JP2016194127A - Induction heating method of rotor of ipm motor and induction heating device - Google Patents

Induction heating method of rotor of ipm motor and induction heating device Download PDF

Info

Publication number
JP2016194127A
JP2016194127A JP2015075099A JP2015075099A JP2016194127A JP 2016194127 A JP2016194127 A JP 2016194127A JP 2015075099 A JP2015075099 A JP 2015075099A JP 2015075099 A JP2015075099 A JP 2015075099A JP 2016194127 A JP2016194127 A JP 2016194127A
Authority
JP
Japan
Prior art keywords
rotor
induction heating
ipm motor
local
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015075099A
Other languages
Japanese (ja)
Other versions
JP6497180B2 (en
Inventor
保郎 大杉
Yasuo Osugi
保郎 大杉
新井 聡
Satoshi Arai
聡 新井
藤倉 昌浩
Masahiro Fujikura
昌浩 藤倉
脇坂 岳顕
Takeaki Wakizaka
岳顕 脇坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015075099A priority Critical patent/JP6497180B2/en
Publication of JP2016194127A publication Critical patent/JP2016194127A/en
Application granted granted Critical
Publication of JP6497180B2 publication Critical patent/JP6497180B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

PROBLEM TO BE SOLVED: To provide an induction heating method for locally heating only necessary portions in a short period of time for local material improvement in a rotor of an IPM motor and obtaining the rotor of the IPM motor provided with excellent magnetic characteristics and high strength, and further to provide an induction heating device.SOLUTION: Coils 32 are provided closer to a rotor 11 of an IPM motor 1 in a shape surrounding local portions (bridge portions 21) required for heat treatment, a single-phase AC power source 31 is connected to the coils 32, an AC magnetic field is generated, an eddy current is generated in the rotor 11 by the AC magnetic field, and the local portions are imparted with heat treatment effect.SELECTED DRAWING: Figure 4

Description

本発明は、電磁鋼板を用いたIPMモータのロータの誘導加熱方法および誘導加熱装置に関するものである。   The present invention relates to an induction heating method and an induction heating apparatus for a rotor of an IPM motor using an electromagnetic steel plate.

ハイブリッド自動車(HEV)や電気自動車(EV)等の電気駆動自動車の主駆動モータ、主発電機モータは、燃費と直結するために高いレベルでの高効率化が求められる。加えて、モータ出力を低下させずにモータコアを小型・軽量化させるために、より一層の高速回転化が求められ、近年では数十kWの出力で20000rpm近い回転数のモータが要求されている。   Main drive motors and main generator motors of electric drive vehicles such as hybrid vehicles (HEV) and electric vehicles (EV) are required to have high efficiency at a high level in order to be directly connected to fuel consumption. In addition, in order to reduce the size and weight of the motor core without lowering the motor output, further higher speed rotation is required. In recent years, a motor having an output of several tens kW and a rotation speed close to 20000 rpm is required.

電気駆動自動車の主機モータの大部分に使用されるIPMモータ(磁石モータ)の高効率化のために、IPMモータロータの磁石のN極、S極それぞれからの磁束がロータの電磁鋼板を通して結合することを防いでモータトルクを増加させるというニーズがある。そのために、従来、磁石を挿入する開口部の端部とロータ側面との間のブリッジ部をできるだけ細くして、ブリッジ部を磁束が通りにくくすること、あるいはブリッジ部の透磁率を下げて磁束を通りにくくすることが検討されてきた。一方、小型・軽量化の要請から、主機モータにはより一層の高速回転が求められるため、ロータ用の材料としては、低鉄損などの電磁特性に加えて、より高強度の電磁鋼板が必要となってきた。また、電磁鋼板をロータ形状に打ち抜いて積層する製造工程において、ロータコアを積層させた後に局所的な材質改善のために必要箇所のみを局部加熱したいとの要望がある。さらに、生産性向上の観点から、この加熱は短時間で完了する方が望ましい。そこで、これを実現する短時間局部加熱の技術の開発が必要とされている。   In order to increase the efficiency of IPM motors (magnet motors) used in most of the main motors of electrically driven vehicles, the magnetic fluxes from the north and south poles of the magnet of the IPM motor rotor must be coupled through the electromagnetic steel plate of the rotor. There is a need to increase the motor torque by preventing the motor. Therefore, conventionally, the bridge between the end of the opening for inserting the magnet and the side surface of the rotor is made as thin as possible to make it difficult for the magnetic flux to pass through the bridge, or the magnetic permeability of the bridge is lowered to reduce the magnetic flux. It has been considered to make it difficult to pass. On the other hand, because the main motor is required to rotate at higher speeds due to the demand for smaller size and lighter weight, the rotor material requires higher strength electrical steel sheets in addition to electromagnetic characteristics such as low iron loss. It has become. In addition, in the manufacturing process of punching and laminating electromagnetic steel sheets into a rotor shape, there is a desire to locally heat only necessary portions for local material improvement after laminating the rotor core. Furthermore, it is desirable to complete this heating in a short time from the viewpoint of improving productivity. Therefore, it is necessary to develop a technique for short-time local heating that realizes this.

ロータ用の材料を高強度化させるには、素材に使用される電磁鋼板の固溶強化、析出強化、結晶粒微細化強化、転位強化、変態強化等が考えられるが、固溶強化以外は磁気特性を劣化させるため、電磁鋼板には好ましくない。また、固溶強化は高強度化には大きな効果があるが、同時に圧延荷重増大や脆性破断の課題もあり、生産性の観点から上限がある。   In order to increase the strength of the rotor material, solid solution strengthening, precipitation strengthening, grain refinement strengthening, dislocation strengthening, transformation strengthening, etc. of the electrical steel sheet used for the material can be considered. Since the characteristics are deteriorated, it is not preferable for the electromagnetic steel sheet. Further, solid solution strengthening has a great effect on increasing the strength, but at the same time, there are problems of increased rolling load and brittle fracture, and there is an upper limit from the viewpoint of productivity.

IPMモータのロータ材料には、ステータ材料ほどの低鉄損特性は必要ないものの、ロータ内を変動する磁束が流れることによるリラクタンストルクを一定の比率で利用することから、低鉄損であればあるほどモータ効率は高くなる。   The rotor material of the IPM motor does not require the low iron loss characteristics as the stator material, but the reluctance torque caused by the flow of the magnetic flux that fluctuates in the rotor is used at a certain ratio, so that the iron loss is low. The higher the motor efficiency.

以上の課題に対し、例えば非特許文献1で、Cuからなる金属相を数nmのサイズに微細に分散させ、高強度と低鉄損とを両立した電磁鋼板が提案されている。さらに、微細なCuの金属相を含み高強度と低鉄損とを両立した電磁鋼板については、例えば特許文献1、特許文献2等に開示されている。   For example, Non-Patent Document 1 proposes an electrical steel sheet that achieves both high strength and low iron loss by finely dispersing a metal phase made of Cu in a size of several nanometers. Furthermore, electrical steel sheets that include a fine Cu metal phase and have both high strength and low iron loss are disclosed in, for example, Patent Document 1, Patent Document 2, and the like.

特許文献3には、鋼板の幅方向の任意の領域を加熱することができる加熱装置が開示されている。   Patent Document 3 discloses a heating device that can heat an arbitrary region in the width direction of a steel plate.

また、特許文献4には、電磁鋼板の励磁方向と同方向の磁場中で焼鈍することにより鉄損が低減できることから、モータ用コアを磁場焼鈍する方法および装置が開示されている。   Further, Patent Document 4 discloses a method and apparatus for magnetically annealing a motor core because the iron loss can be reduced by annealing in a magnetic field in the same direction as the excitation direction of the electromagnetic steel sheet.

また、微細な金属間化合物により高強度と低鉄損とを両立した電磁鋼板については、特許文献5に開示されている。   Patent Document 5 discloses an electromagnetic steel sheet that achieves both high strength and low iron loss by a fine intermetallic compound.

特許第5000136号公報Japanese Patent No. 5000136 特開2011−006721号公報JP 2011-006721 A 特許第3793503号公報Japanese Patent No. 3793503 特開2003−342637号公報JP 2003-342637 A 特開2005−264315号公報JP 2005-264315 A

日本鉄鋼協会編集、材料とプロセス:CAMP−ISIJ Vol.27 (2014)−467Edited by Japan Iron and Steel Institute, Materials and Processes: CAMP-ISI Vol. 27 (2014) -467

しかしながら、上記特許文献1、2、および非特許文献1は、ロータ用の材料である電磁鋼板全体にCuからなる金属相を析出させるものである。そのため、電磁鋼板全体に熱処理を行わなければならないうえ、特に高強度を必要としない箇所にもCu相を析出させて磁気特性を劣化させてしまうという問題がある。   However, Patent Documents 1 and 2 and Non-Patent Document 1 are for depositing a metal phase made of Cu on the entire electromagnetic steel sheet, which is a material for a rotor. For this reason, there is a problem that heat treatment must be performed on the entire electromagnetic steel sheet, and a Cu phase is also deposited at a portion that does not require particularly high strength, thereby deteriorating magnetic properties.

