JP2020076144A - Motor core and method for manufacturing the same - Google Patents

Motor core and method for manufacturing the same Download PDF

Info

Publication number
JP2020076144A
JP2020076144A JP2019138471A JP2019138471A JP2020076144A JP 2020076144 A JP2020076144 A JP 2020076144A JP 2019138471 A JP2019138471 A JP 2019138471A JP 2019138471 A JP2019138471 A JP 2019138471A JP 2020076144 A JP2020076144 A JP 2020076144A
Authority
JP
Japan
Prior art keywords
motor core
less
punching
steel sheet
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019138471A
Other languages
Japanese (ja)
Other versions
JP7092095B2 (en
Inventor
田中 孝明
Takaaki Tanaka
孝明 田中
智幸 大久保
Tomoyuki Okubo
智幸 大久保
尾田 善彦
Yoshihiko Oda
善彦 尾田
善彰 財前
Yoshiaki Zaizen
善彰 財前
幸乃 宮本
Yukino MIYAMOTO
幸乃 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2020076144A publication Critical patent/JP2020076144A/en
Application granted granted Critical
Publication of JP7092095B2 publication Critical patent/JP7092095B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Soft Magnetic Materials (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

To provide a motor core which is obtained by laminating a magnetic steel sheet and is excellent in fatigue strength, and a method for manufacturing the motor core.SOLUTION: The motor core is provided in which a tensile residual stress of a blanked end surface of the motor core is 250 MPa or less and hardness of the blanked end surface is 1.10 or more times the hardness of a base material. The method for manufacturing a motor core is provided that is composed of a blanking step of blanking a motor core material from a magnetic steel sheet that is used as the base material of the motor core, a laminating step of laminating the motor core material, and an annealing step in which the motor core material or a motor core is heated to a temperature T (°C) of 250°C or higher and 550°C or lower, and is held for time t (sec) satisfying 3350≤(T+273)×(2+logt)≤4650.SELECTED DRAWING: Figure 1

Description

本発明は、電磁鋼板を積層してなる疲労強度に優れるモータコアおよびその製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a motor core formed by laminating electromagnetic steel sheets and having excellent fatigue strength, and a method for manufacturing the motor core.

近年の世界的な電気機器に対する省エネルギー化への要求の高まりにともない、回転機の鉄心に使用される無方向性電磁鋼板に対しても、より優れた磁気特性が要求されるようになってきている。また、最近では、HEV(ハイブリッド車)やEV(電気自動車)の駆動モータ等において、小型化・高出力化のニーズが強く、本要求を達成するため、モータの回転数を上昇させることが検討されている。   With the increasing demand for energy saving in global electric equipment in recent years, even better magnetic properties are required for non-oriented electrical steel sheets used for iron cores of rotating machines. There is. In recent years, drive motors for HEVs (hybrid vehicles) and EVs (electric vehicles) have been strongly demanded for miniaturization and high output, and it is considered to increase the rotation speed of the motors in order to achieve this requirement. Has been done.

モータコアは、ステータコアとロータコアに分けられるが、HEV駆動モータのロータコアは外径が大きいことから大きな遠心力が働く。また、ロータコアは構造上ロータコアブリッジ部と呼ばれる非常に狭い部分(1〜2mm)が存在し、該部分は駆動中には特に高応力状態となる。さらに、モータは回転と停止を繰り返すため、ロータコアには遠心力による大きな繰り返し応力が働くことから、ロータコアに用いられる電磁鋼板は、優れた疲労特性を有する必要がある。一方、ステータコアに用いられる電磁鋼板は、モータの小型化・高出力化を達成するため、高磁束密度・低鉄損であることが望ましい。すわなち、モータコアに使用される電磁鋼板の特性としては、ロータコア用には高疲労特性、ステータコア用には高磁束密度・低鉄損であることが理想的である。   The motor core is divided into a stator core and a rotor core, but the rotor core of the HEV drive motor has a large outer diameter, and thus a large centrifugal force acts. Further, the rotor core has a very narrow portion (1 to 2 mm) called a rotor core bridge portion due to its structure, and this portion is in a particularly high stress state during driving. Further, since the motor repeats rotation and stop, a large repetitive stress is exerted on the rotor core due to centrifugal force. Therefore, the magnetic steel sheet used for the rotor core needs to have excellent fatigue characteristics. On the other hand, the magnetic steel sheet used for the stator core preferably has high magnetic flux density and low iron loss in order to achieve downsizing and high output of the motor. That is, as the characteristics of the magnetic steel sheet used for the motor core, it is ideal that the rotor core has high fatigue characteristics and the stator core has high magnetic flux density and low iron loss.

このように、同じモータコアに使用される電磁鋼板であっても、ロータコアとステータコアでは要求される特性が大きく異なる。しかし、モータコアの製造においては、材料歩留りや生産性を高めるため、同一の素材鋼板からロータコア材とステータコア材を打ち抜き加工により同時に採取し、その後、それぞれの鋼板を積層してロータコアまたはステータコアに組み立てられるのが望ましい。   As described above, even in electromagnetic steel sheets used for the same motor core, the required characteristics are significantly different between the rotor core and the stator core. However, in manufacturing a motor core, in order to improve the material yield and productivity, the rotor core material and the stator core material are simultaneously punched from the same material steel sheet, and then the respective steel sheets are stacked to be assembled into the rotor core or the stator core. Is desirable.

モータコア用の高強度で低鉄損の無方向性電磁鋼板を製造する技術として、例えば、特許文献1には、高強度の無方向性電磁鋼板を製造し、該鋼板から打抜加工でロータコア材とステータコア材を採取し・積層して、ロータコアとステータコアを組み立てた後、ステータコアのみに歪取焼鈍を施すことで、高強度のロータコアと低鉄損のステータコアを同一素材から製造する技術が開示されている。   As a technique for producing a high-strength, low iron loss non-oriented electrical steel sheet for a motor core, for example, in Patent Document 1, a high-strength non-oriented electrical steel sheet is produced and a rotor core material is punched from the steel sheet. A technique for manufacturing a high-strength rotor core and a low iron loss stator core from the same material by collecting and stacking the stator core material, assembling the rotor core and the stator core, and then performing strain relief annealing only on the stator core is disclosed. ing.

特開2008−50686号公報JP, 2008-50686, A

しかしながら、上記特許文献1の開示の技術では、高強度の無方向性電磁鋼板を使用することにより降伏応力は向上するが、最も重要な特性である疲労強度は必ずしも向上するとは限らないという問題がある。   However, in the technique disclosed in Patent Document 1, although the yield stress is improved by using the high-strength non-oriented electrical steel sheet, the fatigue strength, which is the most important characteristic, is not necessarily improved. is there.

本発明は、上記従来技術が抱える問題点に鑑みてなされたものであり、その目的は、疲労強度に優れたモータコアを提供するとともに、その安価な製造方法を提案することにある。   The present invention has been made in view of the problems of the above-described conventional technology, and an object thereof is to provide a motor core having excellent fatigue strength and to propose an inexpensive manufacturing method thereof.

発明者らは、上記の課題を解決し、上記目的を達成するために鋭意検討を行なった。その結果、モータコア、特にロータコアの疲労強度の向上には必ずしも高強度鋼板を使用する必要が無く、打抜き端面の残留応力と端面硬さを適正範囲に制御することが重要であることを知見した。   The inventors have made earnest studies to solve the above problems and achieve the above objects. As a result, they have found that it is not always necessary to use high-strength steel plates to improve the fatigue strength of the motor core, especially the rotor core, and it is important to control the residual stress and the end surface hardness of the punched end surface within appropriate ranges.

