WO2009128428A1 - High-strength non-oriented magnetic steel sheet and process for producing the high-strength non-oriented magnetic steel sheet - Google Patents

High-strength non-oriented magnetic steel sheet and process for producing the high-strength non-oriented magnetic steel sheet Download PDF

Info

Publication number
WO2009128428A1
WO2009128428A1 PCT/JP2009/057453 JP2009057453W WO2009128428A1 WO 2009128428 A1 WO2009128428 A1 WO 2009128428A1 JP 2009057453 W JP2009057453 W JP 2009057453W WO 2009128428 A1 WO2009128428 A1 WO 2009128428A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
less
hot
rolled
steel sheet
Prior art date
Application number
PCT/JP2009/057453
Other languages
French (fr)
Japanese (ja)
Inventor
有田 吉宏
村上 英邦
義行 牛神
猛 久保田
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to US12/922,772 priority Critical patent/US20110056592A1/en
Priority to BRPI0910984A priority patent/BRPI0910984B8/en
Priority to EP09732579.9A priority patent/EP2278034B1/en
Priority to PL09732579T priority patent/PL2278034T3/en
Priority to JP2010508206A priority patent/JP4659135B2/en
Priority to CN2009801130902A priority patent/CN102007226B/en
Publication of WO2009128428A1 publication Critical patent/WO2009128428A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition

Definitions

  • the present invention relates to a high-strength non-oriented electrical steel sheet suitable for iron core materials for motors for electric vehicles and motors for electric devices, and a method for manufacturing the same.
  • High-speed rotary motors are also used in electrical equipment such as machine tools and vacuum cleaners.
  • the outer shape of the high-speed rotation motor for electric vehicles is larger than the outer shape of the high-speed rotation motor for electric devices.
  • a DC brushless motor is mainly used as a high-speed rotation motor for an electric vehicle.
  • a magnet is embedded in the vicinity of the outer periphery of the rotor.
  • the width of the bridge portion on the outer peripheral portion of the rotor (the width from the outermost outer periphery of the rotor to the steel plate between the magnets) is very narrow as 1 to 2 mm depending on the place. For this reason, high-speed rotary motors for electric vehicles are required to have higher strength steel plates than conventional non-oriented electrical steel plates.
  • Patent Document 1 describes a non-oriented electrical steel sheet in which Mn and Ni are added to Si to enhance solid solution.
  • Mn and Ni are added to Si to enhance solid solution.
  • the toughness tends to decrease with the addition of Mn and Ni, and sufficient productivity and yield cannot be obtained.
  • the price of the added alloy is high. In particular, in recent years, the price of Ni has risend due to the global demand balance.
  • Patent Documents 2 and 3 describe non-oriented electrical steel sheets that are strengthened by dispersing carbonitrides in steel. However, sufficient strength cannot be obtained even with these non-oriented electrical steel sheets.
  • Patent Document 4 describes a non-oriented electrical steel sheet reinforced with Cu precipitates.
  • the heat treatment conditions are restricted when manufacturing the non-oriented electrical steel sheet. For this reason, the required strength and magnetic properties cannot be obtained.
  • An object of the present invention is to provide a high-strength non-oriented electrical steel sheet that can easily obtain high strength and magnetic characteristics and a method for producing the same.
  • the present invention is summarized as follows in order to solve the above problems.
  • a method for producing a strength non-oriented electrical steel sheet is 50 ° C./sec or more, and a ductile brittle fracture surface transition temperature in the Charpy impact test of the hot-rolled sheet is 70 ° C. or less.
  • the present inventors investigated the reason why the strength and magnetic properties of the conventional steel strengthening method utilizing Cu precipitates are greatly influenced by the heat treatment conditions. As a result, it has been found that in order to strengthen the steel sheet by precipitation of Cu, a high annealing temperature at which Cu is once dissolved is required in finish annealing after cold rolling.
  • the present inventors have further studied earnestly on a method for solving these problems while enjoying precipitation strengthening of Cu.
  • a certain amount of C, N, Nb, Zr, Ti, and V it is possible to achieve both Cu precipitation strengthening and crystal grain refinement, and solve the above-mentioned problems. I found out that I can do it.
  • the magnetic property required for the rotor which is the main application of the high-strength electrical steel sheet, is eddy current loss (We) at a high frequency of 400 Hz or higher, and C, N, Nb, Zr, Ti, And it has been found that refinement of crystal grains by containing V and V is effective.
  • Example 1 In a laboratory vacuum melting furnace, by mass%, Si: 3.1%, Mn: 0.2%, Al: 0.5%, Cu: 2.0%, C, N, Nb, Steels with Zr, Ti and V mass% in Table 1 were prepared, heated at 1100 ° C. for 60 minutes, and then immediately hot-rolled to obtain hot-rolled sheets having a plate thickness of 2.0 mm. Thereafter, the hot-rolled sheet was pickled and a cold-rolled sheet having a thickness of 0.35 mm was obtained by one cold rolling. The cold-rolled sheet was subjected to a finish annealing at 800 ° C. to 1000 ° C. for 30 seconds. Table 2 shows the measurement results of various properties after finish annealing.
  • Nb precipitates are dispersed and deposited moderately
  • Ti precipitates are dispersed and deposited moderately, and crystal grain growth at 900 ° C. and 1000 ° C.
  • Cu was once dissolved at the final annealing temperatures of 900 ° C. and 1000 ° C., and further precipitated finely during the cooling of the final annealing, so that the precipitation strengthening of Cu could be utilized to the maximum. As a result, it is presumed that high yield strength and elongation at break and low eddy current loss were obtained.
  • Material E had high yield strength but low elongation at break. This is thought to be due to the adverse effect of excess C. In any of the conditions, recrystallization was not performed by finish annealing at 800 ° C. This is presumably because Cu that had been dissolved before annealing precipitated during annealing and delayed recrystallization.
  • Example 2 In a laboratory vacuum melting furnace, by mass%, Si: 2.8%, Mn: 0.1%, Al: 1.0%, Cu: 1.8%, C, N, Nb, Steels with Zr, Ti, and V mass% in Table 3 were prepared, heated at 1150 ° C. for 60 minutes, and then immediately hot-rolled to obtain a hot-rolled sheet having a thickness of 2.2 mm. Thereafter, the hot-rolled sheet was pickled and a cold-rolled sheet having a thickness of 0.35 mm was obtained by one cold rolling. The cold-rolled sheet was subjected to a finish annealing at 800 ° C. to 1000 ° C. for 30 seconds. Table 4 shows the measurement results of various characteristics after finish annealing.
  • Nb precipitates are moderately dispersed and precipitated.
  • Ti precipitates are moderately dispersed and precipitated, and crystal grain growth at 900 ° C. and 1000 ° C. It is inferred that On the other hand, Cu was once dissolved at the final annealing temperatures of 900 ° C. and 1000 ° C., and further precipitated finely during the cooling of the final annealing, so that the precipitation strengthening of Cu could be utilized to the maximum. As a result, it is presumed that high yield strength and elongation at break and low eddy current loss were obtained.
  • Material J had high yield strength but low elongation at break. This is thought to be due to the adverse effect of excess N. In any of the conditions, recrystallization was not performed by finish annealing at 800 ° C. This is thought to be because Cu, which had been dissolved before annealing, precipitated during annealing and delayed recrystallization.
  • Finish annealing at 800 ° C. has so far been performed as a process for refining crystal grains. That is, this finish annealing has been carried out for the purpose of once dissolving Cu to increase the strength, recrystallizing the steel sheet, and preventing coarsening of the crystal grains.
  • this finish annealing temperature was adjusted while adding Cu, it was difficult to obtain sufficient strength by itself. In other words, it is difficult to achieve both mechanical characteristics and magnetic characteristics with the conventional technology.
  • both mechanical characteristics and magnetic characteristics can be achieved.
  • C is an element necessary for crystal grain refinement. Fine carbides have the effect of increasing nucleation sites during recrystallization and further suppressing crystal grain growth. In order to enjoy the effect, the C content is 0.002% or more. In particular, when N is less than 0.005%, the preferable C content is 0.01% or more, more preferably 0.02% or more. On the other hand, if added over 0.05%, the elongation at break is significantly reduced. Therefore, the upper limit of the C content is 0.05%.