また、特許文献3は、数mmレベルの局部加熱を実現するものではない。さらに、特許文献4はコアを全体加熱するものであり、低鉄損且つ高強度を必要とする箇所のみの局部加熱を実現するものではない。   Further, Patent Document 3 does not realize local heating at a level of several millimeters. Further, Patent Document 4 heats the entire core, and does not realize local heating only at a portion requiring low iron loss and high strength.

本発明は、IPMモータのロータにおいて、局所的な材質改善のために必要箇所のみを短時間で局部加熱し、優れた磁気特性および高強度を備えたIPMモータのロータを得るための誘導加熱方法および誘導加熱装置を提供することを目的とする。   The present invention relates to an induction heating method for obtaining a rotor of an IPM motor having excellent magnetic properties and high strength by locally heating only a necessary portion for local material improvement in a short time in a rotor of an IPM motor. And it aims at providing an induction heating apparatus.

上記問題を解決するため、本発明は、IPMモータのロータの、熱処理を要する局部を加熱する誘導加熱方法であって、前記ロータに近接して前記局部を囲む形状にコイルを設け、前記コイルに単相交流電源を接続して交流磁場を発生させ、前記交流磁場により前記ロータ内に渦電流を発生させて、前記局部に熱処理効果を与えることを特徴とする、IPMモータのロータの誘導加熱方法を提供する。   In order to solve the above problem, the present invention provides an induction heating method for heating a local part of an IPM motor rotor that requires heat treatment, wherein a coil is provided in a shape surrounding the local part in the vicinity of the rotor, and the coil is provided in the coil. An induction heating method for a rotor of an IPM motor, wherein an AC magnetic field is generated by connecting a single-phase AC power source, an eddy current is generated in the rotor by the AC magnetic field, and a heat treatment effect is given to the local part I will provide a.

前記誘導加熱方法において、前記ロータに、前記熱処理を要する局部が複数箇所あり、前記コイルが複数の前記局部をそれぞれ囲むように、前記コイルを順次移動させて、それぞれの前記局部に熱処理効果を与えてもよい。あるいは、前記ロータに、前記熱処理を要する局部が複数箇所あり、前記コイルが複数の前記局部をそれぞれ囲むように、前記ロータを回転または移動させて、それぞれの前記局部に熱処理効果を与えてもよい。   In the induction heating method, the rotor has a plurality of local portions that require the heat treatment, and the coils are sequentially moved so that the coils surround the local portions, respectively, so that a heat treatment effect is given to the local portions. May be. Alternatively, the rotor may have a plurality of local portions that require the heat treatment, and the rotor may be rotated or moved so that the coil surrounds the plurality of local portions, respectively, thereby giving a heat treatment effect to each of the local portions. .

また、前記コイルの内部に磁束強化用コアを備えてもよい。その場合、前記磁束強化用コアの幅寸法が、前記局部の0.5〜1.5倍、あるいは、前記磁束強化用コアの幅寸法が、前記局部の幅の0.8〜1.0倍であることが好ましい。   Further, a magnetic flux enhancing core may be provided inside the coil. In that case, the width dimension of the magnetic flux strengthening core is 0.5 to 1.5 times the local part, or the width dimension of the magnetic flux strengthening core is 0.8 to 1.0 times the local width. It is preferable that

前記ロータに、前記熱処理を要する局部が複数箇所あり、前記磁束強化用コアを備えたコイルを、複数箇所の前記局部全てをそれぞれ囲むように前記ロータの外周側に配置し、かつ、前記各コイルの磁束強化用コアを、前記コイルの外周側で連結してもよい。その場合、隣り合うコイルの位相を反転させてもよい。   The rotor has a plurality of local portions that require the heat treatment, and a coil including the magnetic flux strengthening core is disposed on the outer peripheral side of the rotor so as to surround all of the local portions at a plurality of locations, and the coils The magnetic flux reinforcing cores may be connected on the outer peripheral side of the coil. In that case, the phases of adjacent coils may be reversed.

励磁する周波数を、100〜20kHzとすることが好ましい。   The excitation frequency is preferably 100 to 20 kHz.

前記局部に熱処理効果を与えて前記局部を部分析出強化してもよい。その場合、前記局部は、質量%で、C:0.06%以下、Si:0.2〜4.0%、Mn:0.05〜2.0%、Al:2.50%以下、Cu:0.5〜8.0%、残部Feおよび不可避的不純物からなる電磁鋼板を素材として作製されたロータのブリッジ部であり、前記ブリッジ部に、400℃〜700℃で1秒以上10分以下の熱処理効果を与え、前記ブリッジ部に円相当径が10nm以下の微細Cu粒子を析出させてもよい。また、前記局部は、質量%で、Si:2.0〜4.0%、Al:1.0〜3.0%、Ni:1.5〜4.0%を含有し、残部Feおよび不可避的不純物からなる電磁鋼板を素材として作成されたロータのブリッジ部であり、前記ブリッジ部に400℃〜600℃で時効処理を行い、円相当径の平均値が1〜10nmであるAl−Niの金属間化合物を30000個/μm以上析出させてもよい。 The local part may be strengthened by partial precipitation by giving a heat treatment effect to the local part. In that case, the said local part is the mass%, C: 0.06% or less, Si: 0.2-4.0%, Mn: 0.05-2.0%, Al: 2.50% or less, Cu : 0.5 to 8.0%, a bridge portion of a rotor made of an electromagnetic steel plate made of the balance Fe and unavoidable impurities as a raw material, and the bridge portion at 400 ° C to 700 ° C for 1 second to 10 minutes In this case, fine Cu particles having an equivalent circle diameter of 10 nm or less may be deposited on the bridge portion. Moreover, the said local part is the mass%, Si: 2.0-4.0%, Al: 1.0-3.0%, Ni: 1.5-4.0%, The remainder Fe and unavoidable Of a rotor made of an electromagnetic steel plate made of mechanical impurities, the bridge portion is subjected to an aging treatment at 400 ° C. to 600 ° C., and the average value of the equivalent circle diameter is 1 to 10 nm. You may deposit 30000 pieces / micrometer 3 or more of intermetallic compounds.

また、前記局部は、冷延ままの電磁鋼板から作製されたIPMモータのロータの磁石部であり、前記磁石部に700℃以上で1秒以上の熱処理効果を与え、前記磁石部を部分再結晶させてもよい。また、前記局部は、冷延ままの電磁鋼板から作製されたIPMモータのロータのせん断加工部または溶接部であり、前記せん断加工部または溶接部に400℃以上で1秒以上の熱処理効果を与え、前記せん断加工部または溶接部の歪を除去してもよい。   The local part is a magnet part of a rotor of an IPM motor manufactured from an electromagnetic steel sheet as cold-rolled. The magnetic part is subjected to a heat treatment effect at 700 ° C. or more for 1 second or more, and the magnet part is partially recrystallized. You may let them. The local part is a sheared part or welded part of a rotor of an IPM motor made from an electromagnetic steel sheet as cold-rolled, and gives a heat treatment effect for 1 second or longer at 400 ° C. or higher to the sheared part or welded part. The distortion of the sheared part or the welded part may be removed.

また、本発明は、IPMモータのロータの、熱処理を要する局部を加熱する誘導加熱装置であって、前記ロータに近接して前記局部を囲む形状に設けられるコイルと、前記コイルに接続され前記コイルに交流磁場を発生させる単相交流電源とを有し、前記交流磁場により前記ロータ内に渦電流を発生させて、前記局部に熱処理効果を与えることを特徴とする、IPMモータのロータの誘導加熱装置を提供する。   The present invention also provides an induction heating device for heating a local part of an IPM motor rotor that requires heat treatment, a coil provided in a shape surrounding the local part in the vicinity of the rotor, and a coil connected to the coil and connected to the coil. And a single-phase AC power source for generating an AC magnetic field, and generating an eddy current in the rotor by the AC magnetic field to give a heat treatment effect to the local portion, induction heating of the rotor of the IPM motor Providing equipment.

前記誘導加熱装置において、前記コイルの内部に磁束強化用コアが備えられていてもよい。その場合、前記磁束強化用コアの幅寸法が、前記局部の0.5〜1.5倍、あるいは、前記磁束強化用コアの幅寸法が、前記局部の幅の0.8〜1.0倍であることが好ましい。   In the induction heating apparatus, a magnetic flux reinforcing core may be provided inside the coil. In that case, the width dimension of the magnetic flux strengthening core is 0.5 to 1.5 times the local part, or the width dimension of the magnetic flux strengthening core is 0.8 to 1.0 times the local width. It is preferable that

前記磁束強化用コアを備えたコイルが、複数箇所の前記局部全てをそれぞれ囲むように前記ロータの外周側に配置され、かつ、前記各コイルの磁束強化用コアが、前記コイルの外周側で連結されていてもよい。その場合、隣り合うコイルの位相を反転させてもよい。   A coil provided with the magnetic flux reinforcing core is arranged on the outer peripheral side of the rotor so as to surround each of the local portions at a plurality of locations, and the magnetic flux reinforcing core of each coil is connected on the outer peripheral side of the coil May be. In that case, the phases of adjacent coils may be reversed.