すなわち、本発明は、第一に、電磁鋼板を積層してなるモータコアであって、該モータコアの打抜き端面の引張残留応力が250MPa以下であり、打抜き端面の硬さが母材硬さの1.10倍以上であることを特徴とするモータコアを提供する。   That is, the present invention is, firstly, a motor core formed by laminating electromagnetic steel sheets, wherein the punching end face of the motor core has a tensile residual stress of 250 MPa or less, and the punching end face has a hardness of 1. Provided is a motor core which is 10 times or more.

本発明の上記電磁鋼板は、質量%でC:0.0050%以下、Si:2.0%以上、7.0%以下、Mn:0.05%以上、3.0%以下、Al:3.0%以下、P:0.2%以下、S:0.005%以下およびN:0.0050%以下を含み、残部がFeおよび不可避的不純物からなる成分組成を有することが好ましい。   The above-mentioned magnetic steel sheet of the present invention is C: 0.0050% or less, Si: 2.0% or more, 7.0% or less, Mn: 0.05% or more, 3.0% or less, Al: 3 in mass%. It is preferable to have a component composition containing 0.0% or less, P: 0.2% or less, S: 0.005% or less and N: 0.0050% or less, with the balance being Fe and inevitable impurities.

また、本発明の上記電磁鋼板は、上記成分組成に加えて、さらに質量%でCu:0.10%以下、Ti:0.010%以下、Nb:0.010%以下およびV:0.010%以下のうちから選ばれる1種または2種以上を含有することが好ましい。   In addition to the above-mentioned composition of ingredients, the above-mentioned magnetic steel sheet of the present invention is Cu: 0.10% or less, Ti: 0.010% or less, Nb: 0.010% or less, and V: 0.010 in mass%. It is preferable to contain one or two or more selected from the following.

また、本発明は、第二に、上記モータコアの製造方法であって、母材となる電磁鋼板からモータコア材を打抜く打抜き工程と、該モータコア材を積層する積層工程と、積層されたモータコアを250℃以上550℃以下の温度Tまで加熱し、該温度に3350≦(T+273)×(2+logt)≦4650を満たす時間t(秒)保持する焼鈍工程とからなること、または、母材となる電磁鋼板からモータコア材を打抜く打抜き工程と、該モータコア材を250℃以上550℃以下の温度Tまで加熱し、該温度に3350≦(T+273)×(2+logt)≦4650を満たす時間t(秒)保持する焼鈍工程と、焼鈍されたモータコア材を積層する積層工程とからなることを特徴とするモータコアの製造方法を提案する。   Further, the present invention is secondly a method for manufacturing a motor core, comprising a punching step of punching a motor core material from an electromagnetic steel sheet as a base material, a laminating step of laminating the motor core material, and a laminated motor core. An annealing step of heating to a temperature T of 250 ° C. or higher and 550 ° C. or lower, and holding the temperature for 3 t ≦ (T + 273) × (2 + logt) ≦ 4650 for t (seconds), or an electromagnetic wave serving as a base material A punching step of punching a motor core material from a steel plate, heating the motor core material to a temperature T of 250 ° C. or higher and 550 ° C. or lower, and maintaining the temperature t (seconds) for 3350 ≦ (T + 273) × (2 + logt) ≦ 4650. A method of manufacturing a motor core, which comprises a step of annealing and a step of laminating the annealed motor core material.

本発明のモータコアの製造方法は、上記打抜き工程における打抜きクリアランスを板厚の3%以上15%以下とすることが好ましい。   In the motor core manufacturing method of the present invention, it is preferable that the punching clearance in the punching step is 3% or more and 15% or less of the plate thickness.

本発明によれば、打抜き加工により、同一の素材鋼板から疲労強度に優れるロータコアと磁気特性に優れるステータコアおよびその製造方法を提供できる。
したがって、本発明によれば、HEV駆動モータはじめとする高出力・高回転モータのモータコア用途に適したモータコアを提供することができるので、モータの従来以上の小型化や高効率化、製造コストの低廉化が可能となり、産業上格段の効果を奏する。
According to the present invention, it is possible to provide a rotor core excellent in fatigue strength, a stator core excellent in magnetic characteristics, and a method for manufacturing the same from the same material steel sheet by punching.
Therefore, according to the present invention, it is possible to provide a motor core suitable for use in a motor core of a high-output / high-speed rotation motor such as an HEV drive motor. It is possible to reduce the cost, and it is very effective in industry.

モータコアの端面硬さと母材硬さの比が疲労限に及ぼす影響を示すグラフである。It is a graph which shows the influence which the ratio of the end surface hardness of a motor core and base material hardness has on a fatigue limit. モータコアの端面の引張残留応力が疲労限に及ぼす影響を示すグラフである。It is a graph which shows the influence which the tensile residual stress of the end surface of a motor core has on a fatigue limit. 打抜き加工後の焼鈍温度T(℃)および保持時間t(秒)がモータコアの特性に与える影響を示すグラフであって、(a)端面硬さと母材硬さの比への影響、および、(b)端面の引張残留応力への影響を表す。3 is a graph showing the influence of the annealing temperature T (° C.) and the holding time t (seconds) after punching on the characteristics of the motor core, wherein (a) the influence on the ratio of the end surface hardness to the base metal hardness, and ( b) Shows the effect on the tensile residual stress of the end face.

まず、本発明のモータコアについて説明する。
1.打抜き端面の引張残留応力が250MPa以下
打抜き端面の引張残留応力は、打抜き端面からの疲労亀裂の発生を助長し、結果として疲労強度の低下を引き起こす。特に、ロータコアでは板面方向に遠心力による繰り返し応力が働くため、打抜き端面の引張残留応力を低減する必要がある。疲労亀裂の発生を十分に抑制するためには、打抜き端面の引張残留応力は250MPa以下とする必要がある。好ましくは、打抜き端面の引張残留応力は200MPa以下、より好ましくは150MPa以下である。一方、圧縮残留応力は疲労亀裂の発生に寄与しないため、打抜き端面の引張残留応力の下限を決める必要はないが、通常打抜き端面の引張残留応力は−100MPa以上(圧縮残留応力が100MPa以下)である。ここで、上記引張残留応力は、打抜き端面の板厚1/2部における板面法線方向に垂直かつ打抜き端面に平行な方向の残留応力である。
First, the motor core of the present invention will be described.
1. The tensile residual stress of the punched end face is 250 MPa or less. The tensile residual stress of the punched end face promotes the generation of fatigue cracks from the punched end face, resulting in a decrease in fatigue strength. In particular, in the rotor core, repeated stress due to centrifugal force acts in the plate surface direction, so it is necessary to reduce the tensile residual stress on the punched end surface. In order to sufficiently suppress the occurrence of fatigue cracks, the tensile residual stress of the punched end face must be 250 MPa or less. The tensile residual stress of the punched end face is preferably 200 MPa or less, more preferably 150 MPa or less. On the other hand, since the compressive residual stress does not contribute to the occurrence of fatigue cracks, it is not necessary to determine the lower limit of the tensile residual stress of the punched end face, but the tensile residual stress of the punched end face is usually -100 MPa or more (compressive residual stress is 100 MPa or less). is there. Here, the above-mentioned tensile residual stress is a residual stress in a direction perpendicular to the plate surface normal direction and parallel to the punched end face at the half thickness of the punched end face.

