JP2017057456A - High strength member for motor using non-oriented electromagnetic steel sheet and manufacturing method therefor - Google Patents

High strength member for motor using non-oriented electromagnetic steel sheet and manufacturing method therefor Download PDF

Info

Publication number
JP2017057456A
JP2017057456A JP2015182872A JP2015182872A JP2017057456A JP 2017057456 A JP2017057456 A JP 2017057456A JP 2015182872 A JP2015182872 A JP 2015182872A JP 2015182872 A JP2015182872 A JP 2015182872A JP 2017057456 A JP2017057456 A JP 2017057456A
Authority
JP
Japan
Prior art keywords
strength member
motor
strength
motors
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015182872A
Other languages
Japanese (ja)
Other versions
JP6852966B2 (en
Inventor
脇坂 岳顕
Takeaki Wakizaka
岳顕 脇坂
俊介 谷口
Shunsuke Taniguchi
俊介 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015182872A priority Critical patent/JP6852966B2/en
Publication of JP2017057456A publication Critical patent/JP2017057456A/en
Application granted granted Critical
Publication of JP6852966B2 publication Critical patent/JP6852966B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

PROBLEM TO BE SOLVED: To provide a high strength member for motor having improved strength without deteriorating electromagnetic property and a manufacturing method therefor.SOLUTION: There is provided a high strength member for motor having a non-oriented electromagnetic steel sheet containing, by mass%, Si:2 to 4%, Al:1 to 3%, Ni:1.5 to 4% and the balance Fe with inevitable impurities as a raw material and having intermetallic compounds of Al-Ni partially deposited in a location requiring reinforcement. The high strength member for motor is manufactured by making the above described raw material into a predetermined shape, adding plastic deformation with dislocation density of 1×10/mor more to the location requiring reinforcement and further conducting an aging treatment at 400 to 600°C.SELECTED DRAWING: Figure 1

Description

本発明は、無方向性電磁鋼板を使用したモータ用高強度部材に関する。   The present invention relates to a high-strength member for a motor using a non-oriented electrical steel sheet.

近年、ハイブリッド電気自動車(HEV)や電気自動車(EV)に使用される駆動モータの小型化や高速回転化が著しく、それらの駆動モータのロータコアなどのモータ用部材に対し、低鉄損などの電磁特性に加えて高強度化の要求が高くなっている。モータ用部材を高強度化させるには、素材に使用される無方向性電磁鋼板の固溶強化、析出強化、結晶粒微細化強化、転位強化、変態強化等が考えられるが、固溶強化以外は磁気特性を劣化させるため、電磁鋼板には好ましくない。また、固溶強化は磁気特性劣化を回避した高強度化には大きな効果があるが、同時に圧延荷重増大や脆性破断の課題もあり、生産性の観点から添加量に上限がある。   In recent years, drive motors used in hybrid electric vehicles (HEV) and electric vehicles (EV) have been remarkably miniaturized and rotated at high speed, and the motor components such as the rotor cores of these drive motors have electromagnetic properties such as low iron loss. In addition to the characteristics, there is an increasing demand for higher strength. In order to increase the strength of motor members, solid solution strengthening, precipitation strengthening, grain refinement strengthening, dislocation strengthening, transformation strengthening, etc. of non-oriented electrical steel sheets used for materials can be considered. Is not preferable for electromagnetic steel sheets because it deteriorates the magnetic properties. In addition, solid solution strengthening has a great effect on increasing the strength while avoiding deterioration of magnetic properties, but at the same time, there are problems of increased rolling load and brittle fracture, so that the addition amount has an upper limit from the viewpoint of productivity.

従来、モータ用部材の強度向上を図るものとして、特許文献1に示すように、ロータコアのブリッジ部を加工硬化させて熱処理し、鋼中に含まれるCやNで転位を固着させることで強化する方法が開示されている。また特許文献2には、プレスなどで加工硬化させたロータを接着剤を用いて積層させて剛性を高める技術が開示されている。また特許文献3には、プレスなどで加工硬化させたロータをさらに窒化処理して耐摩耗性や疲労特性を向上させる技術が開示されている。   Conventionally, in order to improve the strength of a motor member, as shown in Patent Document 1, the bridge portion of the rotor core is work-hardened and heat-treated, and strengthened by fixing dislocations with C and N contained in the steel. A method is disclosed. Patent Document 2 discloses a technique for increasing rigidity by laminating a work-hardened rotor with an adhesive or the like using an adhesive. Patent Document 3 discloses a technique for improving wear resistance and fatigue characteristics by further nitriding a rotor that has been work hardened by a press or the like.

特開2005−39963号公報JP-A-2005-39963 特開2005−94940号公報JP-A-2005-94940 特開2005−94941号公報Japanese Patent Laying-Open No. 2005-94941

しかしながら、特許文献1〜3の技術で強化した場合、磁気特性が劣化するためモータ用部材として好ましくない。上述のように近年の高速回転化に伴い、ロータコアなどのモータ用部材に対して、磁気特性を劣化させずに高強度化をはかる技術の出現が望まれている。   However, when strengthened by the techniques of Patent Documents 1 to 3, the magnetic characteristics deteriorate, which is not preferable as a motor member. As described above, with the recent high-speed rotation, the appearance of a technique for increasing the strength of a motor member such as a rotor core without deteriorating magnetic characteristics is desired.

本発明は電磁特性を劣化させずに強度を向上させたモータ用高強度部材とその製造方法を提供することを目的とする。   An object of the present invention is to provide a high-strength member for a motor having improved strength without deteriorating electromagnetic characteristics and a method for manufacturing the same.

本発明者らは上記課題を解決するために、ロータコアなどのモータ用部材における強化が必要な箇所に、主としてAl、Niからなる微細な金属間化合物を部分的に析出させることで、電磁特性を劣化させずにモータ用部材の強度を向上できることを知見した。本発明の技術の要点は、モータ用部材において強化が必要な箇所に転位を部分的に生じさせ、その転位を析出サイトとして大きさがなるべく均一なAl−Niの金属間化合物を析出させることで、電磁特性を劣化させずにモータ用部材の強度を向上させることにある。本発明によれば以下のモータ用高強度部材とその製造方法が提供される。   In order to solve the above-mentioned problems, the present inventors have partially deposited a fine intermetallic compound mainly composed of Al and Ni on a portion that needs to be strengthened in a motor member such as a rotor core, thereby improving electromagnetic characteristics. It has been found that the strength of the motor member can be improved without deterioration. The main point of the technology of the present invention is that a dislocation is partially generated in a portion that needs to be strengthened in a member for a motor, and the dislocation is used as a precipitation site to precipitate a uniform intermetallic compound of Al-Ni as much as possible. It is to improve the strength of the motor member without deteriorating the electromagnetic characteristics. According to the present invention, the following high-strength members for motors and methods for producing the same are provided.