励磁する周波数を、100〜20kHzとすることが好ましい。   The excitation frequency is preferably 100 to 20 kHz.

本発明によれば、IPMモータのロータにおいて、高速回転のIPMモータに必要な局所的な材質改善のために必要箇所のみを短時間で局部加熱処理することができ、優れた磁気特性および高強度を備えたIPMモータのロータを得ることができる。   According to the present invention, in a rotor of an IPM motor, only a necessary portion can be locally heated in a short time for local material improvement required for a high-speed rotation IPM motor, and excellent magnetic properties and high strength can be obtained. The rotor of the IPM motor provided with can be obtained.

IPMモータの構造を説明する斜視図である。It is a perspective view explaining the structure of an IPM motor. ロータの平面図である。It is a top view of a rotor. 図2のロータのA部を拡大した高速回転時の応力分布の説明図である。It is explanatory drawing of the stress distribution at the time of high speed rotation which expanded the A section of the rotor of FIG. 本発明の実施形態にかかる誘導加熱装置をロータに近接して配置した例を示す説明図である。It is explanatory drawing which shows the example which has arrange | positioned the induction heating apparatus concerning embodiment of this invention close to the rotor. 図4の平面図である。FIG. 5 is a plan view of FIG. 4. 本発明の異なる実施形態にかかる誘導加熱装置をロータに近接して設けた例を示す斜視図である。It is a perspective view which shows the example which provided the induction heating apparatus concerning different embodiment of this invention close to the rotor. 図6の平面図である。FIG. 7 is a plan view of FIG. 6. 図7に示す誘導加熱装置による加熱方法の例を示す説明図である。It is explanatory drawing which shows the example of the heating method by the induction heating apparatus shown in FIG.

以下、本発明の実施の形態を、図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、電気自動車やハイブリッド電気自動車、燃料電池自動車などの駆動モータとして用いられているIPMモータ1の構造の説明図である。円筒形状の固定子10の内側に、回転子であるロータ11が挿入されている。固定子10には、内側にあるロータ11に向かって突出する複数のティース15が設けられており、各ティース15は、ロータ11の回転中心軸Oに対して点対称に、放射状に配置される。各ティース15には、巻線16が集中巻き方式で巻き付けられてコイルが形成されている。ティース15の巻線16としては、集中巻き方式の他に分布巻き方式があり、コスト、巻線占積率、コギング特性等を総合的に勘案して選択されるが、本発明の効果は、固定子10のティース15の巻線方式によって左右されるものではない。   FIG. 1 is an explanatory diagram of the structure of an IPM motor 1 used as a drive motor for an electric vehicle, a hybrid electric vehicle, a fuel cell vehicle, and the like. A rotor 11 that is a rotor is inserted inside a cylindrical stator 10. The stator 10 is provided with a plurality of teeth 15 projecting toward the rotor 11 on the inner side, and the teeth 15 are radially arranged symmetrically with respect to the rotation center axis O of the rotor 11. . A coil is formed on each tooth 15 by winding a winding 16 by a concentrated winding method. The winding 16 of the teeth 15 includes a distributed winding method in addition to the concentrated winding method, and is selected by comprehensively considering cost, winding space factor, cogging characteristics, etc. It does not depend on the winding method of the teeth 15 of the stator 10.

図2に示すように、この実施形態のロータ11は、磁石を挿入する開口部20が8か所に設けられた8極ロータを例示している。各開口部20の端部とロータ側面との間がブリッジ部21である。近年、ハイブリッド自動車(HEV)や電気自動車(EV)に使用される駆動モータの高速回転化が著しくなっているが、高速回転時には、このブリッジ部21に強い遠心力が作用する。   As shown in FIG. 2, the rotor 11 of this embodiment exemplifies an 8-pole rotor provided with eight openings 20 into which magnets are inserted. A bridge portion 21 is between the end of each opening 20 and the rotor side surface. In recent years, drive motors used in hybrid vehicles (HEV) and electric vehicles (EV) have been revolving at a high speed, but a strong centrifugal force acts on the bridge portion 21 during high-speed rotation.

本発明者らのシミュレーションによれば、高速回転時のロータ11に作用する遠心力の応力分布は、図3に示すような結果になった。すなわち、高速回転時のロータ11では、ブリッジ部21に強い応力が作用し、特に各開口部20の外側の隅角部近傍の部分(図3中の斜線を付した領域)22に応力集中が発生して、ロータ11の変形や疲労破壊が発生しやすいことが判明した。   According to the simulations of the present inventors, the stress distribution of the centrifugal force acting on the rotor 11 during high-speed rotation has a result as shown in FIG. That is, in the rotor 11 during high-speed rotation, strong stress acts on the bridge portion 21, and stress concentration is particularly concentrated on a portion near the corner portion on the outer side of each opening 20 (a hatched area in FIG. 3). It has been found that deformation and fatigue failure of the rotor 11 are likely to occur.

前述の通り、例えばCuからなる金属相やAl−Niなどの金属間化合物を数nmのサイズの析出物として分散させることで、高強度と低鉄損とを両立した電磁鋼板が得られることは周知である。この微細な析出物の形成には、500℃程度の比較的低温の熱処理が必要であるが、高強度が必要とされるのは、ロータ11のうち、応力集中が発生しやすいブリッジ部21のみである。したがって、ブリッジ部21を囲む形状にコイルを設け、そのコイルに単相交流電源を接続して交流磁場を発生させ、交流磁場によりロータ内に渦電流を発生させることによって、ブリッジ部21のみを局部的に所定の温度まで昇温させれば、効率よく必要サイズの微細な析出物が得られ、ブリッジ部21の高強度化が実現できる。加えて、ブリッジ部21に微細な析出物が形成されることにより、非析出部に比べて透磁率が低くなり、ブリッジ部21からの漏れ磁束を抑制し、隣接する磁石間の磁気的結合を抑制する効果も大きく、さらにモータ効率を高める事ができる。本発明は、このように、モータ用部材において、例えば応力集中が発生しやすく高強度化を要する局部のみを加熱することによって、例えば微細なCu金属相や微細な金属間化合物を局部のみに析出させて強度を高め、モータの性能を向上させるものである。   As described above, for example, by dispersing a metal phase composed of Cu or an intermetallic compound such as Al-Ni as precipitates having a size of several nm, it is possible to obtain an electrical steel sheet that achieves both high strength and low iron loss. It is well known. The formation of this fine precipitate requires a heat treatment at a relatively low temperature of about 500 ° C., but the high strength is required only for the bridge portion 21 of the rotor 11 where stress concentration is likely to occur. It is. Therefore, a coil is provided in a shape surrounding the bridge portion 21, a single-phase AC power supply is connected to the coil to generate an AC magnetic field, and an eddy current is generated in the rotor by the AC magnetic field, whereby only the bridge portion 21 is localized. Therefore, if the temperature is raised to a predetermined temperature, a fine precipitate having a required size can be efficiently obtained, and the strength of the bridge portion 21 can be increased. In addition, since fine precipitates are formed in the bridge portion 21, the magnetic permeability is lower than that in the non-deposition portion, the leakage magnetic flux from the bridge portion 21 is suppressed, and the magnetic coupling between adjacent magnets is achieved. The suppression effect is great, and the motor efficiency can be further increased. In this way, the present invention, for example, heats only the local area where stress concentration is likely to occur and requires high strength in the motor member, thereby depositing, for example, a fine Cu metal phase or a fine intermetallic compound only in the local area. This increases the strength and improves the performance of the motor.

以下、本発明の実施形態にかかる一例として、誘導加熱により微細Cu粒子を局部のみに析出させる場合を説明する。本実施形態において、熱処理を要する局部は、IPMモータのロータのブリッジ部である。   Hereinafter, as an example according to the embodiment of the present invention, a case where fine Cu particles are precipitated only locally by induction heating will be described. In this embodiment, the local part that requires heat treatment is the bridge part of the rotor of the IPM motor.

本実施形態におけるIPMモータのロータの素材とする電磁鋼板は、例えば、質量%で、C:0.06%以下、Si:0.2〜4.0%、Mn:0.05〜2.0%、Al:2.50%以下、Cu:0.5〜8.0%を含有し、残部Feおよび不可避的不純物からなる。   The magnetic steel sheet used as the material of the rotor of the IPM motor in the present embodiment is, for example, mass%, C: 0.06% or less, Si: 0.2 to 4.0%, Mn: 0.05 to 2.0. %, Al: 2.50% or less, Cu: 0.5 to 8.0%, and the balance is Fe and inevitable impurities.