  • Si is an element effective for reducing eddy current loss and also effective for solid solution strengthening.
  • the upper limit of the Si content is 4.0%.
  • the lower limit is made 2.0%.
  • Mn is an element effective for lowering eddy current loss and increasing strength in the same manner as Si. However, even if the Mn content exceeds 1.0%, the effect is not improved and saturation occurs. Therefore, the upper limit of the Mn content is 1.0%. On the other hand, the lower limit is made 0.05% from the viewpoint of sulfide formation.
  • Al is an element effective for increasing the specific resistance like Si.
  • the upper limit of the Al content is set to 3.0%.
  • the Al content in the case of Al deoxidation is 0.02% or more, and the Al content in the case of Si deoxidation is 0.01%. % Or more is preferable.
  • N is an element necessary for crystal grain refinement. Fine nitride has the effect of increasing the number of nucleation sites during recrystallization and further suppressing crystal grain growth. In order to enjoy the effect, the N content is set to 0.002% or more. When N is contained more than the normal level by 0.005 or more, the effect of suppressing crystal grain growth becomes more remarkable. Since this effect is greater as the N content is higher, the N content is preferably further increased to 0.01% or more, and more preferably 0.02 or more. In particular, when the C content is less than 0.005%, the effect obtained by the addition of N is more pronounced. On the other hand, if added over 0.05%, the elongation at break is significantly reduced. Therefore, the upper limit of the N content is 0.05%.
  • Cu is an important element that brings about precipitation strengthening. If it is less than 0.5%, it will dissolve completely in the steel and the effect of precipitation strengthening will not be obtained, so the lower limit of the Cu content is 0.5%. The upper limit is set to 3.0% considering that the strength is saturated.
  • Ni is an effective element that can increase the strength of a steel sheet without making it too brittle. However, since it is expensive, it may be added according to the required strength. When adding, in order to fully obtain the effect, it is preferable to contain 0.5% or more. The upper limit is set to 3.0% in consideration of cost. Moreover, it is preferable to add 1/2 or more of Cu addition amount from a viewpoint of suppressing the beard wrinkle which generate
  • Sn has the effect of improving the texture and suppressing nitriding and oxidation during annealing.
  • the effect of improving the magnetic flux density that is lowered by the addition of Cu is great.
  • the addition amount of Sn is preferably 0.01% or more and 0.10% or less.
  • B segregates at the grain boundaries and has the effect of increasing the toughness of the hot-rolled sheet and hot-rolled annealed sheet.
  • the addition amount of B is preferably 0.0010% or more and 0.0050% or less.
  • Nb, Zr, Ti, and V have the effect of generating carbides or nitrides and suppressing the coarsening of the crystal grain size.
  • [Nb] indicates the Nb content (% by mass)
  • [Zr] indicates the Zr content (% by mass)
  • [Ti] indicates the Ti content (% by mass)
  • [V] indicates V Content (mass%). 2.0 ⁇ 10 ⁇ 4 ⁇ [Nb] / 93 + [Zr] / 91 + [Ti] / 48 + [V] / 51 (1)
  • the value on the right side when the value on the right side is less than 2.0 ⁇ 10 ⁇ 4 , the precipitation amount is insufficient, and a sufficient crystal grain suppression effect cannot be obtained. Therefore, the lower limit of the value on the right side is 2.0 ⁇ 10 ⁇ 4 . On the other hand, since the excessive content of these elements is dissolved in steel and does not affect the properties of the steel, the upper limit is not particularly specified. However, considering the characteristics and cost, the value on the right side is preferably 1.0 ⁇ 10 ⁇ 2 or less.
  • Formula (2) that defines the relationship among the six elements C, N, Nb, Zr, Ti, and V is an important parameter for miniaturizing crystal grains in combination with Formula (1).
  • [C] indicates the C content (% by mass)
  • [N] indicates the N content (% by mass).
  • Formula (1) merely defines the maximum amount of carbide or nitride that can be generated, and the crystal growth of the final annealing cannot be sufficiently suppressed only by this condition.
  • the second term of the formula (2) is obtained by subtracting the right side of the formula (1) from the sum of values obtained by dividing the mass% of C and N by the atomic weight, and an excessive amount of C that does not form carbonitrides. This is a parameter indicating the amount of N.
  • This excess C and / or N is extremely important in making crystal grains fine. This is because when C and / or N is excessively contained, the carbonitride precipitates with an appropriate dispersion before the finish annealing, and the crystal grain growth during the annealing can be reliably suppressed.
  • carbides, nitrides, and carbonitrides have a very important role.
  • nitrides and carbonitrides are useful, and nitrides have a remarkable effect. That is, when carbide and nitride are compared, nitride is more effective for the effect of the present invention, and nitride contributes to the effect of the present invention in a smaller amount.
  • nitride can provide a more favorable effect, and undesirable side effects can be suppressed.
  • “preferable effect” means crystal grain refinement, increased strength, and stability at high temperatures, and “unfavorable side effects” include increased iron loss, cracks originating from precipitates ( In particular embrittlement).
  • the present invention since the N content is appropriate in consideration of not only the contents of Nb, Zr, Ti, and V but also the balance with the content of C and the thermal history in the manufacturing process, the present invention Then, nitride is formed preferentially as compared with the conventional electromagnetic steel sheet. As a result, crystal grain growth at a high temperature is suppressed, and an increase in iron loss and embrittlement can be suppressed.
  • the ratio of the N content to the C content is preferably high, and [N] / [C] is preferably 3 or more, and more preferably 5 or more.
  • the composition of nitride is, for example, whether carbide is an initial formation, nitride is an initial formation, has a structure similar to carbide in the growth process, or is similar to nitride in the growth process. It is considered to change due to the effect of having a structure.
  • the thermal stability of the carbonitride is weakened. For example, if the recrystallization is delayed immediately after the recrystallization of the finish annealing and the annealing temperature is further increased, the precipitates are re-dissolved, the crystal grains become coarse, and the formation of stable fine grains is difficult. Become. On the other hand, if C and / or N is excessive to a level where the parameter value exceeds 3.0 ⁇ 10 ⁇ 3 , quenching occurs during cooling, and the elongation and toughness of the steel sheet deteriorate.
  • the lower limit of the parameter value in the equation (2) is 1.0 ⁇ 10 ⁇ 3 and the upper limit is 3.0 ⁇ 10 ⁇ 3 .
  • the recrystallization area ratio of the high-strength non-oriented electrical steel sheet itself is less than 50%, the product characteristics, particularly the elongation at break, are significantly reduced. Therefore, the recrystallization area ratio is set to 50% or more.
  • the yield stress in the tensile test is set to 700 MPa or more in consideration of the strength required for a rotor that rotates at high speed.
  • the yield stress specified here is the lower yield point.
  • the elongation at break is 10% or more from the viewpoint of suppressing cracks in the punched end face of the motor core.
  • Eddy current loss is loss caused by current flowing through a steel plate during excitation. When this loss is large, the motor core easily generates heat and causes demagnetization of the magnet. Since the eddy current loss We 10/400 is highly dependent on the plate thickness of the steel plate, the plate thickness t (mm) is used as a parameter, and the allowable range of heat generation by the rotor is expressed as 70 ⁇ t as shown in Equation (3). 2 or less. We 10/400 ⁇ 70 ⁇ t 2 (3)
  • the eddy current loss We 10/400 of W 10/400 is “(W 2 / f 2 ⁇ W 1 / f 1 ) / (f 2 ⁇ f 1 ) ⁇ 400 ⁇ 400 ”.
  • the measurement frequency is not particularly specified. However, if possible, it is preferable to calculate at a frequency close to 400 Hz, for example, a frequency range of about 100 to 800 Hz.
  • the maximum magnetic flux density Bmax is the maximum magnetic flux density that is excited when the iron loss is measured.
  • the soaking temperature T (° C.) of finish annealing must be equal to or higher than the solid solution temperature of Cu. This solid solution temperature depends on the Cu content. Assuming that the Cu content is a (mass%), if the temperature is 200 ⁇ a + 500 or higher (° C.), Cu completely dissolves, so as shown in the equation (4), the soaking temperature of finish annealing T (° C.) is 200 ⁇ a + 500 or more. T ⁇ 200 ⁇ a + 500 (4)
  • the coiling temperature during hot rolling exceeds 550 ° C., carbonitride and Cu precipitates remarkably reduce the toughness of some hot rolled sheets. Therefore, the coiling temperature during hot rolling is set to 550 ° C. or lower.
