 ° C. and then hot-rolled, and then 1 After finishing the final thickness by cold rolling or warm rolling at least twice with intermediate or intermediate annealing, prior to the final annealing, the final annealing is performed at a temperature of 800 ° C or higher and 950 ° C or lower for 30 seconds or longer. A method for producing a non-oriented electrical steel sheet, wherein the holding heat treatment is performed at least once, and then finish annealing is performed at 700 ° C. or higher and 850 ° C. or lower.
Record
300 ≦ 85 [Si%] + 16 [Mn%] + 40 [Al%] + 490 [P%] ≦ 430 (1)
0.008 ≦ Ti * <1.2 [C%] (2)
However, Ti * = Ti-3.4 [N%]

(v)前記(iv)において、Si、Mn、AlおよびPの含有量が、質量%で、
Si:3.5%超5.0%以下、
Mn:0.3%以下、
Al:0.1%以下および
P:0.05%以下
であることを特徴とする無方向性電磁鋼板の製造方法。
(V) In (iv), the contents of Si, Mn, Al, and P are mass%,
Si: more than 3.5% and less than 5.0%
Mn: 0.3% or less,
A method for producing a non-oriented electrical steel sheet, wherein Al: 0.1% or less and P: 0.05% or less.

(vi)前記(iv)または(v)において、さらに、質量%で
Sb:0.0005%以上0.1%以下、
Sn:0.0005%以上0.1%以下、
B:0.0005%以上0.01%以下、
Ca:0.001%以上0.01%以下、
REM:0.001%以上0.01%以下、
Co:0.05%以上5%以下、
Ni:0.05%以上5%以下および
Cu:0.2%以上4%以下
の1種または2種以上を含むことを特徴とする無方向性電磁鋼板の製造方法。
(Vi) In the above (iv) or (v),
Sb: 0.0005% or more and 0.1% or less,
Sn: 0.0005% to 0.1%,
B: 0.0005% or more and 0.01% or less,
Ca: 0.001% to 0.01%,
REM: 0.001% to 0.01%,
Co: 0.05% or more and 5% or less,
Ni: 0.05% to 5% and
Cu: The manufacturing method of the non-oriented electrical steel sheet characterized by including 1 type or 2 types or more of 0.2% or more and 4% or less.

本発明によれば、高速回転するモータのロータ材として必要な優れた機械特性と磁気特性を兼備し、かつヘゲや板形状といった鋼板品質にも優れた無方向性電磁鋼板を提供できる。また、通常の無方向性電磁鋼板の製造と比較して、多大なコストアップや製造上の厳しい制約や新たな工程を加えることなく、高い歩留まりで安定的に製造することが可能となる。そのため、電気自動車およびハイブリッド自動車の駆動モータ、或いはロボットや工作機械のサーボモータなど、今後ますます高速回転化が求められる分野に適合可能であり、その工業的価値、産業への貢献度は高い。   ADVANTAGE OF THE INVENTION According to this invention, the non-oriented electrical steel sheet which has the outstanding mechanical characteristic and magnetic characteristic required as a rotor material of the motor which rotates at high speed, and was excellent also in steel plate quality, such as a baldness and plate shape, can be provided. Further, as compared with the production of a normal non-oriented electrical steel sheet, it is possible to stably produce with a high yield without adding much cost, severe manufacturing restrictions, and new processes. Therefore, it can be adapted to fields that require higher speed rotation in the future, such as drive motors for electric vehicles and hybrid vehicles, or servo motors for robots and machine tools, and its industrial value and contribution to the industry are high.

Ti量と引張強さとの関係を示すグラフである。It is a graph which shows the relationship between Ti amount and tensile strength. Ti量と鉄損との関係を示すグラフである。It is a graph which shows the relationship between Ti amount and iron loss. Ti量と表面ヘゲ欠陥率との関係を示すグラフである。It is a graph which shows the relationship between the amount of Ti and the surface hege defect rate.

以下、本発明を導くに至った実験について詳しく説明する。
すなわち、発明者らは、主要な炭窒化物形成元素であるTiが、析出強化、再結晶、粒成長挙動およびヘゲなどの鋼板品質に及ぼす影響について詳細に検討した。その結果、これらの元素は、特にCやNに対して原子当量以下の範囲で添加した場合の効果が大きく異なり、高強度とともに磁気特性や鋼板品質を高い次元で満足するための最適添加範囲が存在することがわかった。その主要な実験結果を示す。なお、以下に示す「%」の表示は、特に断らない限り、「質量%」を意味する。
Hereinafter, the experiment that led to the present invention will be described in detail.
That is, the inventors examined in detail the influence of Ti, which is the main carbonitride-forming element, on the steel plate quality such as precipitation strengthening, recrystallization, grain growth behavior, and baldness. As a result, these elements are greatly different in the effect when added in a range of atomic equivalents or less with respect to C and N in particular, and there is an optimum addition range for satisfying magnetic properties and steel plate quality at a high level as well as high strength. I found it. The main experimental results are shown. In addition, unless otherwise indicated, the display of "%" shown below means "mass%".

<実験1>
Si:4.0〜4.1%、Mn:0.03〜0.05%、Al:0.001%以下、P:0.007〜0.009%およびS:0.001〜0.002%を主要成分として、C量を0.024〜0.026%、N量を0.001〜0.002%とほぼ一定量で含む鋼組成において、Ti量を0.001〜0.36%の範囲に変化させた鋼を真空溶解炉で種々溶製し、1100℃に加熱後熱間圧延によって2.1mm厚とした。その後900℃で90秒の熱延板焼鈍を行い、さらに冷間圧延により0.35mm厚とした後、鋼板表面のヘゲ欠陥発生状況(単位面積当たりのヘゲ長さ)を評価した。その後800℃で30秒の仕上げ焼鈍を施し、機械特性(圧延方向と平行にJIS5号試験片を切り出し評価)および磁気特性(圧延平行方向と圧延直角方向にエプスタイン試験片を切り出し、励磁磁束密度1.0T、周波数400Hzにおける鉄損W10/400を測定)を評価した。Ti量と引張り強さ、磁気特性、表面ヘゲ欠陥発生に関する調査結果を、図1、図2および図3に示す。
<Experiment 1>
Si: 4.0-4.1%, Mn: 0.03-0.05%, Al: 0.001% or less, P: 0.007-0.009% and S: 0.001-0.002% as main components, C amount is 0.024-0.026%, N amount is 0.001 Steel composition with a constant content of ~ 0.002%, steel with various amounts of Ti changed to a range of 0.001 ~ 0.36% was melted in a vacuum melting furnace, heated to 1100 ° C and hot rolled to 2.1mm thickness did. Thereafter, hot-rolled sheet annealing was performed at 900 ° C. for 90 seconds, and the thickness was further reduced to 0.35 mm by cold rolling, and then the state of occurrence of shave defects on the surface of the steel sheet (shave length per unit area) was evaluated. Then, finish annealing is performed at 800 ° C for 30 seconds, and mechanical characteristics (JIS5 test piece is cut out in parallel with the rolling direction and evaluated) and magnetic properties (Epstein test piece are cut out in the rolling parallel direction and perpendicular to the rolling direction). T, iron loss W 10/400 at a frequency of 400 Hz was measured). The investigation results on the Ti content, tensile strength, magnetic properties, and surface bald defects are shown in FIG. 1, FIG. 2 and FIG.

