JP2008095133A - Method for recovering strength in strength-deteriorated part and high-frequency induction heating apparatus used to method for recovering strength - Google Patents

Method for recovering strength in strength-deteriorated part and high-frequency induction heating apparatus used to method for recovering strength Download PDF

Info

Publication number
JP2008095133A
JP2008095133A JP2006275719A JP2006275719A JP2008095133A JP 2008095133 A JP2008095133 A JP 2008095133A JP 2006275719 A JP2006275719 A JP 2006275719A JP 2006275719 A JP2006275719 A JP 2006275719A JP 2008095133 A JP2008095133 A JP 2008095133A
Authority
JP
Japan
Prior art keywords
strength
induction heating
heated
frequency induction
heating coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006275719A
Other languages
Japanese (ja)
Inventor
Norihide Matsumura
憲秀 松村
Hirotaka Yoshida
博隆 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Research Institute Inc
Shikoku Electric Power Co Inc
Dai Ichi High Frequency Co Ltd
Original Assignee
Shikoku Research Institute Inc
Shikoku Electric Power Co Inc
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Research Institute Inc, Shikoku Electric Power Co Inc, Dai Ichi High Frequency Co Ltd filed Critical Shikoku Research Institute Inc
Priority to JP2006275719A priority Critical patent/JP2008095133A/en
Publication of JP2008095133A publication Critical patent/JP2008095133A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method with which the strength in a strength-deteriorated part can be recovered at the actual spot, and to provide a high-frequency induction heating apparatus which can suitably be used when the strength in the strength-deteriorated part is recovered. <P>SOLUTION: In order to recover the strength in the strength-deteriorated part in a facility constituted by using a steel-made member, this strength-deteriorated part can be held to heat to the temperature of the A<SB>3</SB>transporting point or higher of this steel-made member. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、火力発電プラントや原子力発電プラント、化学プラント等に使用される鋼製部材の強度再生方法に関するものであり、特にクリープ損傷を受けて強度劣化した部分や溶接部等のようにクリープ強度が低い部分、脆化・疲労して強度が低下している部分、或いは強度が高い組織中に強度が低い組織が存在している部分等における強度を回復させる技術に関するものである。   The present invention relates to a strength recovery method for steel members used in thermal power plants, nuclear power plants, chemical plants, and the like, and in particular, creep strength such as a portion deteriorated in strength due to creep damage or a welded portion. The present invention relates to a technique for recovering the strength of a portion having a low strength, a portion in which strength is reduced due to embrittlement / fatigue, or a portion in which a structure having low strength exists in a structure having high strength.

火力発電プラントや原子力発電プラント、化学プラント等で使用される設備(例えば、ボイラやタービンなど)は、約400℃以上の高温で、しかも加圧された状態で長時間使用されることが多い。こうした設備のうち、特に、加熱された蒸気の入口や主蒸気の入口の管台などの鋼製部材は、高温・高圧下に曝されることが多い。こうした部材は、高温・高圧下に曝されることによって一定の温度で一定の荷重が加わった状態が継続すると、時間の経過とともに次第に材料の強度が低下し、最終的に破壊してしまう。こうした現象は「クリープ」と呼ばれており、クリープによる材料の材質劣化や内部構造変化は「クリープ損傷」と呼ばれている。また、上記鋼製部材は、高温・高圧下に曝されると、使用条件や材料の材質によっては、脆化や疲労によっても材料の強度が低下し、最終的に破壊してしまう。   Equipment used in thermal power plants, nuclear power plants, chemical plants, etc. (for example, boilers and turbines) is often used for a long time at a high temperature of about 400 ° C. or higher and in a pressurized state. Of these facilities, steel members such as heated steam inlets and main steam inlet nozzles are often exposed to high temperatures and high pressures. When such a member is exposed to a high temperature and a high pressure and continues to be subjected to a constant load at a constant temperature, the strength of the material gradually decreases with the passage of time, and eventually breaks down. Such a phenomenon is called “creep”, and material deterioration and internal structure change due to creep are called “creep damage”. Further, when the steel member is exposed to a high temperature and a high pressure, the strength of the material is lowered due to embrittlement or fatigue depending on the use conditions and the material of the material, and the steel member is eventually destroyed.

このようにクリープ損傷を受けたり、脆化や疲労によって亀裂等の欠陥が発生すると、現在では、亀裂が発生した部分をグラインダー等で除去して対処しているが、グラインダー等で除去すると鋼製部材の肉厚が薄くなるため、補修溶接するか、部材を取り替えなければならない。しかし補修溶接した場合には、溶接部、特に熱影響部の結晶粒が微細化して強度が低くなるため、高温・高圧下に曝されたときに亀裂が発生し易くなる。また、補修溶接に限らず、管台に配管を接合する場合や配管同士を接合する場合にも溶接法が採用されるが、溶接部、特に熱影響部の結晶粒が微細化するため、強度が低くなる。一方、結晶粒径が大きくなり過ぎると、残留オーステナイト領域が増加し、疲労限が低下することも知られている(非特許文献1参照)。   In this way, if a crack or other defect occurs due to creep damage or embrittlement or fatigue, the cracked part is now removed by a grinder, but if it is removed by a grinder, etc. Since the thickness of the member is reduced, it must be repair welded or replaced. However, when repair welding is performed, the crystal grains in the welded portion, particularly the heat-affected zone, become finer and the strength is lowered, so that cracks are likely to occur when exposed to high temperatures and high pressures. In addition, not only repair welding, but also when joining pipes to the nozzle or when joining pipes, the welding method is adopted. Becomes lower. On the other hand, it is also known that when the crystal grain size becomes too large, the retained austenite region increases and the fatigue limit decreases (see Non-Patent Document 1).

上記鋼製部材の組織に関しては、例えば、高中圧タービンケーシング材(Cr−Mo−V鋳鋼)を例にとると、クリープ強度が高いベイナイト組織のものが用いられる。ところがベイナイトのような強度の高い組織中に、強度の低い組織(例えば、フェライト組織)が一部混在しても強度が低くなる。   With regard to the structure of the steel member, for example, when a high / medium pressure turbine casing material (Cr-Mo-V cast steel) is taken as an example, a bainite structure having a high creep strength is used. However, even if a low strength structure (for example, a ferrite structure) is mixed in a high strength structure such as bainite, the strength is lowered.

このように強度の劣化は、使用によって劣化する場合、溶接によって劣化する場合、製造時や補修時に起因する組織的な要因等によって劣化する場合等、様々なケースで発生する。そこで上記設備の寿命を延ばすには、強度が劣化した部分(以下、「強度劣化部」と呼ぶことがある)の強度を回復させる必要がある。   As described above, the strength deterioration occurs in various cases, such as deterioration due to use, deterioration due to welding, deterioration due to organizational factors or the like due to manufacturing or repair. Therefore, in order to extend the life of the equipment, it is necessary to recover the strength of the portion where the strength has deteriorated (hereinafter, sometimes referred to as “strength deteriorated portion”).

こうした強度を回復させる技術として、特許文献1の技術が提案されている。この特許文献1には、クリープ劣化部を拘束した状態で、該クリープ劣化部を加熱することによって膨張による圧力を利用してボイドや亀裂を圧接し、補修することによってクリープ損傷を受けた部材の延命化を図ることが記載されている。   As a technique for recovering such strength, the technique of Patent Document 1 has been proposed. In this Patent Document 1, in a state in which the creep deteriorated portion is constrained, the creep deteriorated portion is heated to press the void or crack using the pressure due to expansion, and repaired by repairing the member damaged by creep. It is described that the life is extended.

また、特許文献2には、レーザービームまたは電子ビームを用い、クリープ損傷を生じ組織的な劣化や機械的開口亀裂を生じた部材を、再溶融処理または溶体化温度域まで加熱することで、機械的欠陥部の再生または組織的クリープボイドの再生除去を行うことが記載されている。   In Patent Document 2, a laser beam or an electron beam is used to heat a member that has undergone creep damage and has undergone systematic degradation or mechanical opening cracking to a remelting treatment or solution temperature range. Regeneration of mechanical defects or regeneration removal of systematic creep voids is described.

一方、非特許文献2には、クリープ強さの劣化とボイドの関係について記載されており、クリープ損傷を受けた部材を再熱処理すると、最小クリープ速度は未使用材とほぼ同程度の小さな値を示すことが記載されている。またこの非特許文献2には、クリープ強さの劣化と炭化物の関係についても記載されており、高温・高圧下に長時間曝されると、粒界上の炭化物が粗大化することが示されている。更にこの非特許文献2には、再熱処理してもボイドや割れが依然として残存していることも示されている。従ってこの非特許文献2によれば、クリープ強さの劣化は、ボイドや割れの発生、或いはこれらの成長とは直接関係がなく、炭化物の析出、或いは炭化物の粗大化に伴う粒界近傍での局所的な回復現象に起因することが分かる。よって上記特許文献1に記載されているように、クリープ劣化部を拘束した状態で加熱し、ボイドや亀裂を減少させたとしても、クリープ強さを高めることは難しいと考えられる。また、上記特許文献2に記載されているように、レーザービームまたは電子ビームにより加熱してクリープボイドを除去してもクリープ強さを高めることはできないと考えられる。   Non-Patent Document 2, on the other hand, describes the relationship between creep strength deterioration and voids. When a member that has undergone creep damage is reheated, the minimum creep rate is almost as small as that of an unused material. It is described to show. This Non-Patent Document 2 also describes the relationship between creep strength deterioration and carbides, and shows that carbides on grain boundaries become coarse when exposed to high temperatures and high pressures for a long time. ing. Further, this Non-Patent Document 2 also shows that voids and cracks still remain even after reheating. Therefore, according to this non-patent document 2, the deterioration of creep strength is not directly related to the occurrence of voids or cracks, or the growth thereof, and in the vicinity of grain boundaries accompanying carbide precipitation or carbide coarsening. It can be seen that this is due to a local recovery phenomenon. Therefore, as described in Patent Document 1, it is considered that it is difficult to increase the creep strength even if heating is performed in a state where the creep deteriorated portion is constrained to reduce voids and cracks. Further, as described in Patent Document 2, it is considered that the creep strength cannot be increased by removing creep voids by heating with a laser beam or an electron beam.

また、高温で使用される部材の強度劣化の原因の一つとして、脆化があり、これも炭化物析出に起因することが知られている。この脆化により疲労強度も低下する。また、前述したように、結晶粒径によっても疲労限が異なる(非特許文献1参照)。   Moreover, as one of the causes of strength deterioration of members used at high temperatures, there is embrittlement, which is also known to be caused by carbide precipitation. This embrittlement also reduces the fatigue strength. Further, as described above, the fatigue limit varies depending on the crystal grain size (see Non-Patent Document 1).