2.打抜き端面の硬さが母材硬さの1.10倍以上
疲労亀裂の発生は一般に鋼板の強度が高いほど抑制される。一方で、打抜き疲労の場合には、打抜き端面に不可避的に荒れが存在するため、疲労亀裂は打抜き端面から発生することが殆どである。すなわち、打抜き疲労特性を向上するためには、鋼板全体の強度を高める必要はなく、疲労亀裂発生の起点となる打抜き端部の強度を高めることが重要である。端面からの疲労亀裂の発生を十分に抑制するためには、打抜き端面の硬さが母材硬さの1.10倍以上である必要がある。好ましくは1.2倍以上である。一方、打抜き端面の硬さが母材に比較して硬すぎる場合には、鋼板内部の硬さの差に起因する亀裂の発生を助長する場合があるので、打抜き端面の硬さは母材硬さの3倍以下であることが好ましい。ここで、上記打抜端面の硬さは、板厚1/2かつ端面から50μm離れた位置のマイクロビッカース硬さ、また、上記母材硬さは、板厚1/2かつ端面から板厚の3倍以上離れた位置のマイクロビッカース硬さである。
2. The hardness of the punched end surface is 1.10 times or more the hardness of the base material. The occurrence of fatigue cracks is generally suppressed as the strength of the steel sheet increases. On the other hand, in the case of punching fatigue, since the punching end face is inevitably roughened, fatigue cracks mostly occur from the punching end face. That is, in order to improve the punching fatigue characteristics, it is not necessary to increase the strength of the entire steel sheet, but it is important to increase the strength of the punched end portion that is the starting point of fatigue crack initiation. In order to sufficiently suppress the occurrence of fatigue cracks from the end face, the punched end face must have a hardness of 1.10 times or more the base metal hardness. It is preferably 1.2 times or more. On the other hand, if the hardness of the punched end face is too hard compared to the base metal, it may promote the occurrence of cracks due to the difference in hardness inside the steel sheet. It is preferably not more than 3 times the length. Here, the hardness of the punched end face is the plate thickness 1/2 and the micro Vickers hardness at a position 50 μm away from the end face, and the base material hardness is the plate thickness 1/2 and the plate thickness from the end face. The micro Vickers hardness is at a position three times or more away.

3.鋼板の成分組成
次に、本発明のモータコアに用いる電磁鋼板が有する好適な成分組成について説明する。成分組成における元素の含有量の単位はいずれも「質量%」であるが、以下、特に断らない限り単に「%」で示す。
3. Component Composition of Steel Sheet Next, a suitable component composition of the electromagnetic steel sheet used in the motor core of the present invention will be described. The unit of the content of each element in the component composition is "mass%", but hereinafter, unless otherwise specified, simply indicated by "%".

C:0.0050%以下
Cは、モータの使用中に炭化物を形成して磁気時効を起こし、鉄損特性を劣化させる有害元素である。磁気時効を回避するためには素材中に含まれるCは0.0050%以下が好ましい。より好ましくは、0.0040%以下である。なお、Cの下限は、特に規定しないが、過度にCを低減した鋼板は非常に高価であることから、0.0001%程度とするのが好ましい。
C: 0.0050% or less C is a harmful element that forms carbides during use of the motor to cause magnetic aging and deteriorates iron loss characteristics. In order to avoid magnetic aging, C contained in the material is preferably 0.0050% or less. More preferably, it is 0.0040% or less. The lower limit of C is not particularly specified, but it is preferable to set it to about 0.0001% because a steel sheet in which C is excessively reduced is very expensive.

Si:2.0%以上、7.0%以下
Siは、鋼の固有抵抗を高め、鉄損を低減する効果があり、また、固溶強化により鋼の強度を高める効果がある。また、Siの添加により鋼の加工硬化係数が増大するため、打抜き端部の硬さの上昇を促進する効果もある。このような効果を確実に得るためにはSi添加量は2.0%以上とすることが好ましい。一方、7.0%を超えると、靱性が低下し、割れを生じやすいため、上限は7.0%とすることが好ましい。したがって、Siは2.0%以上、7.0%以下の範囲で含有することが好ましい。より好ましくは3.0%以上、7.0%以下の範囲、さらに好ましくは3.7%以上、7.0%以下の範囲である。
Si: 2.0% or more and 7.0% or less Si has the effect of increasing the specific resistance of steel and reducing iron loss, and has the effect of increasing the strength of steel by solid solution strengthening. Further, since the work hardening coefficient of steel increases by the addition of Si, it also has the effect of promoting the increase in the hardness of the punched end. In order to surely obtain such an effect, the amount of Si added is preferably 2.0% or more. On the other hand, if it exceeds 7.0%, the toughness deteriorates and cracks are likely to occur, so the upper limit is preferably made 7.0%. Therefore, Si is preferably contained in the range of 2.0% or more and 7.0% or less. The range is more preferably 3.0% or more and 7.0% or less, and further preferably 3.7% or more and 7.0% or less.

Mn:0.05%以上、3.0%以下
Mnは、Siと同様、鋼の固有抵抗と強度を高めるのに有用な元素であるため、0.05%以上含有することが好ましい。一方、3.0%を超える添加は、靱性が低下し、加工時に割れを生じやすいため、上限は3.0%とすることが好ましい。したがって、Mnは0.05%以上、3.0%以下の範囲で含有することが好ましい。より好ましくは0.1%以上、2.0%以下の範囲である。
Mn: 0.05% or more and 3.0% or less Mn, like Si, is an element useful for increasing the specific resistance and strength of steel, so it is preferable to contain 0.05% or more. On the other hand, if the content exceeds 3.0%, the toughness decreases and cracks are likely to occur during processing, so the upper limit is preferably set to 3.0%. Therefore, Mn is preferably contained in the range of 0.05% or more and 3.0% or less. The range is more preferably 0.1% or more and 2.0% or less.

Al:3.0%以下
Alは、Siと同様、鋼の固有抵抗を高め、鉄損を低減する効果がある有用な元素である。しかし、3.0%を超えると、靱性が低下し、加工時に割れを生じやすいため、上限は3.0%とすることが好ましい。より好ましくは2.0%以下である。
なお、Alの含有量が0.01%超え0.1%未満の範囲では、微細なAlNが析出して鉄損が増加しやすいため、Alは0.01%以下もしくは0.1%以上の範囲とするのがより好ましい。特に、Alを低減すると、集合組織が改善され、磁束密度が向上するので、磁束密度を重視する場合はAl:0.01%以下とするのが好ましい。より好ましくは0.003%以下である。
Al: 3.0% or less Al, like Si, is a useful element that has the effect of increasing the specific resistance of steel and reducing iron loss. However, if it exceeds 3.0%, the toughness deteriorates and cracks are likely to occur during processing, so the upper limit is preferably made 3.0%. It is more preferably 2.0% or less.
When the Al content is in the range of more than 0.01% and less than 0.1%, fine AlN precipitates and iron loss is likely to increase. Therefore, Al is 0.01% or less or 0.1% or more. The range is more preferable. In particular, when Al is reduced, the texture is improved and the magnetic flux density is improved. Therefore, when the magnetic flux density is important, Al: 0.01% or less is preferable. It is more preferably 0.003% or less.