  • the toughness of the hot-rolled sheet the ductile brittle fracture surface transition temperature in the Charpy impact test is set to 70 ° C. or less from the viewpoint of suppressing fracture during cold rolling.
  • the cooling rate in this temperature range is set to 50 ° C./sec or more.
  • the toughness of the steel sheet after annealing is set to 70 ° C. or less from the viewpoint of suppressing fracture during cold rolling.
  • the annealing temperature of the hot-rolled sheet is not particularly specified, but 900 ° C. or higher is preferable because the purpose of annealing the hot-rolled sheet is to recrystallize the hot-rolled sheet and promote grain growth. On the other hand, from a brittle viewpoint, 1100 degrees C or less is preferable.
  • the transition temperature defined here is a temperature at which the ductile fracture surface ratio is 50% in the transition curve showing the relationship between the test temperature and the ductile fracture surface ratio, as defined in Japanese Industrial Standards (JIS). You may employ
  • the length and height of the specimen used for the Charpy impact test shall be the size specified in JIS.
  • the width of the test piece is the thickness of the hot rolled plate. Accordingly, the size is 55 mm in length in the rolling direction, the height is 10 mm, and the width is about 1.5 mm to 3.0 mm depending on the thickness of the hot rolled sheet. Further, in the test, it is preferable to stack a plurality of test pieces and bring them closer to a thickness of 10 mm which is a normal test condition.
  • Example 1 In a vacuum melting furnace, by mass%, Si: 2.9%, Mn: 0.2%, Al: 0.7%, and Cu: 1.5%, C, N, Nb, Zr, Steels having different mass percentages of Ti and V were prepared, heated at 1150 ° C. for 60 minutes, and then immediately hot-rolled to obtain a hot-rolled plate having a plate thickness of 2.3 mm. Thereafter, the hot-rolled sheet was pickled and a cold-rolled sheet having a thickness of 0.5 mm was obtained by one cold rolling. This cold-rolled sheet was subjected to finish annealing at 900 ° C. for 60 seconds. Table 5 shows the measurement results of the components and various characteristics.
  • Example 2 In a vacuum melting furnace, by mass%, Si: 3.7%, Mn: 0.1%, Al: 0.2%, and Cu: 1.4%, C, N, Nb, Zr, Steels having different mass percentages of Ti and V were prepared, heated at 1150 ° C. for 60 minutes, and then immediately hot-rolled to obtain a hot-rolled plate having a plate thickness of 2.3 mm. Thereafter, the hot-rolled sheet was pickled and a cold-rolled sheet having a thickness of 0.5 mm was obtained by one cold rolling. This cold-rolled sheet was subjected to finish annealing at 900 ° C. for 60 seconds. Table 6 shows the measurement results of the components and various characteristics.
  • Example 3 In a vacuum melting furnace, in mass%, C: 0.022%, Mn: 0.5%, Al: 2.0%, N: 0.003%, Ni: 1.0%, Nb: 0.031 %, Zr: 0.004%, Ti: 0.003%, and V: 0.004%, a steel with varying amounts of Si and Cu was prepared and heated at 1120 ° C for 120 minutes, Immediately hot-rolled, a hot-rolled sheet having a thickness of 2.0 mm was obtained. Thereafter, the hot-rolled sheet was pickled and a cold-rolled sheet having a thickness of 0.25 mm was obtained by one cold rolling. The cold-rolled sheet was subjected to a finish annealing at 1000 ° C. for 45 seconds. Table 7 shows the measurement results of the Si amount, the Cu amount, and various characteristics.
  • the samples with Cu less than 0.5% have low yield stress, and are defined by the present invention. It was out of range. Further, the samples with Ni / Cu of 0.5 or more (reference numerals c1 to c4, c6 to c9, c11 to c14, c16 to c19, and c21 to c24) did not show baldness.
  • Example 4 In a vacuum melting furnace, in mass%, C: 0.003%, Si: 3.3%, Mn: 0.2%, Al: 0.7%, N: 0.022%, Ni: 1.5 %, Nb: 0.032%, Zr: 0.004%, Ti: 0.003%, and V: 0.003%, and a steel in which the B content and the Sn content were changed was produced at 1110 ° C. Was heated for 80 minutes and then immediately hot rolled to obtain a hot rolled plate having a thickness of 2.7 mm. The coiling temperature in this hot rolling was 530 ° C. Thereafter, this hot rolled sheet is subjected to annealing (intermediate annealing) at 1050 ° C.
  • annealing intermediate annealing
  • the transition temperature of the hot-rolled annealed sheet was low when the amount of B was 0.0010% or more and d6 to d25.
  • a high magnetic flux density was obtained with the codes d2 to d5, d7 to d10, d12 to d15, d17 to d20, and d22 to d25 having an Sn content of 0.010% or more. It should be noted that slab cracking occurred in the signs d21 to d25 where the B amount exceeded 0.0050%, and baldness occurred in d5, d10, d15, d20, and d25 where the Sn amount exceeded 0.010%. .
  • Example 5 In a vacuum melting furnace, in mass%, C: 0.028%, Si: 2.9%, Mn: 0.8%, Al: 1.4%, N: 0.012%, Ni: 1.4 %, Nb: 0.003%, Zr: 0.04%, Ti: 0.003%, and V: 0.003%, and steel with varying amounts of Cu was prepared, and 90 minutes at 1120 ° C. After heating, it was immediately hot rolled to obtain a hot hot rolled sheet having a thickness of 2.0 mm. Thereafter, this hot-rolled sheet is subjected to hot-rolled sheet annealing at 950 ° C. for 60 seconds, further pickled, and a cold-rolled sheet having a thickness of 0.35 mm is obtained by one cold rolling. It was. This cold-rolled sheet was subjected to finish annealing while changing the soaking temperature. Table 9 shows the results of the amount of Cu, the temperature of finish annealing, and various characteristics.
  • the recrystallization area ratio is less than 50% and / or the elongation at break is less than 10%. It was outside the range defined by the invention.
  • Example 6 In a vacuum melting furnace, in mass%, C: 0.027%, Si: 3.6%, Mn: 0.1%, Al: 1.8%, N: 0.005%, Ni: 2.0 %, Nb: 0.003%, Zr: 0.004%, Ti: 0.03%, and V: 0.01%. These steel slabs were heated at 1170 ° C. for 90 minutes and immediately hot rolled to obtain hot rolled sheets having a plate thickness of 2.5 mm. During the production of this hot-rolled sheet, the winding temperature was changed. Furthermore, the produced hot rolled sheet was annealed at 1000 ° C. for 60 seconds to obtain an annealed sheet. During this annealing, the cooling rate from 900 ° C. to 500 ° C. was changed. Charpy test pieces were produced from these hot-rolled plates and annealed plates, and the transition temperature was measured by an impact test. The results are shown in Table 10.
  • a non-oriented electrical steel sheet having excellent strength can be provided at a low cost without sacrificing the yield and productivity in manufacturing the motor core and the steel sheet.

Abstract

Disclosed is a high-strength non-oriented magnetic steel sheet, comprising by mass C: 0.002% or more and 0.05% or less, Si: 2.0% or more and 4.0% or less, Mn: 0.05% or more and 1.0% or less, N: 0.002% or more and 0.05% or less, and Cu: 0.5% or more and 3.0% or less. Al content is 3.0% or less. The following formulae (1) and (2) are satisfied. In formulae (1) and (2), [Nb] represents Nb content, %; [Zr] represents Zr content, %; [Ti] represents Ti content, %; [V] represents V content, %; [C] represents C content, %; and [N] represents N content, %. The balance consists of Fe and unavoidable impurities. The percentage area of recrystallized crystals is 50% or more. The yield strength in a tensile test is 700 MPa or more. The break elongation is 10% or more. The eddy-current loss We10/400 (W/kg) satisfies formula (3) in relation with the thickness t (mm) of the steel sheet. 2.0 × 10-4 ≤ [Nb]/93 + [Zr]/91 + [Ti]/48 + [V]/51 (1) 1.0 × 10-3 ≤ [C]/12 + [N]/14 - ([Nb]/93 + [Zr]/91 + [Ti]/48 + [V]/51) ≤ 3.0 × 10-3 (2) We10/400 ≤ 70 × t2 (3)

Description

高強度無方向性電磁鋼板及びその製造方法High strength non-oriented electrical steel sheet and manufacturing method thereof
 本発明は、電気自動車用モータ及び電気機器用モータの鉄心材料に好適な高強度無方向性電磁鋼板及びその製造方法に関する。 The present invention relates to a high-strength non-oriented electrical steel sheet suitable for iron core materials for motors for electric vehicles and motors for electric devices, and a method for manufacturing the same.