(1)
質量%で、Si:2〜4%、Al:1〜3%、Ni:1.5〜4%を含有し、残部Feおよび不可避的不純物からなる無方向性電磁鋼板を素材とするモータ用高強度部材であって、
強化が必要な箇所にAl−Niの金属間化合物が部分的に析出している、モータ用高強度部材。
(1)
High for motors that are made of non-oriented electrical steel sheets that contain Si: 2-4%, Al: 1-3%, Ni: 1.5-4%, and the balance Fe and inevitable impurities. A strength member,
A high-strength member for a motor, in which an Al—Ni intermetallic compound is partially deposited at a location that needs to be strengthened.

(2)
前記モータ用高強度部材はロータコアであり、前記強化が必要な箇所はアウターブリッジ部である、(1)に記載のモータ用高強度部材。
(2)
The high-strength member for motors according to (1), wherein the high-strength member for motors is a rotor core, and the portion that needs to be strengthened is an outer bridge portion.

(3)
前記強化が必要な箇所に、面積基準で求められる円相当径の平均値が1〜10nmで、標準偏差が1以下であるAl−Niの金属間化合物が、30000個/μm以上析出している、(1)または(2)のいずれか1項に記載のモータ用高強度部材。
(3)
In an area where the strengthening is necessary, an Al-Ni intermetallic compound having an average equivalent circle diameter of 1 to 10 nm and a standard deviation of 1 or less determined on an area basis is deposited in an amount of 30000 pieces / μm 3 or more. The high-strength member for motors according to any one of (1) and (2).

(4)
さらに質量%で、Cr:0.01〜4%、Cu:0.01〜4%、Sn:0.01〜0.2%の1または2以上を含有する、(1)〜(3)のいずれか1項に記載のモータ用高強度部材。
(4)
Furthermore, it contains 1 or 2 or more of Cr: 0.01-4%, Cu: 0.01-4%, Sn: 0.01-0.2% by mass%, (1)-(3) The high strength member for motors according to any one of claims.

(5)
質量%で、Si:2〜4%、Al:1〜3%、Ni:1.5〜4%を含有し、残部Feおよび不可避的不純物からなる無方向性電磁鋼板を素材として所定の形状とした後、強化が必要な箇所に転位密度を1×1014/m以上とする塑性変形を加え、さらに400〜600℃で時効処理を行う、モータ用高強度部材の製造方法。
(5)
In a mass%, Si: 2 to 4%, Al: 1 to 3%, Ni: 1.5 to 4%, and a non-oriented electrical steel sheet composed of the remaining Fe and inevitable impurities as a raw material and having a predetermined shape After that, a method for producing a high-strength member for a motor, in which plastic deformation is performed so that a dislocation density of 1 × 10 14 / m 2 or more is applied to a portion that needs to be strengthened, and further an aging treatment is performed at 400 to 600 ° C.

(6)
前記モータ用高強度部材はロータコアであり、前記強化が必要な箇所はアウターブリッジ部である、(5)に記載のモータ用高強度部材の製造方法。
(6)
The manufacturing method of the high strength member for motors according to (5), wherein the high strength member for motors is a rotor core, and the portion requiring the reinforcement is an outer bridge portion.

(7)
前記素材は、さらに質量%で、Cr:0.01〜4%、Cu:0.01〜4%、Sn:0.01〜0.2%の1または2以上を含有する、(5)または(6)のいずれか1項に記載のモータ用高強度部材の製造方法。
(7)
The material further contains, in mass%, one or more of Cr: 0.01-4%, Cu: 0.01-4%, Sn: 0.01-0.2%, (5) or The manufacturing method of the high strength member for motors of any one of (6).

本発明によれば、電磁特性を劣化させずにモータ用高強度部材の強度を向上させることが可能となる。これにより、近年のハイブリッド電気自動車(HEV)や電気自動車(EV)などで求められている特性を満足する高速回転モータやロータに磁石を組み込んだモータが得られる。   According to the present invention, it is possible to improve the strength of a high-strength member for a motor without deteriorating electromagnetic characteristics. As a result, it is possible to obtain a high-speed rotating motor that satisfies the characteristics required for recent hybrid electric vehicles (HEV), electric vehicles (EV), and the like, and a motor in which a magnet is incorporated in a rotor.

モータの構造の説明図である。It is explanatory drawing of the structure of a motor. ロータコアの説明図である。It is explanatory drawing of a rotor core. 高速回転時のロータコアの応力分布の説明図である。It is explanatory drawing of the stress distribution of the rotor core at the time of high speed rotation.

以下、本発明の実施の形態について説明する。なお、モータ用高強度部材の一例として、電気自動車やハイブリッド電気自動車、燃料電池自動車などの駆動モータとして用いられている永久磁石内蔵モータ(IPMモータ)のロータコアについて本発明を適用した形態を説明する。   Embodiments of the present invention will be described below. As an example of a high-strength member for a motor, an embodiment in which the present invention is applied to a rotor core of a permanent magnet built-in motor (IPM motor) used as a drive motor for an electric vehicle, a hybrid electric vehicle, a fuel cell vehicle, and the like will be described. .

図1は、永久磁石内蔵モータ1の構造の説明図である。円筒形状の固定子10の内側に、回転子であるロータコア11が挿入されている。固定子10には、内側にあるロータコア11に向かって突出する複数のティース15が設けられており、各ティース15は、ロータコア11の回転中心軸Oに対して点対称に、放射状に配置される。各ティース15には、巻線16が集中巻き方式で巻き付けられてコイルが形成される。   FIG. 1 is an explanatory diagram of the structure of a motor 1 with a built-in permanent magnet. A rotor core 11 that is a rotor is inserted inside a cylindrical stator 10. The stator 10 is provided with a plurality of teeth 15 protruding toward the inner rotor core 11, and the teeth 15 are arranged radially with point symmetry with respect to the rotation center axis O of the rotor core 11. . A winding 16 is wound around each tooth 15 by a concentrated winding method to form a coil.