Cは磁気特性を劣化させるばかりでなく、熱処理においてマルテンサイト変態を誘起し磁気特性を劣化させる場合があるので0.06%以下とする。製造コストの観点からは溶鋼段階で脱ガス設備によりC量を低減しておくことが有利で、0.003%以下とすれば磁気時効抑制の効果およびマルテンサイト変態回避の効果が著しく、高強度化の主たる手段として炭化物等の非金属析出物を用いない本発明においては0.002%以下とすることがさらに好ましく、0.0015%以下がさらに好ましい。0%であっても構わない。   C not only deteriorates the magnetic properties, but also induces martensitic transformation in the heat treatment to deteriorate the magnetic properties, so 0.06% or less. From the viewpoint of production cost, it is advantageous to reduce the amount of C by degassing equipment at the molten steel stage, and if it is 0.003% or less, the effect of suppressing magnetic aging and the effect of avoiding martensitic transformation are remarkable, and high strength In the present invention in which non-metal precipitates such as carbides are not used as the main means of conversion, the content is more preferably 0.002% or less, and further preferably 0.0015% or less. It may be 0%.

Siは鋼の固有抵抗を高めて渦電流を減らし、鉄損を低減せしめるとともに、抗張力を高めるが、添加量が0.2%未満ではその効果が小さい。Si含有量を増大させれば、鉄損を低減しつつ強度を高めることが可能であるため、好ましくは1.0%以上、さらに好ましくは2.0%以上とする。また、4.0%を超えると鋼を脆化させ、さらに製品の磁束密度を劣化させるため、4.0%以下、好ましくは3.5%以下とする。脆化の懸念をさらに小さくするには3.2%以下が好ましく、2.8%以下であれば、他の元素量との兼ね合いもあるが、脆化に関してはほとんど考慮する必要がなくなる。   Si increases the specific resistance of steel to reduce eddy current and iron loss, and increases the tensile strength. However, the effect is small when the addition amount is less than 0.2%. If the Si content is increased, it is possible to increase the strength while reducing the iron loss. Therefore, the Si content is preferably 1.0% or more, and more preferably 2.0% or more. Further, if it exceeds 4.0%, the steel is embrittled and further the magnetic flux density of the product is deteriorated, so 4.0% or less, preferably 3.5% or less. In order to further reduce the fear of embrittlement, it is preferably 3.2% or less, and if it is 2.8% or less, there is a balance with the amount of other elements, but there is almost no need to consider the embrittlement.

Mnは鋼の強度を高めるため積極的に添加してもよいが、高強度化の主たる手段としてCu粒子を活用する本発明では、この目的のためには特に必要としない。固有抵抗を高めまたは硫化物を粗大化させ結晶粒成長を促進することで鉄損を低減させる目的で添加するが、過剰な添加は磁束密度を劣化させるので、0.05〜2.0%とする。好ましくは0.5%〜1.2%である。   Mn may be positively added to increase the strength of the steel, but is not particularly required for this purpose in the present invention in which Cu particles are utilized as the main means for increasing the strength. It is added for the purpose of reducing iron loss by increasing the specific resistance or coarsening the sulfide to promote crystal grain growth. However, excessive addition deteriorates the magnetic flux density, so 0.05 to 2.0%. To do. Preferably, it is 0.5% to 1.2%.

Alは通常、脱酸剤として添加されるが、Alの添加を抑えSiにより脱酸を図ることも可能である。特に無方向性電磁鋼板の場合、Al量が0.005%程度以下のSi脱酸鋼ではAlNが生成しないため鉄損を低減する効果もある。逆に積極的に添加しAlNの粗大化を促進するとともに固有抵抗増加により鉄損を低減させることもできるが、2.50%を超えると脆化が問題になるため、2.50%以下とする。   Al is usually added as a deoxidizing agent, but it is also possible to suppress the addition of Al and deoxidize with Si. In particular, in the case of non-oriented electrical steel sheets, Si deoxidized steel having an Al content of about 0.005% or less has an effect of reducing iron loss because AlN is not generated. On the contrary, it can be actively added to promote the coarsening of AlN and the iron loss can be reduced by increasing the specific resistance. However, if it exceeds 2.50%, embrittlement becomes a problem. To do.

Cuは、鋼板中の所望する箇所にCuを主体とする金属相を形成させ磁気特性に悪影響を及ぼさない範囲で高強度化を図るための範囲として、0.5〜8.0%に限定する。Cuの含有量が低いと、高強度化効果が小さくなるとともに高強度化効果を得るための熱処理条件が狭い範囲に限定され、製造条件の管理、生産調整の自由度が小さくなる。また、Cuの含有量が高いと磁気特性への影響が大きくなり、特に磁束密度の低下が著しくなるばかりでなく、熱延時の鋼板の割れ、疵がひどくなる懸念もある。特に、鋼への固溶限を超えた分のCuは析出Cuとして高強度化に寄与するものの、本発明での主目的であるCu相に比較して効率が悪くなる。また、過剰なCuは熱履歴によっては望まない工程において鋼中に金属相を形成し、例えば、熱延中などに高温で比較的粗大なCu金属相を形成するため、その後の微細な金属相の形成に好ましくない働きをしたり、磁気特性に悪影響を及ぼす場合もある。好ましくは0.7〜4.0%、さらに好ましくは0.8〜3.5%である。   Cu is limited to 0.5 to 8.0% as a range for forming a metal phase mainly composed of Cu at a desired location in the steel plate and increasing the strength within a range that does not adversely affect the magnetic properties. . When the Cu content is low, the effect of increasing the strength is reduced, and the heat treatment conditions for obtaining the effect of increasing the strength are limited to a narrow range, and the degree of freedom in management of production conditions and production adjustment is reduced. Further, when the Cu content is high, the influence on the magnetic properties is increased, and not only the magnetic flux density is particularly lowered, but there is a concern that cracking and wrinkling of the steel sheet during hot rolling become severe. In particular, Cu exceeding the solid solubility limit in steel contributes to high strength as precipitated Cu, but the efficiency becomes lower than that of the Cu phase, which is the main purpose of the present invention. Further, excessive Cu forms a metal phase in the steel in an undesired process depending on the heat history, for example, a relatively coarse Cu metal phase at a high temperature during hot rolling, and the subsequent fine metal phase. It may act unfavorably in the formation of, and may adversely affect the magnetic properties. Preferably it is 0.7 to 4.0%, more preferably 0.8 to 3.5%.

本実施形態のモータ用高強度部材の製造に使用する電磁鋼板(素材)は、以上の成分組成を基本とし、残部Feおよび不可避的不純物からなる。なお、上記の成分組成は、本発明が適用される一実施形態であり、本発明の適用は、この成分組成の電磁鋼板を素材とするロータに限定されない。   The electrical steel sheet (material) used for manufacturing the high-strength member for a motor according to this embodiment is based on the above component composition, and consists of the remaining Fe and unavoidable impurities. In addition, said component composition is one Embodiment with which this invention is applied, Application of this invention is not limited to the rotor which uses the electromagnetic steel plate of this component composition as a raw material.

IPMモータのロータの製造に使用する無方向性電磁鋼板(素材)は、前記成分を含む鋼を溶製し、連続鋳造で鋼スラブとし、ついで熱間圧延、冷間圧延および焼鈍をすることによって得られる。また、これらの工程に加え絶縁皮膜の形成や脱炭工程などを行っても良い。   The non-oriented electrical steel sheet (material) used for the manufacture of the rotor of the IPM motor is made by melting the steel containing the above-mentioned components into a steel slab by continuous casting, followed by hot rolling, cold rolling and annealing. can get. Further, in addition to these steps, an insulating film formation or a decarburization step may be performed.

こうして得られたCuを含有する無方向性電磁鋼板を、例えば打ち抜き加工等の方法によって、IPMモータのロータとして必要な所定の形状にする。この場合、まだ素材の段階では、電磁鋼板は軟質であり、容易にロータの形状に加工することができる。   The non-oriented electrical steel sheet containing Cu thus obtained is formed into a predetermined shape necessary as a rotor of an IPM motor by a method such as punching. In this case, the electromagnetic steel sheet is still soft at the material stage, and can be easily processed into the shape of the rotor.