 近年、世界的な電気機器の省エネルギ化の高まりにより、回転機の鉄心材料として用いる無方向性電磁鋼板に対して、より高性能な特性が要求されてきている。特に、最近では、電気自動車等に使用されるモータとして、小型高出力モータの需要が高い。このような電気自動車用モータでは、高速回転を可能にして高いトルクが得られるように設計されている。 In recent years, due to the increase in energy saving of electric appliances worldwide, higher performance characteristics have been required for non-oriented electrical steel sheets used as iron core materials for rotating machines. In particular, recently, a demand for a small high-power motor is high as a motor used in an electric vehicle or the like. Such electric vehicle motors are designed to enable high speed rotation and high torque.
 高速回転モータは、工作機械及び掃除機等の電気機器にも使用されている。但し、電気自動車用の高速回転モータの外形は、電気機器用の高速回転モータの外形よりも大きい。また、電気自動車用の高速回転モータとしては、主にDCブラシレスモータが用いられている。DCブラシレスモータでは、ロータの外周近傍に磁石が埋め込まれている。この構造では、ロータの外周部のブリッジ部の幅(ロータの最外周から磁石間の鋼板までの幅)が、場所によっては、1~2mmと非常に狭い。このため、電気自動車用の高速回転モータには、従来の無方向性電磁鋼板よりも高強度の鋼板が要求されるようになってきている。 High-speed rotary motors are also used in electrical equipment such as machine tools and vacuum cleaners. However, the outer shape of the high-speed rotation motor for electric vehicles is larger than the outer shape of the high-speed rotation motor for electric devices. Further, as a high-speed rotation motor for an electric vehicle, a DC brushless motor is mainly used. In a DC brushless motor, a magnet is embedded in the vicinity of the outer periphery of the rotor. In this structure, the width of the bridge portion on the outer peripheral portion of the rotor (the width from the outermost outer periphery of the rotor to the steel plate between the magnets) is very narrow as 1 to 2 mm depending on the place. For this reason, high-speed rotary motors for electric vehicles are required to have higher strength steel plates than conventional non-oriented electrical steel plates.
 特許文献1には、Siに、Mn及びNiを加えて固溶体強化を図った無方向性電磁鋼板が記載されている。しかしながら、この無方向性電磁鋼板によっても十分な強度を得ることができない。また、Mn及びNiの添加に伴って靱性が低下しやすく、十分な生産性及び歩留まりを得ることができない。また、添加される合金の価格が高い。特に、近年では、世界的な需要バランスによってNiの価格が高騰している。 Patent Document 1 describes a non-oriented electrical steel sheet in which Mn and Ni are added to Si to enhance solid solution. However, sufficient strength cannot be obtained even with this non-oriented electrical steel sheet. Further, the toughness tends to decrease with the addition of Mn and Ni, and sufficient productivity and yield cannot be obtained. Moreover, the price of the added alloy is high. In particular, in recent years, the price of Ni has soared due to the global demand balance.
 特許文献2及び3には、炭窒化物を鋼中に分散させて強化を図った無方向性電磁鋼板が記載されている。しかしながら、これらの無方向性電磁鋼板によっても十分な強度を得ることができない。 Patent Documents 2 and 3 describe non-oriented electrical steel sheets that are strengthened by dispersing carbonitrides in steel. However, sufficient strength cannot be obtained even with these non-oriented electrical steel sheets.
 特許文献4には、Cu析出物を用いて強化を図った無方向性電磁鋼板が記載されている。しかしながら、この無方向性電磁鋼板の製造に際しては、熱処理条件が制約される。このため、要求される強度及び磁気特性が得られない。 Patent Document 4 describes a non-oriented electrical steel sheet reinforced with Cu precipitates. However, the heat treatment conditions are restricted when manufacturing the non-oriented electrical steel sheet. For this reason, the required strength and magnetic properties cannot be obtained.
特開昭62-256917号公報Japanese Patent Laid-Open No. Sho 62-256917 特開平06-330255号公報Japanese Patent Laid-Open No. 06-330255 特開平10-018005号公報Japanese Patent Laid-Open No. 10-018005 特開2004-084053号公報JP 2004-084053 A
 本発明は、容易に高い強度及び磁気特性を得ることができる高強度無方向性電磁鋼板及びその製造方法を提供することを目的とする。 An object of the present invention is to provide a high-strength non-oriented electrical steel sheet that can easily obtain high strength and magnetic characteristics and a method for producing the same.
 本発明は、上記課題を解決するため、以下を要旨とする。 The present invention is summarized as follows in order to solve the above problems.
 (I) 質量%で、
 C:0.002%以上0.05%以下、
 Si:2.0%以上4.0%以下、
 Mn:0.05%以上1.0%以下、
 N:0.002%以上0.05%以下、及び
 Cu:0.5%以上3.0%以下を含有し、
 Alの含有量が3.0%以下であり、
 Nbの含有量(%)を[Nb]、Zrの含有量(%)を[Zr]、Tiの含有量(%)を[Ti]、Vの含有量(%)を[V]、Cの含有量(%)を[C]、Nの含有量(%)を[N]としたとき、式(1)及び式(2)が満たされ、
 残部がFe及び不可避的不純物からなり、
 再結晶面積率が50%以上であり、
 引張試験の降伏応力が700MPa以上であり、
 破断伸びが10%以上であり、
 渦電流損We10/400(W/kg)が鋼板の板厚t(mm)との関係において、式(3)を満足することを特徴とする高強度無方向性電磁鋼板。
 2.0×10-4≦[Nb]/93+[Zr]/91+[Ti]/48+[V]/51  ・・・(1)
 1.0×10-3≦[C]/12+[N]/14-([Nb]/93+[Zr]/91+[Ti]/48+[V]/51)≦3.0×10-3  ・・・(2)
 We10/400≦70×t  ・・・(3)
(I) In mass%,
C: 0.002% to 0.05%,
Si: 2.0% to 4.0%,
Mn: 0.05% or more and 1.0% or less,
N: 0.002% or more and 0.05% or less, and Cu: 0.5% or more and 3.0% or less,
Al content is 3.0% or less,
The content (%) of Nb is [Nb], the content (%) of Zr is [Zr], the content (%) of Ti is [Ti], the content (%) of V is [V], When the content (%) is [C] and the content (%) of N is [N], the expressions (1) and (2) are satisfied,
The balance consists of Fe and inevitable impurities,
The recrystallization area ratio is 50% or more,
The yield stress of the tensile test is 700 MPa or more,
The elongation at break is 10% or more,
A high-strength non-oriented electrical steel sheet, wherein the eddy current loss We 10/400 (W / kg) satisfies the formula (3) in relation to the thickness t (mm) of the steel sheet.
2.0 × 10 −4 ≦ [Nb] / 93 + [Zr] / 91 + [Ti] / 48 + [V] / 51 (1)
1.0 × 10 −3 ≦ [C] / 12 + [N] / 14 − ([Nb] / 93 + [Zr] / 91 + [Ti] / 48 + [V] / 51) ≦ 3.0 × 10 −3 (2)
We 10/400 ≦ 70 × t 2 (3)
 (II) さらに、質量%で、Ni:0.5%以上3.0%以下を含有することを特徴とする(I)に記載の高強度無方向性電磁鋼板。 (II) The high-strength non-oriented electrical steel sheet according to (I), further comprising Ni: 0.5% to 3.0% by mass.
 (III) さらに、質量%で、Sn:0.01%以上0.10%以下を含有することを特徴とする(I)又は(II)に記載の高強度無方向性電磁鋼板。 (III) The high-strength non-oriented electrical steel sheet according to (I) or (II), further containing Sn: 0.01% to 0.10% by mass%.