図2に示すように、この形態のロータコア11は、磁石を挿入する開口部20が8か所に設けられた8極ロータを例示している。各開口部20の外側の部分がアウターブリッジ部21である。近年、ハイブリッド電気自動車(HEV)や電気自動車(EV)に使用される駆動モータの高速回転化が著しくなっているが、高速回転時には、このブリッジ部21に強い遠心力が作用する。   As shown in FIG. 2, the rotor core 11 of this embodiment exemplifies an 8-pole rotor provided with 8 openings 20 into which magnets are inserted. The outer portion of each opening 20 is an outer bridge portion 21. In recent years, drive motors used in hybrid electric vehicles (HEV) and electric vehicles (EV) have been revolving at a high speed, and a strong centrifugal force acts on the bridge portion 21 during high-speed rotation.

ここで、本発明者らのシミュレーションによれば、高速回転時のロータコア11に作用する遠心力の応力分布は図3のような結果となった。すなわち、高速回転時のロータコア11では、アウターブリッジ部21に強い応力が作用し(図3中の点線21’よりも外側の部分)、各開口部20の外側の隅角部近傍の部分(図3中の斜線を付した領域)22には特に応力集中が発生し、ロータコア11の変形や疲労破壊が発生しやすいことが判明した。   Here, according to the simulations of the present inventors, the stress distribution of the centrifugal force acting on the rotor core 11 during high-speed rotation has a result as shown in FIG. That is, in the rotor core 11 during high-speed rotation, strong stress acts on the outer bridge portion 21 (portion outside the dotted line 21 ′ in FIG. 3), and the portion in the vicinity of the corner portion outside each opening 20 (FIG. It has been found that stress concentration is particularly generated in the hatched area 22 in FIG. 3 and deformation of the rotor core 11 and fatigue failure are likely to occur.

本発明は、このようなモータ用部材における応力集中が発生しやすい箇所にAl−Niの金属間化合物を析出させることによって部分的に強化するものである。   The present invention partially strengthens by depositing an Al-Ni intermetallic compound at a location where stress concentration is likely to occur in such a motor member.

本発明のモータ用高強度部材の製造に使用する無方向性電磁鋼板(素材)は、質量%で、Si:2〜4%、Al:1〜3%、Ni:1.5〜4%を含有し、残部Feおよび不可避的不純物からなることを基本とする。   The non-oriented electrical steel sheet (material) used for manufacturing the high-strength member for motors of the present invention is, by mass, Si: 2 to 4%, Al: 1 to 3%, Ni: 1.5 to 4%. It is basically composed of the balance Fe and inevitable impurities.

Si:2〜4%
Siは鋼の固有抵抗を高めて渦電流を減らし、鉄損を低下せしめるとともに、抗張力を高めるが、添加量が2.0%未満ではその効果が小さい。また、添加により加工硬化能が高まるため、時効熱処理前に実施する加工による転位密度を効果的に増加させる効果もある。一方、Siが4%を超えると鋼を脆化させ、さらに製品の磁束密度を低下させるため4%以下とする。
Si: 2-4%
Si increases the specific resistance of steel, reduces eddy currents, lowers iron loss, and increases tensile strength, but the effect is small when the amount added is less than 2.0%. Moreover, since work hardening ability increases by addition, it also has the effect of increasing effectively the dislocation density by the process implemented before an aging heat processing. On the other hand, if Si exceeds 4%, the steel is embrittled and further the magnetic flux density of the product is lowered, so the content is made 4% or less.

Al:1〜3%
本発明ではAlは金属間化合物の構成元素として積極的に添加される重要な元素であるが、3%を超えると脆化が問題になるため、上限を3%とする。Alは通常、脱酸剤として添加されるが、Alの添加を抑えSiにより脱酸を図ることも可能である。一方、金属間化合物の析出強化の効果を得るためには少なくとも1%は含有する。また、固溶Alは電気抵抗を高め鉄損を改善する効果が知られており、この目的でAl−Ni析出物を形成する以上のAlを含有させることは有効である。
Al: 1-3%
In the present invention, Al is an important element that is positively added as a constituent element of the intermetallic compound, but if it exceeds 3%, embrittlement becomes a problem, so the upper limit is made 3%. Al is usually added as a deoxidizing agent, but it is also possible to suppress the addition of Al and deoxidize with Si. On the other hand, in order to obtain the effect of precipitation strengthening of intermetallic compounds, at least 1% is contained. In addition, solute Al is known to have an effect of increasing electric resistance and improving iron loss. For this purpose, it is effective to contain more Al than that which forms Al—Ni precipitates.

Ni:1.5〜4%
従来一般的にはNiは主として固溶体強化元素または炭化物、窒化物等による析出強化元素として利用されていた。本発明ではNiはAlとの金属間化合物を形成し、Al−Niの金属間化合物による析出強化を発現させるために含有させられる。Al−Niの金属間化合物による析出強化を発現させるためには、1.5%以上のNiが必要である。一方、過剰な添加は鋼板の延性を劣化させ通板性が低下する他、磁束密度を低下させるとともに製造工程での金属間化合物の好ましい形成抑制が困難となる場合がある。また、添加コストも考え上限を4%とする。
Ni: 1.5-4%
Conventionally, Ni has generally been used mainly as a solid solution strengthening element or as a precipitation strengthening element such as carbide or nitride. In the present invention, Ni is contained in order to form an intermetallic compound with Al and develop precipitation strengthening due to the Al—Ni intermetallic compound. In order to develop precipitation strengthening by the intermetallic compound of Al—Ni, 1.5% or more of Ni is necessary. On the other hand, excessive addition deteriorates the ductility of the steel sheet and lowers the sheet-passability. In addition, the magnetic flux density is lowered and it is sometimes difficult to suppress preferable formation of intermetallic compounds in the production process. Further, the upper limit is made 4% in consideration of the addition cost.

また本発明のモータ用高強度部材の製造に使用する無方向性電磁鋼板(素材)は、任意含有成分として、さらに質量%で、Cr:0.01〜4%、Cu:0.01〜4%、Sn:0.01〜0.2%の1または2以上を含有しても良い。これらの元素は金属間化合物を形成する元素として知られており、必要に応じて1または2以上を含有することができる。しかし、過剰な含有は鋼板の延性を劣化させ通板性が低下する他、製造工程での金属間化合物の好ましい形成抑制が困難になる場合がある。また、添加コストを考え、Crについては0.01〜4%、Cuについては0.01〜4%、Snについては0.01〜0.2%とする。   Moreover, the non-oriented electrical steel sheet (material) used for manufacturing the high-strength member for motors of the present invention is further contained in mass% as an optional component, Cr: 0.01 to 4%, Cu: 0.01 to 4 %, Sn: 0.01 to 0.2% or 1 or 2 or more. These elements are known as elements forming an intermetallic compound, and may contain 1 or 2 or more as necessary. However, excessive content deteriorates the ductility of the steel sheet and lowers the sheet passability, and may make it difficult to suppress preferable formation of intermetallic compounds in the production process. Further, considering the addition cost, 0.01 to 4% for Cr, 0.01 to 4% for Cu, and 0.01 to 0.2% for Sn.