次に、高強度が必要な局部、例えばブリッジ部21の周囲に、図4、図5に示すように、誘導加熱装置30を設ける。誘導加熱装置30は、単相交流電源31に接続されたコイル32を有している。コイル32は、ロータ11の外周側に近接して、ロータ11の側面から見てブリッジ部21を囲む形状に設けられ、コイル32の内部には、磁束強化用コア33が備えられる。コイル32は、銅線または水冷胴パイプをスパイラル状に巻いた巻線コイルが用いられる。磁束強化用コア33は、例えば積層した電磁鋼板で構成され、ロータ11の周方向の幅寸法Wcは、ブリッジ部の幅寸法Wbに対して小さすぎると必要な範囲での加熱処理効果が得られず、大き過ぎると必要な範囲外を加熱してしまうため、Wbの0.5〜1.5倍、好ましくは0.8〜1.0倍とする。なお、ブリッジ部の幅とは、図5に示すように、隣り合う開口部20間のブリッジ部21とブリッジ部21との間の距離を指す。このコイル32に、交流電源31により交流磁場を発生させ、交流磁場によりロータ11内に渦電流を発生させて、ブリッジ部21に、例えば400℃〜700℃、1秒以上10分以下の熱処理効果を与える。励磁周波数は、電磁鋼板の材質や局部の寸法等に応じて適正に設定される。これは、周波数が低すぎると加熱効率が低下して所定の時間内に昇温させることが困難になり、周波数が高すぎると加熱が局所に限定され過ぎて、電磁鋼板内の熱伝導による昇温効果を含めても必要な範囲の熱処理効果が得られないためである。例えば、鋼種50H470の電気抵抗率39×10-8[Ω・m]および磁束密度1.8T程度における比透磁率160から表皮深さを求めると、20Hzで約5.5mm、100Hzで約2.5mm、1kHzで約0.8mm、3kHzで約0.45mm、20kHzで約0.25mmである。この鋼種を用いたロータ11のブリッジ部の厚みが1〜5mm程度の場合、表皮深さと同等の励磁周波数とするためには20〜1kHz程度であるが、加熱効率を高めるためには高周波数条件の方が好ましいことから、周波数規定は100〜20kHzとする。さらに好ましくは、表皮深さをブリッジ部の最小厚みと同等以下とするために、1〜3kHzとする。 Next, as shown in FIGS. 4 and 5, an induction heating device 30 is provided around a local area where high strength is required, for example, the bridge portion 21. The induction heating device 30 has a coil 32 connected to a single-phase AC power supply 31. The coil 32 is provided in a shape that surrounds the bridge portion 21 when viewed from the side of the rotor 11 in the vicinity of the outer peripheral side of the rotor 11, and a magnetic flux reinforcing core 33 is provided inside the coil 32. As the coil 32, a winding coil obtained by spirally winding a copper wire or a water-cooled drum pipe is used. The magnetic flux strengthening core 33 is made of, for example, laminated electromagnetic steel sheets. If the width dimension Wc in the circumferential direction of the rotor 11 is too small with respect to the width dimension Wb of the bridge portion, a heat treatment effect within a necessary range is obtained. However, if it is too large, it will heat outside the necessary range, so it is 0.5 to 1.5 times, preferably 0.8 to 1.0 times Wb. In addition, the width | variety of a bridge | bridging part refers to the distance between the bridge | bridging part 21 between the adjacent opening parts 20, and the bridge | bridging part 21, as shown in FIG. An alternating magnetic field is generated in the coil 32 by the alternating current power source 31 and an eddy current is generated in the rotor 11 by the alternating magnetic field, so that the bridge portion 21 has a heat treatment effect of, for example, 400 ° C. to 700 ° C. for 1 second to 10 minutes. give. The excitation frequency is appropriately set according to the material of the magnetic steel sheet, the local size, and the like. This is because if the frequency is too low, it becomes difficult to raise the temperature within a predetermined time by heating efficiency, and if the frequency is too high, the heating is limited to a local area and the temperature rises due to heat conduction in the electrical steel sheet. This is because even if the temperature effect is included, a heat treatment effect in a necessary range cannot be obtained. For example, when the skin depth is determined from the relative magnetic permeability 160 of steel type 50H470 at an electrical resistivity of 39 × 10 −8 [Ω · m] and a magnetic flux density of about 1.8 T, it is about 5.5 mm at 20 Hz and about 2. at 100 Hz. It is about 0.8 mm at 5 mm and 1 kHz, about 0.45 mm at 3 kHz, and about 0.25 mm at 20 kHz. When the thickness of the bridge portion of the rotor 11 using this steel type is about 1 to 5 mm, it is about 20 to 1 kHz in order to obtain an excitation frequency equivalent to the skin depth. Therefore, the frequency regulation is set to 100 to 20 kHz. More preferably, in order to make the skin depth equal to or less than the minimum thickness of the bridge portion, the depth is set to 1 to 3 kHz.

これにより、加熱部と非加熱部との材質を、ロータ11内のそれぞれの部位にとって最適な異なる材質とする。例えば本実施形態においては、Cuを含有する電磁鋼板で作成されたロータ11のブリッジ部21のみを誘導加熱で局所的に加熱し、ブリッジ部21のみに数nmサイズ(円相当径が10nm以下)の微細Cu粒子を析出させて高強度化する。ブリッジ部21以外のロータ11には熱処理効果を与えないのでCu粒子の析出がなく、良好な鉄損特性を維持することができる。すなわち、磁気特性を劣化させることなくロータ11の強度を向上させ、IPMモータ1の高効率化を図り、電気駆動自動車等の主機モータの小型化を狙った高速回転化に耐えるロータ11として用いることができる。   Thereby, the material of a heating part and a non-heating part is made into a different material optimal for each site | part in the rotor 11. FIG. For example, in the present embodiment, only the bridge portion 21 of the rotor 11 made of an electromagnetic steel sheet containing Cu is locally heated by induction heating, and the bridge portion 21 alone is several nm in size (equivalent circle diameter is 10 nm or less). The fine Cu particles are deposited to increase the strength. Since the rotor 11 other than the bridge portion 21 does not have a heat treatment effect, there is no precipitation of Cu particles, and good iron loss characteristics can be maintained. That is, the strength of the rotor 11 is improved without deteriorating the magnetic characteristics, the efficiency of the IPM motor 1 is improved, and the rotor 11 is used as a rotor 11 that can withstand high-speed rotation aimed at downsizing a main motor such as an electric drive vehicle. Can do.

上記実施形態では、微細Cu粒子を部分析出させて高強度化する例を記載したが、例えばAl、Ni等の金属間化合物形成元素を含有する電磁鋼板で作成されたロータ11のブリッジ部21を誘導加熱で局部的に加熱し、ブリッジ部21のみに数nmサイズのAl、Ni等からなる微細な金属間化合物粒子を析出させてもよい。   In the said embodiment, although the example which partially precipitates fine Cu particle | grains and heightened was described, the bridge | bridging part 21 of the rotor 11 produced with the electromagnetic steel plate containing intermetallic compound formation elements, such as Al and Ni, for example was described. May be locally heated by induction heating, and fine intermetallic compound particles made of Al, Ni or the like having a size of several nm may be deposited only on the bridge portion 21.

この場合、IPMモータのロータの素材とする電磁鋼板は、例えば、質量%で、Si:2.0〜4.0%、Al:1.0〜3.0%、Ni:1.5〜4.0%を含有し、残部Feおよび不可避的不純物からなる。Si量はマルテンサイト変態を回避するためには高い方が都合が良く、2.0〜4.0%とする。Alは、金属間化合物の析出強化の効果を得るために少なくとも1.0%は含有するものとする。NiはAlとの金属間化合物を形成し、Al−Niの金属間化合物による析出強化を発現させるために含有させられる。Al−Niの金属間化合物による析出強化を発現させるためには、1.5%以上のNiが必要である。一方、過剰な添加は鋼板の延性を劣化させ通板性が低下する他、磁束密度を低下させるとともに製造工程での金属間化合物の好ましい形成抑制が困難となる場合がある。特にNiはオーステナイト安定化元素であり本実施例で避けるべきマルテンサイト変態を起きやすくするため、添加コストも考え上限を4.0%とする。   In this case, the electrical steel sheet used as the material of the rotor of the IPM motor is, for example, mass%, Si: 2.0 to 4.0%, Al: 1.0 to 3.0%, Ni: 1.5 to 4 0.0%, and the balance is Fe and inevitable impurities. In order to avoid martensitic transformation, a higher Si content is convenient, and the Si content is set to 2.0 to 4.0%. Al contains at least 1.0% in order to obtain the effect of precipitation strengthening of the intermetallic compound. Ni is contained in order to form an intermetallic compound with Al and develop precipitation strengthening by the intermetallic compound of Al-Ni. In order to develop precipitation strengthening by the intermetallic compound of Al—Ni, 1.5% or more of Ni is necessary. On the other hand, excessive addition deteriorates the ductility of the steel sheet and lowers the sheet-passability. In addition, the magnetic flux density is lowered and it is sometimes difficult to suppress preferable formation of intermetallic compounds in the production process. In particular, Ni is an austenite stabilizing element, and in order to easily cause martensitic transformation to be avoided in this embodiment, the upper limit is set to 4.0% considering the addition cost.