P:0.2%以下
Pは、鋼の強度(硬さ)調整に用いられる有用な元素である。しかし、0.2%を超えると、靱性が低下し、加工時に割れを生じやすいため、上限は0.2%とすることが好ましい。なお、下限は特に規定しないが、過度にPを低減した鋼板は非常に高価であることから、0.001%程度とするのがより好ましい。さらに好ましくは0.005%以上、0.1%以下の範囲である。
P: 0.2% or less P is a useful element used for adjusting the strength (hardness) of steel. However, if it exceeds 0.2%, the toughness deteriorates and cracks are likely to occur during processing, so the upper limit is preferably made 0.2%. The lower limit is not particularly specified, but a steel plate having an excessively reduced P is very expensive, so it is more preferably set to about 0.001%. More preferably, it is in the range of 0.005% or more and 0.1% or less.

S:0.005%以下
Sは、微細析出物を形成して鉄損特性に悪影響を及ぼす元素である。特に、0.005%を超えると、その悪影響が顕著になるため、0.005%以下とすることが好ましい。より好ましくは0.003%以下である。
S: 0.005% or less S is an element that forms fine precipitates and adversely affects iron loss characteristics. In particular, if it exceeds 0.005%, the adverse effect becomes remarkable, so 0.005% or less is preferable. It is more preferably 0.003% or less.

N:0.0050%以下
Nは、微細析出物を形成して鉄損特性に悪影響を及ぼす元素である。特に、0.0050%を超えると、その悪影響が顕著になるため、0.0050%以下とすることが好ましい。より好ましくは0.003%以下である。
N: 0.0050% or less N is an element that forms fine precipitates and adversely affects iron loss characteristics. In particular, if it exceeds 0.0050%, the adverse effect becomes remarkable, so 0.0050% or less is preferable. It is more preferably 0.003% or less.

本発明に用いる電磁鋼板は、上記成分以外の残部は、Feおよび不可避的不純物であるが、要求特性に応じて、上記成分組成に加えてさらに、Cu、Ti、NbおよびVのうちから選ばれる1種または2種以上を下記の範囲で含有することができる。
Cu:0.10%以下
Cuは、上記の焼鈍工程等において時効によって鋼中に微細に析出し、析出強化により鋼板の強度上昇に寄与するので、0.005%以上含有するのが好ましい。一方、0.10%を超えて過剰に添加すると、析出したCuが焼鈍工程での引張残留応力の緩和を妨げるとともに、疲労亀裂の起点となり、疲労強度を劣化させる場合がある。このため、Cuを添加する場合の含有量は、0.005%以上、0.10%以下が好ましく、0.005%以上、0.05%以下の範囲がより好ましい。
In the electromagnetic steel sheet used in the present invention, the balance other than the above components is Fe and inevitable impurities, but in addition to the above component composition, it is further selected from Cu, Ti, Nb and V depending on the required characteristics. One kind or two or more kinds can be contained in the following range.
Cu: 0.10% or less Cu is finely precipitated in the steel due to aging in the above-mentioned annealing step or the like, and contributes to the strength increase of the steel sheet by precipitation strengthening, so it is preferable to contain 0.005% or more. On the other hand, if added in excess of 0.10%, the precipitated Cu may prevent relaxation of the tensile residual stress in the annealing step, may become a starting point of fatigue cracking, and may deteriorate fatigue strength. Therefore, when Cu is added, its content is preferably 0.005% or more and 0.10% or less, and more preferably 0.005% or more and 0.05% or less.

Ti:0.010%以下
Tiは、上記の焼鈍工程等において時効によって炭化物として鋼中に微細に析出し、析出強化により鋼板の強度上昇に寄与するので、0.0005%以上含有するのが好ましい。一方、0.010%を超えて過剰に添加すると、析出したTi炭化物が焼鈍工程での引張残留応力の緩和を妨げるとともに、疲労亀裂の起点となり、疲労強度を劣化させる場合がある。このため、Tiを添加する場合の含有量は、0.0005%以上、0.010%以下が好ましく、0.0005%以上、0.005%以下の範囲がより好ましい。
Ti: 0.010% or less Ti is finely precipitated in the steel as a carbide due to aging in the above-mentioned annealing step or the like and contributes to the strength increase of the steel sheet by precipitation strengthening, so it is preferable to contain 0.0005% or more. .. On the other hand, if added in excess of 0.010%, the precipitated Ti carbide may interfere with relaxation of tensile residual stress in the annealing step, may become a starting point of fatigue cracking, and may deteriorate fatigue strength. Therefore, when Ti is added, the content is preferably 0.0005% or more and 0.010% or less, and more preferably 0.0005% or more and 0.005% or less.

Nb:0.010%以下
Nbは、上記の焼鈍工程等において時効によって炭化物として鋼中に微細に析出し、析出強化により鋼板の強度上昇に寄与するので、0.0005%以上含有するのが好ましい。一方、0.010%を超えて過剰に添加すると析出したNb炭化物が焼鈍工程での引張残留応力の緩和を妨げるとともに、疲労亀裂の起点となり、疲労強度を劣化させる場合がある。このため、Nbを添加する場合の含有量は、0.0005%以上、0.010%以下が好ましく、0.0005%以上、0.005%以下の範囲がより好ましい。
Nb: 0.010% or less Nb is finely precipitated in the steel as a carbide due to aging in the above-mentioned annealing step or the like and contributes to the strength increase of the steel sheet by precipitation strengthening, so it is preferable to contain 0.0005% or more. .. On the other hand, if added in excess of 0.010%, the precipitated Nb carbide may prevent relaxation of tensile residual stress in the annealing step, may become a starting point of fatigue cracking, and may deteriorate fatigue strength. Therefore, when Nb is added, the content is preferably 0.0005% or more and 0.010% or less, and more preferably 0.0005% or more and 0.005% or less.

V:0.010%以下
Vは、上記の焼鈍工程等において時効によって炭化物として鋼中に微細に析出し、析出強化により鋼板の強度上昇に寄与するので、0.0005%以上含有するのが好ましい。一方、0.010%を超えて過剰に添加すると析出したV炭化物が焼鈍工程での引張残留応力の緩和を妨げるとともに、疲労亀裂の起点となり、疲労強度を劣化させる場合がある。このため、Vを添加する場合の含有量は、0.0005%以上、0.010%以下が好ましく、0.0005%以上、0.005%以下の範囲がより好ましい。
V: 0.010% or less V is finely precipitated in the steel as a carbide due to aging in the above-mentioned annealing step or the like, and contributes to the strength increase of the steel sheet by precipitation strengthening, so V is preferably contained at 0.0005% or more. .. On the other hand, if it is added excessively in excess of 0.010%, the precipitated V carbides may prevent relaxation of the tensile residual stress in the annealing step, may become the starting point of fatigue cracks, and may deteriorate fatigue strength. Therefore, the content when V is added is preferably 0.0005% or more and 0.010% or less, and more preferably 0.0005% or more and 0.005% or less.