本発明のモータ用高強度部材の製造に使用する無方向性電磁鋼板(素材)は以上の成分組成を基本とし、残部Feおよび不可避的不純物からなる。   The non-oriented electrical steel sheet (material) used for the production of the high strength member for motors of the present invention is based on the above component composition, and consists of the remainder Fe and inevitable impurities.

Cは磁気特性を劣化させる場合があるので0.0400%以下とすることが好ましい。一方、加工硬化能を高め、時効熱処理前に実施する加工による転位密度を効果的に増加させる効果もある。製造コストの観点からは溶鋼段階で脱ガス設備によりC量を低減しておくことが有利で、0.0030%以下とすれば磁気時効抑制の効果が著しく、高強度化の主たる手段として炭化物等の非金属析出物を用いない本発明においては0.0020%以下とすることがさらに好ましく、0.0015%以下がさらに好ましい。0%であっても構わない。   C may degrade the magnetic properties, so 0.0400% or less is preferable. On the other hand, there is also an effect of increasing the work hardening ability and effectively increasing the dislocation density by the processing performed before the aging heat treatment. From the viewpoint of manufacturing cost, it is advantageous to reduce the amount of C by degassing equipment at the molten steel stage, and if it is 0.0030% or less, the effect of suppressing magnetic aging is remarkable, and carbide etc. as the main means of increasing strength In the present invention in which no nonmetallic precipitate is used, it is more preferably 0.0020% or less, and further preferably 0.0015% or less. It may be 0%.

Mnは、固溶による高強度化や電気抵抗を高め鉄損を改善する元素としても有効であり、本実施形態でも公知技術に準じた使用が可能である。また、加工硬化能を高め、時効熱処理前に実施する加工による転位密度を効果的に増加させる効果もある。高強度化の観点では、微細金属間化合物を活用する本発明では特に必要としない。0%でも構わないが、鉄鉱石を原料とする工業的製法では、0.01%程度は不可避的に含有される。   Mn is effective as an element that increases the strength by solid solution, increases the electrical resistance, and improves the iron loss, and can be used according to a known technique in this embodiment. In addition, there is an effect of increasing the work hardening ability and effectively increasing the dislocation density by the processing performed before the aging heat treatment. From the viewpoint of increasing the strength, this is not particularly necessary in the present invention using a fine intermetallic compound. Although it may be 0%, in the industrial production method using iron ore as a raw material, about 0.01% is inevitably contained.

NはCと同様に磁気特性を劣化させるので0.0400%以下とすることが好ましい。含有により加工硬化能を高め、時効熱処理前に実施する加工による転位密度を効果的に増加させる効果もある。特に本発明ではAlとの強い窒化物の生成を避けるためNは低い方が好ましく、0.0027%以下とすれば磁気時効や微細な窒化物形成による特性劣化の抑制効果は顕著で、さらに好ましくは0.0022%、さらに好ましくは0.0015%以下、0%であっても構わない。   N, like C, degrades the magnetic properties, so 0.0400% or less is preferable. The inclusion has the effect of increasing the work hardening ability and effectively increasing the dislocation density by the processing performed before the aging heat treatment. In particular, in the present invention, N is preferably low in order to avoid the formation of strong nitrides with Al, and if it is 0.0027% or less, the effect of suppressing property deterioration due to magnetic aging and fine nitride formation is remarkable, and more preferable. May be 0.0022%, more preferably 0.0015% or less, and 0%.

Cuは鉄の飽和磁束密度Bsを大幅に低下させ、B50(磁化力が5000[A/m]における磁束密度[T])も大幅に低下させる。BsやB50の低下はモータトルクの低下につながるため、本発明ではCuの含有を必須とすることなく、BsやB50の低下を伴わずに、高強度かつ低鉄損な無方向性電磁鋼板及びその製造方法を実現できる。一方でCu析出による高強度化なども知られており、本実施形態でも公知技術に準じた使用が可能である。   Cu significantly reduces the saturation magnetic flux density Bs of iron, and B50 (magnetic flux density [T] when the magnetizing force is 5000 [A / m]). Since lowering of Bs and B50 leads to lowering of motor torque, in the present invention, non-oriented electrical steel sheets having high strength and low iron loss without requiring the inclusion of Cu, and without lowering of Bs and B50, and The manufacturing method can be realized. On the other hand, increasing strength by Cu precipitation is also known, and the present embodiment can also be used according to known techniques.

Nbは、NbCなどの析出物は高強度化には有効であるが、これら析出物が磁壁移動を阻害し、鉄損を大幅に劣化させるため、この目的であえて添加する必要はない。一方で、固溶Nbは固溶強化のみならず結晶粒微細化による高強度化や高周波特性改善にも有効であり、本実施形態でも公知技術に準じた使用が可能である。   For Nb, precipitates such as NbC are effective for increasing the strength, but these precipitates inhibit the domain wall movement and greatly deteriorate the iron loss. Therefore, it is not necessary to add Nb for this purpose. On the other hand, the solid solution Nb is effective not only for strengthening the solid solution but also for increasing the strength by refining the crystal grains and improving the high frequency characteristics, and can also be used in accordance with known techniques in this embodiment.

Pは固溶体強化により抗張力を高める効果の著しい元素であるが、この目的ではあえて添加する必要はない。0%であっても構わない。一方、添加により加工硬化能を高め、時効熱処理前に実施する加工による転位密度を効果的に増加させる効果もある。0.3%を超えると脆化が激しく、工業的規模での熱延、冷延等の処理が困難になるため、上限を0.30%とすることが好ましく、さらに好ましくは0.10%以下である。   P is an element having a remarkable effect of increasing the tensile strength by strengthening the solid solution, but it is not necessary to add it for this purpose. It may be 0%. On the other hand, the work hardening ability is enhanced by the addition, and there is also an effect of effectively increasing the dislocation density by the processing performed before the aging heat treatment. If it exceeds 0.3%, brittleness is severe, and it is difficult to perform hot rolling and cold rolling on an industrial scale, so the upper limit is preferably set to 0.30%, more preferably 0.10%. It is as follows.