さらに、前記ブリッジ部に転位密度を1014/m以上とする塑性変形を加えた後、400℃〜600℃で時効処理を行い、円相当径の平均値が1〜10nmであるAl−Niの金属間化合物を、30000個/μm以上析出させる。鋼板の転位密度を1014/m以上とするのは、焼鈍後において塑性加工によって鋼板中に転位を十分に生じさせ、その転位を析出サイトとして、鋼板中に大きさがなるべく均一なAl−Niの金属間化合物を分散させて析出させるためである。転位密度が1014/m未満では、金属間化合物の析出サイトが不十分であり、時効後において個数密度が30000個/μm以上のAl−Niの金属間化合物が得られなくなってしまう。また、Al−Niの金属間化合物の個数密度が少ないと、金属間化合物の円相当径の平均値が10nmよりも大きくなり、さらに個々の金属間化合物の大きさのばらつきも大きくなる。時効処理を400〜600℃で行うのは、400℃未満では、十分な金属間化合物が得られず、一方、600℃を超えると形成される金属間化合物が粗大となってしまうためである。 Furthermore, after applying plastic deformation with a dislocation density of 10 14 / m 2 or more to the bridge portion, an aging treatment is performed at 400 ° C. to 600 ° C., and the average value of the equivalent circle diameter is 1 to 10 nm. 30000 / μm 3 or more of the intermetallic compound is deposited. The dislocation density of the steel sheet is 10 14 / m 2 or more because the dislocation is sufficiently generated in the steel sheet by plastic working after annealing, and the dislocation is used as a precipitation site to make the size of the steel sheet as uniform as possible. This is because the Ni intermetallic compound is dispersed and precipitated. If the dislocation density is less than 10 14 / m 2 , the intermetallic compound precipitation sites are insufficient, and an Al—Ni intermetallic compound having a number density of 30000 / μm 3 or more cannot be obtained after aging. Further, when the number density of the Al—Ni intermetallic compound is small, the average value of the equivalent circle diameter of the intermetallic compound is larger than 10 nm, and the variation in the size of each intermetallic compound is also increased. The reason why the aging treatment is performed at 400 to 600 ° C. is that when the temperature is lower than 400 ° C., a sufficient intermetallic compound cannot be obtained, and when the temperature exceeds 600 ° C., the formed intermetallic compound becomes coarse.

例えば図4に示すように1つのコイル32を設けて熱処理を行う場合、コイル32の位置が複数箇所のブリッジ部21をそれぞれ囲む位置になるように順次移動させて、各ブリッジ部21を熱処理してもよいし、ロータ11を回転または移動させて、コイル32の位置が複数のブリッジ部21をそれぞれ順次囲む位置になるようになるようにして、各ブリッジ部21を熱処理してもよい。   For example, as shown in FIG. 4, when one coil 32 is provided and heat treatment is performed, the position of the coil 32 is sequentially moved so as to surround the bridge portions 21 at a plurality of locations, and each bridge portion 21 is heat treated. Alternatively, each bridge portion 21 may be heat-treated by rotating or moving the rotor 11 so that the position of the coil 32 becomes a position that sequentially surrounds the plurality of bridge portions 21.

また、図6および図7は、本発明の実施形態にかかる誘導加熱装置40の異なる例であり、図6は斜視図、図7は平面図である。この誘導加熱装置40は、内部に磁束強化用コア33が備えられたコイル32を、ロータ11の外周側に近接して、ロータ11の複数のブリッジ部21をそれぞれ囲むように配置し、さらに、各磁束強化用コア33が、コイル32の外周側で連結されている。この場合、図8に示すように、隣り合うコイル32の位相を反転させることにより、さらに効率的に加熱することができる。   6 and 7 are different examples of the induction heating device 40 according to the embodiment of the present invention, FIG. 6 is a perspective view, and FIG. 7 is a plan view. In this induction heating device 40, the coil 32 provided with the magnetic flux reinforcing core 33 is disposed so as to be close to the outer peripheral side of the rotor 11 so as to surround each of the plurality of bridge portions 21 of the rotor 11, Each magnetic flux reinforcing core 33 is connected on the outer peripheral side of the coil 32. In this case, as shown in FIG. 8, heating can be performed more efficiently by inverting the phase of the adjacent coils 32.

なお、一例として、熱処理を要する局部がIPMモータ1のロータ11のブリッジ部21である場合について本発明を適用した形態を説明したが、本発明の適用は、かかる形態に限定されない。例えば、冷延ままの電磁鋼板から作製されたIPMロータの磁石部のみを誘導加熱装置で局所的に加熱することにより、磁石部を高透磁率化するとともにブリッジ部21の高強度および低透磁率を維持することができる。この場合、磁石部に700℃以上で1秒以上の熱処理効果を与えることで、磁石部を部分再結晶させることができる。   In addition, as an example, although the form which applied this invention was demonstrated about the case where the local part which requires heat processing is the bridge part 21 of the rotor 11 of the IPM motor 1, application of this invention is not limited to this form. For example, only the magnet part of an IPM rotor made of an electromagnetic steel sheet as cold-rolled is locally heated by an induction heating device, so that the magnet part has high magnetic permeability and the bridge part 21 has high strength and low magnetic permeability. Can be maintained. In this case, the magnet part can be partially recrystallized by giving the magnet part a heat treatment effect at 700 ° C. or higher for 1 second or longer.

さらに、IPMモータ1のロータ11の作製時に加工歪が生じたせん断加工部や、溶接歪が生じた溶接部を、上記の誘導加熱装置で局部的に加熱し、歪を除去し高透磁率化する場合にも本発明を適用できる。この場合、せん断加工部や溶接部からなる局部を400℃以上で1秒以上の熱処理効果を与えるとよい。せん断加工部の熱処理は、せん断加工部の一部でもよい。   Furthermore, the sheared portion where the processing strain has occurred during the production of the rotor 11 of the IPM motor 1 and the welded portion where the welding strain has occurred are locally heated by the induction heating device to remove the strain and increase the magnetic permeability. In this case, the present invention can be applied. In this case, it is preferable to give a heat treatment effect at 400 ° C. or higher for 1 second or longer at a local portion formed of a sheared portion or a welded portion. The heat treatment of the shearing portion may be part of the shearing portion.

本発明のように部分的な高強度化を実現できる部分加熱方法は、高強度化だけでなく、ロータの部分的な加熱により、例えばロータを部分的に軟化させる、さらには熱により変化することが知られている材質を部分的に制御する目的にも広く適用できる。   The partial heating method that can realize partial strength enhancement as in the present invention is not only high strength, but also partial heating of the rotor, for example, partially softening the rotor, and further changing by heat. It can also be widely applied to the purpose of partially controlling a known material.

質量%で、C:0.004%、Si:2.8%、Mn:0.3%、Al:0.65%、Cu:1.6%、残部Feおよび不可避的不純物からなる0.35mm厚の電磁鋼板を素材として、IPMモータのロータの形状に打ち抜き、積層して作製したロータを2個作成した。このロータのうち1個のロータブリッジ部に熱処理を施した。具体的には、ブリッジ部の幅Wbは3.0mmであったので、磁束強化用コア33の周方向の幅寸法Wcは2.5mmとして、コイル32は銅線を40ターン巻いて作成した。そして、コイルに周波数3kHzの単相交流電源を接続し、出力2kWで加熱した。その結果、加熱開始から約5分でブリッジ部は約650℃に昇温し、その状態を10秒保持した後に冷却した。このロータコアを組み込んだIPMモータのモータ効率とロータの破壊回転数を表1に示す。   In mass%, C: 0.004%, Si: 2.8%, Mn: 0.3%, Al: 0.65%, Cu: 1.6%, balance Fe and 0.35mm consisting of inevitable impurities Using a thick electromagnetic steel sheet as a material, two rotors were produced by punching into the shape of a rotor of an IPM motor and stacking them. Heat treatment was applied to one rotor bridge portion of the rotor. Specifically, since the width Wb of the bridge portion is 3.0 mm, the width dimension Wc in the circumferential direction of the magnetic flux reinforcing core 33 is 2.5 mm, and the coil 32 is formed by winding 40 turns of a copper wire. Then, a single-phase AC power source with a frequency of 3 kHz was connected to the coil and heated at an output of 2 kW. As a result, the bridge portion was heated to about 650 ° C. in about 5 minutes from the start of heating, and was cooled after maintaining this state for 10 seconds. Table 1 shows the motor efficiency of the IPM motor incorporating this rotor core and the rotor revolution speed.

表1に示すように、誘導加熱で熱処理効果を与えることにより、ロータの破壊強度が向上し、同時にモータ効率が向上することがわかった。   As shown in Table 1, it was found that by giving a heat treatment effect by induction heating, the fracture strength of the rotor is improved and at the same time the motor efficiency is improved.

また、単相交流電源の周波数を変化させた場合の、650℃までの昇温に必要な時間を表2に示す。周波数が低い50Hzでは650℃まで昇温できなかった。また、周波数が高い20kHzでは約1分で650℃に到達した。   Table 2 shows the time required to raise the temperature to 650 ° C. when the frequency of the single-phase AC power supply is changed. At a frequency of 50 Hz, the temperature could not be increased to 650 ° C. Further, at a high frequency of 20 kHz, the temperature reached 650 ° C. in about 1 minute.

本発明は、IPMモータのロータの局部加熱に加えて、金属間化合物型高強度鋼や、フルハード型高強度鋼の局部加熱による局部軟化、さらには熱により変化することが知られている材質を部分的に制御する目的においても、同様に適用可能である。   In addition to the local heating of the rotor of the IPM motor, the present invention is a material that is locally softened by local heating of intermetallic compound type high-strength steel or full-hard type high-strength steel, and is further known to change due to heat. The same can be applied to the purpose of partially controlling.