次に、本発明のモータコアの製造方法(以下、単に「本発明の製造方法」ともいう)の好適な態様を説明するが、概略的には、電磁鋼板から打抜き加工でモータコア材を採取する打抜き工程と、モータコア材を積層する積層工程と、モータコア材またはモータコアに熱処理を施す焼鈍工程とにより、疲労特性に優れたモータコアを得る方法である。   Next, a preferred embodiment of the motor core manufacturing method of the present invention (hereinafter, also simply referred to as the “manufacturing method of the present invention”) will be described. Generally, punching for collecting a motor core material from a magnetic steel sheet by punching It is a method of obtaining a motor core having excellent fatigue characteristics by a process, a laminating process of laminating a motor core material, and an annealing process of heat-treating the motor core material or the motor core.

〈電磁鋼板〉
本発明によれば、モータコアの素材としてどのような電磁鋼板を用いた場合においても、従来の製品と比較して、疲労強度に優れるモータコアが得られる。したがって、本発明のモータコアの製造に用いる電磁鋼板は、特に限定されないが、モータコアの性能を高める観点から、できるだけ高磁束密度、低鉄損、高強度の電磁鋼板を用いることが望ましい。
<Electromagnetic steel sheet>
According to the present invention, no matter what kind of electromagnetic steel plate is used as the material of the motor core, it is possible to obtain a motor core having excellent fatigue strength as compared with conventional products. Therefore, the magnetic steel sheet used for manufacturing the motor core of the present invention is not particularly limited, but from the viewpoint of enhancing the performance of the motor core, it is desirable to use a magnetic steel sheet having as high magnetic flux density, low iron loss, and high strength as possible.

〈打抜き工程〉
打抜き工程は、上記電磁鋼板からロータコアとステータコアを構成するモータコア材(ロータコア材とステータコア材)を打抜く工程である。
打抜き工程は、上記電磁鋼板から所定寸法のモータコア材が得られる工程であれば、特に限定されず、常用の打抜き工程を使用できる。
また、後述する打抜きクリアランスを組み合わせることで、より疲労特性に優れるモータコアを得ることができる。
<Punching process>
The punching step is a step of punching the motor core material (rotor core material and stator core material) forming the rotor core and the stator core from the electromagnetic steel sheet.
The punching step is not particularly limited as long as a motor core material having a predetermined size can be obtained from the electromagnetic steel sheet, and a conventional punching step can be used.
Further, by combining punching clearances described below, it is possible to obtain a motor core having more excellent fatigue characteristics.

打抜きクリアランス:板厚の3%以上15%以下
母材からモータコア材を打抜く際の打抜きクリアランスが板厚の3%未満であると打抜き端面に2次せん断面や亀裂などの荒れが生じやすくなり、疲労亀裂の起点となる場合があるため、打抜きクリアランスは板厚の3%以上とすることが好ましい。一方、打抜きクリアランスが板厚の15%を超えて大きくなると、打抜き加工による打抜き端面の加工硬化が抑制され易くなり、打抜き端面の硬さの低下を招くと共に、疲労強度が低下する場合があるため、打抜きクリアランスは板厚の15%以下とすることが好ましい。したがって、打抜きクリアランスは板厚の3%以上、15%以下とすることが好ましい。より好ましくは板厚の5%以上、12%以下である。
Punching clearance: 3% or more and 15% or less of the plate thickness If the punching clearance when punching the motor core material from the base material is less than 3% of the plate thickness, roughening such as secondary sheared surface and cracks is likely to occur on the punching end surface. The punching clearance is preferably 3% or more of the plate thickness because it may be the starting point of fatigue cracks. On the other hand, if the punching clearance exceeds 15% of the plate thickness, the work hardening of the punching end face due to the punching process is likely to be suppressed, the hardness of the punching end face may be lowered, and the fatigue strength may be lowered. The punching clearance is preferably 15% or less of the plate thickness. Therefore, the punching clearance is preferably 3% or more and 15% or less of the plate thickness. More preferably, it is 5% or more and 12% or less of the plate thickness.

〈積層工程〉
積層工程は、モータコア材を積層して、モータコアを製造する工程である。
積層工程は、所定寸法の範囲内でモータコア材を積層できる工程であれば、特に限定されず、常用の積層工程を使用できる。
<Lamination process>
The laminating step is a step of laminating motor core materials to manufacture a motor core.
The laminating step is not particularly limited as long as the motor core material can be laminated within a predetermined size range, and a usual laminating step can be used.

〈焼鈍工程〉
焼鈍工程は、モータコア材またはそれを積層したモータコアに焼鈍を施す工程である。より詳細には、焼鈍工程は、モータコア材またはモータコアを、250℃以上550℃以下の温度T(℃)まで加熱し、3350≦(T+273)×(2+logt)≦4650を満たす時間t(秒)保持し、冷却する工程である。
<Annealing process>
The annealing step is a step of annealing the motor core material or the motor core in which the motor core material is laminated. More specifically, in the annealing step, the motor core material or the motor core is heated to a temperature T (° C.) of 250 ° C. or higher and 550 ° C. or lower, and the time t (seconds) that holds 3350 ≦ (T + 273) × (2 + logt) ≦ 4650 is maintained. And cooling.

焼鈍温度T(℃):250℃以上550℃以下
焼鈍温度Tが250℃未満であると、焼鈍による打抜き端面の引張残留応力の開放が十分に起こらず、製造したモータコアの打抜き端面の引張残留応力が所望の範囲とならない。一方、焼鈍温度Tが550℃を超えると、打抜き加工により高強度化した打抜き端面の鋼板組織が過度に回復あるいは再結晶するため、強度が低下し、製造したモータコアの打抜き端面の硬さが所望の範囲とならない。このため、焼鈍温度Tは250℃以上、550℃以下の範囲に制限する。好ましくは300℃以上、500℃以下の範囲である。
Annealing temperature T (° C.): 250 ° C. or higher and 550 ° C. or lower If the annealing temperature T is lower than 250 ° C., the residual tensile stress of the punched end face due to annealing is not sufficiently released, and the tensile residual stress of the punched end face of the manufactured motor core Does not fall within the desired range. On the other hand, when the annealing temperature T exceeds 550 ° C., the steel sheet structure of the punched end surface, which has been strengthened by punching, is excessively recovered or recrystallized, so that the strength is reduced and the hardness of the punched end surface of the manufactured motor core is desired. It does not fall within the range. Therefore, the annealing temperature T is limited to the range of 250 ° C or higher and 550 ° C or lower. It is preferably in the range of 300 ° C or higher and 500 ° C or lower.