ところで強度劣化部の位置や大きさによっては、当該設備の操業を停止し、強度劣化した鋼製部材を設備から一旦外して強度回復させることが考えられる。しかし設備の操業を停止すると生産性を低下させる。そこで設備のメンテナンスは、設備を稼動させた状態で行うか、設備を停止するにしてもその時間をできるだけ短くする必要がある。そのため強度劣化部の強度を現場で、しかも短時間で回復処理することが望まれる。なお、上述した非特許文献2には、クリープ損傷を受けた部材を再熱処理することについては記載されているが、この再熱処理を現場で行なうための具体的な方法については記載されていない。
特開2003−253337号公報 特開平6−88120号公報 横堀武夫 翻訳監修,「金属疲労の基礎と破壊力学」,現代工学社,p.301−309 木村一弘 他,「耐熱金属材料第123委員会研究報告書」,Vol.23,No.2,第1・2分科会,p.53−61
By the way, depending on the position and size of the strength deteriorated part, it is conceivable to stop the operation of the equipment and temporarily remove the strength-reduced steel member from the equipment to recover the strength. However, if the operation of the equipment is stopped, productivity is lowered. Therefore, it is necessary to perform the maintenance of the equipment while the equipment is in operation or to shorten the time as much as possible even if the equipment is stopped. Therefore, it is desirable to recover the strength of the strength-degraded portion at the site and in a short time. In addition, although the non-patent document 2 described above describes re-heat treatment of a member that has been damaged by creep, it does not describe a specific method for performing this re-heat treatment on site.
JP 2003-253337 A JP-A-6-88120 Takeo Yokobori Translation supervision, “Fundamental and Fracture Mechanics of Metal Fatigue”, Hyundai Engineering Co., p. 301-309 Kazuhiro Kimura et al., “Research Report on the Refractory Metal Materials 123rd Committee”, Vol. 23, no. 2, Sections 1 and 2 p. 53-61

本発明は、この様な状況に鑑みてなされたものであり、その目的は、上記特許文献1に記載された技術とは異なる観点から、強度劣化部の強度を回復させることのできる方法を提供することにある。また、本発明の他の目的は、強度劣化部の強度を現場で回復処理するときに好適に用いることができる高周波誘導加熱装置を提供することにある。   This invention is made | formed in view of such a condition, The objective provides the method which can recover the intensity | strength of an intensity degradation part from a viewpoint different from the technique described in the said patent document 1. FIG. There is to do. Another object of the present invention is to provide a high-frequency induction heating apparatus that can be suitably used when the strength of the strength-degraded portion is recovered on site.

上記課題を解決することのできた本発明に係る強度劣化部の強度回復方法とは、鋼製部材を用いて構成されている設備の強度劣化部を鋼製部材のA3変態点以上の温度で加熱保持する点に要旨を有する。 The intensity recovery method strength deteriorated part according to the present invention that has solved the above problems, the strength deterioration of the equipment that is constructed using a steel member at A 3 transformation point or above the temperature of the steel member It has a gist in that it is heated and held.

前記強度劣化部の加熱は、高周波誘導加熱装置を用いて行うことが好ましい。前記強度劣化部としては、例えば、鋼材同士の溶接部とその熱影響部などが挙げられる。   The heating of the strength deterioration portion is preferably performed using a high frequency induction heating device. Examples of the strength-degraded part include a welded part between steel materials and a heat-affected part thereof.

上記強度回復方法に好適に用いることのできる本発明の高周波誘導加熱装置は、誘導加熱コイルの他に、該誘導加熱コイルと加熱すべき強度劣化部との相対関係を一定に保つための構成を備えている点に要旨を有している。   The high-frequency induction heating device of the present invention that can be suitably used for the strength recovery method has a configuration for keeping the relative relationship between the induction heating coil and the strength deteriorated portion to be heated, in addition to the induction heating coil. It has a gist in that it has.

前記高周波誘導加熱装置は、少なくとも2つの誘導加熱コイルを備えており、隣り合う一方の誘導加熱コイルと他方の誘導加熱コイルは、加熱すべき強度劣化部との相対関係を一定に保ちつつ、誘導加熱コイル同士の相対関係を調整可能に接続されていてもよい。前記少なくとも2つの誘導加熱コイルは、隣コイルに近い側に位置している導体同士の通電方向が同方向となる通電極性にて配置されていることが好ましい。   The high-frequency induction heating apparatus includes at least two induction heating coils, and one induction heating coil and the other induction heating coil that are adjacent to each other are inductive while maintaining a relative relationship between the strength deterioration portion to be heated. You may connect so that the relative relationship between heating coils can be adjusted. It is preferable that the at least two induction heating coils are arranged with a current-carrying polarity in which the current-carrying directions of the conductors located on the side close to the adjacent coil are the same direction.

本発明によれば、強度劣化部を、所定の温度以上に高周波誘導加熱装置等の加熱装置を用いて加熱することで、現場での補修が可能となる。また加熱した状態で一定時間保持することによって、析出した炭化物を再固溶させたり、微細化した結晶粒を回復させたり、逆に粗大化した結晶粒を回復させることができ、或いは強度の低い例えばフェライト組織を、強度が高い例えばベイナイト組織に変えるなど組織を高強度化でき、強度劣化部の強度を回復させることができる。   According to the present invention, on-site repair is possible by heating the strength-degraded portion to a predetermined temperature or higher using a heating device such as a high-frequency induction heating device. In addition, by maintaining for a certain period of time in the heated state, the precipitated carbide can be re-dissolved, the refined crystal grains can be recovered, or the coarsened crystal grains can be recovered, or the strength is low. For example, it is possible to increase the strength of the ferrite structure, for example, by changing the ferrite structure to a bainite structure having high strength, and to recover the strength of the strength-degraded portion.

上記強度劣化部を加熱する際には、例えば、高周波誘導加熱装置を用いることができる。特に本発明の高周波誘導加熱装置は、誘導加熱コイルと加熱すべき強度劣化部との相対関係を一定に保つための構成を備えているため、強度劣化部を集中的に、かつ均一に加熱することができ、強度劣化部の強度を確実に回復させることができる。   When heating the strength-degraded part, for example, a high-frequency induction heating device can be used. In particular, the high-frequency induction heating device of the present invention has a configuration for keeping the relative relationship between the induction heating coil and the strength deteriorated portion to be heated constant, so that the strength deteriorated portion is heated intensively and uniformly. And the strength of the strength-degraded portion can be reliably recovered.

上述したように、鋼製部材の強度劣化は、高温・高圧下に曝されることによって炭化物が析出、或いは炭化物が粗大化して軟化したり、補修溶接したときに結晶粒が微細化することによって発生する。また、製造時の冷却速度によっては、ベイナイト組織中に強度の小さいフェライト組織が生成するため、部材の強度が元々小さい部分がある。   As described above, the strength deterioration of steel members is caused by precipitation of carbides by exposure to high temperature and high pressure, or by coarsening and softening of carbides, or by refinement of crystal grains when repair welding is performed. appear. In addition, depending on the cooling rate at the time of manufacture, a ferrite structure having a low strength is generated in the bainite structure, so that there is a portion where the strength of the member is originally low.

そこで本発明者らが強度劣化部の強度を回復させる方法について検討したところ、鋼製部材のA3変態点以上の温度で加熱保持すれば、析出(或いは析出して粗大化)した炭化物を固溶させることができ、または微細化した結晶粒を回復(或いは粗大化した結晶粒を回復)させることができ、或いはフェライト組織をベイナイト化することができ、強度劣化部の強度を劣化前(即ち、新材)の強度と同程度に回復することが判明した。 Therefore the present inventors have studied how to recover the strength of the strength deteriorated part, if heated and held at A 3 transformation point or above the temperature of the steel member, precipitation (or precipitated coarsening) the carbides solid Can be melted, or the refined crystal grains can be recovered (or the coarsened crystal grains can be recovered), or the ferrite structure can be bainite, and the strength of the strength-deteriorated portion can be reduced before deterioration (ie, It was found to recover to the same level as the strength of the new material.

強度劣化部を加熱するときの温度は、強度劣化部に析出(或いは析出して粗大化)した炭化物を固溶、または微細化した結晶粒を回復(或いは粗大化した結晶粒を回復)させることができる温度であればよく、具体的には、加熱対象とする鋼製素材のA3変態点以上とするのがよい。好ましくは「A3変態点+50℃」以上であり、より好ましくは「A3変態点+100℃」以上である。加熱温度の上限は特に限定されないが、1200℃程度である。なお、A3変態点の温度としては、Ac3変態点の温度を基準にすればよい。 The temperature at which the strength-degraded part is heated is a solid solution of carbide precipitated (or precipitated and coarsened) in the strength-degraded part, or recovery of refined crystal grains (or recovery of coarse crystal grains). if the temperature at which it is better, specifically, it is preferable to more a 3 transformation point of the steel material to be heated. It is preferably “A 3 transformation point + 50 ° C.” or more, more preferably “A 3 transformation point + 100 ° C.” or more. The upper limit of the heating temperature is not particularly limited, but is about 1200 ° C. As the temperature of the A 3 transformation point may be based on the temperature of A c3 transformation point.

鋼製素材のA3変態点は、例えば、熱間加工再現装置(加工フォーマスター)に付属している径変化追従型He−Neガスレーザーを用い、加熱したサンプルの加熱−膨張曲線から求めればよい。 The A 3 transformation point of a steel material can be obtained from the heating-expansion curve of a heated sample using, for example, a diameter change following He-Ne gas laser attached to a hot working reproduction apparatus (machining for master). Good.

強度劣化部を加熱保持するときの時間は、強度劣化部に析出(或いは析出して粗大化)した炭化物を固溶させることができ、または微細化した結晶粒を回復(或いは粗大化した結晶粒を回復)させることができることができ、或いは強度の低い例えばフェライト組織を強度の高い例えばベイナイト組織にすることができるだけの時間とすればよい。一つの目安として、結晶粒度番号が、新材と同程度になるように適宜設定すればよい。但し、具体的な保持時間は、加熱対象とする鋼材の種類(組成)や、強度劣化の程度、或いは強度をどの程度回復させるかによるため一律に規定することができない。なお、炭化物の固溶や結晶粒の回復、組織制御には、加熱温度と保持時間が大きく影響を及ぼしており、加熱温度を高くすると炭化物の固溶や結晶粒の成長、或いは組織の変態が促進されるため、保持時間を短くすることができる。   When the strength deteriorated portion is heated and held, the carbide precipitated (or precipitated and coarsened) in the strength deteriorated portion can be dissolved, or the refined crystal grains are recovered (or coarsened crystal grains). For example, a ferrite structure having a low strength such as a ferrite structure may be converted into a high strength such as a bainite structure. As one guideline, the crystal grain size number may be set appropriately so as to be comparable to that of the new material. However, the specific holding time cannot be uniformly defined because it depends on the type (composition) of the steel material to be heated, the degree of strength deterioration, or how much the strength is recovered. It should be noted that the heating temperature and holding time have a great influence on the solid solution of carbides, recovery of crystal grains, and structure control. When the heating temperature is increased, solid solution of carbides, growth of crystal grains, or transformation of the structure occurs. Because it is promoted, the holding time can be shortened.

加熱対象とする鋼材の種類が、例えば、火力発電所の高中圧タービンのケーシング材に一般的に使用されているCr−Mo−V鋳鋼の場合は、保持時間を少なくとも5秒とすればよい。保持時間は、例えば、1分以上としてもよく、10分以上であってもよい。保持時間の上限は特に限定されないが、長時間加熱しても結晶粒を成長させる等の強度回復効果は飽和するため、例えば、8時間程度(特に、5時間程度)である。   When the type of steel material to be heated is, for example, Cr—Mo—V cast steel generally used as a casing material for a high and medium pressure turbine of a thermal power plant, the holding time may be at least 5 seconds. The holding time may be, for example, 1 minute or longer, or 10 minutes or longer. The upper limit of the holding time is not particularly limited, but is about 8 hours (particularly about 5 hours), for example, because the strength recovery effect such as growing crystal grains is saturated even when heated for a long time.