1 IPMモータ
10 固定子
11 ロータ
15 ティース
16 巻線
20 開口部
21 ブリッジ部
30、40 誘導加熱装置
31 交流電源
32 コイル
33 磁束強化用コア
DESCRIPTION OF SYMBOLS 1 IPM motor 10 Stator 11 Rotor 15 Teeth 16 Winding 20 Opening part 21 Bridge part 30, 40 Induction heating apparatus 31 AC power supply 32 Coil 33 Core for magnetic flux reinforcement

Claims (21)

IPMモータのロータの、熱処理を要する局部を加熱する誘導加熱方法であって、
前記ロータに近接して前記局部を囲む形状にコイルを設け、前記コイルに単相交流電源を接続して交流磁場を発生させ、前記交流磁場により前記ロータ内に渦電流を発生させて、前記局部に熱処理効果を与えることを特徴とする、IPMモータのロータの誘導加熱方法。
An induction heating method for heating a portion of an IPM motor rotor that requires heat treatment,
A coil is provided in a shape surrounding the local portion in the vicinity of the rotor, a single-phase alternating current power source is connected to the coil to generate an alternating magnetic field, an eddy current is generated in the rotor by the alternating magnetic field, and the local portion A method for induction heating of a rotor of an IPM motor, wherein a heat treatment effect is imparted to the rotor.
前記ロータに、前記熱処理を要する局部が複数箇所あり、前記コイルが複数の前記局部をそれぞれ囲むように、前記コイルを順次移動させて、それぞれの前記局部に熱処理効果を与えることを特徴とする、請求項1に記載のIPMモータのロータの誘導加熱方法。   The rotor has a plurality of local portions that require the heat treatment, and the coils are sequentially moved so that the coils surround the local portions, respectively, and a heat treatment effect is imparted to each of the local portions, The induction heating method of the rotor of the IPM motor according to claim 1. 前記ロータに、前記熱処理を要する局部が複数箇所あり、前記コイルが複数の前記局部をそれぞれ囲むように、前記ロータを回転または移動させて、それぞれの前記局部に熱処理効果を与えることを特徴とする、請求項1に記載のIPMモータのロータの誘導加熱方法。   The rotor has a plurality of local portions that require the heat treatment, and the rotor is rotated or moved so as to surround the plurality of local portions, respectively, and a heat treatment effect is given to each of the local portions. The induction heating method of the rotor of the IPM motor according to claim 1. 前記コイルの内部に磁束強化用コアを備えることを特徴とする、請求項1〜3のいずれか一項に記載のIPMモータのロータの誘導加熱方法。   The induction heating method for a rotor of an IPM motor according to any one of claims 1 to 3, wherein a core for magnetic flux enhancement is provided inside the coil. 前記磁束強化用コアの幅寸法が、前記局部の0.5〜1.5倍であることを特徴とする、請求項4に記載のIPMモータのロータの誘導加熱方法。   5. The method of induction heating a rotor of an IPM motor according to claim 4, wherein a width dimension of the magnetic flux enhancing core is 0.5 to 1.5 times the local part. 前記磁束強化用コアの幅寸法が、前記局部の幅の0.8〜1.0倍であることを特徴とする、請求項4に記載のIPMモータのロータの誘導加熱方法。   5. The induction heating method for a rotor of an IPM motor according to claim 4, wherein a width dimension of the magnetic flux enhancing core is 0.8 to 1.0 times a width of the local portion. 前記ロータに、前記熱処理を要する局部が複数箇所あり、前記磁束強化用コアを備えたコイルを、複数箇所の前記局部全てをそれぞれ囲むように前記ロータの外周側に配置し、かつ、前記各コイルの磁束強化用コアを、前記コイルの外周側で連結することを特徴とする、請求項4〜6のいずれか一項に記載のIPMモータのロータの誘導加熱方法。   The rotor has a plurality of local portions that require the heat treatment, and a coil including the magnetic flux strengthening core is disposed on the outer peripheral side of the rotor so as to surround all of the local portions at a plurality of locations, and the coils The method for induction heating of a rotor of an IPM motor according to any one of claims 4 to 6, wherein the magnetic flux reinforcing cores are connected on the outer peripheral side of the coil. 隣り合うコイルの位相を反転させることを特徴とする、請求項7に記載のIPMモータのロータの誘導加熱方法。   The induction heating method for a rotor of an IPM motor according to claim 7, wherein the phases of adjacent coils are reversed. 励磁する周波数を、100〜20kHzとすることを特徴とする、請求項1〜8のいずれか一項に記載のIPMモータのロータの誘導加熱方法。   The induction heating method for a rotor of an IPM motor according to any one of claims 1 to 8, wherein the excitation frequency is 100 to 20 kHz. 前記局部に熱処理効果を与えて前記局部を部分析出強化することを特徴とする、請求項1〜9のいずれか一項に記載のIPMモータのロータの誘導加熱方法。   The induction heating method for a rotor of an IPM motor according to any one of claims 1 to 9, wherein the local part is subjected to a heat treatment effect to strengthen the local precipitation partly. 前記局部は、質量%で、C:0.06%以下、Si:0.2〜4.0%、Mn:0.05〜2.0%、Al:2.50%以下、Cu:0.5〜8.0%、残部Feおよび不可避的不純物からなる電磁鋼板を素材として作製されたロータのブリッジ部であり、前記ブリッジ部に、400℃〜700℃で1秒以上10分以下の熱処理効果を与え、前記ブリッジ部に円相当径が10nm以下の微細Cu粒子を析出させることを特徴とする、請求項10に記載のIPMモータのロータの誘導加熱方法。   The local parts are in mass%, C: 0.06% or less, Si: 0.2-4.0%, Mn: 0.05-2.0%, Al: 2.50% or less, Cu: 0.00. It is a bridge portion of a rotor made of a magnetic steel plate made of 5 to 8.0%, the remainder Fe and inevitable impurities, and the bridge portion has a heat treatment effect at 400 ° C. to 700 ° C. for 1 second to 10 minutes. 11. The induction heating method for a rotor of an IPM motor according to claim 10, wherein fine Cu particles having an equivalent circle diameter of 10 nm or less are deposited on the bridge portion. 前記局部は、質量%で、Si:2.0〜4.0%、Al:1.0〜3.0%、Ni:1.5〜4.0%を含有し、残部Feおよび不可避的不純物からなる電磁鋼板を素材として作成されたロータのブリッジ部であり、前記ブリッジ部に400℃〜600℃で時効処理を行い、円相当径の平均値が1〜10nmであるAl−Niの金属間化合物を30000個/μm以上析出させることを特徴とする、請求項10に記載のIPMモータのロータの誘導加熱方法。 The local part contains, by mass%, Si: 2.0 to 4.0%, Al: 1.0 to 3.0%, Ni: 1.5 to 4.0%, and the balance Fe and inevitable impurities A bridge portion of a rotor made of an electromagnetic steel plate made of a material, and the bridge portion is subjected to an aging treatment at 400 ° C. to 600 ° C., and an average circle equivalent diameter is between 1 and 10 nm. The method for induction heating of a rotor of an IPM motor according to claim 10, wherein 30000 compounds / μm 3 or more are deposited. 前記局部は、冷延ままの電磁鋼板から作製されたIPMモータのロータの磁石部であり、前記磁石部に700℃以上で1秒以上の熱処理効果を与え、前記磁石部を部分再結晶させることを特徴とする、請求項1〜9のいずれか一項に記載のIPMモータのロータの誘導加熱方法。   The local part is a magnet part of a rotor of an IPM motor manufactured from an electromagnetic steel sheet as cold-rolled, and the magnet part is subjected to a heat treatment effect at 700 ° C. or more for 1 second or more to partially recrystallize the magnet part. The method for induction heating of a rotor of an IPM motor according to any one of claims 1 to 9, wherein: 前記局部は、冷延ままの電磁鋼板から作製されたIPMモータのロータのせん断加工部または溶接部であり、前記せん断加工部または溶接部に400℃以上で1秒以上の熱処理効果を与え、前記せん断加工部または溶接部の歪を除去することを特徴とする、請求項1〜9のいずれか一項に記載のIPMモータのロータの誘導加熱方法。   The local part is a sheared part or welded part of a rotor of an IPM motor made from an electromagnetic steel sheet as cold-rolled, and gives a heat treatment effect at 400 ° C. or higher for 1 second or longer to the sheared part or welded part, The induction heating method for a rotor of an IPM motor according to any one of claims 1 to 9, wherein distortion of the sheared portion or the welded portion is removed. IPMモータのロータの、熱処理を要する局部を加熱する誘導加熱装置であって、
前記ロータに近接して前記局部を囲む形状に設けられるコイルと、前記コイルに接続され前記コイルに交流磁場を発生させる単相交流電源とを有し、前記交流磁場により前記ロータ内に渦電流を発生させて、前記局部に熱処理効果を与えることを特徴とする、IPMモータのロータの誘導加熱装置。
An induction heating device that heats a portion of an IPM motor rotor that requires heat treatment,
A coil provided in a shape surrounding the local portion in the vicinity of the rotor, and a single-phase AC power source connected to the coil and generating an AC magnetic field in the coil, and eddy current is generated in the rotor by the AC magnetic field. An induction heating device for a rotor of an IPM motor, characterized in that the heat treatment effect is generated on the local part.
前記コイルの内部に磁束強化用コアが備えられていることを特徴とする、請求項15に記載のIPMモータのロータの誘導加熱装置。   The induction heating apparatus for a rotor of an IPM motor according to claim 15, wherein a magnetic flux enhancing core is provided inside the coil. 前記磁束強化用コアの幅寸法が、前記局部の0.5〜1.5倍であることを特徴とする、請求項16に記載のIPMモータのロータの誘導加熱装置。   17. The induction heating apparatus for an IPM motor rotor according to claim 16, wherein a width dimension of the magnetic flux strengthening core is 0.5 to 1.5 times the local part. 前記磁束強化用コアの幅寸法が、前記局部の幅の0.8〜1.0倍であることを特徴とする、請求項16に記載のIPMモータのロータの誘導加熱装置。   17. The induction heating apparatus for a rotor of an IPM motor according to claim 16, wherein a width dimension of the magnetic flux strengthening core is 0.8 to 1.0 times a width of the local portion. 前記磁束強化用コアを備えたコイルが、複数箇所の前記局部全てをそれぞれ囲むように前記ロータの外周側に配置され、かつ、前記各コイルの磁束強化用コアが、前記コイルの外周側で連結されていることを特徴とする、請求項16〜18のいずれか一項に記載のIPMモータのロータの誘導加熱装置。   A coil provided with the magnetic flux reinforcing core is arranged on the outer peripheral side of the rotor so as to surround each of the local portions at a plurality of locations, and the magnetic flux reinforcing core of each coil is connected on the outer peripheral side of the coil The induction heating device for a rotor of an IPM motor according to any one of claims 16 to 18, wherein the induction heating device is a rotor. 隣り合うコイルの位相を反転させることを特徴とする、請求項19に記載のIPMモータのロータの誘導加熱装置。   20. The induction heating apparatus for a rotor of an IPM motor according to claim 19, wherein the phases of adjacent coils are reversed. 励磁する周波数が、100〜20kHzであることを特徴とする、請求項15〜20のいずれか一項に記載のIPMモータのロータの誘導加熱方法。   The induction heating method for a rotor of an IPM motor according to any one of claims 15 to 20, wherein the excitation frequency is 100 to 20 kHz.
JP2015075099A 2015-04-01 2015-04-01 Induction heating method and induction heating apparatus for rotor of IPM motor Active JP6497180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015075099A JP6497180B2 (en) 2015-04-01 2015-04-01 Induction heating method and induction heating apparatus for rotor of IPM motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015075099A JP6497180B2 (en) 2015-04-01 2015-04-01 Induction heating method and induction heating apparatus for rotor of IPM motor