焼鈍温度T(℃)で保持する時間t(秒):3350≦(T+273)×(2+logt)≦4650
上記焼鈍温度Tで保持する時間tが過度に短い場合には、焼鈍による引張残留応力の開放が十分に起こらず、製造したモータコアの打抜き端面の引張残留応力が所望の範囲とならない。一方、上記焼鈍温度Tで保持する時間tが過度に長い場合には、打抜き加工により高強度化した打抜き端面の鋼板組織が過度に回復するため、打抜き端面の強度が低下し、製造したモータコアの打抜き端面の硬さが所望の範囲とならない。したがって、焼鈍温度Tで保持する時間tは適切な範囲で管理する必要がある。
また、打抜き端面の引張残留応力の開放や強度の低下の挙動は、上記焼鈍温度Tに依存するため、保持時間tは焼鈍温度Tに依存して変化する。
しかし、発明者らの調査によれば、焼鈍温度T(℃)で保持する時間t(秒)が、下記式;
3350≦(T+273)×(2+logt)≦4650
を満たす範囲内であれば、製造したモータコアの打抜き端面の引張残留応力および硬さが所望の範囲となることがわかった。すなわち、図3(a)に示すように(T+273)×(2+logt)の値が4650超えでは、打抜き端面硬さが母材の硬さの1.10未満となってしまう。一方、図3(b)に示すように(T+273)×(2+logt)の値が3350未満では、引張残留応力が250MPaを超えてしまう。そこで、本発明では、焼鈍温度Tで保持する時間tを3350≦(T+273)×(2+logt)≦4650を満たす範囲内に制限する。なお、焼鈍温度Tで保持する時間tの好ましい範囲は3650≦(T+273)×(2+logt)≦4250を満たす範囲である。
Time t (second) held at annealing temperature T (° C.): 3350 ≦ (T + 273) × (2 + logt) ≦ 4650
If the time t held at the annealing temperature T is too short, the tensile residual stress due to annealing is not sufficiently released, and the tensile residual stress of the punched end surface of the manufactured motor core does not fall within the desired range. On the other hand, when the time t held at the annealing temperature T is excessively long, the steel sheet structure of the punched end face, which has been strengthened by punching, is excessively recovered, so that the strength of the punched end face is reduced and the manufactured motor core The hardness of the punched end face does not fall within the desired range. Therefore, the time t held at the annealing temperature T needs to be controlled within an appropriate range.
Further, the behavior of releasing the tensile residual stress and reducing the strength of the punched end face depends on the annealing temperature T, and thus the holding time t changes depending on the annealing temperature T.
However, according to the investigation by the inventors, the time t (second) held at the annealing temperature T (° C.) is calculated by the following formula;
3350 ≦ (T + 273) × (2 + logt) ≦ 4650
It has been found that the tensile residual stress and hardness of the punched end surface of the manufactured motor core fall within the desired range if the above condition is satisfied. That is, as shown in FIG. 3A, when the value of (T + 273) × (2 + logt) exceeds 4650, the punching end face hardness becomes less than 1.10 of the hardness of the base material. On the other hand, as shown in FIG. 3B, when the value of (T + 273) × (2 + logt) is less than 3350, the tensile residual stress exceeds 250 MPa. Therefore, in the present invention, the time t held at the annealing temperature T is limited to a range satisfying 3350 ≦ (T + 273) × (2 + logt) ≦ 4650. The preferable range of the time t held at the annealing temperature T is a range satisfying 3650 ≦ (T + 273) × (2 + logt) ≦ 4250.

上記のようにして得たモータコアは優れた疲労強度を有するが、モータコア素材として高強度鋼板を用いた場合には、より優れた疲労強度を得ることができる。この場合、高強度鋼板の使用によってステータコアの鉄損劣化が懸念されるときは、ステータコアのみを対象として鉄損改善を目的とする歪取焼鈍を施してもよい。   The motor core obtained as described above has excellent fatigue strength, but when a high strength steel plate is used as the motor core material, more excellent fatigue strength can be obtained. In this case, when it is feared that the iron loss of the stator core is deteriorated by using the high strength steel plate, the stress relief annealing may be performed only for the stator core to improve the iron loss.

<モータコアの製造>
下記表1に示す板厚と成分組成の電磁鋼板から、通常公知の打抜き加工によりステータコア材とロータコア材を採取し、積層して、ステータコアとロータコアを同一素材から製造した。さらに、上記ロータコアに下記表2に示す条件で熱処理を施した(焼鈍工程)。
<Manufacture of motor core>
A stator core material and a rotor core material were sampled from a magnetic steel sheet having a plate thickness and a component composition shown in the following Table 1 by a commonly known punching process and laminated to manufacture a stator core and a rotor core from the same material. Further, the rotor core was heat-treated under the conditions shown in Table 2 below (annealing step).

<評価>
得られたロータコアから、試験片を採取し、残留応力測定および硬度測定を行った。また、疲労強度測定用に、ロータコアと同じ電磁鋼板を用い、同じ条件で打抜き、同じ条件で熱処理を施した引張疲労試験片を作製した。さらに、磁気特性評価用に、ロータコアと同じ電磁鋼板に同じ条件で熱処理を施した鋼板から、磁気測定用試験片を作製した。これらの試験片を用いて、磁気特性評価および引張疲労試験を行った。試験方法は、次のとおりとした。
<Evaluation>
A test piece was sampled from the obtained rotor core, and residual stress measurement and hardness measurement were performed. For the fatigue strength measurement, the same electromagnetic steel plate as the rotor core was used, punched under the same conditions, and heat-treated under the same conditions to prepare tensile fatigue test pieces. Furthermore, for magnetic property evaluation, a test piece for magnetic measurement was prepared from a steel sheet obtained by heat-treating the same electromagnetic steel sheet as the rotor core under the same conditions. Using these test pieces, magnetic property evaluation and tensile fatigue test were performed. The test method was as follows.

(残留応力測定)
ロータコアのロータコアブリッジ部から、残留応力測定用の試験片を切り出し、打抜き端面の引張残留応力、具体的には、打抜き端面の板厚1/2部における板面法線方向に垂直かつ打抜き端面に平行な方向の引張残留応力をX線法(2θ・sinψ法)により測定した。なお、入射X線はCoKα線を用い、コリメータ径は300μmとした。
(Measurement of residual stress)
A test piece for residual stress measurement is cut out from the rotor core bridge part of the rotor core, and the tensile residual stress of the punched end face, specifically, perpendicular to the plate surface normal direction at the half thickness of the punched end face and the punched end face The tensile residual stress in the parallel direction was measured by the X-ray method (2θ · sin 2 ψ method). The incident X-ray was a CoKα ray and the collimator diameter was 300 μm.

(硬さ測定)
ロータコアのロータコアブリッジ部から打抜き端面に対して直角方向にロータコアを切断し、打抜き端面の硬さをJIS Z2244:2009に準拠したマイクロビッカース試験により測定した。ただし、くぼみの対角線長さが0.020mm未満となる場合があったが、そのまま硬さ換算に使用した。測定位置は板厚1/2かつ打抜き端面から50μm離れた位置とし、測定荷重は0.025kgf(0.245N)とした。なお、上記硬さの測定においては、測定のばらつきを低減するため、1回目の硬さの測定後は、くぼみの対角線長さの3倍以上を研磨により除去し、再度、同じ位置で測定を行うことを繰り返して5回測定し、その平均値を用いた。
母材の硬さは、ロータコアの任意の位置から採取した試片に対し、板厚1/2かつ打抜き端面から板厚の3倍以上離れた位置の硬さを測定荷重0.025kgf(0.245N)で5点測定し、その平均値を用いた。
(Hardness measurement)
The rotor core was cut in the direction perpendicular to the punched end face from the rotor core bridge portion of the rotor core, and the hardness of the punched end face was measured by a micro-Vickers test according to JIS Z2244: 2009. However, the diagonal length of the depression was sometimes less than 0.020 mm, but it was used for hardness conversion as it was. The measurement position was 1/2 the plate thickness and 50 μm away from the punched end face, and the measurement load was 0.025 kgf (0.245 N). In the above hardness measurement, in order to reduce the variation in measurement, after the first hardness measurement, 3 times or more of the diagonal length of the indentation is removed by polishing, and the measurement is performed again at the same position. The measurement was repeated 5 times, and the average value was used.
As for the hardness of the base metal, the hardness of the sample taken from an arbitrary position of the rotor core was measured at a plate thickness of 1/2 and at a position separated from the punched end face by 3 times or more of the plate thickness. The load was 0.025 kgf (0. 245 N) was measured at 5 points, and the average value was used.