まず、図1に示すように、引張強さはTi添加に伴い上昇するが、添加量が少ない図1中の領域Aではその効果は小さく、図中の領域Bで示したTi量範囲では安定して強度の向上が見られた。さらに、Ti量が高い図中の領域Cでは一段と強度が上昇している。これらの領域の鋼組織を観察したところ、領域Bの鋼組織は結晶粒径10μm以下で均一な微細組織を有しているのに対し、領域Aの鋼組織の結晶粒は領域Bより成長しており、特に部分的な粒成長が見られる混粒組織を呈していた。一方、領域Cでは未再結晶粒と再結晶粒の複合組織を呈していた。   First, as shown in FIG. 1, the tensile strength increases with the addition of Ti, but the effect is small in the region A in FIG. 1 where the addition amount is small, and stable in the Ti amount range shown in the region B in the drawing. As a result, the strength was improved. Further, in the region C in the figure where the Ti amount is high, the strength further increases. When the steel structure in these regions was observed, the steel structure in region B had a uniform microstructure with a crystal grain size of 10 μm or less, whereas the crystal grains in the steel structure in region A grew from region B. In particular, it exhibited a mixed grain structure in which partial grain growth was observed. On the other hand, in the region C, a composite structure of non-recrystallized grains and recrystallized grains was exhibited.

図2に、Ti添加量と鉄損W10/400との関係を示す。図中の領域Aにおいて鉄損は最も低くなり良好となるが、図1に示されるように、領域Aは強度のレベルが低い。一方、図中の領域CおよびDでは高強度の材料が得られているが、鉄損も高くなっている。これに対し、領域Bでは領域Cに匹敵する強度を有しながら、領域Aに近い程度の良好な鉄損となる材料が得られている。 FIG. 2 shows the relationship between the Ti addition amount and the iron loss W 10/400 . In the region A in the figure, the iron loss is the lowest and good, but as shown in FIG. 1, the region A has a low strength level. On the other hand, in regions C and D in the figure, a high-strength material is obtained, but the iron loss is also high. On the other hand, in the region B, a material that has a strength comparable to that of the region C and has good iron loss close to that of the region A is obtained.

一方、図3に示すように、ヘゲ欠陥はTi添加量が0.04%を超えると増加し始め、TiとC、Nとの元素当量比が1となる付近まで上昇し、そこでほぼ一定のヘゲ発生量に達している。C、N含有量が一定であれば、この元素当量比が1となる付近まではTi炭窒化物の析出量が増加し、それ以降は析出量が一定となるため、Ti炭窒化物の析出量がヘゲ発生量に関係するものと考えられる。
これらの結果から、Ti添加量を領域Bの範囲に制御することにより、歩留まりの低下や板破断トラブルの原因となり製造コストの増加に直結する、ヘゲ欠陥を抑制しつつ、高強度と低鉄損を両立可能であることが明らかとなった。すなわち、Tiはある程度のTi炭窒化物を形成する量が必要であるが、ヘゲ欠陥の抑制の観点から0.04%以下で含有するのが有利であることがわかる。
On the other hand, as shown in FIG. 3, hege defects begin to increase when the Ti addition amount exceeds 0.04%, and increases until the element equivalent ratio of Ti, C, and N becomes 1, and there is a substantially constant hege defect. It has reached the amount of galling. If the C and N contents are constant, the precipitation amount of Ti carbonitride increases until the element equivalent ratio becomes 1, and thereafter, the precipitation amount becomes constant. The amount is considered to be related to the amount of balding.
From these results, by controlling the amount of Ti added to the range of region B, high strength and low iron are achieved while suppressing whisker defects that directly cause an increase in manufacturing cost which causes a decrease in yield and troubles in sheet breakage. It became clear that it was possible to balance losses. That is, it is understood that Ti needs an amount to form a certain amount of Ti carbonitride, but it is advantageous to contain Ti at 0.04% or less from the viewpoint of suppressing hege defects.

また、前記の鋼とN量以外は同様の成分として、含有するN量を変更して調査したところ、N量の増加により、高強度が得られるTi量の下限値が上昇することが明らかとなった。そして、さらに調査した結果、0.008≦Ti*(但し、Ti*=Ti−3.4[N%])を満足する必要があることがわかった。このことから、Ti炭化物の方が高強度化への寄与が大きく、Ti窒化物の寄与は小さいものと考えられ、Ti炭化物の制御がより重要となる。   Moreover, as a component other than the steel and the N amount, when the N amount contained was changed and investigated, it was clear that the lower limit of the Ti amount at which high strength was obtained increased with an increase in the N amount. became. As a result of further investigation, it was found that 0.008 ≦ Ti * (where Ti * = Ti−3.4 [N%]) must be satisfied. For this reason, Ti carbide is considered to have a greater contribution to higher strength and Ti nitride contributes less, and control of Ti carbide becomes more important.

これらの結果から、Ti添加量を領域Bのレベルに制御することにより、歩留まりの低下や板破断トラブルの原因となり製造コストの増加に直結する、ヘゲ欠陥を抑制しつつ、高強度と低鉄損を両立可能であることが明らかになった。   From these results, by controlling the amount of Ti added to the level of region B, high strength and low iron are achieved while suppressing the whisker defects that directly cause an increase in manufacturing cost that causes a decrease in yield and troubles in sheet breakage. It became clear that it was possible to balance losses.