Sは硫化物を形成し磁気特性、特に鉄損を劣化させる場合があるので、Sの含有量はできるだけ低いことが好ましく0%であっても構わない。本発明では0.020%以下が好ましく、さらに好ましくは0.0040%以下、さらに好ましくは0.0020%以下、さらに好ましくは0.0010%以下である。   Since S forms sulfides and may deteriorate magnetic properties, particularly iron loss, the S content is preferably as low as possible and may be 0%. In this invention, 0.020% or less is preferable, More preferably, it is 0.0040% or less, More preferably, it is 0.0020% or less, More preferably, it is 0.0010% or less.

また、モータ用高強度部材の製造に使用する無方向性電磁鋼板(素材)は、例えば、前記成分を含む鋼を溶製し、連続鋳造で鋼スラブとし、ついで熱間圧延、冷間圧延および焼鈍をすることによって得られる。また、これらの工程に加え絶縁皮膜の形成や脱炭工程など行っても構わない。なお冷間圧延後の焼鈍では、Al−Niの金属間化合物の析出を抑制するために、特に400〜600℃の温度域を急冷することが望ましい。   In addition, the non-oriented electrical steel sheet (material) used for the production of the high strength member for motors, for example, melts the steel containing the above components and forms a steel slab by continuous casting, then hot rolling, cold rolling and Obtained by annealing. Further, in addition to these steps, an insulating film formation or a decarburization step may be performed. In the annealing after cold rolling, it is desirable to quench particularly in the temperature range of 400 to 600 ° C. in order to suppress precipitation of Al—Ni intermetallic compounds.

こうして得られた無方向性電磁鋼板(素材)を、例えば打ち抜き加工等の方法によってモータ用部材として必要な所定の形状にする。この場合、まだ素材の段階では無方向性電磁鋼板は軟質であり、容易にモータ用部材の形状に加工することができる。   The non-oriented electrical steel sheet (material) thus obtained is formed into a predetermined shape necessary as a member for a motor, for example, by a method such as punching. In this case, the non-oriented electrical steel sheet is still soft at the raw material stage and can be easily processed into the shape of the motor member.

次に、強化が必要な箇所に転位密度を1×1014/m以上とする塑性変形を加える。塑性変形は、例えばプレス、ショットブラスト等によって、強化が必要な箇所のみに転位を生じさせることができる。このように強化が必要な箇所のみに塑性変形を加えればよいので、短時間の処理が可能である。また、例えばプレス、ショットブラスト等の方法によれば、必要な箇所のみを選択して塑性変形させることが可能である。 Next, the plastic deformation which makes dislocation density 1 * 10 < 14 > / m < 2 > or more is added to the location which needs reinforcement | strengthening. Plastic deformation can cause dislocations only in places where strengthening is required, for example, by pressing, shot blasting, or the like. In this way, since plastic deformation only needs to be applied to the portions that need to be strengthened, processing in a short time is possible. Further, for example, according to a method such as pressing or shot blasting, it is possible to select only a necessary portion and cause plastic deformation.

次に、塑性変形を加えた後に、400〜600℃で時効処理を行う。この場合、モータ用部材全体を熱処理しても良いが、例えばレーザ加熱や赤外線加熱、高周波加熱等によって、強化が必要な箇所のみを加熱しても良い。このように強化が必要な箇所のみを加熱すれば足りるので、短時間の処理が可能であり、加熱エネルギーも軽減できて経済的である。また、例えばレーザ加熱や赤外線加熱、高周波加熱等の方法によれば、必要な箇所のみを選択して加熱処理することが可能である。   Next, after plastic deformation, an aging treatment is performed at 400 to 600 ° C. In this case, the entire motor member may be heat-treated, but only the portions that need to be strengthened may be heated by, for example, laser heating, infrared heating, high-frequency heating, or the like. In this way, it is sufficient to heat only the portion that needs to be strengthened, so that it is possible to perform processing in a short time, and the heating energy can be reduced, which is economical. Further, for example, according to a method such as laser heating, infrared heating, or high-frequency heating, it is possible to select and heat-treat only necessary portions.

塑性変形によって強化が必要な箇所の転位密度を1×1014/m以上とするのは、時効処理前に部材中の必要箇所に転位を十分に生じさせ、その転位を析出サイトとして、強化が必要な箇所に大きさがなるべく均一なAl−Niの金属間化合物を分散させて析出させるためである。転位密度が1×1014/m未満では、金属間化合物の析出サイトが不十分であり、時効後において個数密度が30000個/μm以上のAl−Niの金属間化合物が得られなくなってしまう。また、Al−Niの金属間化合物の個数密度が少ないと、金属間化合物の円相当径の平均値が10nmよりも大きくなり、さらに個々の金属間化合物の大きさのばらつきも大きくなり、標準偏差が1を超えてしまう。なお、時効処理前における転位密度が3×1016/mを超えてしまうと却って電磁特性が劣化し、さらに時効後においてAl−Niの金属間化合物の大きさや標準偏差、個数密度が本発明の範囲内から外れる恐れがある。そのため、時効処理前の転位密度は3×1016/m以下であることが望ましい。 The dislocation density of the portion that needs to be strengthened by plastic deformation is set to 1 × 10 14 / m 2 or more because the dislocation is sufficiently generated in the necessary portion in the member before the aging treatment, and the dislocation is used as a precipitation site for strengthening. This is because an Al—Ni intermetallic compound that is as uniform in size as possible is dispersed and deposited in the necessary locations. If the dislocation density is less than 1 × 10 14 / m 2 , the precipitation site of the intermetallic compound is insufficient, and an Al—Ni intermetallic compound having a number density of 30000 / μm 3 or more cannot be obtained after aging. End up. In addition, when the number density of Al—Ni intermetallic compounds is small, the average value of the equivalent circle diameter of the intermetallic compounds is larger than 10 nm, and the variation in the size of each intermetallic compound is also increased. Will exceed 1. Incidentally, when the dislocation density before the aging treatment exceeds 3 × 10 16 / m 2 , the electromagnetic characteristics are deteriorated, and the size, standard deviation, and number density of the Al—Ni intermetallic compound after aging are further reduced. May fall out of the range. Therefore, it is desirable that the dislocation density before aging treatment is 3 × 10 16 / m 2 or less.