(引張試験)
上記ロータコア材を採取した同じ電磁鋼板に対し、上記ロータコアと同じ条件で熱処理を施した後、圧延方向を引張方向とするJIS5号引張試験片を採取し、JIS Z2241:2011に準拠した引張試験を行ない、引張強さ(TS)を測定した。
(Tensile test)
After subjecting the same magnetic steel sheet from which the rotor core material was sampled to heat treatment under the same conditions as the rotor core, a JIS No. 5 tensile test piece with the rolling direction as the tensile direction was sampled and subjected to a tensile test in accordance with JIS Z2241: 2011. The tensile strength (TS) was measured.

(引張疲労試験)
上記ロータコア材を採取した同じ電磁鋼板から、打抜き加工により、圧延方向を長手方向とした引張疲労試験片(JIS Z2275:1978に準拠した1号試験片、b:15mm、R:100mmと同じ形状)を採取し、上記ロータコアと同じ条件で熱処理を施した後、疲労試験に供した。上記疲労試験は、引張り−引張り(片振り)、応力比(=最小応力/最大応力):0.1および周波数:20Hzの条件で行い、繰り返し数10回において疲労破断を起こさない最大応力を疲労限とした。なお、試験結果の評価は、疲労限が下記式の条件を満たしているものを疲労特性に優れる(○)、満たさないものを疲労特性が不良(×)と評価した。
疲労限≧0.4×引張強さ(TS)+70(MPa)
(Tensile fatigue test)
From the same magnetic steel sheet from which the above rotor core material was sampled, a tensile fatigue test piece having the rolling direction as the longitudinal direction was punched (the same shape as No. 1 test piece according to JIS Z2275: 1978, b: 15 mm, R: 100 mm). Was sampled, heat-treated under the same conditions as the rotor core, and then subjected to a fatigue test. The fatigue test, tensile - tensile (pulsating), stress ratio (= Min stress / maximum stress): 0.1 and Frequency: conducted under the condition of 20 Hz, the maximum stress that does not cause a fatigue fracture at repeated several 10 7 times The fatigue limit was set. In the evaluation of the test results, those having a fatigue limit satisfying the conditions of the following formula were evaluated as having excellent fatigue properties (◯), and those not satisfying the fatigue limit were evaluated as having poor fatigue properties (x).
Fatigue limit ≥ 0.4 x tensile strength (TS) + 70 (MPa)

(磁気特性測定)
上記ロータコア材を採取した同じ電磁鋼板から、長さ方向を圧延方向および圧延直角方向とする、幅30mm、長さ180mmの磁気測定用試験片を採取し、上記ロータコアと同じ条件で熱処理した後、JIS C2550−1:2011に準拠し、エプスタイン法で鉄損W10/400を測定した。
(Magnetic property measurement)
From the same magnetic steel sheet from which the rotor core material was sampled, a test piece for magnetic measurement having a width direction of 30 mm and a length of 180 mm, where the length direction was the rolling direction and the direction orthogonal to the rolling direction, was sampled, and after heat treatment under the same conditions as the rotor core, According to JIS C2550-1: 2011, the iron loss W 10/400 was measured by the Epstein method.

上記評価試験の結果を、表2に併記した。また、打抜き端面の引張残留応力が250MPa以下のものについて、疲労限に及ぼす打抜き端面の硬さの影響を図1に、端面硬さと母相硬さの比が疲労限に及ぼす打抜き端面の1.10以上2.0以下のものについて、引張残留応力の影響を図2に示した。また、焼鈍温度Tが250〜550℃の範囲にあるものについて、焼鈍時間t(秒)がモータコアの特性に与える影響を図3に示した。図3(a)および(b)は、横軸に(T+273)×(2+logt)をとった。図3(a)は、縦軸に端面硬さと母材硬さの比をとり、硬度比が1.10以上のものを○でプロットし、1.10未満のものを×でプロットした。図3(b)は、縦軸に引張残留応力をとり、引張残留応力が250MPa以下のものを○でプロットし、250MPaを超えるものを×でプロットした。   The results of the above evaluation tests are also shown in Table 2. Further, in the case where the tensile residual stress of the punched end face is 250 MPa or less, the influence of the hardness of the punched end face on the fatigue limit is shown in FIG. 1, and the influence of the ratio of the end face hardness to the matrix phase hardness on the fatigue limit of 1. FIG. 2 shows the effect of the tensile residual stress for the samples having a hardness of 10 or more and 2.0 or less. FIG. 3 shows the effect of the annealing time t (seconds) on the characteristics of the motor core when the annealing temperature T is in the range of 250 to 550 ° C. In FIGS. 3A and 3B, the horizontal axis represents (T + 273) × (2 + logt). In FIG. 3 (a), the vertical axis represents the ratio of the end face hardness to the base material hardness, and those with a hardness ratio of 1.10 or more are plotted with ◯, and those with a hardness ratio of less than 1.10 are plotted with x. In FIG. 3B, the vertical axis represents the tensile residual stress, and those having a tensile residual stress of 250 MPa or less are plotted with ◯, and those with a tensile residual stress exceeding 250 MPa are plotted with x.

表1、表2、図1および図2の結果から、発明例のモータコアは、いずれも、鉄損特性に優れるだけでなく、疲労限≧0.4×TS+70(MPa)の優れた疲労特性を有していることがわかる。   From the results of Table 1, Table 2, FIG. 1 and FIG. 2, all the motor cores of the invention examples not only have excellent iron loss characteristics, but also excellent fatigue characteristics of fatigue limit ≧ 0.4 × TS + 70 (MPa). You can see that it has.

Figure 2020076144
Figure 2020076144

Figure 2020076144
Figure 2020076144

Figure 2020076144
Figure 2020076144

本発明の技術は、モータコアの疲労強度の改善に有効であるので、同一素材鋼板からロータコア材とステータコア材を同時に採取する場合に限定されるものではなく、異なる素材鋼板からロータコア材とステータコア材を別々に採取する場合にも適用することができる。   Since the technology of the present invention is effective in improving the fatigue strength of the motor core, it is not limited to the case where the rotor core material and the stator core material are simultaneously extracted from the same material steel sheet, and the rotor core material and the stator core material are obtained from different material steel sheets. It can also be applied when collecting separately.