<実験2>
次に、Ti炭窒化物の影響を詳細に調査するため、表1に示す組成の鋼を真空溶解炉で溶製し、実験1と同様の手順で板厚0.35mmの鋼板を作製した。CおよびN量がともに少ない鋼aをベースとして、CおよびN量を変化させた。鋼cおよびdは、C+N量が一定となるように添加したものである。得られた試料の表面ヘゲ欠陥率、鉄損、引張強さを表2に示す。鋼aに対して、鋼b、cおよびdは強度が上昇しているが、CおよびNの合計量がほぼ同等の鋼cおよびdの比較により、CおよびNの添加効果を見ると、N量が低い鋼cの方がより高強度である。組織観察したところ結晶粒径の序列は、鋼a>d>b>cであり、引張強さの序列と対応していた。
<Experiment 2>
Next, in order to investigate the influence of Ti carbonitride in detail, steel having the composition shown in Table 1 was melted in a vacuum melting furnace, and a steel plate having a thickness of 0.35 mm was produced in the same procedure as in Experiment 1. The amount of C and N was changed based on steel a having a small amount of C and N. Steels c and d are added so that the amount of C + N is constant. Table 2 shows the surface bald defect rate, iron loss, and tensile strength of the obtained sample. Compared to steel a, steels b, c, and d have increased strength, but by comparing steels c and d in which the total amount of C and N is approximately the same, the effect of addition of C and N is The steel c having a lower amount has higher strength. When the structure was observed, the order of crystal grain size was steel a>d>b> c, corresponding to the order of tensile strength.

Figure 0004929484
Figure 0004929484

Figure 0004929484
Figure 0004929484

さらに、これらの試料の疲労特性を調査した。試験条件は、応力比0.1の引張−引張モード、周期20Hzで行い1000万回振幅で破断しない応力を疲労限強度とした。その結果についても、表2に示す。引張強さTSが高い材料ほど疲労限強度FSも高い傾向を示すが、その比率FS/TSは異なっており、鋼cが最も優れる結果となった。一方、鋼dは、引張強さが高い割に疲労限強度の向上代が小さい。そこで、鋼dの組織を詳細に調査したところ、粒径5μmを超えるTiNと思われる析出物が散在しており、これが疲労破壊の起点となったものと推定された。ここで、窒素は1100℃以上の比較的高温でTiと反応しTiNとして粗大に析出しやすいため疲労破壊の起点となりやすく、またTiの炭化物と比較すると本発明の狙いの一つである結晶粒成長の抑制効果が小さいものと考えられた。   Furthermore, the fatigue properties of these samples were investigated. The test conditions were the stress limit 0.1, the stress which was performed in the tension-tensile mode with a stress ratio of 0.1 and the cycle of 20 Hz and did not break at the amplitude of 10 million times. The results are also shown in Table 2. The material with higher tensile strength TS tends to have higher fatigue limit strength FS, but the ratio FS / TS is different, and steel c is the most excellent result. On the other hand, steel d has a small improvement margin for fatigue limit strength although its tensile strength is high. Therefore, when the structure of steel d was investigated in detail, it was presumed that precipitates thought to be TiN exceeding a particle size of 5 μm were scattered, and this was the starting point of fatigue fracture. Here, nitrogen reacts with Ti at a relatively high temperature of 1100 ° C. or higher and easily precipitates coarsely as TiN, so it is likely to become a starting point of fatigue fracture, and compared with Ti carbide, crystal grains are one of the aims of the present invention. It was thought that the growth suppression effect was small.

一方、鋼bとcとの比較においても、鋼cの方が引張強さ、疲労限強度ともに優れているが、特に疲労限強度が相対的に高く、強度比FS/TSが高くなることが特徴的である。鋼bとcのTiおよびN量はほぼ同等であることから、Ti窒化物、Ti炭化物の析出状況は同様であり、両者の差は固溶炭素量の違いに起因していることが考えられる。従って、固溶炭素の存在は、疲労試験のような繰り返し応力下において導入される転位を固着することによって、亀裂の発生と伝播を抑制し、疲労限強度を高めたものと推察される。よって、固溶炭素を確保することも重要となる。   On the other hand, in comparison between steels b and c, steel c is superior in both tensile strength and fatigue limit strength, but in particular, fatigue limit strength is relatively high and strength ratio FS / TS is high. It is characteristic. Since the Ti and N contents of steels b and c are almost the same, the precipitation of Ti nitride and Ti carbide is the same, and the difference between the two is considered to be due to the difference in the amount of solute carbon. . Therefore, it is presumed that the presence of solute carbon suppresses the generation and propagation of cracks and increases the fatigue limit strength by fixing dislocations introduced under repeated stress as in a fatigue test. Therefore, it is important to secure solid solution carbon.

上記の実験結果を元に、比較的微量のTi添加によるTi炭化物、Ti窒化物、固溶炭素などの因子が、鋼組織、鋼板表面品質や鋼板の機械特性や磁気特性に及ぼす影響についてさらに検討を進めたところ、これら因子を包括する規定を見出し、本発明を完成するに至った。   Based on the above experimental results, further study on the effects of factors such as Ti carbide, Ti nitride, and solute carbon due to the addition of a relatively small amount of Ti on steel structure, steel plate surface quality, steel plate mechanical properties and magnetic properties As a result, the present inventors have found a rule encompassing these factors and have completed the present invention.

次に、本発明について、要件毎に詳しく説明する。
まず、主要な鋼成分の限定理由について説明する。
Si:5.0%以下、Mn:2.0%以下、Al:2.0%以下およびP:0.05%以下を、下記式(1)を満足する範囲において含有する。

300≦85[Si%]+16[Mn%]+40[Al%]+490[P%]≦430 …(1)
Next, the present invention will be described in detail for each requirement.
First, the reasons for limiting the main steel components will be described.
Si: 5.0% or less, Mn: 2.0% or less, Al: 2.0% or less, and P: 0.05% or less are contained within a range satisfying the following formula (1).
Record
300 ≦ 85 [Si%] + 16 [Mn%] + 40 [Al%] + 490 [P%] ≦ 430 (1)