Publications (2)

Publication Number Publication Date
JP2016194127A true JP2016194127A (en) 2016-11-17
JP6497180B2 JP6497180B2 (en) 2019-04-10

Family

ID=57322826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015075099A Active JP6497180B2 (en) 2015-04-01 2015-04-01 Induction heating method and induction heating apparatus for rotor of IPM motor

Country Status (1)

Country Link
JP (1) JP6497180B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017057456A (en) * 2015-09-16 2017-03-23 新日鐵住金株式会社 High strength member for motor using non-oriented electromagnetic steel sheet and manufacturing method therefor
JP2019071250A (en) * 2017-10-11 2019-05-09 トヨタ自動車株式会社 Rotor core heating device
JP2019094558A (en) * 2017-03-08 2019-06-20 日本製鉄株式会社 Annealing device of motor core and annealing method of motor core
CN111093299A (en) * 2018-10-23 2020-05-01 法雷奥电机设备公司 Inductor for heating active components of a rotating electrical machine
JP2020076144A (en) * 2018-11-09 2020-05-21 Jfeスチール株式会社 Motor core and method for manufacturing the same
WO2022030584A1 (en) 2020-08-07 2022-02-10 株式会社アイシン Manufacturing method of rotor for rotating electric machine, and manufacturing method of rotating electric machine
WO2022128162A1 (en) * 2020-12-20 2022-06-23 Robert Bosch Gmbh Annealing heat treatment for a blanked metal part or a lamination of blanked metal parts

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331784A (en) * 1995-03-24 1996-12-13 Hitachi Metals Ltd Permanent-magnet type rotary electric machine
JPH1118324A (en) * 1997-06-19 1999-01-22 Toyota Motor Corp Rotating machine and its manufacture
JP2004281737A (en) * 2003-03-17 2004-10-07 Hitachi Metals Ltd Manufacturing method of composite magnetic member and motor employing the member, composite magnetic member and motor employing the member
JP2008095133A (en) * 2006-10-06 2008-04-24 Shikoku Res Inst Inc Method for recovering strength in strength-deteriorated part and high-frequency induction heating apparatus used to method for recovering strength
JP2011214086A (en) * 2010-03-31 2011-10-27 Nisshin Steel Co Ltd Steel sheet for rotor iron core of ipm motor, method for producing the same and rotor iron core of imp motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331784A (en) * 1995-03-24 1996-12-13 Hitachi Metals Ltd Permanent-magnet type rotary electric machine
JPH1118324A (en) * 1997-06-19 1999-01-22 Toyota Motor Corp Rotating machine and its manufacture
JP2004281737A (en) * 2003-03-17 2004-10-07 Hitachi Metals Ltd Manufacturing method of composite magnetic member and motor employing the member, composite magnetic member and motor employing the member
JP2008095133A (en) * 2006-10-06 2008-04-24 Shikoku Res Inst Inc Method for recovering strength in strength-deteriorated part and high-frequency induction heating apparatus used to method for recovering strength
JP2011214086A (en) * 2010-03-31 2011-10-27 Nisshin Steel Co Ltd Steel sheet for rotor iron core of ipm motor, method for producing the same and rotor iron core of imp motor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017057456A (en) * 2015-09-16 2017-03-23 新日鐵住金株式会社 High strength member for motor using non-oriented electromagnetic steel sheet and manufacturing method therefor
JP2019094558A (en) * 2017-03-08 2019-06-20 日本製鉄株式会社 Annealing device of motor core and annealing method of motor core
JP2019071250A (en) * 2017-10-11 2019-05-09 トヨタ自動車株式会社 Rotor core heating device
CN111093299A (en) * 2018-10-23 2020-05-01 法雷奥电机设备公司 Inductor for heating active components of a rotating electrical machine
JP2020076144A (en) * 2018-11-09 2020-05-21 Jfeスチール株式会社 Motor core and method for manufacturing the same
JP7092095B2 (en) 2018-11-09 2022-06-28 Jfeスチール株式会社 Motor core and its manufacturing method
WO2022030584A1 (en) 2020-08-07 2022-02-10 株式会社アイシン Manufacturing method of rotor for rotating electric machine, and manufacturing method of rotating electric machine
WO2022128162A1 (en) * 2020-12-20 2022-06-23 Robert Bosch Gmbh Annealing heat treatment for a blanked metal part or a lamination of blanked metal parts

Also Published As

Publication number Publication date
JP6497180B2 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
JP6497180B2 (en) Induction heating method and induction heating apparatus for rotor of IPM motor
JP5228379B2 (en) Non-oriented electrical steel sheet with excellent strength and magnetic properties and manufacturing method thereof
JP5884153B2 (en) High strength electrical steel sheet and manufacturing method thereof
WO2012114383A1 (en) Non-oriented electromagnetic steel sheet and method for manufacturing same
JP5699601B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5028992B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5699642B2 (en) Motor core
JP5146169B2 (en) High strength non-oriented electrical steel sheet and manufacturing method thereof
JP2012217318A (en) Rotor for ipm motor and ipm motor using the same
JP6319574B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
JP2004300535A (en) High strength nonoriented silicon steel sheet having excellent magnetic property, and its production method
JP6852966B2 (en) High-strength members for motors using non-oriented electrical steel sheets and their manufacturing methods
CN112119173A (en) Motor with a stator having a stator core
JP6725209B2 (en) High strength member for motor and method of manufacturing high strength member for motor
JP4670230B2 (en) Non-oriented electrical steel sheet
JP5333415B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
JP4424075B2 (en) Non-oriented electrical steel sheet, non-oriented electrical steel sheet for aging heat treatment, and production method thereof
JP4929484B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5186781B2 (en) Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same
JP5648661B2 (en) Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same
JP2015002649A (en) Rotor for ipm motor, and imp motor employing the same
JP2012092446A (en) Steel sheet for rotor core of ipm motor excellent in magnetic property
JP4356580B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5825479B2 (en) Manufacturing method of high strength non-oriented electrical steel sheet
JP6852965B2 (en) Electrical steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190225

R151 Written notification of patent or utility model registration

Ref document number: 6497180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350