 (IV) さらに、質量%で、B:0.0010%以上0.0050%以下を含有することを特徴とする(I)~(III)のいずれか一つに記載の高強度無方向性電磁鋼板。 (IV) The high-strength non-directional electromagnetic wave according to any one of (I) to (III), further comprising, by mass%, B: 0.0010% to 0.0050% steel sheet.
 (V) 質量%で、
 C:0.002%以上0.05%以下、
 Si:2.0%以上4.0%以下、
 Mn:0.05%以上1.0%以下、
 N:0.002%以上0.05%以下、及び
 Cu:0.5%以上3.0%以下を含有し、
 Alの含有量が3.0%以下であり、
 Nbの含有量(%)を[Nb]、Zrの含有量(%)を[Zr]、Tiの含有量(%)を[Ti]、Vの含有量(%)を[V]、Cの含有量(%)を[C]、Nの含有量(%)を[N]としたとき、式(1)及び式(2)が満たされ、
 残部がFe及び不可避的不純物からなるスラブを作製する工程と、
 前記鋼の熱間圧延を行うことにより、熱間圧延板を得る工程と、
 前記熱延圧延板の酸洗を行う工程と、
 次に、前記熱延圧延板の冷間圧延を行うことにより、冷間圧延板を得る工程と、
 前記冷間圧延板の仕上焼鈍を行う工程と、
 を有し、
 前記仕上焼鈍の均熱温度T(℃)と前記冷間圧延板のCu含有量a(質量%)が式(4)を満たすことを特徴とする高強度無方向性電磁鋼板の製造方法。
 T≧200×a+500  ・・・(4)
(V) In mass%,
C: 0.002% to 0.05%,
Si: 2.0% to 4.0%,
Mn: 0.05% or more and 1.0% or less,
N: 0.002% or more and 0.05% or less, and Cu: 0.5% or more and 3.0% or less,
Al content is 3.0% or less,
The content (%) of Nb is [Nb], the content (%) of Zr is [Zr], the content (%) of Ti is [Ti], the content (%) of V is [V], When the content (%) is [C] and the content (%) of N is [N], the expressions (1) and (2) are satisfied,
Producing a slab with the balance being Fe and inevitable impurities;
A step of hot rolling the steel to obtain a hot rolled sheet;
Pickling the hot-rolled rolled sheet; and
Next, by performing cold rolling of the hot-rolled rolled sheet, a step of obtaining a cold-rolled sheet,
A step of finish annealing the cold-rolled sheet;
Have
A method for producing a high-strength non-oriented electrical steel sheet, characterized in that the soaking temperature T (° C.) of the finish annealing and the Cu content a (mass%) of the cold-rolled sheet satisfy the formula (4).
T ≧ 200 × a + 500 (4)
 (VI) 前記熱間圧延板を得る工程と前記酸洗を行う工程との間に、前記熱間圧延板の焼鈍を行う工程を有することを特徴とする(V)に記載の高強度無方向性電磁鋼板の製造方法。 (VI) The non-high-strength non-direction according to (V), further comprising a step of annealing the hot-rolled sheet between the step of obtaining the hot-rolled plate and the step of pickling. Method for producing an electrical steel sheet.
 (VII) 質量%で、
 C:0.002%以上0.05%以下、
 Si:2.0%以上4.0%以下、
 Mn:0.05%以上1.0%以下、
 N:0.002%以上0.05%以下、及び
 Cu:0.5%以上3.0%以下を含有し、
 Alの含有量が3.0%以下であり、
 Nbの含有量(%)を[Nb]、Zrの含有量(%)を[Zr]、Tiの含有量(%)を[Ti]、Vの含有量(%)を[V]、Cの含有量(%)を[C]、Nの含有量(%)を[N]としたとき、式(1)及び式(2)が満たされ、
 残部がFe及び不可避的不純物からなるスラブを作製する工程と、
 前記鋼の熱間圧延を行うことにより、熱間圧延板を得る工程と、
 次に、前記熱延圧延板の酸洗を行う工程と、
 次に、前記熱延圧延板の冷間圧延を行うことにより、冷間圧延板を得る工程と、
 前記冷間圧延板の仕上焼鈍を行う工程と、
 を有し、
 前記熱間圧延の巻取温度が550℃以下で、かつ、前記熱間圧延板のシャルピー衝撃試験における延性脆性破面遷移温度が70℃以下であることを特徴とする高強度無方向性電磁鋼板の製造方法。
 2.0×10-4≦[Nb]/93+[Zr]/91+[Ti]/48
(VII)% by mass,
C: 0.002% to 0.05%,
Si: 2.0% to 4.0%,
Mn: 0.05% or more and 1.0% or less,
N: 0.002% or more and 0.05% or less, and Cu: 0.5% or more and 3.0% or less,
Al content is 3.0% or less,
The content (%) of Nb is [Nb], the content (%) of Zr is [Zr], the content (%) of Ti is [Ti], the content (%) of V is [V], When the content (%) is [C] and the content (%) of N is [N], the expressions (1) and (2) are satisfied,
Producing a slab with the balance being Fe and inevitable impurities;
A step of hot rolling the steel to obtain a hot rolled sheet;
Next, a step of pickling the hot rolled sheet,
Next, by performing cold rolling of the hot-rolled rolled sheet, a step of obtaining a cold-rolled sheet,
A step of finish annealing the cold-rolled sheet;
Have
A high-strength non-oriented electrical steel sheet, wherein the hot rolling coiling temperature is 550 ° C or lower, and the ductile brittle fracture surface transition temperature in the Charpy impact test of the hot rolled plate is 70 ° C or lower. Manufacturing method.
2.0 × 10 −4 ≦ [Nb] / 93 + [Zr] / 91 + [Ti] / 48
 (VIII) 質量%で、
 C:0.002%以上0.05%以下、
 Si:2.0%以上4.0%以下、
 Mn:0.05%以上1.0%以下、
 N:0.002%以上0.05%以下、及び
 Cu:0.5%以上3.0%以下を含有し、
 Alの含有量が3.0%以下であり、
 Nbの含有量(%)を[Nb]、Zrの含有量(%)を[Zr]、Tiの含有量(%)を[Ti]、Vの含有量(%)を[V]、Cの含有量(%)を[C]、Nの含有量(%)を[N]としたとき、式(1)及び式(2)が満たされ、
 残部がFe及び不可避的不純物からなるスラブを作製する工程と、
 前記鋼の熱間圧延を行うことにより、熱間圧延板を得る工程と、
 次に、前記熱延圧延板の焼鈍を行う工程と、
 次に、前記熱延圧延板の酸洗を行う工程と、
 次に、前記熱延圧延板の冷間圧延を行うことにより、冷間圧延板を得る工程と、
 前記冷間圧延板の仕上焼鈍を行う工程と、
 を有し、
 前記焼鈍の900℃から500℃までの冷却速度が50℃/sec以上で、かつ、前記熱間圧延板のシャルピー衝撃試験における延性脆性破面遷移温度が70℃以下であることを特徴とする高強度無方向性電磁鋼板の製造方法。
(VIII)% by mass,
C: 0.002% to 0.05%,
Si: 2.0% to 4.0%,
Mn: 0.05% or more and 1.0% or less,
N: 0.002% or more and 0.05% or less, and Cu: 0.5% or more and 3.0% or less,
Al content is 3.0% or less,
The content (%) of Nb is [Nb], the content (%) of Zr is [Zr], the content (%) of Ti is [Ti], the content (%) of V is [V], When the content (%) is [C] and the content (%) of N is [N], the expressions (1) and (2) are satisfied,
Producing a slab with the balance being Fe and inevitable impurities;
A step of hot rolling the steel to obtain a hot rolled sheet;
Next, a step of annealing the hot rolled sheet,
Next, a step of pickling the hot rolled sheet,
Next, by performing cold rolling of the hot-rolled rolled sheet, a step of obtaining a cold-rolled sheet,
A step of finish annealing the cold-rolled sheet;
Have
A high cooling rate of the annealing from 900 ° C. to 500 ° C. is 50 ° C./sec or more, and a ductile brittle fracture surface transition temperature in the Charpy impact test of the hot-rolled sheet is 70 ° C. or less. A method for producing a strength non-oriented electrical steel sheet.