本発明では、高強度で磁気特性に優れる電磁鋼板を低コストに提供することを目的としており、そのためには、上記の主要4合金成分による固溶強化量を一定以上の水準とすることが必要であるため、上記主要4合金成分の個々の含有量を後述のとおりに規定することに併せて、個々の固溶強化量への寄与を勘案し、主要4合金成分の合計量を、上記した式(1)を満たす範囲で添加することが肝要である。すなわち、式(1)が300未満では、得られる材料強度が不足し、一方430を超えると、鋼板製造時の板割れトラブルが増加し、生産性低下および製造コストの著しい上昇を招く。   The purpose of the present invention is to provide a magnetic steel sheet having high strength and excellent magnetic properties at low cost, and for this purpose, the amount of solid solution strengthening by the above four main alloy components needs to be a certain level or more. Therefore, in addition to defining the individual contents of the main four alloy components as described below, the total amount of the main four alloy components is as described above in consideration of the contribution to the individual solid solution strengthening amounts. It is important to add in a range satisfying the formula (1). That is, if the formula (1) is less than 300, the resulting material strength is insufficient. On the other hand, if it exceeds 430, troubles in plate cracking at the time of steel plate production increase, resulting in a decrease in productivity and a significant increase in production cost.

次に、主要4合金成分個々の含有量の限定理由について説明する。
Si:5.0%以下
Siは、脱酸剤として一般的に用いられる他、鋼の電気抵抗を高めて鉄損を低減する効果を有する、無方向性電磁鋼板を構成する主要元素である。さらに、高い固溶強化能を有する。すなわち、無方向性電磁鋼板に添加されるMn、AlおよびNiなど、他の固溶強化元素と比較して、高抗張力化、高疲労強度化並びに低鉄損化を最もバランス良く両立することが出来る元素であるため、積極的に添加する元素である。そのためには、3.0%以上で含有させること、さらに好ましくは3.5%を超えて含有させることが有利である。しかしながら、5.0%を超えると、靭性劣化が顕著になり、通板および圧延時に高度な制御が必要となり生産性も低下する。よって、上限は5.0%以下とする。
Next, the reason for limiting the content of each of the four main alloy components will be described.
Si: 5.0% or less
In addition to being generally used as a deoxidizer, Si is a main element that constitutes a non-oriented electrical steel sheet that has the effect of increasing the electrical resistance of steel and reducing iron loss. Furthermore, it has a high solid solution strengthening ability. In other words, compared to other solid solution strengthening elements such as Mn, Al, and Ni added to non-oriented electrical steel sheets, it is possible to achieve both high tensile strength, high fatigue strength and low iron loss in the most balanced manner. Since it is an element that can be produced, it is an element that is actively added. For that purpose, it is advantageous to contain it at 3.0% or more, more preferably more than 3.5%. However, if it exceeds 5.0%, toughness deterioration becomes remarkable, and advanced control is required at the time of sheet passing and rolling, and productivity is also lowered. Therefore, the upper limit is 5.0% or less.

Mn:2.0%以下
Mnは、熱間脆性の改善に有効であることに加え、鋼の電気抵抗を高めて鉄損を低減する効果、固溶強化による強度向上効果も有する。ただし、MnはSiと比べると強度向上効果は小さく、過度の添加は鋼の脆化を招くため、Mn量は2.0%以下とする。
Mn: 2.0% or less
In addition to being effective in improving hot brittleness, Mn also has the effect of increasing the electric resistance of steel to reduce iron loss and the effect of improving strength by solid solution strengthening. However, Mn has a lower strength improvement effect than Si, and excessive addition causes embrittlement of the steel, so the Mn content is 2.0% or less.

Al:2.0%以下
Alは、強力な脱酸剤として鋼精錬に一般的に用いられる元素である。さらに、SiやMnと同様に、鋼の電気抵抗を高めて鉄損を低減する効果、固溶強化による強度向上効果も有する。ただし、AlはSiと比べると強度向上効果は小さく、過度の添加は鋼の脆化を招くため、Al量は2.0%以下とする。
Al: 2.0% or less
Al is an element commonly used in steel refining as a powerful deoxidizer. Furthermore, like Si and Mn, it has the effect of increasing the electrical resistance of steel to reduce iron loss and the effect of improving strength by solid solution strengthening. However, Al has a smaller strength improvement effect than Si, and excessive addition causes embrittlement of the steel, so the Al content is 2.0% or less.

P:0.05%以下
Pは、比較的少量の添加でも大幅な固溶強化能が得られるため、高強度化に極めて有効であり、好ましくは0.005%以上で含有させる。しかし、過剰な添加は偏析による脆化により粒界割れや圧延性の低下をもたらすため、その添加量を0.05%以下に制限する。
P: 0.05% or less P is extremely effective for increasing the strength because a significant solid solution strengthening ability can be obtained even when added in a relatively small amount, and is preferably contained at 0.005% or more. However, excessive addition leads to grain boundary cracking and rollability deterioration due to embrittlement due to segregation, so the addition amount is limited to 0.05% or less.

なお、これら主要合金元素Si,Mn,AlおよびPのうち、固溶強化および低鉄損化と製造性とを最も効率よく両立するには、Siを主体とする合金設計が有利である。すなわち、Siを3.5%超の範囲で含有させることが、無方向性電磁鋼板の特性バランスを最適にするのに有利であり、その際、残る3成分は、それぞれMn:0.3%以下、Al:0.1%以下およびP:0.05%以下に規制することが好ましい。なお、この上限の理由は、上記と同様である。   Of these main alloy elements Si, Mn, Al and P, an alloy design mainly composed of Si is advantageous in order to achieve the most efficient balance between solid solution strengthening, low iron loss and manufacturability. That is, it is advantageous to contain Si in the range of more than 3.5% in order to optimize the characteristic balance of the non-oriented electrical steel sheet. In this case, the remaining three components are Mn: 0.3% or less and Al: It is preferable to regulate to 0.1% or less and P: 0.05% or less. The reason for this upper limit is the same as described above.