また時効処理は、400〜600℃で行う。400℃未満では、十分な金属間化合物が得られず、一方、600℃を超えると形成される金属間化合物が粗大となってしまう。この際の保持時間は1〜120分とすることが好ましい。短過ぎると十分な金属間化合物が得られず、一方、長過ぎると形成される金属間化合物が粗大となってしまう。この他、加熱速度や冷却速度なども、本発明の特徴である析出物の状態に影響を及ぼす可能性がある。これらの熱処理条件は目的とする特性に応じて成分や生産性なども考慮して決定される。当業者であれば、本発明の技術思想に従い、数度の試行により適切な条件を決定することは容易である。   The aging treatment is performed at 400 to 600 ° C. When the temperature is lower than 400 ° C., sufficient intermetallic compounds cannot be obtained. On the other hand, when the temperature exceeds 600 ° C., the formed intermetallic compounds become coarse. In this case, the holding time is preferably 1 to 120 minutes. If it is too short, a sufficient intermetallic compound cannot be obtained. On the other hand, if it is too long, the formed intermetallic compound becomes coarse. In addition, the heating rate, the cooling rate, and the like may affect the state of precipitates that is a feature of the present invention. These heat treatment conditions are determined in consideration of components, productivity and the like according to the target characteristics. A person skilled in the art can easily determine appropriate conditions by several trials in accordance with the technical idea of the present invention.

以上のような製造工程を経ることで、強化が必要な箇所において、面積基準で求められる円相当径の平均値が1〜10nmで、標準偏差が1以下であるAl−Niの金属間化合物が、30000個/μm以上析出した状態とすることができる。その結果、電磁特性を劣化させずにモータ用高強度部材の強度を向上させることが可能となる。 By passing through the manufacturing process as described above, an Al—Ni intermetallic compound having an average equivalent circle diameter of 1 to 10 nm and having a standard deviation of 1 or less is obtained at an area where strengthening is required. 30000 / μm 3 or more can be deposited. As a result, it is possible to improve the strength of the high-strength member for motors without deteriorating electromagnetic characteristics.

なお、金属間化合物の円相当径の平均値が10nmを超える粗大な化合物が多量に生成すると高強度化の効率が低下し、磁気特性も劣化させる恐れがある。本発明では、部材中の強化が必要な箇所に、サイズの細かい金属間化合物を高密度に生成させることで、優れた磁気特性と熱伝導性を維持しつつ、電磁鋼板の強度を向上させる。一方、金属間化合物の円相当径の平均値が1nm未満と微細では強化能が小さくなる。さらに高強度化を確実に達成するためには、円相当径の標準偏差が1以下となるように個々の金属間化合物の大きさが揃っていることが必要である。この標準偏差が1を超えると、金属間化合物の大きさが不均一となり、特に熱伝導性が低下する恐れがある。なお、鉄鋼材料中に形成するAl−Niの金属間化合物としては、NiAl、Ni3Alなどが通常知られている。また、これらの化合物の元素比は相当に変動することは知られており、また何らかの不純物元素を含んだものも本発明に相当する。 In addition, when a large amount of coarse compounds having an average equivalent circle diameter of an intermetallic compound exceeding 10 nm is generated, the efficiency of increasing the strength is lowered and the magnetic characteristics may be deteriorated. In the present invention, the strength of the electrical steel sheet is improved while maintaining excellent magnetic properties and thermal conductivity by generating high-density intermetallic compounds at high density at locations where strengthening is required in the member. On the other hand, if the average value of the equivalent circle diameter of the intermetallic compound is less than 1 nm, the strengthening ability is small. Furthermore, in order to reliably achieve high strength, it is necessary that the sizes of the individual intermetallic compounds are uniform so that the standard deviation of the equivalent circle diameter is 1 or less. When this standard deviation exceeds 1, the size of the intermetallic compound becomes non-uniform, and there is a possibility that the thermal conductivity is particularly lowered. As the intermetallic compounds of Al-Ni to form in the steel material, NiAl, such as Ni 3 Al it is commonly known. In addition, it is known that the element ratio of these compounds varies considerably, and those containing some impurity elements also correspond to the present invention.

高強度化の観点から、部材中の強化が必要な箇所に析出させる金属間化合物の数密度は30000個/μm以上が必要である。金属間化合物サイズと数密度の制御は、優れた高強度化と磁気特性を両立する観点から重要である。本発明では高強度化の主要な手段として結晶組織の微細化を利用しないため、結晶粒径は磁気特性の観点から最適な範囲に調整が可能である。高強度化に寄与する金属間化合物のサイズや密度は成分のみならず、最終的な熱処理により制御が可能であるため結晶粒径はこの熱処理以前の、例えば再結晶焼鈍の最高到達温度およびその温度域での保持時間等により金属間化合物の制御とは独立に制御が可能となる。結晶粒径は通常は300μm以下であり、好ましくは30〜250μmに制御される。さらに好ましくは60〜200μmである。一般的にはモータ用部材を使用する際の励磁電流の周波数が高い場合には結晶粒は微細にしておくことが好ましい。また、方向性電磁鋼板のように二次再結晶等を利用して数cmにまで結晶粒径を粗大化させても本発明の効果は何ら損なわれるものではない。 From the viewpoint of increasing the strength, the number density of intermetallic compounds to be deposited at locations where strengthening is required in the member is required to be 30000 / μm 3 or more. Control of the intermetallic compound size and number density is important from the viewpoint of achieving both excellent strength and magnetic properties. In the present invention, since the refinement of the crystal structure is not used as a main means for increasing the strength, the crystal grain size can be adjusted to an optimum range from the viewpoint of magnetic properties. Since the size and density of the intermetallic compounds that contribute to high strength can be controlled not only by the components but also by the final heat treatment, the crystal grain size can be controlled before the heat treatment. The control can be performed independently of the control of the intermetallic compound by the holding time in the region. The crystal grain size is usually 300 μm or less, preferably 30 to 250 μm. More preferably, it is 60-200 micrometers. In general, when the frequency of the excitation current when using a motor member is high, it is preferable to keep the crystal grains fine. Further, the effect of the present invention is not impaired at all even if the crystal grain size is increased to several centimeters using secondary recrystallization or the like as in the case of grain-oriented electrical steel sheets.

なお、一例として、永久磁石内蔵モータ(IPMモータ)のロータコアについて本発明を適用した形態を説明したが、本発明はかかる形態に限定されない。例えば誘導モータ(IMモータ)のスロット外周部等、強度と磁気特性の両立が求められる他のモータ用部材についても本発明を適用できる。   In addition, although the form which applied this invention was demonstrated to the rotor core of a permanent magnet built-in motor (IPM motor) as an example, this invention is not limited to this form. For example, the present invention can also be applied to other motor members that require both strength and magnetic properties, such as the slot outer periphery of an induction motor (IM motor).