加熱保持した後は、焼戻しすることは周知の事実である。焼戻しする場合は、例えば、約690℃で5〜8時間程度、または約710℃で3時間程度保持して焼戻しすることが推奨される。   It is a well-known fact that tempering after heating and holding. In the case of tempering, for example, it is recommended to temper by holding at about 690 ° C. for about 5 to 8 hours, or at about 710 ° C. for about 3 hours.

上記のようにして強度劣化部を加熱保持した結果として、結晶粒径について言えば、新材の結晶粒径に対して±40%以内になっていることが好ましい。結晶粒径が±40%以内になっていれば、強度もほぼ新材と同程度に回復しているとみなすことができる。結晶粒径は、好ましくは±20%以内になっているのがよい。   As a result of heating and holding the strength deteriorated portion as described above, the crystal grain size is preferably within ± 40% with respect to the crystal grain size of the new material. If the crystal grain size is within ± 40%, it can be considered that the strength has recovered to almost the same level as the new material. The crystal grain size is preferably within ± 20%.

結晶粒径は、結晶粒度番号で比較してもよい。結晶粒度番号は、例えば、JIS G0551の「鋼のオーステナイト結晶粒度試験方法」で規定されている方法で測定できる。   The crystal grain size may be compared by the crystal grain size number. The crystal grain size number can be measured, for example, by a method defined in “Method for testing austenite grain size of steel” in JIS G0551.

なお、本発明では、上記で紹介した特許文献1のように、強度劣化部を拘束する必要はない。本発明では、強度劣化部の炭化物を固溶させるか、結晶粒を成長・制御させるか、或いはフェライト組織をベイナイト化する等組織を強度が大きなものにすることによって、強度劣化部の強度を回復させる技術であり、例えば上記特許文献1のように、強度劣化部を拘束することによってボイドや亀裂を圧接する技術ではないからである。   In the present invention, unlike the Patent Document 1 introduced above, it is not necessary to constrain the strength degradation portion. In the present invention, the strength of the strength deteriorated portion is recovered by increasing the strength of the structure such as solid solution of the carbide in the strength deteriorated portion, growth / control of crystal grains, or bainite of the ferrite structure. This is because, for example, as described in Patent Document 1, it is not a technique for pressing a void or a crack by constraining a strength-degraded portion.

上記強度劣化部は、加熱装置を用いて所定の温度に加熱して保持すればよいが、加熱装置としては、例えば、シースヒーターや高周波誘導加熱装置などを用いることができる。シースヒーターや高周波誘導加熱装置を用いることで、現場での補修が可能となり、補修対象とする設備を停止させることなく、或いは設備を停止させるにしても極短時間での強度回復処理が可能となるからである。例えば、強度劣化部を設備から一旦外し、例えば電気炉等で加熱保持して強度回復させた後、元の設備に溶接して補修することも可能であるが、そうすると設備を停止させる時間が極めて長くなる。また、設備を更新する場合は、さらに多大な費用と時間を要するが、シースヒーターや高周波誘導加熱装置などを用いて強度劣化部を加熱保持して強度を回復すれば、コスト削減等が可能となる。シースヒーターや高周波誘導加熱装置を用いることで、強度劣化部のみを選択してピンポイントでの補修が可能となるため、補修効率も向上させることができる。即ち、強度劣化部にシースヒーターや高周波誘導加熱装置を取り付け、加熱保持すれば、強度劣化部のみを局所的に加熱できる。上記加熱装置としては、高周波誘導加熱装置を用いることが好ましい。   The strength deterioration portion may be heated and held at a predetermined temperature using a heating device. As the heating device, for example, a sheath heater or a high-frequency induction heating device can be used. By using a sheath heater or a high-frequency induction heating device, on-site repair is possible, and it is possible to recover the strength in a very short time without stopping the equipment to be repaired or even if the equipment is stopped. Because it becomes. For example, it is possible to remove the strength deteriorated part from the equipment and repair it by heating and holding it with an electric furnace, etc., and then repairing it by welding to the original equipment. become longer. In addition, when the equipment is renewed, much more cost and time are required, but if the strength deteriorated part is heated and recovered using a sheath heater or a high frequency induction heating device, the cost can be reduced. Become. By using a sheath heater or a high-frequency induction heating device, it is possible to select only the strength-deteriorated portion and perform pinpoint repair, thereby improving the repair efficiency. That is, if a sheath heater or a high-frequency induction heating device is attached to the strength deterioration portion and heated and held, only the strength deterioration portion can be locally heated. As the heating device, it is preferable to use a high-frequency induction heating device.

本発明において強度劣化部とは、例えば、火力発電プラントや原子力発電プラント、化学プラント等で使用される設備(例えば、ボイラやタービンなど)のうち、溶接部(特に、熱影響部)、高温・高圧下で長時間使用されてクリープ損傷を受けた部分、脆化した部分、疲労した部分などを意味する。また、こうした部分を補修溶接した部分や、その熱影響部も強度が低下しており、本発明の強度劣化部に包含される。更に製造時の冷却速度によって強度の高い組織中に強度の低い組織が生成し、強度が低くなった部分も本発明の強度劣化部に含まれる。   In the present invention, the strength deteriorated part is, for example, a welded part (particularly, a heat affected part), a high temperature / It means a part that has been used under high pressure for a long time and has been damaged by creep, a part that has become brittle, or a part that has been fatigued. In addition, the strength of the repair welded portion of these portions and the heat-affected zone are also reduced and included in the strength-degraded portion of the present invention. Further, a structure having a low strength is generated in a structure having a high strength due to a cooling rate at the time of manufacture, and a portion where the strength is lowered is also included in the strength deteriorated portion of the present invention.

上記強度劣化部は、例えば、鋼製部材の硬さを測定したり、レプリカ法による組織観察によって検出できる。   The strength deterioration portion can be detected by, for example, measuring the hardness of a steel member or observing the structure by a replica method.

硬さと強度劣化部の関係についていえば、材料の硬さと強度とは比較的良い相関関係があることが知られており、強度が低下すると、硬さが低くなる。そこで材料の硬さを測定して強度劣化部を検出する方法では、現場で鋼製部材のビッカース硬さを測定し、該部材の初期ビッカース硬さよりも低下していれば、強度劣化していると判断できる。このとき予め硬さと強度の関係を示す検量線を求めておけば、硬さを測定することによって強度の低下度合いを求めることができ、鋼製部材の余寿命を予測できる。   Regarding the relationship between the hardness and the strength deteriorated portion, it is known that there is a relatively good correlation between the hardness and strength of the material, and when the strength decreases, the hardness decreases. Therefore, in the method of measuring the hardness of the material and detecting the strength-degraded portion, the Vickers hardness of the steel member is measured in the field, and if it is lower than the initial Vickers hardness of the member, the strength is deteriorated. It can be judged. At this time, if a calibration curve showing the relationship between hardness and strength is obtained in advance, the degree of strength reduction can be obtained by measuring the hardness, and the remaining life of the steel member can be predicted.

一方、レプリカ法による組織観察によって強度劣化部を検出する方法では、金属組織をフィルムに転写させて、炭化物の析出状態やボイドの発生状況を観察すれば、鋼製部材の余寿命を予測できる。   On the other hand, in the method of detecting the strength degradation portion by observation of the structure by the replica method, the remaining life of the steel member can be predicted by transferring the metal structure to a film and observing the precipitation state of carbides and the occurrence of voids.

次に、強度劣化部の強度を回復させるために用いることのできる加熱装置のうち、好適に用いることのできる加熱装置として高周波誘導加熱装置を取り上げて説明する。本発明の高周波誘導加熱装置は、誘導加熱コイルの他に、該誘導加熱コイルと加熱すべき強度劣化部との相対関係を一定に保つための構成を備えているところに特徴を有している。誘導加熱コイルと加熱すべき強度劣化部との相対関係を一定に保つための構成を備えていることで、強度劣化部を所定の温度で所定の時間加熱保持できる。   Next, among the heating devices that can be used to recover the strength of the strength-degraded portion, a high-frequency induction heating device will be described as a heating device that can be suitably used. The high-frequency induction heating device of the present invention is characterized in that, in addition to the induction heating coil, a structure for keeping the relative relationship between the induction heating coil and the strength deteriorated portion to be heated constant is provided. . By providing a configuration for keeping the relative relationship between the induction heating coil and the strength deterioration portion to be heated constant, the strength deterioration portion can be heated and held at a predetermined temperature for a predetermined time.

誘導加熱コイルと加熱すべき強度劣化部との相対関係とは、誘導加熱コイルと加熱すべき強度劣化部との位置と距離の両方を意味している。即ち、相対関係とは、強度劣化部を適切に加熱できるような相対位置に誘導加熱コイル配置するとともに、誘導加熱コイルに通電したときに強度劣化部を適切な温度で加熱できるように誘導加熱コイルと加熱すべき強度劣化部との相対距離を調整することを意味している。強度劣化部を適切に加熱できるような相対位置とは、加熱対象とする部材に誘導加熱コイルの形状を投影したときに、加熱すべき位置が誘導加熱コイルの投影像に含まれていることを意味する。なお、誘導加熱コイルと加熱すべき強度劣化部との位置については、強度劣化部を覆うように強度劣化部の上方に誘導加熱コイルを配置すればよいが、誘導加熱コイルと加熱すべき強度劣化部との距離については、一律に規定することはできない。加熱しようとする温度や、被加熱物の形状によって、距離を調整させなければならないからである。   The relative relationship between the induction heating coil and the strength deteriorated portion to be heated means both the position and the distance between the induction heating coil and the strength deteriorated portion to be heated. That is, the relative relationship is that the induction heating coil is disposed at a relative position where the strength deterioration portion can be appropriately heated, and the strength deterioration portion can be heated at an appropriate temperature when the induction heating coil is energized. And adjusting the relative distance between the strength deteriorated portion to be heated. The relative position at which the strength-degraded part can be heated appropriately means that the position to be heated is included in the projected image of the induction heating coil when the shape of the induction heating coil is projected onto the member to be heated. means. As for the position of the induction heating coil and the strength deteriorated portion to be heated, the induction heating coil may be disposed above the strength deteriorated portion so as to cover the strength deteriorated portion. The distance to the part cannot be defined uniformly. This is because the distance must be adjusted depending on the temperature to be heated and the shape of the object to be heated.

誘導加熱コイルと加熱すべき強度劣化部との相対関係を一定に保つための構成としては、例えば、強度劣化部との距離を一定に保つことができるような部材(治具)を誘導加熱コイルに備えればよい。   As a configuration for keeping the relative relationship between the induction heating coil and the strength deteriorated portion to be heated constant, for example, a member (jig) that can keep the distance from the strength deteriorated portion constant is used as the induction heating coil. You should prepare for.

以下では、誘導加熱コイルと加熱すべき強度劣化部との相対関係を一定に保つための構成を備えた本発明の高周波誘導加熱装置について図面を用いてより具体的に説明する。但し、下記に示す図面は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に設計変更することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Hereinafter, the high-frequency induction heating apparatus of the present invention having a configuration for keeping the relative relationship between the induction heating coil and the strength deterioration portion to be heated constant will be described more specifically with reference to the drawings. However, the drawings shown below are not intended to limit the present invention, and can be appropriately changed in design within a range that can be adapted to the gist of the preceding and following descriptions, both of which are within the technical scope of the present invention. include.