 本発明者らは、Cu析出物を活用した従来の鋼の強化方法について、強度及び磁気特性が熱処理条件に大きく影響される理由を調査した。その結果、Cuの析出で鋼板を強化するためには、冷間圧延後の仕上焼鈍において、Cuを一旦固溶させる高い焼鈍温度が必要であることを見出した。 The present inventors investigated the reason why the strength and magnetic properties of the conventional steel strengthening method utilizing Cu precipitates are greatly influenced by the heat treatment conditions. As a result, it has been found that in order to strengthen the steel sheet by precipitation of Cu, a high annealing temperature at which Cu is once dissolved is required in finish annealing after cold rolling.
 ところが、単に仕上焼鈍温度を高くするだけでは、結晶粒が粗大化し、Cu析出による強化代が目減りすることも知見した。 However, it has also been found that simply increasing the finish annealing temperature coarsens the crystal grains and reduces the strengthening allowance due to Cu precipitation.
 また、結晶粒の粗大化とCuの析出強化とが重畳すると、引張試験における破断伸びが著しく低下することも知見した。この破断伸びの著しい低下は、特に、鋼板からモータコアを打ち抜いた場合に、打抜き端面に亀裂が入り、モータコアの歩留まり及び生産性の著しい低下に発展する。このため、破断伸びの著しい低下は避けることが望ましい。 It was also found that when the coarsening of crystal grains and Cu precipitation strengthening overlap, the elongation at break in the tensile test is significantly reduced. This remarkable decrease in the elongation at break particularly when the motor core is punched from the steel sheet is cracked at the punched end surface, which leads to a significant decrease in the yield and productivity of the motor core. For this reason, it is desirable to avoid a significant decrease in breaking elongation.
 そこで、本発明者らは、Cuの析出強化を享受しつつ、これらの諸問題を解決する方法について、更に鋭意研究を進めた。その結果、ある規定量のC、N、Nb、Zr、Ti、及びVを含有させることで、Cuの析出強化と結晶粒の微細化を両立させることができ、先述の諸問題を解決することができることを知見した。 Therefore, the present inventors have further studied earnestly on a method for solving these problems while enjoying precipitation strengthening of Cu. As a result, by adding a certain amount of C, N, Nb, Zr, Ti, and V, it is possible to achieve both Cu precipitation strengthening and crystal grain refinement, and solve the above-mentioned problems. I found out that I can do it.
 さらに、高強度電磁鋼板の主用途であるロータに求められる磁気特性は、400Hz又はそれ以上の高周波における渦電流損(We)であり、その低減においても、C、N、Nb、Zr、Ti、及びVの含有による結晶粒の微細化が有効であることを知見した。 Furthermore, the magnetic property required for the rotor, which is the main application of the high-strength electrical steel sheet, is eddy current loss (We) at a high frequency of 400 Hz or higher, and C, N, Nb, Zr, Ti, And it has been found that refinement of crystal grains by containing V and V is effective.
 ここで、本発明に至った実験結果について述べる。 Here, the experimental results that led to the present invention will be described.
 (実験1)
 実験室の真空溶解炉にて、質量%で、Si:3.1%、Mn:0.2%,Al:0.5%、Cu:2.0%を含有し、C、N、Nb、Zr、Ti、及びVの質量%が表1の鋼を作製し、1100℃で60分加熱した後、直ちに熱間圧延して、板厚が2.0mmの熱間圧延板を得た。その後、この熱間圧延板に酸洗を施し、一回の冷間圧延にて、板厚が0.35mmの冷間圧延板を得た。この冷間圧延板に対し、800℃~1000℃で30秒の仕上焼鈍を施した。表2に、仕上焼鈍後の諸特性の測定結果を示す。
(Experiment 1)
In a laboratory vacuum melting furnace, by mass%, Si: 3.1%, Mn: 0.2%, Al: 0.5%, Cu: 2.0%, C, N, Nb, Steels with Zr, Ti and V mass% in Table 1 were prepared, heated at 1100 ° C. for 60 minutes, and then immediately hot-rolled to obtain hot-rolled sheets having a plate thickness of 2.0 mm. Thereafter, the hot-rolled sheet was pickled and a cold-rolled sheet having a thickness of 0.35 mm was obtained by one cold rolling. The cold-rolled sheet was subjected to a finish annealing at 800 ° C. to 1000 ° C. for 30 seconds. Table 2 shows the measurement results of various properties after finish annealing.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示す通り、Nb、Zr、Ti、及びVが式(1)を満たす素材C及びDにおいては、降伏強度と破断伸びが高く、かつ、渦電流損が低く、良好な特性が得られた。C、N、Nb、Zr、Ti、及びVを、ほとんど含まない素材Aについては、降伏強度と破断伸びは、ともに低く、渦電流損は高かった。これは、900℃及び1000℃の仕上焼鈍において、結晶粒が粗大化したためである。 As shown in Table 2, in materials C and D in which Nb, Zr, Ti, and V satisfy Expression (1), yield strength and elongation at break are high, and eddy current loss is low, and good characteristics are obtained. It was. With respect to the material A that hardly contained C, N, Nb, Zr, Ti, and V, the yield strength and the elongation at break were both low, and the eddy current loss was high. This is because crystal grains are coarsened in the final annealing at 900 ° C. and 1000 ° C.
 素材Bについては、900℃の仕上焼鈍における再結晶率が低かった。これは、僅かに含まれるNbが、仕上焼鈍の再結晶直前に析出して、再結晶が遅延したためであると推察される。また、1000℃の仕上焼鈍では、Nbが固溶してしまい、結晶粒が粗大化して、素材Aと同様の結果が発現したと推察される。 For material B, the recrystallization rate in finish annealing at 900 ° C. was low. This is presumably because a slight amount of Nb was precipitated immediately before recrystallization of finish annealing, and recrystallization was delayed. Further, it is speculated that in the finish annealing at 1000 ° C., Nb was dissolved, the crystal grains were coarsened, and the same result as that of the material A was expressed.
 良好な特性が得られた素材Cについては、Nb析出物が適度に分散して析出し、素材Dについては、Ti析出物が適度に分散して析出し、900℃及び1000℃における結晶粒成長を抑制したと推察される。一方で、Cuは、900℃及び1000℃の仕上焼鈍温度で、一旦固溶し、さらに、仕上焼鈍の冷却時に、微細に析出したため、Cuの析出強化を最大限活用することができた。その結果、高い降伏強度と破断伸び、及び、低い渦電流損が得られたと推察される。 For material C with good characteristics, Nb precipitates are dispersed and deposited moderately, and for material D, Ti precipitates are dispersed and deposited moderately, and crystal grain growth at 900 ° C. and 1000 ° C. It is inferred that On the other hand, Cu was once dissolved at the final annealing temperatures of 900 ° C. and 1000 ° C., and further precipitated finely during the cooling of the final annealing, so that the precipitation strengthening of Cu could be utilized to the maximum. As a result, it is presumed that high yield strength and elongation at break and low eddy current loss were obtained.
 素材Eについては、降伏強度が高いものの、破断伸びは低かった。これは、過剰Cが悪影響したものと考えられる。なお、いずれの条件においても、800℃の仕上焼鈍では再結晶していなかった。これは、焼鈍前に固溶していたCuが、焼鈍中に析出し、再結晶を遅延させたためであると考えられる。 Material E had high yield strength but low elongation at break. This is thought to be due to the adverse effect of excess C. In any of the conditions, recrystallization was not performed by finish annealing at 800 ° C. This is presumably because Cu that had been dissolved before annealing precipitated during annealing and delayed recrystallization.