表1に示す真空溶解した熱延鋼板を、酸洗後、0.20mm厚に冷延し、焼鈍した。その焼鈍板から外径112mm、内径56mm、スロット数24のステータコアと、外径55mm、4極のIMPロータを試作した。ロータコアは積層後、ブリッジ部に金型で板厚方向に圧縮変形を加え、圧縮量を変化させることで、本発明例は転位密度が1×1014/m以上となるように調整した。その後、550℃×2時間の時効処理を行った。各材料で試作したモータの最大効率と、ロータ回転数を変えながらロータの外径を計測し外周が変形を開始した回転数を表1に示す。今回試作したモータの最大効率は87%以上であり、89%を超えるものを合格とした。なお、表1において、本発明の範囲外の数値には下線を付した。 The hot-rolled steel sheet melted in vacuum shown in Table 1 was pickled, cold-rolled to a thickness of 0.20 mm, and annealed. From the annealed plate, a stator core having an outer diameter of 112 mm, an inner diameter of 56 mm, 24 slots, an outer diameter of 55 mm, and a 4-pole IMP rotor was manufactured. After laminating the rotor core, the bridge portion was subjected to compression deformation in the plate thickness direction with a die, and the amount of compression was changed to adjust the dislocation density to 1 × 10 14 / m 2 or more. Thereafter, an aging treatment was performed at 550 ° C. for 2 hours. Table 1 shows the maximum efficiency of the motor prototyped with each material and the rotational speed at which the outer diameter of the rotor was measured while changing the rotor rotational speed and the outer periphery started to deform. The maximum efficiency of the prototype motor was 87% or more, and exceeded 89%. In Table 1, numerical values outside the range of the present invention are underlined.

時効処理を行わなかったロータは15,000〜22,000回転でロータ外周が変形を開始したが、時効処理を行ったものでは、25,000回転以上まで変形の見られないものも得られた。   The rotor that had not been subjected to aging treatment started to deform at 15,000 to 22,000 revolutions, but the one that did not undergo deformation until 25,000 revolutions or more was obtained with aging treatment. .

さらに、Cr、Snを添加したものでは最大効率92%が得られ、またCuを添加したものでは時効処理後35,000回転程度まで変形が見られなかった。   Further, when Cr and Sn were added, the maximum efficiency of 92% was obtained, and when Cu was added, no deformation was observed up to about 35,000 rotations after the aging treatment.

Claims (7)

質量%で、Si:2〜4%、Al:1〜3%、Ni:1.5〜4%を含有し、残部Feおよび不可避的不純物からなる無方向性電磁鋼板を素材とするモータ用高強度部材であって、
強化が必要な箇所にAl−Niの金属間化合物が部分的に析出している、モータ用高強度部材。
High for motors that are made of non-oriented electrical steel sheets that contain Si: 2-4%, Al: 1-3%, Ni: 1.5-4%, and the balance Fe and inevitable impurities. A strength member,
A high-strength member for a motor, in which an Al—Ni intermetallic compound is partially deposited at a location that needs to be strengthened.
前記モータ用高強度部材はロータコアであり、前記強化が必要な箇所はアウターブリッジ部である、請求項1に記載のモータ用高強度部材。   The high-strength member for motors according to claim 1, wherein the high-strength member for motors is a rotor core, and the portion requiring the reinforcement is an outer bridge portion. 前記強化が必要な箇所に、面積基準で求められる円相当径の平均値が1〜10nmで、標準偏差が1以下であるAl−Niの金属間化合物が、30000個/μm以上析出している、請求項1または2のいずれか1項に記載のモータ用高強度部材。 In an area where the strengthening is necessary, an Al-Ni intermetallic compound having an average equivalent circle diameter of 1 to 10 nm and a standard deviation of 1 or less determined on an area basis is deposited in an amount of 30000 pieces / μm 3 or more. The high-strength member for motors according to any one of claims 1 and 2. さらに質量%で、Cr:0.01〜4%、Cu:0.01〜4%、Sn:0.01〜0.2%の1または2以上を含有する、請求項1〜3のいずれか1項に記載のモータ用高強度部材。   Furthermore, in mass%, it contains 1 or 2 or more of Cr: 0.01-4%, Cu: 0.01-4%, Sn: 0.01-0.2%, Any one of Claims 1-3 The high-strength member for motors according to 1. 質量%で、Si:2〜4%、Al:1〜3%、Ni:1.5〜4%を含有し、残部Feおよび不可避的不純物からなる無方向性電磁鋼板を素材として所定の形状とした後、強化が必要な箇所に転位密度を1×1014/m以上とする塑性変形を加え、さらに400〜600℃で時効処理を行う、モータ用高強度部材の製造方法。 In a mass%, Si: 2 to 4%, Al: 1 to 3%, Ni: 1.5 to 4%, and a non-oriented electrical steel sheet composed of the remaining Fe and inevitable impurities as a raw material and having a predetermined shape After that, a method for producing a high-strength member for a motor, in which plastic deformation is performed so that a dislocation density of 1 × 10 14 / m 2 or more is applied to a portion that needs to be strengthened, and further an aging treatment is performed at 400 to 600 ° C. 前記モータ用高強度部材はロータコアであり、前記強化が必要な箇所はアウターブリッジ部である、請求項5に記載のモータ用高強度部材の製造方法。   The method for producing a high-strength member for a motor according to claim 5, wherein the high-strength member for a motor is a rotor core, and the portion requiring the reinforcement is an outer bridge portion. 前記素材は、さらに質量%で、Cr:0.01〜4%、Cu:0.01〜4%、Sn:0.01〜0.2%の1または2以上を含有する、請求項5または6のいずれか1項に記載のモータ用高強度部材の製造方法。   The said raw material further contains 1 or 2 or more of Cr: 0.01-4%, Cu: 0.01-4%, Sn: 0.01-0.2% by the mass%. The method for producing a high-strength member for a motor according to any one of 6.
JP2015182872A 2015-09-16 2015-09-16 High-strength members for motors using non-oriented electrical steel sheets and their manufacturing methods Active JP6852966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015182872A JP6852966B2 (en) 2015-09-16 2015-09-16 High-strength members for motors using non-oriented electrical steel sheets and their manufacturing methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015182872A JP6852966B2 (en) 2015-09-16 2015-09-16 High-strength members for motors using non-oriented electrical steel sheets and their manufacturing methods