図1(a)は、本発明の高周波誘導加熱装置の一構成例を示す概略説明図であり、(b)は上記(a)の一部を拡大した図である。図1(a)に示した高周波誘導加熱装置は、加熱対象とする被処理材2の形態が、主として平面状の場合(例えば、設備の壁面や底面のように平面状の場合、また曲面状の一部の場合)に好適に用いることのできる装置である。なお、被処理材2の形態は、表面が湾曲した曲面でもよい。   Fig.1 (a) is a schematic explanatory drawing which shows the example of 1 structure of the high frequency induction heating apparatus of this invention, (b) is the figure which expanded a part of said (a). In the high-frequency induction heating apparatus shown in FIG. 1 (a), when the form of the material 2 to be heated is mainly flat (for example, when it is flat like the wall or bottom of equipment, it is curved) This is a device that can be suitably used for a part of the above. The form of the material to be processed 2 may be a curved surface having a curved surface.

図1中、1は高周波誘導加熱装置、2は加熱対象とする被処理材を示しており、高周波誘導加熱装置1は、強度劣化部21を覆うように保持されている。高周波誘導加熱装置1は、矩形状の誘導加熱コイル11と、該誘導加熱コイル11と加熱すべき強度劣化部21との距離を一定に保つための治具12を備えている。   In FIG. 1, reference numeral 1 denotes a high-frequency induction heating device, 2 denotes a material to be heated, and the high-frequency induction heating device 1 is held so as to cover the strength deterioration portion 21. The high-frequency induction heating apparatus 1 includes a rectangular induction heating coil 11 and a jig 12 for keeping a constant distance between the induction heating coil 11 and the strength deterioration portion 21 to be heated.

治具12の拡大図を図1(b)に示す。治具12は、誘導加熱コイル11と加熱対象とする被処理材2との距離を一定に保つためのスペーサ12aと、このスペーサ12aと誘導加熱コイル11とを接続するための接続部材12bと、スペーサ12aと接続部材12bとを固定するためのボルト12cから構成されており、治具12は図示しないボルト等によって誘導加熱コイル11に接続されている。   An enlarged view of the jig 12 is shown in FIG. The jig 12 includes a spacer 12a for keeping the distance between the induction heating coil 11 and the workpiece 2 to be heated constant, a connecting member 12b for connecting the spacer 12a and the induction heating coil 11, It is comprised from the volt | bolt 12c for fixing the spacer 12a and the connection member 12b, and the jig | tool 12 is connected to the induction heating coil 11 with the volt | bolt etc. which are not shown in figure.

図1(a)に示すように、治具12と被処理材2とを密着させることで、誘導加熱コイル11と被処理材2の距離を一定に保ちつつ固定することができ、長時間保持することが可能となる。そのため図示しない電源から誘導加熱コイル11に電流を流すことにより、被処理材2を局所的に、しかも長時間に亘って安定して加熱することができる。   As shown in FIG. 1A, the jig 12 and the material to be processed 2 are brought into close contact with each other, so that the distance between the induction heating coil 11 and the material to be processed 2 can be fixed and kept for a long time. It becomes possible to do. Therefore, by supplying a current to the induction heating coil 11 from a power source (not shown), the workpiece 2 can be heated locally and stably for a long time.

上記治具12は、その長さを変化させることができるように構成してもよい。誘導加熱コイル11と被処理材2の距離を必要に応じて変更するためである。上記スペーサ12aの素材は、誘導加熱コイル11によって加熱されない素材、即ち、非導電性材料であればよく、例えば、セラミックを用いることができる。耐熱性樹脂も援用されてよい。   You may comprise the said jig | tool 12 so that the length can be changed. This is because the distance between the induction heating coil 11 and the workpiece 2 is changed as necessary. The material of the spacer 12a may be a material that is not heated by the induction heating coil 11, that is, a non-conductive material. For example, ceramic can be used. A heat resistant resin may also be incorporated.

図2(a)は、本発明の高周波誘導加熱装置の他の構成例を示す概略説明図であり、(b)は上記(a)をA−A’方向から見たときの断面図である。上記図1と同じ部分には同一の符合を付した。   FIG. 2A is a schematic explanatory view showing another configuration example of the high-frequency induction heating device of the present invention, and FIG. 2B is a cross-sectional view of the above-described (a) when viewed from the AA ′ direction. . The same parts as those in FIG.

図2(a)に示した高周波誘導加熱装置1は、加熱対象とする被処理材3の形態が、主として管状(例えば、設備に備え付けられている配管)であって、特に口径が大きな場合に好適に用いることができる。図2中、1は高周波誘導加熱装置、3は加熱対象とする被処理材を示しており、高周波誘導加熱装置1は、横方向に伸びた管状の被処理材3の壁面に検出された強度劣化部(図示しない)を囲むように保持されている。この強度劣化部としては、例えば、管状の鋼製部材同士を互いに溶接接合した部分(周方向溶接部)等が挙げられる。   The high-frequency induction heating apparatus 1 shown in FIG. 2A has a configuration in which the material to be treated 3 to be heated is mainly tubular (for example, piping provided in equipment) and has a particularly large diameter. It can be used suitably. In FIG. 2, reference numeral 1 denotes a high-frequency induction heating device, 3 denotes a material to be heated, and the high-frequency induction heating device 1 has a strength detected on the wall surface of the tubular material 3 that extends in the lateral direction. It is held so as to surround a deteriorated portion (not shown). As this strength deterioration part, the part (circumferential direction welding part) etc. which welded and joined the tubular steel members mutually are mentioned, for example.

高周波誘導加熱装置1は、大口径の管状被処理材3を囲むために、半円状の誘導加熱コイル11aと半円状の誘導加熱コイル11b(これらをまとめて誘導加熱コイル11と呼ぶ)が、略円状になるように配置されている。また、半円状の誘導加熱コイル11aと半円状の誘導加熱コイル11bには、これらを組み合わせて構成される略円状の誘導加熱コイル11の中心軸方向に向かって、加熱すべき強度劣化部との距離を一定に保つための治具12を備えている。   The high-frequency induction heating apparatus 1 includes a semicircular induction heating coil 11a and a semicircular induction heating coil 11b (collectively referred to as the induction heating coil 11) so as to surround the large-diameter tubular workpiece 3. Are arranged so as to be substantially circular. In addition, the semicircular induction heating coil 11a and the semicircular induction heating coil 11b are deteriorated in strength to be heated in the direction of the central axis of the substantially circular induction heating coil 11 configured by combining them. A jig 12 is provided for maintaining a constant distance from the part.

誘導加熱コイル11aと誘導加熱コイル11bの給電側端部が接触してショートしないように、該誘導加熱コイルは絶縁材13を介して接続されている。また、高周波誘導加熱装置1は、強度劣化部の近傍に確実に固定するために固定台5を用いて図示しない設備本体に固定されている。   The induction heating coil is connected via an insulating material 13 so that the feeding-side ends of the induction heating coil 11a and the induction heating coil 11b do not contact and short-circuit. Moreover, the high frequency induction heating apparatus 1 is fixed to an equipment main body (not shown) using a fixing base 5 in order to securely fix it in the vicinity of the strength deterioration portion.

図2(a)に示すように、治具12と被処理材3とを密着させることで、誘導加熱コイル11と被処理材3の距離を一定に保ちつつ、誘導加熱コイル11を固定でき、長時間の保持が可能となる。そのため図示しない電源から誘導加熱コイル11に電流を流すことにより、被処理材3を局所的に、しかも長時間に亘って安定して加熱できる。   As shown in FIG. 2 (a), the induction heating coil 11 can be fixed while keeping the distance between the induction heating coil 11 and the material to be processed 3 constant by bringing the jig 12 and the material to be processed 3 into close contact with each other. It can be held for a long time. Therefore, by supplying a current to the induction heating coil 11 from a power source (not shown), the material 3 can be heated locally and stably for a long time.

上記絶縁材13の素材も誘導加熱コイル11によって加熱されない素材、即ち、非導電性材料であればよく、上記治具12と同様の素材であればよい。   The material of the insulating material 13 may be a material that is not heated by the induction heating coil 11, that is, a non-conductive material, and may be a material similar to the jig 12.

図2では、高周波誘導加熱装置1を固定するために固定台5を用いたが、固定台5に車輪等を取り付け、管状の被処理材3に沿って可動するように構成してもよい。固定台5に乗せた高周波誘導加熱装置1を一定速度で可動させれば、広い範囲を熱処理できる。   In FIG. 2, the fixed base 5 is used to fix the high-frequency induction heating device 1, but a wheel or the like may be attached to the fixed base 5 and movable along the tubular workpiece 3. If the high-frequency induction heating device 1 placed on the fixed base 5 is moved at a constant speed, a wide range of heat treatment can be performed.

図3(a)は、本発明の高周波誘導加熱装置の他の構成例を示す概略説明図であり、(b)は上記(a)をB−B’方向から見たときの断面図である。上記図1と同じ部分には同一の符合を付した。図3中、1は高周波誘導加熱装置、6は加熱対象とする被処理材を示しており、高周波誘導加熱装置1は、縦方向に伸びた管状の被処理材6の壁面に検出された強度劣化部(図示しない)を囲むように保持されている。この強度劣化部としては、例えば、管状の鋼製部材同士を互いに溶接接合した部分(周方向溶接部)等が挙げられる。   FIG. 3A is a schematic explanatory view showing another configuration example of the high-frequency induction heating device of the present invention, and FIG. 3B is a cross-sectional view of the above-mentioned (a) when viewed from the BB ′ direction. . The same parts as those in FIG. In FIG. 3, reference numeral 1 denotes a high-frequency induction heating device, 6 denotes a material to be heated, and the high-frequency induction heating device 1 is detected on the wall surface of a tubular material to be processed 6 extending in the vertical direction. It is held so as to surround a deteriorated portion (not shown). As this strength deterioration part, the part (circumferential direction welding part) etc. which welded and joined the tubular steel members mutually are mentioned, for example.

図3(a)に示した高周波誘導加熱装置1は、加熱対象とする被処理材6の形態が、主として管状(例えば、設備に備え付けられている配管)で、特に口径が小さな場合に好適に用いることができる。   The high-frequency induction heating apparatus 1 shown in FIG. 3A is suitable when the form of the material to be treated 6 to be heated is mainly tubular (for example, piping provided in equipment) and particularly has a small diameter. Can be used.

高周波誘導加熱装置1は、小口径の管状被処理材6を囲むために、半円状の誘導加熱コイル11aと半円状の誘導加熱コイル11b(これらをまとめて誘導加熱コイル11と呼ぶ)が、略円状になるように配置されている。また、半円状の誘導加熱コイル11aと半円状の誘導加熱コイル11bには、これらを組み合わせて構成される略円状の誘導加熱コイル11の中心軸方向に向かって、加熱すべき周方向溶接部等の強度劣化部との距離を一定に保つための治具12を備えている。   The high-frequency induction heating apparatus 1 includes a semicircular induction heating coil 11a and a semicircular induction heating coil 11b (collectively referred to as the induction heating coil 11) in order to surround the small diameter tubular workpiece 6. Are arranged so as to be substantially circular. Further, the semicircular induction heating coil 11a and the semicircular induction heating coil 11b are circumferentially heated in the direction of the central axis of the substantially circular induction heating coil 11 configured by combining them. A jig 12 is provided for maintaining a constant distance from the strength deteriorated part such as a welded part.

なお、高周波誘導加熱装置1は、強度劣化部の近傍に確実に固定するために、高周波誘導加熱装置1の下方に設けられたクランプ7と接続部材8を介して接続されている。   The high-frequency induction heating device 1 is connected to a clamp 7 provided below the high-frequency induction heating device 1 via a connection member 8 in order to reliably fix the high-frequency induction heating device 1 in the vicinity of the strength deterioration portion.