 (実験2)
 実験室の真空溶解炉にて、質量%で、Si:2.8%、Mn:0.1%、Al:1.0%、Cu:1.8%を含有し、C、N、Nb、Zr、Ti、及びVの質量%が表3の鋼を作製し、1150℃で60分加熱した後、直ちに熱間圧延して、板厚が2.2mmの熱間圧延板を得た。その後、この熱間圧延板に酸洗を施し、一回の冷間圧延にて、板厚が0.35mmの冷間圧延板を得た。この冷間圧延板に対し、800℃~1000℃で30秒の仕上焼鈍を施した。表4に、仕上焼鈍後の諸特性の測定結果を示す。
(Experiment 2)
In a laboratory vacuum melting furnace, by mass%, Si: 2.8%, Mn: 0.1%, Al: 1.0%, Cu: 1.8%, C, N, Nb, Steels with Zr, Ti, and V mass% in Table 3 were prepared, heated at 1150 ° C. for 60 minutes, and then immediately hot-rolled to obtain a hot-rolled sheet having a thickness of 2.2 mm. Thereafter, the hot-rolled sheet was pickled and a cold-rolled sheet having a thickness of 0.35 mm was obtained by one cold rolling. The cold-rolled sheet was subjected to a finish annealing at 800 ° C. to 1000 ° C. for 30 seconds. Table 4 shows the measurement results of various characteristics after finish annealing.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示す通り、Nb、Zr、Ti、及びVが式(1)を満たす素材H及びIにおいては、降伏強度と破断伸びが高く、かつ、渦電流損が低く、良好な特性が得られた。C、N、Nb、Zr、Ti、及びVを、ほとんど含まない素材Fについては、降伏強度と破断伸びは、ともに低く、渦電流損は高かった。これは、900℃及び1000℃の仕上焼鈍において、結晶粒が粗大化したためである。 As shown in Table 4, in the materials H and I in which Nb, Zr, Ti, and V satisfy the formula (1), the yield strength and elongation at break are high, and the eddy current loss is low, and good characteristics are obtained. It was. For the material F containing almost no C, N, Nb, Zr, Ti, and V, the yield strength and elongation at break were both low, and the eddy current loss was high. This is because crystal grains are coarsened in the final annealing at 900 ° C. and 1000 ° C.
 素材Gについては、900℃の仕上焼鈍における再結晶率が低かった。これは、僅かに含まれるNbが、仕上焼鈍の再結晶直前に析出して、再結晶が遅延したためであると推察される。また、1000℃の仕上焼鈍では、Nbが固溶してしまい、結晶粒が粗大化して、素材Fと同様の結果が発現したと推察される。 For Material G, the recrystallization rate in the final annealing at 900 ° C. was low. This is presumably because a slight amount of Nb was precipitated immediately before recrystallization of finish annealing, and recrystallization was delayed. Further, it is speculated that in the finish annealing at 1000 ° C., Nb was dissolved, the crystal grains were coarsened, and the same result as the material F was expressed.
 良好な特性が得られた素材Hについては、Nb析出物が適度に分散して析出し、素材Iについては、Ti析出物が適度に分散して析出し、900℃及び1000℃における結晶粒成長を抑制したと推察される。一方で、Cuは、900℃及び1000℃の仕上焼鈍温度で、一旦固溶し、さらに、仕上焼鈍の冷却時に、微細に析出したため、Cuの析出強化を最大限活用することができた。その結果、高い降伏強度と破断伸び、及び、低い渦電流損が得られたと推察される。 For material H, which has good characteristics, Nb precipitates are moderately dispersed and precipitated. For material I, Ti precipitates are moderately dispersed and precipitated, and crystal grain growth at 900 ° C. and 1000 ° C. It is inferred that On the other hand, Cu was once dissolved at the final annealing temperatures of 900 ° C. and 1000 ° C., and further precipitated finely during the cooling of the final annealing, so that the precipitation strengthening of Cu could be utilized to the maximum. As a result, it is presumed that high yield strength and elongation at break and low eddy current loss were obtained.
 素材Jについては、降伏強度は高いものの、破断伸びが低かった。これは、過剰Nが悪影響したものと考えられる。なお、いずれの条件においても、800℃の仕上焼鈍では再結晶していなかった。これは、焼鈍前に固溶していたCuが、焼鈍中に析出し、再結晶を遅延させたためと考えられる。 Material J had high yield strength but low elongation at break. This is thought to be due to the adverse effect of excess N. In any of the conditions, recrystallization was not performed by finish annealing at 800 ° C. This is thought to be because Cu, which had been dissolved before annealing, precipitated during annealing and delayed recrystallization.
 800℃での仕上焼鈍は、これまで、結晶粒を微細化する処理としておこなわれてきた。即ち、この仕上焼鈍により、Cuを一旦固溶させて高強度化を図り、かつ、鋼板を再結晶させた上で、結晶粒を粗大化させないという目的の下に行われてきた。しかしながら、実験1及び2から、Cuを添加しつつ、焼鈍温度を調整したとしても、それだけでは、十分な強度を得ることが困難であることが判明した。つまり、従来の技術では、機械特性及び磁気特性を両立させることは困難なのである。これに対し、以下に述べる本発明によれば、機械特性及び磁気特性を両立させることが可能となる。 Finish annealing at 800 ° C. has so far been performed as a process for refining crystal grains. That is, this finish annealing has been carried out for the purpose of once dissolving Cu to increase the strength, recrystallizing the steel sheet, and preventing coarsening of the crystal grains. However, from Experiments 1 and 2, it was found that even if the annealing temperature was adjusted while adding Cu, it was difficult to obtain sufficient strength by itself. In other words, it is difficult to achieve both mechanical characteristics and magnetic characteristics with the conventional technology. On the other hand, according to the present invention described below, both mechanical characteristics and magnetic characteristics can be achieved.
 次に、本発明に係る高強度無方向性電磁鋼板における数値の限定理由について述べる。以下、%は質量%を意味する。 Next, the reasons for limiting the numerical values in the high-strength non-oriented electrical steel sheet according to the present invention will be described. Hereinafter,% means mass%.
 Cは、結晶粒の微細化に必要な元素である。微細な炭化物は、再結晶時の核生成サイトを増やし、さらに、結晶粒成長を抑制する効果がある。その効果を享受するために、Cの含有量は0.002%以上である。特に、Nが0.005%未満の場合、好ましいCの含有量は0.01%以上、より好ましくは0.02%以上である。一方、0.05%を超えて添加すると、破断伸びが著しく低下する。従って、Cの含有量の上限は0.05%とする。 C is an element necessary for crystal grain refinement. Fine carbides have the effect of increasing nucleation sites during recrystallization and further suppressing crystal grain growth. In order to enjoy the effect, the C content is 0.002% or more. In particular, when N is less than 0.005%, the preferable C content is 0.01% or more, more preferably 0.02% or more. On the other hand, if added over 0.05%, the elongation at break is significantly reduced. Therefore, the upper limit of the C content is 0.05%.
 Siは、渦電流損を低減するために有効であると共に、固溶体強化にも有効な元素である。しかし、過度に添加すると、冷間圧延性が著しく低下する。従って、Siの含有量の上限は4.0%とする。一方、固溶体強化と渦電流損の観点から、下限は2.0%とする。 Si is an element effective for reducing eddy current loss and also effective for solid solution strengthening. However, when it adds excessively, cold-rolling property will fall remarkably. Therefore, the upper limit of the Si content is 4.0%. On the other hand, from the viewpoints of solid solution strengthening and eddy current loss, the lower limit is made 2.0%.
 Mnは、Siと同様に渦電流損を下げ、強度を上げるのに有効な元素である。しかし、Mnの含有量が1.0%を超えても効果が向上せず飽和するため、Mnの含有量の上限は1.0%とする。一方、硫化物生成の観点から下限は0.05%とする。 Mn is an element effective for lowering eddy current loss and increasing strength in the same manner as Si. However, even if the Mn content exceeds 1.0%, the effect is not improved and saturation occurs. Therefore, the upper limit of the Mn content is 1.0%. On the other hand, the lower limit is made 0.05% from the viewpoint of sulfide formation.
 Alは、Siと同様に固有抵抗を増加させるのに有効な元素である。しかし、Alの含有量が3.0%を超えると、鋳造性が低下するので、生産性を考慮して、Alの含有量の上限は3.0%とする。下限については、特に定めるものではない。但し、脱酸の安定化(鋳造中のノズル詰まり防止)の観点から、Al脱酸の場合のAlの含有量は0.02%以上、Si脱酸の場合のAlの含有量は0.01%以上が好ましい。 Al is an element effective for increasing the specific resistance like Si. However, if the Al content exceeds 3.0%, the castability deteriorates. Therefore, considering the productivity, the upper limit of the Al content is set to 3.0%. There is no particular lower limit. However, from the viewpoint of stabilizing deoxidation (preventing nozzle clogging during casting), the Al content in the case of Al deoxidation is 0.02% or more, and the Al content in the case of Si deoxidation is 0.01%. % Or more is preferable.