また、C、NおよびTiも、本発明において重要な元素である。なぜなら、適量微細なTi炭化物により鋼板焼鈍時の結晶粒成長を抑制し、結晶粒微細化強化を発現させることが重要であるからである。そのためには、C:0.008%以上0.040%以下、N:0.003%以下、Ti:0.04%以下を、下記式(2)を満足する範囲において含有させる必要がある。

0.008≦Ti*<1.2[C%] …(2)
但し、Ti*=Ti−3.4[N%]
C, N and Ti are also important elements in the present invention. This is because it is important to suppress the grain growth during annealing of the steel sheet by using an appropriate amount of fine Ti carbide to develop the strengthening of grain refinement. For that purpose, it is necessary to contain C: 0.008% or more and 0.040% or less, N: 0.003% or less, and Ti: 0.04% or less in a range satisfying the following formula (2).
Record
0.008 ≦ Ti * <1.2 [C%] (2)
However, Ti * = Ti-3.4 [N%]

C:0.008%以上0.040%以下
Cは、0.008%以上が必要である。すなわち、0.008%未満では安定して微細Ti炭化物を析出させることが困難となり、また固溶C量が不足してしまうために疲労強度の一層の向上が見込めなくなる。一方、過度の添加は磁気特性の劣化をもたらすと共に、冷間圧延中の加工硬化が著しくなって板破断の原因となったり、圧延負荷の増大で圧延回数の増加が余儀なくされるなど、コスト上昇の要因となるため、上限を0.04%に規制する。
C: 0.008% or more and 0.040% or less C needs to be 0.008% or more. That is, if it is less than 0.008%, it becomes difficult to precipitate fine Ti carbide stably, and since the amount of solute C is insufficient, further improvement in fatigue strength cannot be expected. On the other hand, excessive addition leads to deterioration of magnetic characteristics, and work hardening during cold rolling becomes significant, causing plate breakage, and increased rolling load due to increased rolling load. This limits the upper limit to 0.04%.

N:0.003%以下
Nは、Tiと窒化物を形成するが、Ti炭化物より高温で生成し結晶粒成長を抑制する効果が弱いため、結晶粒の微細化のためにはそれほど有効ではない。むしろ疲労破壊起点になるなどの悪影響を及ぼす場合もあるため、0.003%以下に限定する。なお、下限については、特に限定するものではないが、製鋼脱ガス能力、長時間精錬による生産性低下の観点から、0.0005%程度とすることが好ましい。
N: 0.003% or less N forms Ti and nitride, but is not so effective for refinement of crystal grains because it is produced at a higher temperature than Ti carbide and has a weak effect of suppressing crystal grain growth. Rather, it may be adversely affected such as starting from fatigue failure, so it is limited to 0.003% or less. The lower limit is not particularly limited, but is preferably about 0.0005% from the viewpoint of steelmaking degassing ability and productivity reduction due to long-time refining.

Ti:0.04%以下
本発明において、Ti炭化物を制御することは重要である。Tiは、炭化物を形成するよりも高温で窒化物を形成しやすいため、炭化物を形成するTi量を制御する必要がある。ここに、炭化物の形成が可能なTi量をTi*と表すと、このTi*は、Ti含有量からNとの原子当量分を除いた量、すなわち
Ti*=Ti−3.4[N%]
と表される。添加するTiをTi炭化物として析出させて高強度化を図りつつ、結晶粒成長を抑制させて鉄損の増大を防ぐには、適量のCと共に、Ti*≧0.008が必要である。一方、C量に対してTi添加量が増加すると、固溶Cが減少し疲労強度を向上させる効果が見込めなくなるため、Ti*<1.2[C%]も同時に満たすことが必要である。
Ti: 0.04% or less In the present invention, it is important to control Ti carbide. Since Ti tends to form nitride at a higher temperature than that of carbide, it is necessary to control the amount of Ti that forms carbide. Here, when the Ti amount capable of forming carbide is expressed as Ti *, this Ti * is the amount obtained by subtracting the atomic equivalent of N from the Ti content, that is,
Ti * = Ti-3.4 [N%]
It is expressed. In order to prevent the increase of iron loss by suppressing the grain growth while precipitating Ti to be added as Ti carbide to increase the strength, Ti * ≧ 0.008 is necessary together with an appropriate amount of C. On the other hand, if the Ti addition amount is increased with respect to the C amount, the solid solution C decreases and the effect of improving the fatigue strength cannot be expected. Therefore, it is necessary to satisfy Ti * <1.2 [C%] at the same time.

また、Ti量が0.04%を超えると、先に図3にて示したように、ヘゲ欠陥が増加し、鋼板品質や歩留まりが低下してコスト増となるため、0.04%を上限とする。   Further, if the Ti amount exceeds 0.04%, as shown in FIG. 3 above, the number of whisker defects increases, and the steel sheet quality and yield decrease, resulting in an increase in cost. Therefore, 0.04% is made the upper limit.

本発明においては、発明の効果を損なわない範囲で上述した元素以外の元素も含有することが可能である。例えば、磁気特性を向上する効果のある、SbおよびSnは0.0005〜0.1%、粒界強度を高める効果のあるBは0.0005〜0.01%、酸化物や硫化物の形態を制御し磁気特性を改善する効果を有する、CaおよびREMは0.001〜0.01%、磁束密度を向上する効果を有するCoおよびNiは0.05〜5%、時効析出による析出強化が見込めるCuは0.2〜4%の範囲で、それぞれ添加することが可能である。   In the present invention, it is possible to contain elements other than the elements described above as long as the effects of the invention are not impaired. For example, Sb and Sn, which have the effect of improving magnetic properties, are 0.0005 to 0.1%, and B, which is effective to increase the grain boundary strength, are 0.0005 to 0.01%, improving the magnetic properties by controlling the form of oxides and sulfides. Ca and REM have an effect of 0.001 to 0.01%, Co and Ni have an effect of improving magnetic flux density 0.05 to 5%, and Cu that can be expected to strengthen due to aging precipitation is added in a range of 0.2 to 4%. It is possible.

次に、製造方法について、その限定理由を述べる。
本発明において、鋼溶製から冷間圧延までの製造工程は、一般的な無方向性電磁鋼板で行われている方法に従って実施することが出来る。例えば、転炉あるいは電気炉などで所定成分に溶製、精錬された鋼を、連続鋳造あるいは造塊後の分塊圧延により鋼スラブとし、熱間圧延、必要に応じて熱延板焼鈍、冷間圧延、仕上げ焼鈍、絶縁被膜塗布焼き付け、といった工程を経て製造することが出来る。これらの工程において、析出状態を適正に制御するための条件は次のとおりである。なお、熱間圧延後に、必要に応じて熱延板焼鈍を施すことが可能であり、冷間圧延は、1回または中間焼鈍を挟む2回以上で行ってもよい。
Next, the reasons for limiting the manufacturing method will be described.
In this invention, the manufacturing process from steel melting to cold rolling can be implemented according to the method currently performed with the general non-oriented electrical steel sheet. For example, steel that has been melted and refined to a specified component in a converter or electric furnace is made into a steel slab by continuous casting or ingot rolling after ingot forming, hot rolling, hot-rolled sheet annealing as needed, cold It can be manufactured through processes such as cold rolling, finish annealing, and insulating film coating and baking. In these steps, the conditions for properly controlling the precipitation state are as follows. In addition, after hot rolling, it is possible to perform hot-rolled sheet annealing as necessary, and cold rolling may be performed once or twice or more with intermediate annealing interposed therebetween.