図3(a)に示すように、治具12と被処理材6とを密着させることで、誘導加熱コイル11と被処理材6の距離を一定に保ちつつ固定することができ、長時間保持することが可能となる。そのため図示しない電源から誘導加熱コイル11に電流を流すことにより、被処理材6を局所的に、しかも長時間に亘って安定して加熱できる。   As shown in FIG. 3A, the jig 12 and the material to be processed 6 are brought into close contact with each other, so that the distance between the induction heating coil 11 and the material to be processed 6 can be fixed and kept for a long time. It becomes possible to do. Therefore, by supplying a current to the induction heating coil 11 from a power source (not shown), the workpiece 6 can be heated locally and stably for a long time.

上記クランプ7に誘導加熱コイル11を固定する接続部材8の素材も誘導加熱コイル11によって加熱されない素材、即ち、非導電性材料であればよく、上記治具12と同様の素材であればよい。   The material of the connecting member 8 that fixes the induction heating coil 11 to the clamp 7 may be a material that is not heated by the induction heating coil 11, that is, a non-conductive material, and may be a material similar to the jig 12.

図3では、高周波誘導加熱装置1を固定するためにクランプ7を用いたが、クランプ7ごと管状の被処理材6に沿って可動するように構成してもよい。高周波誘導加熱装置1を一定速度で可動させることで、広い範囲を熱処理できる。   In FIG. 3, the clamp 7 is used to fix the high-frequency induction heating device 1, but the clamp 7 may be configured to move along the tubular workpiece 6. A wide range can be heat-treated by moving the high-frequency induction heating device 1 at a constant speed.

上記高周波誘導加熱装置は、誘導加熱コイルを2つ以上備えていてもよい。誘導加熱コイルを2つ以上備えている場合は、隣り合う一方の誘導加熱コイルと他方の誘導加熱コイルは、加熱すべき強度劣化部との相対関係を一定に保ちつつ、誘導加熱コイル同士の相対関係を調整可能に接続されていることが好ましい。誘導加熱コイル同士の相対関係とは、誘導加熱コイル同士の距離や強度劣化部に対する変位を意味する。即ち、誘導加熱コイルを2つ以上備えている場合は、強度劣化部を加熱したときに加熱ムラが生じず、強度劣化部を均一な温度で加熱できるように、誘導加熱コイル同士の距離を適切に調整する必要がある。また、後述する図4に示すように誘導加熱コイルが平面的な形状の場合には、例えば、加熱すべき強度劣化部が曲面を呈しているときは、強度劣化部の形状に沿うように、個々の誘導加熱コイルの変位を調整し、誘導加熱コイルと強度劣化部の相対関係が一定になるように調整すればよい。   The high-frequency induction heating device may include two or more induction heating coils. When two or more induction heating coils are provided, the adjacent one of the induction heating coil and the other induction heating coil maintain a relative relationship with the strength deterioration portion to be heated, while maintaining a relative relationship between the induction heating coils. It is preferable to be connected so that the relationship can be adjusted. The relative relationship between the induction heating coils means the distance between the induction heating coils and the displacement with respect to the strength deterioration portion. That is, when two or more induction heating coils are provided, the distance between the induction heating coils is appropriate so that heating unevenness does not occur when the strength deteriorated portion is heated, and the strength deteriorated portion can be heated at a uniform temperature. It is necessary to adjust to. In addition, when the induction heating coil has a planar shape as shown in FIG. 4 to be described later, for example, when the strength deterioration portion to be heated has a curved surface, so as to follow the shape of the strength deterioration portion, What is necessary is just to adjust the displacement of each induction heating coil so that the relative relationship between the induction heating coil and the strength deterioration portion becomes constant.

以下では、誘導加熱コイルを2つ以上接続したときの構成例について説明する。図4は、本発明の高周波誘導加熱装置の他の構成例を示す概略説明図であり、矩形状の誘導加熱コイル11cと矩形状の誘導加熱コイル11dが、接続部材14を用いて接続されている。なお、図4では、誘導加熱コイルと加熱すべき強度劣化部との距離を一定に保つための治具を図示していない。また、矩形状の誘導加熱コイル11cや11dは、これらのコイルを夫々構成する往復電路導体間にコア材を介在させた構成となっている。磁束集束機能を有するコア材を配したことによって、往復電路導体の回りに夫々発生する磁束は同極性でコア材に集束される結果、磁束の打ち消し合いにより誘導加熱入熱が小さくなることを防止できる。コア材としては、例えば、フェライトと通称される鉄系酸化物の固結体や、珪素鋼板などの強磁性体を用いることができる。   Below, the example of a structure when two or more induction heating coils are connected is demonstrated. FIG. 4 is a schematic explanatory view showing another configuration example of the high-frequency induction heating device of the present invention, in which a rectangular induction heating coil 11 c and a rectangular induction heating coil 11 d are connected using a connecting member 14. Yes. FIG. 4 does not show a jig for keeping the distance between the induction heating coil and the strength deteriorated portion to be heated constant. In addition, the rectangular induction heating coils 11c and 11d have a configuration in which a core material is interposed between the reciprocating circuit conductors constituting these coils. By arranging the core material with the magnetic flux converging function, the magnetic flux generated around the reciprocating circuit conductor is focused on the core material with the same polarity, thereby preventing induction heating heat input from being reduced due to cancellation of the magnetic flux. it can. As the core material, for example, a solid body of an iron-based oxide commonly called ferrite, or a ferromagnetic material such as a silicon steel plate can be used.

矩形状の誘導加熱コイル11cと11dは、ボルトで接続部材14に固定されているが、この接続部材14には、スリット14aが設けられており、矩形状の誘導加熱コイル11cと11dの距離やコイル同士の傾きを自由に調整できる。   The rectangular induction heating coils 11c and 11d are fixed to the connecting member 14 with bolts. The connecting member 14 is provided with a slit 14a, and the distance between the rectangular induction heating coils 11c and 11d and the like. The inclination between coils can be adjusted freely.

図4では、矩形状の誘導加熱コイルを2つ接続した例を示したが、本発明はこの構成に限定されるものではなく、矩形状の誘導加熱コイルを3つ以上接続してもよい。矩形状の誘導加熱コイルを3つ(11c〜11e)接続したときの構成例を図5に示す。なお、図5では、誘導加熱コイルと加熱すべき強度劣化部との距離を一定に保つための治具を図示していない。   Although FIG. 4 shows an example in which two rectangular induction heating coils are connected, the present invention is not limited to this configuration, and three or more rectangular induction heating coils may be connected. FIG. 5 shows a configuration example when three rectangular induction heating coils (11c to 11e) are connected. Note that FIG. 5 does not show a jig for keeping the distance between the induction heating coil and the strength deterioration portion to be heated constant.

上記図4や図5に示したように、誘導加熱コイルを2つ以上接続した場合には、夫々の誘導加熱コイルによって形成される磁束が同方向となるように配置し、通電することが好ましい。例えば、図中の誘導加熱コイルに付した矢印の方向に電流を流せばよい。通電することによって形成される磁束を同方向にすることで、磁束の打ち消しを低減することができ、加熱効率を高めることができるからである。このことを図面を用いて更に詳細に説明する。   As shown in FIG. 4 and FIG. 5, when two or more induction heating coils are connected, it is preferable that the magnetic fluxes formed by the respective induction heating coils are arranged in the same direction and energized. . For example, a current may be passed in the direction of the arrow attached to the induction heating coil in the figure. This is because by making the magnetic flux formed by energization the same direction, the cancellation of the magnetic flux can be reduced and the heating efficiency can be increased. This will be described in more detail with reference to the drawings.

図6は、矩形状の誘導加熱コイル15Aと15Bを、図4に示すように隣り合うように配置したときの誘導加熱コイルの断面図を示している。図6中、矢印は誘導加熱コイルに通電したときに発生する磁束とその方向を示している。   FIG. 6 shows a cross-sectional view of the induction heating coil when rectangular induction heating coils 15A and 15B are arranged adjacent to each other as shown in FIG. In FIG. 6, arrows indicate the magnetic flux generated when the induction heating coil is energized and the direction thereof.

誘導加熱コイル自体にコア材を設けない場合は、図6の(a)の15Aに示したように、誘導加熱コイル15aと15bに通電したときに発生する磁束が互いに打ち消されるが、誘導加熱コイル自体にコア材15fを設けると、図6の(a)の15Bに示したように、磁束の打ち消しを防止できる。   When the induction heating coil itself is not provided with a core material, the magnetic fluxes generated when the induction heating coils 15a and 15b are energized cancel each other as shown in 15A of FIG. If the core material 15f is provided in itself, the cancellation of the magnetic flux can be prevented as shown by 15B in FIG.

このように矩形状の誘導加熱コイル自体は、往復電路導体間にコア材15fを配して構成できるが、矩形状の誘導加熱コイル同士の間には、互いの位置取りを任意に調整するために、コア材を介在させることができない。そのため隣り合う矩形状の誘導加熱コイルについて、隣のコイルに近い側の電路を夫々構成している2本の導体に、電流が互いに逆方向となるように流すと、図6の(b)に示すように、通電によって発生する導体回りの磁束が相互に打ち消されてしまい、その結果として、誘導加熱入熱が小さくなる。   As described above, the rectangular induction heating coil itself can be configured by arranging the core material 15f between the reciprocating circuit conductors. However, in order to arbitrarily adjust the positioning between the rectangular induction heating coils. In addition, the core material cannot be interposed. Therefore, when adjacent rectangular induction heating coils are passed through the two conductors constituting the electric circuit on the side close to the adjacent coil so that the currents are in opposite directions, FIG. As shown, the magnetic flux around the conductors generated by energization cancels each other, and as a result, induction heating heat input is reduced.

そこで誘導加熱コイルを2つ以上接続した場合には、上記図4や図5に示した誘導加熱コイルに矢印を付したように、隣り合う矩形状の誘導加熱コイルへの通電極性(即ち、右回り通電か左回り通電か)を夫々のコイルについて、隣コイルに近い側の電路を構成する2本の導体に流れる電流が互いに同方向となるように設定すればよい。即ち、図6の(c)に示すように、隣コイルに近い側の電路を構成する誘導加熱コイル15bと15cに流れる電流が互いに同方向となるように設定すれば、通電によって発生する導体回りの磁束が相互に合算され、その結果、誘導加熱入熱が大きくなる。   Therefore, when two or more induction heating coils are connected, as shown by arrows in the induction heating coils shown in FIGS. 4 and 5, the energization polarity to adjacent rectangular induction heating coils (ie, For each coil, it may be set so that the currents flowing in the two conductors constituting the electric circuit near the adjacent coil are in the same direction. That is, as shown in FIG. 6 (c), if the currents flowing through the induction heating coils 15b and 15c constituting the electric circuit close to the adjacent coil are set to be in the same direction, the circumference of the conductor generated by energization Are added together, and as a result, induction heating heat input is increased.

図7は、本発明の実施形態の一例を示しており、ボイラ等の管寄せ9に適用した例を示している。図7中、(a)は概略説明図であり、(b)は(a)をC−C’方向から見たときの断面図である。なお、図7では、誘導加熱コイル11fおよび11gと、加熱すべき強度劣化部92との距離を一定に保つための治具を図示していない。図7に図示した管寄せ9は円形断面であるが、矩形断面であってもよい。   FIG. 7 shows an example of an embodiment of the present invention, and shows an example applied to a header 9 such as a boiler. 7A is a schematic explanatory view, and FIG. 7B is a cross-sectional view of FIG. 7A viewed from the C-C ′ direction. In FIG. 7, a jig for keeping the distance between the induction heating coils 11f and 11g and the strength deterioration portion 92 to be heated constant is not shown. The header 9 illustrated in FIG. 7 has a circular cross section, but may have a rectangular cross section.