Claims (6)

電磁鋼板を積層してなるモータコアであって、該モータコアの打抜き端面の引張残留応力が250MPa以下であり、打抜き端面の硬さが母材硬さの1.10倍以上であることを特徴とするモータコア。 A motor core formed by laminating electromagnetic steel sheets, wherein the punching end face of the motor core has a tensile residual stress of 250 MPa or less, and the punching end face has a hardness of 1.10 times or more the base metal hardness. Motor core. 前記電磁鋼板は、質量%でC:0.0050%以下、Si:2.0%以上、7.0%以下、Mn:0.05%以上、3.0%以下、Al:3.0%以下、P:0.2%以下、S:0.005%以下およびN:0.0050%以下を含み、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする請求項1に記載のモータコア。 The magnetic steel sheet, in mass%, is C: 0.0050% or less, Si: 2.0% or more, 7.0% or less, Mn: 0.05% or more, 3.0% or less, Al: 3.0%. Hereinafter, P: 0.2% or less, S: 0.005% or less and N: 0.0050% or less, and the balance has a component composition of Fe and inevitable impurities. Motor core described. 前記電磁鋼板は、さらに質量%でCu:0.10%以下、Ti:0.010%以下、Nb:0.010%以下およびV:0.010%以下のうちから選ばれる1種または2種以上を含有することを特徴とする請求項2に記載のモータコア。 The electromagnetic steel sheet is, in mass%, one or two selected from Cu: 0.10% or less, Ti: 0.010% or less, Nb: 0.010% or less, and V: 0.010% or less. The motor core according to claim 2, containing the above. 請求項1〜3のいずれか1項に記載のモータコアの製造方法であって、
母材となる電磁鋼板からモータコア材を打抜く打抜き工程と、
該モータコア材を積層する積層工程と、
積層されたモータコアを250℃以上550℃以下の温度Tまで加熱し、該温度に3350≦(T+273)×(2+logt)≦4650を満たす時間t(秒)保持する焼鈍工程とからなることを特徴とするモータコアの製造方法。
It is a manufacturing method of the motor core according to any one of claims 1 to 3,
A punching process of punching a motor core material from a magnetic steel sheet as a base material,
A laminating step of laminating the motor core material,
An annealing process in which the laminated motor cores are heated to a temperature T of 250 ° C. or higher and 550 ° C. or lower and the temperature is maintained for 3 t ≦ (T + 273) × (2 + logt) ≦ 4650 for t (seconds). Motor core manufacturing method.
請求項1〜3のいずれか1項に記載のモータコアの製造方法であって、
母材となる電磁鋼板からモータコア材を打抜く打抜き工程と、
該モータコア材を250℃以上550℃以下の温度Tまで加熱し、該温度に3350≦(T+273)×(2+logt)≦4650を満たす時間t(秒)保持する焼鈍工程と、
焼鈍されたモータコア材を積層する積層工程とからなることを特徴とするモータコアの製造方法。
It is a manufacturing method of the motor core according to any one of claims 1 to 3,
A punching process of punching a motor core material from a magnetic steel sheet as a base material,
An annealing step of heating the motor core material to a temperature T of 250 ° C. or higher and 550 ° C. or lower and maintaining the temperature for 3 t ≦ (T + 273) × (2 + logt) ≦ 4650 for a time t (seconds);
A method of manufacturing a motor core, comprising a step of laminating annealed motor core materials.
前記打抜き工程における打抜きクリアランスを板厚の3%以上15%以下とすることを特徴とする請求項4または5に記載のモータコアの製造方法。 The method of manufacturing a motor core according to claim 4 or 5, wherein the punching clearance in the punching step is 3% or more and 15% or less of the plate thickness.
JP2019138471A 2018-11-09 2019-07-29 Motor core and its manufacturing method Active JP7092095B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018211678 2018-11-09
JP2018211678 2018-11-09

Publications (2)

Publication Number Publication Date
JP2020076144A true JP2020076144A (en) 2020-05-21
JP7092095B2 JP7092095B2 (en) 2022-06-28

Family

ID=70723680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019138471A Active JP7092095B2 (en) 2018-11-09 2019-07-29 Motor core and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7092095B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186823A (en) * 1987-01-27 1988-08-02 Sumitomo Metal Ind Ltd Production of electromagnetic steel plate having excellent magnetic characteristic
JP2004315956A (en) * 2003-03-31 2004-11-11 Jfe Steel Kk High strength non-oriented electrical steel sheet with excellent magnetic property, and its manufacturing method
JP2015155559A (en) * 2014-02-19 2015-08-27 高周波熱錬株式会社 Apparatus and method for induction heating
US20160099635A1 (en) * 2014-10-03 2016-04-07 Ford Global Technologies, Llc Motor Core Having Separately Processed Rotor and Stator Laminations
JP2016151050A (en) * 2015-02-18 2016-08-22 Jfeスチール株式会社 Non-oriented silicon steel sheet, method for producing the same and motor core
JP2016183366A (en) * 2015-03-25 2016-10-20 新日鐵住金株式会社 High strength member for motor and method of manufacturing high strength member for motor
JP2016194127A (en) * 2015-04-01 2016-11-17 新日鐵住金株式会社 Induction heating method of rotor of ipm motor and induction heating device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186823A (en) * 1987-01-27 1988-08-02 Sumitomo Metal Ind Ltd Production of electromagnetic steel plate having excellent magnetic characteristic
JP2004315956A (en) * 2003-03-31 2004-11-11 Jfe Steel Kk High strength non-oriented electrical steel sheet with excellent magnetic property, and its manufacturing method
JP2015155559A (en) * 2014-02-19 2015-08-27 高周波熱錬株式会社 Apparatus and method for induction heating
US20160099635A1 (en) * 2014-10-03 2016-04-07 Ford Global Technologies, Llc Motor Core Having Separately Processed Rotor and Stator Laminations
JP2016151050A (en) * 2015-02-18 2016-08-22 Jfeスチール株式会社 Non-oriented silicon steel sheet, method for producing the same and motor core
JP2016183366A (en) * 2015-03-25 2016-10-20 新日鐵住金株式会社 High strength member for motor and method of manufacturing high strength member for motor
JP2016194127A (en) * 2015-04-01 2016-11-17 新日鐵住金株式会社 Induction heating method of rotor of ipm motor and induction heating device

Also Published As

Publication number Publication date
JP7092095B2 (en) 2022-06-28

Similar Documents

Publication Publication Date Title
KR102301751B1 (en) Method for producing non-oriented electrical steel sheet, method for producing motor core, and motor core
JP6601646B2 (en) Non-oriented electrical steel sheet manufacturing method, motor core manufacturing method, and motor core
JP5699642B2 (en) Motor core
JP6665794B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP7365907B2 (en) Non-oriented electrical steel strip for electric motors
JP2012036474A (en) Non-oriented magnetic steel sheet and production method therefor
JP6825758B1 (en) Non-oriented electrical steel sheet, its manufacturing method and motor core
JP7173296B2 (en) Motor core and manufacturing method thereof
EP3358027A1 (en) Non-oriented electromagnetic steel sheet and manufacturing method of same
JP5515451B2 (en) Core material for split motor
JP2003213385A (en) Nonoriented silicon steel sheet
JP5939190B2 (en) Electrical steel sheet
JP7092095B2 (en) Motor core and its manufacturing method
JP5515485B2 (en) Split motor core
CN114302976B (en) Electromagnetic steel sheet
JP4276484B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and punchability
JP5186781B2 (en) Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same
JP4828095B2 (en) Non-oriented electrical steel sheet
JP5648661B2 (en) Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same
JP6658150B2 (en) Magnetic steel sheet
JP6617581B2 (en) Electrical steel sheet
JP2005120431A (en) Method for manufacturing high-strength nonoriented silicon steel sheet having excellent magnetic characteristic
JP2005272913A (en) High strength non-oriented electrical steel sheet and its production method
JP2013072098A (en) Method of producing high-strength non-oriented magnetic steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220530

R150 Certificate of patent or registration of utility model

Ref document number: 7092095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150