上述した成分組成からなる鋼スラブを、熱間圧延する際のスラブ加熱温度は、1000℃以上1200℃以下とする。すなわち、1000℃未満とすると、スラブ加熱中にTiの炭化物が析出成長するため、仕上げ焼鈍時の結晶粒成長抑制効果が充分に発揮できない。一方、1200℃を超えると、コスト的に不利となることに加え、高温強度が低下しスラブ変形して加熱炉からの抽出に支障をきたすなど操業性が低下する。従って、スラブ加熱温度は、1000℃以上1200℃以下とする。なお、熱間圧延自体は特に限定されるものではなく、例えば熱延仕上げ温度は700〜950℃、巻き取り温度は750℃以下の条件とすることが出来る。   The slab heating temperature at the time of hot rolling the steel slab having the component composition described above is set to 1000 ° C. or more and 1200 ° C. or less. That is, when the temperature is lower than 1000 ° C., Ti carbide precipitates and grows during slab heating, so that the effect of suppressing crystal grain growth during finish annealing cannot be sufficiently exhibited. On the other hand, if it exceeds 1200 ° C, in addition to being disadvantageous in terms of cost, the operability is deteriorated, for example, the high-temperature strength is lowered and the slab is deformed to hinder extraction from the heating furnace. Accordingly, the slab heating temperature is set to 1000 ° C. or more and 1200 ° C. or less. In addition, hot rolling itself is not specifically limited, For example, hot-rolling finishing temperature can be 700-950 degreeC, and coiling temperature can be made into the conditions of 750 degrees C or less.

次いで、必要に応じて熱延板焼鈍を施し、1回または中間焼鈍を挟んだ2回以上の冷間圧延または温間圧延にて最終板厚とした後、仕上げ焼鈍を施すが、この仕上げ焼鈍に先立ち、800℃以上950℃以下の温度に30秒以上保持する熱処理を少なくとも1回は施すことが肝要である。この熱処理によって、仕上げ焼鈍前の組織中にTi炭化物を析出させることができ、仕上げ焼鈍中の結晶粒の成長を抑制することが可能になる。   Then, if necessary, hot-rolled sheet annealing is performed, and after final thickness is obtained by cold rolling or warm rolling two or more times with one or more intermediate annealings, finish annealing is performed. Prior to this, it is important to perform at least one heat treatment for holding at a temperature of 800 ° C. or higher and 950 ° C. or lower for 30 seconds or longer. By this heat treatment, Ti carbide can be precipitated in the structure before the finish annealing, and the growth of crystal grains during the finish annealing can be suppressed.

すなわち、該熱処理が800℃未満では、十分な析出が生じない場合があり、一方950℃を超えると、析出物が成長し、仕上げ焼鈍時の結晶粒成長の抑制効果が不十分となる。   That is, if the heat treatment is less than 800 ° C., sufficient precipitation may not occur. On the other hand, if the heat treatment exceeds 950 ° C., precipitates grow and the effect of suppressing crystal grain growth during finish annealing becomes insufficient.

なお、前記熱処理は、仕上げ焼鈍に先立つ、熱延板焼鈍あるいは中間焼鈍のいずれかを兼ねて行うことが好ましい。   In addition, it is preferable to perform the said heat processing to serve as either hot-rolled sheet annealing or intermediate annealing prior to finish annealing.

その後の仕上げ焼鈍は、700℃以上850℃以下とすることによって、再結晶粒組織を均一微細に制御し高強度で磁気特性にも優れた電磁鋼板を得ることができる。この仕上げ焼鈍の温度が700℃未満では再結晶が不充分となり、一方850℃を超えると、本発明の適用によっても結晶粒が成長しやすくなり強度が低下する。この仕上げ焼鈍に続いて絶縁被膜の塗布および焼き付け処理を行って、最終製品とする。   Subsequent finish annealing is performed at 700 ° C. or higher and 850 ° C. or lower, whereby a recrystallized grain structure can be controlled uniformly and finely to obtain an electrical steel sheet having high strength and excellent magnetic properties. When the finish annealing temperature is less than 700 ° C., recrystallization becomes insufficient. On the other hand, when it exceeds 850 ° C., crystal grains are likely to grow even when the present invention is applied, and the strength is lowered. Subsequent to this finish annealing, an insulating film is applied and baked to obtain a final product.

表3に示す組成の鋼を真空溶解炉で溶製し、1100℃に加熱後熱間圧延によって2.1mm厚とした。その後900℃で90秒の熱延板焼鈍を行い、さらに冷間圧延により0.35mm厚とした。ここで得られた鋼板表面のヘゲ欠陥の発生状況を、単位面積当たりのヘゲ長さを指標として評価した。その後、750℃と800℃の2条件で30秒の仕上げ焼鈍を施し、得られた試料について圧延方向と平行に試験片を切り出して引張試験および疲労試験を行った。また、磁気特性は圧延平行方向と圧延直角方向にエプスタイン試験片を切り出し、励磁磁束密度1.0T、周波数400Hzにおける鉄損により評価した。それらの結果を表4に示す。   Steel having the composition shown in Table 3 was melted in a vacuum melting furnace, heated to 1100 ° C., and then hot rolled to a thickness of 2.1 mm. Thereafter, hot-rolled sheet annealing was performed at 900 ° C. for 90 seconds, and the thickness was further reduced to 0.35 mm by cold rolling. The state of occurrence of shave defects on the steel sheet surface obtained here was evaluated using the shave length per unit area as an index. Thereafter, finish annealing was performed for 30 seconds under two conditions of 750 ° C. and 800 ° C., and a test piece was cut out in parallel to the rolling direction for the obtained sample, and a tensile test and a fatigue test were performed. Further, the magnetic properties were evaluated by iron loss at an excitation magnetic flux density of 1.0 T and a frequency of 400 Hz after cutting out Epstein test pieces in the rolling parallel direction and the rolling perpendicular direction. The results are shown in Table 4.