Publications (2)

Publication Number Publication Date
JP2017057456A true JP2017057456A (en) 2017-03-23
JP6852966B2 JP6852966B2 (en) 2021-03-31

Family

ID=58391172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015182872A Active JP6852966B2 (en) 2015-09-16 2015-09-16 High-strength members for motors using non-oriented electrical steel sheets and their manufacturing methods

Country Status (1)

Country Link
JP (1) JP6852966B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110586659A (en) * 2019-09-12 2019-12-20 北京首钢股份有限公司 Method and device for controlling asymmetric flatness of oriented silicon steel
JP2020019988A (en) * 2018-07-31 2020-02-06 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and manufacturing method therefor
EP4138281A4 (en) * 2020-08-07 2023-11-01 Aisin Corporation Manufacturing method of rotor for rotating electric machine, and manufacturing method of rotating electric machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339603A (en) * 2003-04-25 2004-12-02 Jfe Steel Kk High-strength non-oriented electromagnetic steel sheet superior in high-frequency magnetic property, and manufacturing method therefor
JP2005094941A (en) * 2003-09-18 2005-04-07 Nippon Steel Corp Method for manufacturing magnetic steel sheet rotor
WO2005033349A1 (en) * 2003-10-06 2005-04-14 Nippon Steel Corporation High-strength magnetic steel sheet and worked part therefrom, and process for producing them
JP2005113185A (en) * 2003-10-06 2005-04-28 Nippon Steel Corp High strength silicon steel sheet excellent in magnetic property, and its production method
JP2005264315A (en) * 2004-02-17 2005-09-29 Nippon Steel Corp Electromagnetic steel sheet, and manufacturing method therefor
WO2012087045A2 (en) * 2010-12-23 2012-06-28 주식회사 포스코 Low iron loss high strength non-oriented electromagnetic steel sheet and method for manufacturing same
JP2016194127A (en) * 2015-04-01 2016-11-17 新日鐵住金株式会社 Induction heating method of rotor of ipm motor and induction heating device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339603A (en) * 2003-04-25 2004-12-02 Jfe Steel Kk High-strength non-oriented electromagnetic steel sheet superior in high-frequency magnetic property, and manufacturing method therefor
JP2005094941A (en) * 2003-09-18 2005-04-07 Nippon Steel Corp Method for manufacturing magnetic steel sheet rotor
WO2005033349A1 (en) * 2003-10-06 2005-04-14 Nippon Steel Corporation High-strength magnetic steel sheet and worked part therefrom, and process for producing them
JP2005113185A (en) * 2003-10-06 2005-04-28 Nippon Steel Corp High strength silicon steel sheet excellent in magnetic property, and its production method
JP2005264315A (en) * 2004-02-17 2005-09-29 Nippon Steel Corp Electromagnetic steel sheet, and manufacturing method therefor
WO2012087045A2 (en) * 2010-12-23 2012-06-28 주식회사 포스코 Low iron loss high strength non-oriented electromagnetic steel sheet and method for manufacturing same
JP2014503685A (en) * 2010-12-23 2014-02-13 ポスコ Low iron loss high strength non-oriented electrical steel sheet and method for producing the same
JP2016194127A (en) * 2015-04-01 2016-11-17 新日鐵住金株式会社 Induction heating method of rotor of ipm motor and induction heating device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020019988A (en) * 2018-07-31 2020-02-06 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and manufacturing method therefor
JP7273282B2 (en) 2018-07-31 2023-05-15 日本製鉄株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
CN110586659A (en) * 2019-09-12 2019-12-20 北京首钢股份有限公司 Method and device for controlling asymmetric flatness of oriented silicon steel
CN110586659B (en) * 2019-09-12 2021-03-09 北京首钢股份有限公司 Method and device for controlling asymmetric flatness of oriented silicon steel
EP4138281A4 (en) * 2020-08-07 2023-11-01 Aisin Corporation Manufacturing method of rotor for rotating electric machine, and manufacturing method of rotating electric machine

Also Published As

Publication number Publication date
JP6852966B2 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
US11124854B2 (en) Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
KR102295445B1 (en) Method for producing non-oriented electrical steel sheet, method for producing motor core, and motor core
JP5228379B2 (en) Non-oriented electrical steel sheet with excellent strength and magnetic properties and manufacturing method thereof
US8097094B2 (en) High-strength electrical steel sheet and processed part of same
WO2012114383A1 (en) Non-oriented electromagnetic steel sheet and method for manufacturing same
JP5028992B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6269971B2 (en) Non-oriented electrical steel sheet and motor core
JP6497180B2 (en) Induction heating method and induction heating apparatus for rotor of IPM motor
JP2004300535A (en) High strength nonoriented silicon steel sheet having excellent magnetic property, and its production method
JP6852966B2 (en) High-strength members for motors using non-oriented electrical steel sheets and their manufacturing methods
JP2007031754A (en) Method for manufacturing non-oriented electromagnetic steel sheet to be aged
JPS62256917A (en) High-tensile non-oriented electrical steel sheet for rotating machine and its production
JP5333415B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
JP5418469B2 (en) Method for producing non-oriented electrical steel sheet for aging heat treatment
JP2019183231A (en) Nonoriented electromagnetic steel sheet, stater core, rotor core, and manufacturing method therefor
JP4424075B2 (en) Non-oriented electrical steel sheet, non-oriented electrical steel sheet for aging heat treatment, and production method thereof
JP4929484B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4670230B2 (en) Non-oriented electrical steel sheet
JP5186781B2 (en) Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same
JP6725209B2 (en) High strength member for motor and method of manufacturing high strength member for motor
JP5648661B2 (en) Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same
JP6852965B2 (en) Electrical steel sheet and its manufacturing method
JP5825479B2 (en) Manufacturing method of high strength non-oriented electrical steel sheet
JP2004353037A (en) High-strength non-oriented electromagnetic steel sheet superior in magnetic property, and manufacturing method therefor
JP2005120431A (en) Method for manufacturing high-strength nonoriented silicon steel sheet having excellent magnetic characteristic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190522

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191125

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20191125

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191202

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20191203

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20191227

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200107

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200818

C141 Inquiry by the administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C141

Effective date: 20201201

C54 Written response to inquiry

Free format text: JAPANESE INTERMEDIATE CODE: C54

Effective date: 20210113

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210209

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210309

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210311

R150 Certificate of patent or registration of utility model

Ref document number: 6852966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150