図7中、管寄せ9は多数の配管を集め、流れの分配、或いは流れの合流を行なう容器であり、各配管を取り付けるための管台91が溶接によって取り付けられている。管台91の根元部の溶接部92とその熱影響部は、結晶粒が微細化し、強度が低下する。また結晶粒が粗大化している部分もあり、応力の加わり方によっては損傷を受けるケースもある。そこで本発明では、図7に示したように、溶接部92とその熱影響部の近傍に誘導加熱コイル11fと11gを溶接部92との相対関係を一定に保つように設け、溶接部92とその近傍を加熱すればよい。   In FIG. 7, a header 9 is a container that collects a large number of pipes and distributes the flow or merges the flows, and a nozzle 91 for attaching the pipes is attached by welding. The welded portion 92 at the base portion of the nozzle 91 and the heat-affected zone have finer crystal grains and lower strength. In addition, there are portions where the crystal grains are coarsened, and depending on how the stress is applied, there are cases in which damage occurs. Therefore, in the present invention, as shown in FIG. 7, induction heating coils 11 f and 11 g are provided in the vicinity of the welded portion 92 and its heat-affected zone so as to keep the relative relationship with the welded portion 92 constant. What is necessary is just to heat the vicinity.

以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all possible and are within the scope of the present invention.

実施例1
強度劣化部を加熱保持したときに、結晶粒がどの程度成長するかについて、高周波誘導加熱装置の代わりに高温還元反応炉を用いて模擬実験を行った。
Example 1
A simulation experiment was conducted using a high-temperature reduction reactor instead of a high-frequency induction heating device to determine how much the crystal grains grow when the strength deteriorated portion is heated and held.

火力発電設備において、約400℃以上の環境下で20年程度使用された高中圧タービンから切り出したサンプル(以下、ケーシング廃材と呼ぶことがある)を、高温還元反応炉を用いて加熱保持し、加熱保持前後における結晶粒度の変化を夫々測定した。また、加熱保持前後における強度変化を調べるために硬さを測定した。   In a thermal power generation facility, a sample cut out from a high and medium pressure turbine used for about 20 years in an environment of about 400 ° C. or higher (hereinafter sometimes referred to as casing waste) is heated and held using a high temperature reduction reactor, The change in crystal grain size before and after heating was measured. Further, the hardness was measured in order to examine the change in strength before and after heating.

上記サンプルは、Cを0.15質量%、Siを0.47質量%、Mnを0.62質量%、Pを0.009質量%、Sを0.009質量%、Crを1.15質量%、Moを1.02質量%、Vを0.08質量%、Niを0.13質量%、Cuを0.14質量%含有し、残部が鉄および不可避不純物からなるCr−Mo−V鋳鋼のケーシング廃材であり、このサンプルを形状がφ8mm×12mmの試験片に加工し、熱間加工再現装置(加工フォーマスター)を用いて下記表1に示す条件で熱処理した。表1には、室温から加熱温度までの加熱速度、加熱温度から室温までの冷却速度も併せて示した。   In the above sample, C is 0.15% by mass, Si is 0.47% by mass, Mn is 0.62% by mass, P is 0.009% by mass, S is 0.009% by mass, and Cr is 1.15% by mass. Cr-Mo-V cast steel containing 1.0% by mass, Mo by 1.02% by mass, V by 0.08% by mass, Ni by 0.13% by mass and Cu by 0.14% by mass with the balance being iron and inevitable impurities This sample was processed into a test piece having a shape of φ8 mm × 12 mm and heat-treated under the conditions shown in Table 1 below using a hot processing reproduction device (processing for master). Table 1 also shows the heating rate from room temperature to heating temperature and the cooling rate from heating temperature to room temperature.

上記サンプルのA3変態点は、熱間加工再現装置(加工フォーマスター)に付属している径変化追従型He−Neガスレーザーを用いて加熱−膨張曲線を求め、この曲線から鋼製素材のAc3変態点を求めた。なお、下記表1のNo.3〜8は、加熱温度が低過ぎるため、Ac3変態点を測定できなかった。 A 3 transformation point of the sample is hot-working reproduction apparatus heated with a diameter change-following He-Ne gas laser that comes with (working Foamaster) - seeking expansion curve, the steel material from this curve Ac 3 transformation point was determined. In addition, No. 1 in Table 1 below. In 3 to 8, the heating temperature was too low, so the Ac 3 transformation point could not be measured.

加熱保持後は、アルゴンガス雰囲気下で、690℃×5時間保持して応力除去焼きなましし、次いで常温まで炉冷した。   After the heating and holding, the steel was held at 690 ° C. for 5 hours in an argon gas atmosphere, and was subjected to stress removal annealing, and then cooled to room temperature.

得られた試験片の中心軸を通るように長手方向に2分割して横断面を露出させ、その一方を研磨、3質量%ナイタール液でエッチングした後、光学顕微鏡で400倍でミクロ組織を観察した。ミクロ組織の写真を撮影し、結晶粒の粒度番号を、JIS G0551の「鋼のオーステナイト結晶粒度試験方法」で規定される結晶粒度標準図と比較して測定した。なお、新材(No.1)の粒度番号と、熱処理する前のケーシング廃材まま(No.2)の粒度番号についても同様に測定した。測定結果を下記表1に併せて示す。   The cross section is exposed by dividing into two in the longitudinal direction so as to pass through the central axis of the obtained test piece, one of which is polished and etched with a 3% by mass nital solution, and then the microstructure is observed 400 times with an optical microscope did. A photograph of the microstructure was taken, and the grain size number was measured in comparison with the grain size standard chart defined in “Method for testing austenite grain size of steel” in JIS G0551. In addition, it measured similarly about the particle size number of a new material (No. 1), and the particle size number of the casing waste material before heat processing (No. 2). The measurement results are also shown in Table 1 below.

また、加熱温度と粒度番号との関係を示すグラフを図8として示す。図8中、◇は保持時間が6秒の例、□は保持時間が60秒の例、△は保持時間が600秒の例の結果を示している。   Moreover, the graph which shows the relationship between heating temperature and a particle size number is shown as FIG. In FIG. 8, ◇ indicates an example in which the holding time is 6 seconds, □ indicates an example in which the holding time is 60 seconds, and Δ indicates an example in which the holding time is 600 seconds.

また、得られた試験片の硬さをビッカース硬度計を用いて測定した。硬さは3箇所測定し、結果を平均した。なお、熱処理する前のケーシング廃材ままの粒度番号と、新材の粒度番号についても同様に測定した。測定結果を下記表1に併せて示す。また、加熱温度とビッカース硬さとの関係を示すグラフを図9として示す。図9中、◇は保持時間が6秒の例、□は保持時間が60秒の例、△は保持時間が600秒の例の結果を示している。   Moreover, the hardness of the obtained test piece was measured using the Vickers hardness meter. The hardness was measured at three locations, and the results were averaged. In addition, it measured similarly about the particle size number of the casing waste material before heat processing, and the particle size number of a new material. The measurement results are also shown in Table 1 below. Moreover, the graph which shows the relationship between heating temperature and Vickers hardness is shown as FIG. In FIG. 9, ◇ indicates an example in which the holding time is 6 seconds, □ indicates an example in which the holding time is 60 seconds, and Δ indicates an example in which the holding time is 600 seconds.

Figure 2008095133
Figure 2008095133

表1と図8から明らかなように、加熱温度を高くするほど、或いは保持時間を長くするほど、結晶粒が成長し、粒度番号が小さくなっている。また、表1と図9から明らかなように、加熱温度を高くするほど、或いは保持時間を長くするほど、硬くなっており、加熱保持によって、硬さが回復していることを示している。これは、加熱温度が高いほど、或いは保持時間が長いほど、オーステナイトへの変態が進み、冷却時にオーステナイトからベイナイトまたはマルテンサイトへの変態量が増大した結果、硬くなると考えられる。なお、材料の硬度とクリープ強度の間には相関関係があり、硬度が大きいほど、クリープ強度が大きいことが一般的に知られている。   As is apparent from Table 1 and FIG. 8, the higher the heating temperature or the longer the holding time, the more the crystal grains grow and the particle size number becomes smaller. Further, as apparent from Table 1 and FIG. 9, the higher the heating temperature or the longer the holding time, the harder it is, indicating that the hardness has been recovered by heating and holding. This is considered to be because the higher the heating temperature or the longer the holding time, the more the transformation to austenite proceeds, and the more the transformation amount from austenite to bainite or martensite increases during cooling. Note that there is a correlation between the hardness of the material and the creep strength, and it is generally known that the higher the hardness, the higher the creep strength.

実施例2
上記実施例1で用いたケーシング廃材から切り出した試験片を用い、クリープ試験した。試験片としては、下記表2に示したNo.21〜30を用いた。
Example 2
A creep test was performed using a test piece cut out from the casing waste material used in Example 1 above. As a test piece, No. shown in Table 2 below. 21-30 were used.

No.21は、後記する図13に示した新材のクリープ試験のデータから各試験応力における平均クリープ強度を算出し、このデータから回帰曲線を求めて算出したデータである。No.22〜26では、ケーシング廃材から切り出した試験片を熱処理したものを用いてクリープ試験した。熱処理は、高温還元反応炉で1100℃に加熱し、この温度で8時間または10分間保持した後、室温まで空冷(AC;冷却速度は約1000℃/時間)するか、或いは保持した後、350℃まで徐冷(冷却速度は約200℃/時間)したあと空冷し、次いで690℃で8時間加熱して焼戻しした(No.22,23,25,26)。また、高周波誘導加熱装置で1100℃に加熱し、この温度で4分間または1時間保持した後、室温まで空冷(AC;冷却速度は約1000℃/時間)するか、或いは保持した後、350℃まで徐冷(冷却速度は約200℃/時間)したあと空冷し、次いで690℃で8時間加熱して焼戻しした(No.24,27)。   No. 21 is data calculated by calculating the average creep strength at each test stress from the creep test data of the new material shown in FIG. No. In Nos. 22 to 26, a creep test was performed using a heat-treated test piece cut out from the casing waste material. The heat treatment is performed by heating to 1100 ° C. in a high-temperature reduction reactor and holding at this temperature for 8 hours or 10 minutes, and then cooling to room temperature (AC; cooling rate is about 1000 ° C./hour) or holding 350 After gradually cooling to 0 ° C. (cooling rate is about 200 ° C./hour), it was air-cooled and then tempered by heating at 690 ° C. for 8 hours (No. 22, 23, 25, 26). In addition, after heating to 1100 ° C. with a high-frequency induction heating device and holding at this temperature for 4 minutes or 1 hour, air cooling to room temperature (AC; cooling rate is about 1000 ° C./hour) or holding, then 350 ° C. (Cooling rate is about 200 ° C./hour), then air-cooled, and then tempered by heating at 690 ° C. for 8 hours (No. 24, 27).