Figure 0004929484
Figure 0004929484

Figure 0004929484
Figure 0004929484

表4から、Ti*量が本発明の範囲から外れた鋼1は、仕上げ焼鈍温度の違いによる特性差が大きく、品質管理上課題を有することがわかる。一方、Tiを適正に添加すると、仕上げ焼鈍温度による特性差は小さくなり、安定して高い引張強さが得られている。しかしながら、本発明の鋼組成範囲にある鋼2,3と比較してTi量が発明範囲を外れる鋼4,5および6は、高い引張強さを示す割に疲労限強度は高くなく、ヘゲ発生率および磁気特性も劣っている。   From Table 4, it can be seen that the steel 1 whose Ti * amount is out of the range of the present invention has a large characteristic difference due to the difference in the finish annealing temperature and has a problem in quality control. On the other hand, when Ti is added appropriately, the difference in characteristics depending on the finish annealing temperature is reduced, and high tensile strength is stably obtained. However, compared with steels 2 and 3 in the steel composition range of the present invention, steels 4, 5 and 6 whose Ti amount is outside the scope of the invention are not high in fatigue limit strength although they show high tensile strength. The incidence and magnetic properties are also poor.

表5に示す組成の鋼を真空溶解炉で溶製し、1050℃に加熱後2.1mm厚まで熱延した。その後850℃で120秒の熱延板焼鈍を行い、さらに冷間圧延により0.35mm厚とした。ここで得られた鋼板表面のヘゲ欠陥の発生状況を、単位面積当たりのヘゲ長さを指標として評価した。その後、800℃で30秒の仕上げ焼鈍を施し、得られた試料について圧延方向と平行に試験片を切り出して引張試験および疲労試験を行った。また、磁気特性は圧延平行方向と圧延直角方向にエプスタイン試験片を切り出し、励磁磁束密度1.0T、周波数400Hzにおける鉄損により評価した。それらの結果も表6に示す。
なお、式(1)の値が本発明の範囲を外れる鋼18は、冷間圧延で板割れが生じたため、以降の評価は行っていない。
Steels having the compositions shown in Table 5 were melted in a vacuum melting furnace, heated to 1050 ° C. and hot-rolled to a thickness of 2.1 mm. Thereafter, hot-rolled sheet annealing was performed at 850 ° C. for 120 seconds, and the thickness was further reduced to 0.35 mm by cold rolling. The state of occurrence of shave defects on the steel sheet surface obtained here was evaluated using the shave length per unit area as an index. Thereafter, finish annealing was performed at 800 ° C. for 30 seconds, and a test piece was cut out in parallel to the rolling direction for the obtained sample, and a tensile test and a fatigue test were performed. Further, the magnetic properties were evaluated by iron loss at an excitation magnetic flux density of 1.0 T and a frequency of 400 Hz after cutting out Epstein test pieces in the rolling parallel direction and the rolling perpendicular direction. The results are also shown in Table 6.
In addition, since the steel 18 which the value of Formula (1) remove | deviates from the range of this invention has produced the plate crack by cold rolling, subsequent evaluation is not performed.

Figure 0004929484
Figure 0004929484

Figure 0004929484
Figure 0004929484


表6から、本発明に従う鋼板は、ヘゲ発生が少なく、良好な鉄損と高い引張強さ、そして高い疲労限強度を併せ持っていることがわかる。   From Table 6, it can be seen that the steel sheet according to the present invention is less prone to baldness and has both good iron loss, high tensile strength, and high fatigue limit strength.

Claims (6)

質量%で、
Si:5.0%以下、
Mn:2.0%以下、
Al:2.0%以下および
P:0.05%以下
を、下記式(1)を満足する範囲において含み、さらに
C:0.008%以上0.040%以下、
N:0.003%以下および
Ti:0.04%以下
を、下記式(2)を満足する範囲において含有し、残部Feおよび不可避的不純物からなる
ことを特徴とする無方向性電磁鋼板。

300≦85[Si%]+16[Mn%]+40[Al%]+490[P%]≦430 …(1)
0.008≦Ti*<1.2[C%] …(2)
但し、Ti*=Ti−3.4[N%]
% By mass
Si: 5.0% or less,
Mn: 2.0% or less,
Al: 2.0% or less and P: 0.05% or less are included within the range satisfying the following formula (1), and C: 0.008% or more and 0.040% or less,
N: 0.003% or less and
A non-oriented electrical steel sheet comprising Ti: 0.04% or less in a range satisfying the following formula (2) and comprising the balance Fe and inevitable impurities.
Record
300 ≦ 85 [Si%] + 16 [Mn%] + 40 [Al%] + 490 [P%] ≦ 430 (1)
0.008 ≦ Ti * <1.2 [C%] (2)
However, Ti * = Ti-3.4 [N%]
請求項1において、Si、Mn、AlおよびPの含有量が、質量%で、
Si:3.5%超5.0%以下、
Mn:0.3%以下、
Al:0.1%以下および
P:0.05%以下
であることを特徴とする無方向性電磁鋼板。
In Claim 1, content of Si, Mn, Al, and P is the mass%,
Si: more than 3.5% and less than 5.0%
Mn: 0.3% or less,
A non-oriented electrical steel sheet characterized by Al: 0.1% or less and P: 0.05% or less.
請求項1または2において、さらに、質量%で
Sb:0.0005%以上0.1%以下、
Sn:0.0005%以上0.1%以下、
B:0.0005%以上0.01%以下、
Ca:0.001%以上0.01%以下、
REM:0.001%以上0.01%以下、
Co:0.05%以上5%以下、
Ni:0.05%以上5%以下および
Cu:0.2%以上4%以下
の1種または2種以上を含むことを特徴とする無方向性電磁鋼板。
3. The method according to claim 1, further comprising:
Sb: 0.0005% or more and 0.1% or less,
Sn: 0.0005% to 0.1%,
B: 0.0005% or more and 0.01% or less,
Ca: 0.001% to 0.01%,
REM: 0.001% to 0.01%,
Co: 0.05% or more and 5% or less,
Ni: 0.05% to 5% and
Cu: A non-oriented electrical steel sheet comprising one or more of 0.2% to 4%.
質量%で、
Si:5.0%以下、
Mn:2.0%以下、
Al:2.0%以下および
P:0.05%以下
を、下記式(1)を満足する範囲において含み、さらに
C:0.008%以上0.040%以下、
N:0.003%以下および
Ti:0.04%以下
を、下記式(2)を満足する範囲において含有し、残部Feおよび不可避的不純物からなる、鋼スラブを、1000〜1200℃で均熱保持した後熱間圧延し、次いで1回または中間焼鈍を挟む2回以上の冷間圧延または温間圧延にて最終板厚とした後、仕上げ焼鈍を施すに当たり、前記仕上げ焼鈍に先立ち、800℃以上950℃以下の温度に30秒以上保持する熱処理を少なくとも1回は施し、その後、仕上げ焼鈍を700℃以上850℃以下で行うことを特徴とする無方向性電磁鋼板の製造方法。

300≦85[Si%]+16[Mn%]+40[Al%]+490[P%]≦430 …(1)
0.008≦Ti*<1.2[C%] …(2)
但し、Ti*=Ti−3.4[N%]
% By mass
Si: 5.0% or less,
Mn: 2.0% or less,
Al: 2.0% or less and P: 0.05% or less are included within the range satisfying the following formula (1), and C: 0.008% or more and 0.040% or less,
N: 0.003% or less and
Ti: 0.04% or less is contained in a range satisfying the following formula (2), and the steel slab consisting of the remaining Fe and inevitable impurities is soaked at 1000 to 1200 ° C. and then hot-rolled, and then 1 After finishing the final thickness by cold rolling or warm rolling at least twice with intermediate or intermediate annealing, prior to the final annealing, the final annealing is performed at a temperature of 800 ° C or higher and 950 ° C or lower for 30 seconds or longer. A method for producing a non-oriented electrical steel sheet, wherein the holding heat treatment is performed at least once, and then finish annealing is performed at 700 ° C. or higher and 850 ° C. or lower.
Record
300 ≦ 85 [Si%] + 16 [Mn%] + 40 [Al%] + 490 [P%] ≦ 430 (1)
0.008 ≦ Ti * <1.2 [C%] (2)
However, Ti * = Ti-3.4 [N%]
請求項4において、Si、Mn、AlおよびPの含有量が、質量%で、
Si:3.5%超5.0%以下、
Mn:0.3%以下、
Al:0.1%以下および
P:0.05%以下
であることを特徴とする無方向性電磁鋼板の製造方法。
In Claim 4, content of Si, Mn, Al, and P is the mass%,
Si: more than 3.5% and less than 5.0%
Mn: 0.3% or less,
A method for producing a non-oriented electrical steel sheet, wherein Al: 0.1% or less and P: 0.05% or less.
請求項4または5において、さらに、質量%で
Sb:0.0005%以上0.1%以下、
Sn:0.0005%以上0.1%以下、
B:0.0005%以上0.01%以下、
Ca:0.001%以上0.01%以下、
REM:0.001%以上0.01%以下、
Co:0.05%以上5%以下、
Ni:0.05%以上5%以下および
Cu:0.2%以上4%以下
の1種または2種以上を含むことを特徴とする無方向性電磁鋼板の製造方法。
6. The method according to claim 4, further comprising:
Sb: 0.0005% or more and 0.1% or less,
Sn: 0.0005% to 0.1%,
B: 0.0005% or more and 0.01% or less,
Ca: 0.001% to 0.01%,
REM: 0.001% to 0.01%,
Co: 0.05% or more and 5% or less,
Ni: 0.05% to 5% and
Cu: The manufacturing method of the non-oriented electrical steel sheet characterized by including 1 type or 2 types or more of 0.2% or more and 4% or less.
JP2009195952A 2009-08-26 2009-08-26 Non-oriented electrical steel sheet and manufacturing method thereof Active JP4929484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009195952A JP4929484B2 (en) 2009-08-26 2009-08-26 Non-oriented electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009195952A JP4929484B2 (en) 2009-08-26 2009-08-26 Non-oriented electrical steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011046997A JP2011046997A (en) 2011-03-10
JP4929484B2 true JP4929484B2 (en) 2012-05-09

Family

ID=43833618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009195952A Active JP4929484B2 (en) 2009-08-26 2009-08-26 Non-oriented electrical steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4929484B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2822206C (en) * 2011-02-24 2016-09-13 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing the same
WO2020137500A1 (en) * 2018-12-27 2020-07-02 Jfeスチール株式会社 Non-oriented magnetic steel sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5119710B2 (en) * 2007-03-28 2013-01-16 Jfeスチール株式会社 High strength non-oriented electrical steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JP2011046997A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
WO2012114383A1 (en) Non-oriented electromagnetic steel sheet and method for manufacturing same
KR101011965B1 (en) Highly strong, non-oriented electrical steel sheet and method for manufacture thereof
JP5223190B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5228379B2 (en) Non-oriented electrical steel sheet with excellent strength and magnetic properties and manufacturing method thereof
JP5028992B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5884153B2 (en) High strength electrical steel sheet and manufacturing method thereof
JP5699601B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPWO2003002777A1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5532187B2 (en) Manufacturing method of electrical steel sheet
JP2007039721A (en) Method for producing non-oriented electrical steel sheet for rotor
JP2011084761A (en) Non-oriented electromagnetic steel sheet for rotor and manufacturing method therefor
US11962184B2 (en) Method for producing non-oriented electrical steel sheet, method for producing motor core, and motor core
JP5817114B2 (en) Manufacturing method of high strength electrical steel sheet
JP5119710B2 (en) High strength non-oriented electrical steel sheet and manufacturing method thereof
JP5130637B2 (en) High strength non-oriented electrical steel sheet and manufacturing method thereof
JP5817115B2 (en) Manufacturing method of high strength electrical steel sheet
JP4929484B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2017057456A (en) High strength member for motor using non-oriented electromagnetic steel sheet and manufacturing method therefor
JP5186781B2 (en) Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same
JP5648661B2 (en) Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same
JP5825479B2 (en) Manufacturing method of high strength non-oriented electrical steel sheet
JP5088144B2 (en) Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same
JP2006077305A (en) Nonoriented silicon steel sheet, nonoriented silicon steel sheet for aging heat treatment, and method for producing them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110801

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20111220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

R150 Certificate of patent or registration of utility model

Ref document number: 4929484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250