No.28では、上記ケーシング廃材を、高周波誘導加熱装置で1100℃に加熱し、この温度で1時間保持した後、350℃まで徐冷(冷却速度は約200℃/時間)し、次いで空冷し、更に690℃で8時間加熱して焼戻ししたサンプルについて、高周波誘導加熱コイルの形状をケーシング廃材に投影したときに、高周波誘導加熱コイルの形状が投影された部分と投影されていない部分の境界部を含むように切り出したものを用いてクリープ試験した。No.29では、上記ケーシング廃材同士を溶接し、溶接継ぎ手と熱影響部を含むように切り出したサンプルを用いてクリープ試験した。No.30では、溶接熱影響部における組織を模擬するために(細粒域再現材)、上記ケーシング廃材を熱処理して結晶粒径を約10〜30μmに調整したサンプルを用いてクリープ試験した。   No. 28, the casing waste material is heated to 1100 ° C. with a high-frequency induction heating device, held at this temperature for 1 hour, then gradually cooled to 350 ° C. (cooling rate is about 200 ° C./hour), then air-cooled, For a sample tempered by heating at 690 ° C. for 8 hours, when the shape of the high-frequency induction heating coil is projected onto the casing waste material, it includes the boundary between the portion where the shape of the high-frequency induction heating coil is projected and the portion where it is not projected A creep test was carried out using what was cut out as described above. No. In 29, the above-mentioned casing waste materials were welded together, and a creep test was performed using a sample cut out so as to include a welded joint and a heat-affected zone. No. In No. 30, a creep test was performed using a sample in which the casing waste material was heat-treated and the crystal grain size was adjusted to about 10 to 30 μm in order to simulate the structure in the weld heat affected zone (fine grain region reproduction material).

クリープ試験の試験応力は、8kgf/mm2、12kgf/mm2または20kgf/mm2とした。クリープ試験の結果から、下記(1)式を用いてラーソン−ミラーパラメータ(LMP)を算出した。算出結果を下記表2に示す。LMPと応力の関係を図10〜図12に示す。図10はNo.21とNo.22〜24の結果、図11はNo.21とNo.25〜27の結果、図12はNo.21とNo.28〜30の結果を夫々示している。下記(1)式中、Tは試験温度(℃)、trは破断時間(h)、20は材料定数である。
LMP=(T+273)×(logtr+20) ・・・(1)
The test stress in the creep test was 8 kgf / mm 2 , 12 kgf / mm 2 or 20 kgf / mm 2 . From the result of the creep test, the Larson-Miller parameter (LMP) was calculated using the following formula (1). The calculation results are shown in Table 2 below. The relationship between LMP and stress is shown in FIGS. FIG. 21 and no. As a result of Nos. 22 to 24, FIG. 21 and no. As a result of 25-27, FIG. 21 and no. The results of 28 to 30 are shown respectively. In the following formula (1), T is a test temperature (° C.), tr is a fracture time (h), and 20 is a material constant.
LMP = (T + 273) × (logtr + 20) (1)

また、種々の新材を用いてクリープ試験し、ラーソン−ミラーパラメータを算出し、応力との関係をプロットしたものに、下記表2のNo.25とNo.26の結果を重ねてプロットしたグラフを図13に示す。図13中、△はNo.25の結果(1100℃、8hr、徐冷)、□はNo.26の結果(1100℃、10min、徐冷)を示している。   In addition, the creep test was performed using various new materials, the Larson-Miller parameter was calculated, and the relationship with the stress was plotted. 25 and No. A graph in which the results of 26 are plotted is shown in FIG. In FIG. 25 (1100 ° C., 8 hr, slow cooling). 26 results (1100 ° C., 10 min, slow cooling) are shown.

Figure 2008095133
Figure 2008095133

表2と図10〜図13から明らかなように、加熱保持した例(No.22〜27)では、ケーシング廃材のクリープ強度が新材程度に回復していることが分かる。   As is apparent from Table 2 and FIGS. 10 to 13, it can be seen that the creep strength of the casing waste material is restored to the level of the new material in the case of heating and holding (No. 22 to 27).

特に図10と図13から明らかなように、ケーシング廃材を4分間加熱保持した場合(No.24)と10分間加熱保持した場合(No.23)のクリープ強度は、新材のクリープ強度の下限程度に回復することが分かる。一方、ケーシング廃材を8時間加熱保持した場合(No.22)のクリープ強度は、新材のクリープ強度の上限程度に回復することが分かる。   In particular, as is apparent from FIGS. 10 and 13, the creep strength when the casing waste is heated and held for 4 minutes (No. 24) and when heated and held for 10 minutes (No. 23) is the lower limit of the creep strength of the new material. It turns out that it recovers to the extent. On the other hand, it can be seen that the creep strength when the casing waste material is heated and held for 8 hours (No. 22) recovers to the upper limit of the creep strength of the new material.

図11と図13から明らかなように、ケーシング廃材を10分間加熱保持した場合(No.26)のクリープ強度は、新材のクリープ強度の下限程度に回復することが分かる。一方、ケーシング廃材を1時間加熱保持した場合(No.27)と8時間加熱保持した場合(No.25)のクリープ強度は、新材のクリープ強度の上限程度に回復することが分かる。   As can be seen from FIGS. 11 and 13, the creep strength when the casing waste material is heated and held for 10 minutes (No. 26) is restored to the lower limit of the creep strength of the new material. On the other hand, it can be seen that the creep strength when the casing waste material is heated and held for 1 hour (No. 27) and when it is heated and held for 8 hours (No. 25) recovers to the upper limit of the creep strength of the new material.

図10と図11を比べると、加熱保持した後に、空冷するよりも徐冷する方がクリープ強度が高くなることが分かる。空冷するとマルテンサイトに近い組織になるのに対し、徐冷すると一部にクリープ強度が低いフェライト組織が生成するものの、大半がクリープ強度の高い上部ベイナイト組織が生成したためと考えられる。   Comparing FIG. 10 and FIG. 11, it can be seen that the creep strength is higher in the case of slow cooling than in the case of air cooling after heating and holding. This is thought to be due to the formation of an upper bainite structure having a high creep strength, although a ferrite structure having a low creep strength is formed in part when the cooling is performed while air cooling results in a structure close to martensite.

図11〜図13から明らかなように、高周波熱処理境界部(No.28)のクリープ強度は、ケーシング廃材を10分間加熱保持した場合(No.26)のクリープ強度と同程度であり、新材のクリープ強度の下限程度に回復することが分かる。一方、溶接材(No.29)と細粒域再現材(No.30)のクリープ強度は同程度であり、著しく低いことが分かる。   As is apparent from FIGS. 11 to 13, the creep strength of the high-frequency heat treatment boundary (No. 28) is similar to the creep strength when the casing waste material is heated and held for 10 minutes (No. 26). It can be seen that the creep strength recovers to the lower limit. On the other hand, the creep strength of the welding material (No. 29) and the fine grain region reproduction material (No. 30) are comparable and are found to be remarkably low.

上記No.25とNo.26のクリープ強度の結果と、新材の個々のクリープ強度の結果を併せたものを図13に示す。図13から明らかなように、ケーシング廃材を8時間加熱保持した場合(No.25)のクリープ強度は、新材のクリープ強度の上限程度に回復しており、ケーシング廃材を10分間加熱保持した場合(No.26)のクリープ強度は、新材のクリープ強度の下限程度に回復していることが分かる。   No. above. 25 and No. FIG. 13 shows the result of the creep strength of 26 and the result of the individual creep strength of the new material. As is apparent from FIG. 13, the creep strength when the casing waste is heated and held for 8 hours (No. 25) has recovered to the upper limit of the creep strength of the new material, and the casing waste is heated and held for 10 minutes. It can be seen that the creep strength of (No. 26) has recovered to the lower limit of the creep strength of the new material.

図1の(a)は、本発明の高周波誘導加熱装置の一構成例を示す概略説明図であり、(b)は(a)の一部を拡大した図である。(A) of FIG. 1 is a schematic explanatory drawing which shows one structural example of the high frequency induction heating apparatus of this invention, (b) is the figure which expanded a part of (a). 図2の(a)は、本発明の高周波誘導加熱装置の他の構成例を示す概略説明図であり、(b)は(a)をA−A’方向から見たときの断面図である。FIG. 2A is a schematic explanatory view showing another configuration example of the high-frequency induction heating device of the present invention, and FIG. 2B is a cross-sectional view of FIG. 2A when viewed from the AA ′ direction. . 図3の(a)は、本発明の高周波誘導加熱装置の他の構成例を示す概略説明図であり、(b)は上記(a)をB−B’方向から見たときの断面図である。FIG. 3A is a schematic explanatory view showing another configuration example of the high-frequency induction heating device of the present invention, and FIG. 3B is a cross-sectional view of the above-described (a) when viewed from the BB ′ direction. is there. 図4は、本発明の高周波誘導加熱装置の他の構成例を示す概略説明図である。FIG. 4 is a schematic explanatory view showing another configuration example of the high-frequency induction heating device of the present invention. 図5は、本発明の高周波誘導加熱装置の他の構成例を示す概略説明図である。FIG. 5 is a schematic explanatory view showing another configuration example of the high-frequency induction heating device of the present invention. 図6は、矩形状の誘導加熱コイルを2つ隣り合うように配置し、通電したときに発生する磁束を模式的に描いた図である。FIG. 6 is a diagram schematically illustrating a magnetic flux generated when two rectangular induction heating coils are arranged adjacent to each other and energized. 図7の(a)は、本発明の実施形態の一例を示した概略説明図であり、(b)は(a)をC−C’方向から見たときの断面図である。FIG. 7A is a schematic explanatory view showing an example of an embodiment of the present invention, and FIG. 7B is a cross-sectional view of FIG. 7A viewed from the C-C ′ direction. 図8は、加熱温度と粒度番号との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the heating temperature and the particle number. 図9は、加熱温度とビッカース硬さとの関係を示すグラフである。FIG. 9 is a graph showing the relationship between the heating temperature and the Vickers hardness. 図10は、クリープ試験したときの結果を示すグラフである。FIG. 10 is a graph showing the results of the creep test. 図11は、クリープ試験したときの結果を示すグラフである。FIG. 11 is a graph showing the results of a creep test. 図12は、クリープ試験したときの結果を示すグラフである。FIG. 12 is a graph showing the results of a creep test. 図13は、クリープ試験したときの結果を示すグラフである。FIG. 13 is a graph showing the results of a creep test.

符号の説明Explanation of symbols

1 高周波誘導加熱装置
11 誘導加熱コイル
12 治具
12a スペーサ
12b 接続部材
12c ボルト
13 絶縁材
14 接続部材
14a スリット
2 加熱対象とする被処理材
21 強度劣化部
3 加熱対象とする被処理材(大口径の管状被処理材)
5 固定台
6 加熱対象とする被処理材(小口径の管状被処理材)
7 クランプ
8 接続部材
9 管寄せ
91 管台
DESCRIPTION OF SYMBOLS 1 High frequency induction heating apparatus 11 Induction heating coil 12 Jig 12a Spacer 12b Connection member 12c Bolt 13 Insulation material 14 Connection member 14a Slit 2 Material to be processed 21 Strength degradation part 3 Material to be processed (large diameter) Tubular material to be treated)
5 Fixing base 6 Material to be heated (tubular material with small diameter)
7 Clamp 8 Connection member 9

Claims (6)

鋼製部材を用いて構成されている設備の強度劣化部の強度を回復させる方法であって、
該強度劣化部を鋼製部材のA3変態点以上の温度で加熱保持することにより強度を回復させることを特徴とする強度劣化部の強度回復方法。
It is a method of recovering the strength of the strength deterioration part of the equipment configured using steel members,
Strength recovery method of the intensity degradation unit for the said intensity deteriorated part, characterized in that to restore the strength by heating maintained at A 3 transformation point or above the temperature of the steel member.
前記強度劣化部の加熱を、高周波誘導加熱装置を用いて行う請求項1に記載の強度回復方法。   The strength recovery method according to claim 1, wherein the strength deterioration portion is heated using a high frequency induction heating device. 前記強度劣化部が、鋼材同士の溶接部とその熱影響部を含む部分である請求項1または2に記載の強度回復方法。   The strength recovery method according to claim 1 or 2, wherein the strength deteriorated portion is a portion including a welded portion between steel materials and a heat affected zone thereof. 請求項1〜3のいずれかに記載の強度回復方法に用いられる高周波誘導加熱装置であって、この装置は、誘導加熱コイルの他に、該誘導加熱コイルと加熱すべき強度劣化部との相対関係を一定に保つための構成を備えていることを特徴とする高周波誘導加熱装置。   It is a high frequency induction heating apparatus used for the strength recovery method according to any one of claims 1 to 3, wherein the apparatus is provided with a relative relationship between the induction heating coil and the strength deterioration portion to be heated, in addition to the induction heating coil. A high frequency induction heating apparatus comprising a configuration for maintaining a constant relationship. 前記高周波誘導加熱装置は、少なくとも2つの誘導加熱コイルを備えており、隣り合う一方の誘導加熱コイルと他方の誘導加熱コイルは、加熱すべき強度劣化部との相対関係を一定に保ちつつ、誘導加熱コイル同士の相対関係を調整可能に接続されている請求項4に記載の高周波誘導加熱装置。   The high-frequency induction heating apparatus includes at least two induction heating coils, and one induction heating coil and the other induction heating coil that are adjacent to each other are inducted while maintaining a constant relative relationship with a strength deterioration portion to be heated. The high frequency induction heating device according to claim 4, wherein the relative relationship between the heating coils is connected to be adjustable. 前記少なくとも2つの誘導加熱コイルは、隣コイルに近い側に位置している導体同士の通電方向が同方向となる通電極性にて配置されている請求項5に記載の高周波誘導加熱装置。   The high-frequency induction heating device according to claim 5, wherein the at least two induction heating coils are arranged with a current-carrying polarity in which the current-carrying directions of conductors located on the side close to the adjacent coil are the same direction.
JP2006275719A 2006-10-06 2006-10-06 Method for recovering strength in strength-deteriorated part and high-frequency induction heating apparatus used to method for recovering strength Pending JP2008095133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006275719A JP2008095133A (en) 2006-10-06 2006-10-06 Method for recovering strength in strength-deteriorated part and high-frequency induction heating apparatus used to method for recovering strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006275719A JP2008095133A (en) 2006-10-06 2006-10-06 Method for recovering strength in strength-deteriorated part and high-frequency induction heating apparatus used to method for recovering strength

Publications (1)

Publication Number Publication Date
JP2008095133A true JP2008095133A (en) 2008-04-24

Family

ID=39378298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006275719A Pending JP2008095133A (en) 2006-10-06 2006-10-06 Method for recovering strength in strength-deteriorated part and high-frequency induction heating apparatus used to method for recovering strength

Country Status (1)

Country Link
JP (1) JP2008095133A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016194127A (en) * 2015-04-01 2016-11-17 新日鐵住金株式会社 Induction heating method of rotor of ipm motor and induction heating device
JP2021132826A (en) * 2020-02-26 2021-09-13 象印マホービン株式会社 Heating cooker

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53119218A (en) * 1977-03-29 1978-10-18 Daiichi Koshuha Kogyo Kk Partially solublizing treatment of stainless material
JPS5562690A (en) * 1978-11-02 1980-05-12 Tokyo Shibaura Electric Co Induction heater
JPS61276917A (en) * 1985-05-31 1986-12-06 Sumitomo Metal Ind Ltd Heat treatment of heat resistant ferritic steel to restore toughness
JPS6270526A (en) * 1985-09-21 1987-04-01 Nippon Steel Corp Manufacture of ferritic stainless steel sheet superior in workability
JPH0585842U (en) * 1992-03-03 1993-11-19 富士電子工業株式会社 High frequency heating coil spacer and high frequency heating coil spacer mounting structure
JPH10273733A (en) * 1997-03-28 1998-10-13 Toshiba Corp Heat treatment for recycling of equipment made of stainless steel for nuclear power use
JPH11172335A (en) * 1997-12-04 1999-06-29 Hitachi Ltd Method for regeneration of reactor neutron instrumentation guide pipe
JPH11237912A (en) * 1998-02-19 1999-08-31 Toshiba Corp Method and device for maintenance and management of high-temperature structural member
JP2000312446A (en) * 1999-04-23 2000-11-07 Hitachi Metals Ltd High resistance striped member for motor, motor utilizing the same and manufacture thereof
JP2002158086A (en) * 2000-11-17 2002-05-31 Dai Ichi High Frequency Co Ltd Segment-uniting induction heating coil
JP2003253337A (en) * 2001-12-27 2003-09-10 Mitsubishi Heavy Ind Ltd Process and apparatus for regenerating creep deteriorated part
JP2004143558A (en) * 2002-10-25 2004-05-20 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Method for grain refining of steel and steel alloy structure by high-frequency induction heating, grain-refining apparatus for the same, method for working metallic structure, and metallic structure
JP2004531028A (en) * 2001-03-26 2004-10-07 ロス,ニコラス,ヴイ Transverse flux induction heating of conductive strips.
JP2005259524A (en) * 2004-03-11 2005-09-22 Toshiba Corp Spacer for high frequency heating, and heating or repairing method using the same
JP2005330513A (en) * 2004-05-18 2005-12-02 Sumitomo Metal Ind Ltd Steel for member with steel-frame structure, method for using the same and steel-frame structure

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53119218A (en) * 1977-03-29 1978-10-18 Daiichi Koshuha Kogyo Kk Partially solublizing treatment of stainless material
JPS5562690A (en) * 1978-11-02 1980-05-12 Tokyo Shibaura Electric Co Induction heater
JPS61276917A (en) * 1985-05-31 1986-12-06 Sumitomo Metal Ind Ltd Heat treatment of heat resistant ferritic steel to restore toughness
JPS6270526A (en) * 1985-09-21 1987-04-01 Nippon Steel Corp Manufacture of ferritic stainless steel sheet superior in workability
JPH0585842U (en) * 1992-03-03 1993-11-19 富士電子工業株式会社 High frequency heating coil spacer and high frequency heating coil spacer mounting structure
JPH10273733A (en) * 1997-03-28 1998-10-13 Toshiba Corp Heat treatment for recycling of equipment made of stainless steel for nuclear power use
JPH11172335A (en) * 1997-12-04 1999-06-29 Hitachi Ltd Method for regeneration of reactor neutron instrumentation guide pipe
JPH11237912A (en) * 1998-02-19 1999-08-31 Toshiba Corp Method and device for maintenance and management of high-temperature structural member
JP2000312446A (en) * 1999-04-23 2000-11-07 Hitachi Metals Ltd High resistance striped member for motor, motor utilizing the same and manufacture thereof
JP2002158086A (en) * 2000-11-17 2002-05-31 Dai Ichi High Frequency Co Ltd Segment-uniting induction heating coil
JP2004531028A (en) * 2001-03-26 2004-10-07 ロス,ニコラス,ヴイ Transverse flux induction heating of conductive strips.
JP2003253337A (en) * 2001-12-27 2003-09-10 Mitsubishi Heavy Ind Ltd Process and apparatus for regenerating creep deteriorated part
JP2004143558A (en) * 2002-10-25 2004-05-20 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Method for grain refining of steel and steel alloy structure by high-frequency induction heating, grain-refining apparatus for the same, method for working metallic structure, and metallic structure
JP2005259524A (en) * 2004-03-11 2005-09-22 Toshiba Corp Spacer for high frequency heating, and heating or repairing method using the same
JP2005330513A (en) * 2004-05-18 2005-12-02 Sumitomo Metal Ind Ltd Steel for member with steel-frame structure, method for using the same and steel-frame structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013040189; 須藤一ら: '使用ずみ鋼の高温強度の回復処理' 耐熱金属材料第123委員会研究報告 第22巻、第3号, 19811109, p.265〜275, 日本学術振興会 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016194127A (en) * 2015-04-01 2016-11-17 新日鐵住金株式会社 Induction heating method of rotor of ipm motor and induction heating device
JP2021132826A (en) * 2020-02-26 2021-09-13 象印マホービン株式会社 Heating cooker

Similar Documents

Publication Publication Date Title
Gandy Carbon steel handbook
Milović et al. Microstructures and mechanical properties of creep resistant steel for application at elevated temperatures
RU2488471C2 (en) Austenite welding material and method of preventive servicing to rule out corrosion cracking at stress, and method of preventing servicing to rule out intercrystalline corrosion
Allahkaram et al. Investigation of weldability and property changes of high pressure heat-resistant cast stainless steel tubes used in pyrolysis furnaces after a five-year service
JP6515276B2 (en) High strength ferritic heat resistant steel structure and method of manufacturing the same
Sarafan et al. Characteristics of an autogenous single pass electron beam weld in thick gage CA6NM steel
Bhaduri et al. Repair welding of cracked steam turbine blades using austenitic and martensitic stainless-steel consumables
CN109789504B (en) Method for manufacturing ferritic heat-resistant steel welded structure, and ferritic heat-resistant steel welded structure
Golański et al. Examination of coil pipe butt joint made of 7CrMoVTiB10-10 (T24) steel after service
Parameswaran et al. Role of microstructure on creep rupture behaviour of similar and dissimilar joints of modified 9Cr-1Mo steel
Gaffard et al. High temperature creep flow and damage properties of the weakest area of 9Cr1Mo-NbV martensitic steel weldments
KR102165756B1 (en) Ferritic heat-resistant steel welded structure manufacturing method and ferritic heat-resistant steel welded structure
JP2008095133A (en) Method for recovering strength in strength-deteriorated part and high-frequency induction heating apparatus used to method for recovering strength
Henry Growing experience with P91/T91 forcing essential code changes
Sarafan et al. Global and local characteristics of an autogenous single pass electron beam weld in thick gage UNS S41500 steel
Hamaguchi et al. Creep rupture strength and microstructures of SAVE12AD welded joints
Strader et al. Stress-relief cracking in simulated-coarse-grained heat affected zone of a creep-resistant steel
Yamada et al. Re-weldability tests of irradiated 316L (N) stainless steel using laser welding technique
Vahdatkhah et al. Weld repair of gas turbine disc: optimization of pulsed TIG welding process parameters and microstructural analysis of Cr–Mo-V Steel
Nasruddin et al. Case study of straightening methods for bent shaft 1.25 mm on hip turbine rotor pacitan steam power plant# 1
Zakaria et al. Effect of heat treatment on the microstructural evolution in weld Region of 304l pipeline steel
JP5903120B2 (en) Creep damage evaluation method
Strader Phase Transformation Behavior and Stress Relief Cracking Susceptibility in Creep Resistant Steels
Divya et al. In-situ weld repair of cracked shrouds of turbine and characterization of the weld joint
Shassere Microstructure Control and Correlation to Creep Properties in Grade 91 Steel Weldment After Thermo-Mechanical Treatments and an Fe-30Cr-3Al Alloy Strengthened by Fe2Nb Laves Phase

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130510

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130618

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20130730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140128