 Nは、結晶粒の微細化に必要な元素である。微細な窒化物は、再結晶時の核生成サイトを増やし、さらに、結晶粒成長を抑制する効果がある。その効果を享受するために、Nの含有量は0.002%以上とする。Nを通常のレベルを大きく超えて0.005以上含有させると、更に結晶粒成長を抑制する効果が顕著となる。この効果はN含有量が高いほど大きいため、Nの含有量を更に増やして0.01%以上とすることが好ましく、0.02以上とすることがより好ましい。特に、C含有量が0.005%未満の場合に、このようなNの添加により得られる効果がより強く顕れる。一方、0.05%を超えて添加すると、破断伸びが著しく低下する。従って、Nの含有量の上限は、0.05%とする。 N is an element necessary for crystal grain refinement. Fine nitride has the effect of increasing the number of nucleation sites during recrystallization and further suppressing crystal grain growth. In order to enjoy the effect, the N content is set to 0.002% or more. When N is contained more than the normal level by 0.005 or more, the effect of suppressing crystal grain growth becomes more remarkable. Since this effect is greater as the N content is higher, the N content is preferably further increased to 0.01% or more, and more preferably 0.02 or more. In particular, when the C content is less than 0.005%, the effect obtained by the addition of N is more pronounced. On the other hand, if added over 0.05%, the elongation at break is significantly reduced. Therefore, the upper limit of the N content is 0.05%.
 Cuは、析出強化をもたらす重要な元素である。0.5%未満では、鋼中に完全に固溶し、析出強化の効果が得られないので、Cuの含有量の下限は0.5%とする。上限は、強度が飽和することを勘案して、3.0%とする。 Cu is an important element that brings about precipitation strengthening. If it is less than 0.5%, it will dissolve completely in the steel and the effect of precipitation strengthening will not be obtained, so the lower limit of the Cu content is 0.5%. The upper limit is set to 3.0% considering that the strength is saturated.
 Niは、鋼板を、あまり脆化させずに高強度化することができる有効な元素である。但し、高価であるので、必要とされる強度に応じて添加すればよい。添加する場合、その効果を十分に得るために、0.5%以上含まれていることが好ましい。また、上限は、コストを考慮して、3.0%とする。また、Cuの添加で発生するヘゲ疵を抑制する観点から、Cu添加量の1/2以上を添加するのが好ましい。 Ni is an effective element that can increase the strength of a steel sheet without making it too brittle. However, since it is expensive, it may be added according to the required strength. When adding, in order to fully obtain the effect, it is preferable to contain 0.5% or more. The upper limit is set to 3.0% in consideration of cost. Moreover, it is preferable to add 1/2 or more of Cu addition amount from a viewpoint of suppressing the beard wrinkle which generate | occur | produces by addition of Cu.
 Snは、集合組織を改善し、また、焼鈍時の窒化や酸化を抑制する効果がある。特に、Cu添加によって低下する磁束密度を改善する効果が大きい。これらの効果を享受する場合、0.01%未満では、所望の効果が得られず、一方、0.10%を超えて添加すると、ヘゲの増大を招くことがある。従って、Snの添加量は、0.01%以上0.10%以下であることが好ましい。 Sn has the effect of improving the texture and suppressing nitriding and oxidation during annealing. In particular, the effect of improving the magnetic flux density that is lowered by the addition of Cu is great. When enjoying these effects, if less than 0.01%, the desired effect cannot be obtained. On the other hand, if the content exceeds 0.10%, there is a possibility that an increase in lashes may be caused. Therefore, the addition amount of Sn is preferably 0.01% or more and 0.10% or less.
 Bは、粒界に偏析し、熱延板および熱延焼鈍板の靭性を高める効果がある。この効果を享受する場合、0.0010%未満では、所望の効果が得られず、一方、0.0050%を超えて添加すると、鋳造時のスラブ割れが発生することがある。従って、Bの添加量は、0.0010%以上0.0050%以下であることが好ましい。 B segregates at the grain boundaries and has the effect of increasing the toughness of the hot-rolled sheet and hot-rolled annealed sheet. When enjoying this effect, if it is less than 0.0010%, the desired effect cannot be obtained. On the other hand, if it exceeds 0.0050%, slab cracking may occur during casting. Therefore, the addition amount of B is preferably 0.0010% or more and 0.0050% or less.
 Nb、Zr、Ti、及びVの4元素は、炭化物または窒化物を生成し、結晶粒径の粗大化を抑制する効果がある。そして、各元素の質量%を原子量で除した値を用いて構成した式(1)が満たされる場合に、顕著な効果が発現する。[Nb]はNbの含有量(質量%)を示し、[Zr]はZrの含有量(質量%)を示し、[Ti]はTiの含有量(質量%)を示し、[V]はVの含有量(質量%)を示す。
 2.0×10-4≦[Nb]/93+[Zr]/91+[Ti]/48+[V]/51  ・・・(1)
The four elements Nb, Zr, Ti, and V have the effect of generating carbides or nitrides and suppressing the coarsening of the crystal grain size. And when the formula (1) comprised using the value which remove | divided the mass% of each element by atomic weight is satisfy | filled, a remarkable effect expresses. [Nb] indicates the Nb content (% by mass), [Zr] indicates the Zr content (% by mass), [Ti] indicates the Ti content (% by mass), and [V] indicates V Content (mass%).
2.0 × 10 −4 ≦ [Nb] / 93 + [Zr] / 91 + [Ti] / 48 + [V] / 51 (1)
 式(1)において、右辺の値が2.0×10-4未満の場合、析出量が不足して、十分な結晶粒の抑制効果が得られない。従って、右辺の値の下限は2.0×10-4とする。一方、これらの元素の過剰含有分は、鋼に固溶し、鋼の特性に影響を与えるものではないので、上限は、特に規定するものではない。但し、特性とコストを考慮すると、右辺の値は1.0×10-2以下であることが好ましい。 In the formula (1), when the value on the right side is less than 2.0 × 10 −4 , the precipitation amount is insufficient, and a sufficient crystal grain suppression effect cannot be obtained. Therefore, the lower limit of the value on the right side is 2.0 × 10 −4 . On the other hand, since the excessive content of these elements is dissolved in steel and does not affect the properties of the steel, the upper limit is not particularly specified. However, considering the characteristics and cost, the value on the right side is preferably 1.0 × 10 −2 or less.
 C、N、Nb、Zr、Ti、及びVの6元素の関係を規定した式(2)は、式(1)と連立して結晶粒を微細化する重要なパラメータである。[C]はCの含有量(質量%)を示し、[N]はNの含有量(質量%)を示す。
 1.0×10-3≦[C]/12+[N]/14-([Nb]/93+[Zr]/91+[Ti]/48+[V]/51)≦3.0×10-3  ・・・(2)
Formula (2) that defines the relationship among the six elements C, N, Nb, Zr, Ti, and V is an important parameter for miniaturizing crystal grains in combination with Formula (1). [C] indicates the C content (% by mass), and [N] indicates the N content (% by mass).
1.0 × 10 −3 ≦ [C] / 12 + [N] / 14 − ([Nb] / 93 + [Zr] / 91 + [Ti] / 48 + [V] / 51) ≦ 3.0 × 10 −3 (2)
 式(1)は、炭化物又は窒化物が生成し得る最大量を規定したものに過ぎず、この条件のみによって、最終焼鈍の結晶粒成長を、十分に抑制することはできない。 Formula (1) merely defines the maximum amount of carbide or nitride that can be generated, and the crystal growth of the final annealing cannot be sufficiently suppressed only by this condition.
 式(2)の第2項は、CとNの質量%を原子量で除した値の総和から、式(1)の右辺を差し引いたものであり、炭窒化物を形成しない過剰なC量及び/又はN量を示すパラメータである。 The second term of the formula (2) is obtained by subtracting the right side of the formula (1) from the sum of values obtained by dividing the mass% of C and N by the atomic weight, and an excessive amount of C that does not form carbonitrides. This is a parameter indicating the amount of N.
 この過剰なC及び/又はNは、結晶粒を微細化する上で極めて重要である。なぜなら、C及び/又はNを過剰に含有した場合、炭窒化物は、仕上焼鈍前から適度な分散で析出し、焼鈍時の結晶粒成長を確実に抑制することができるからである。 This excess C and / or N is extremely important in making crystal grains fine. This is because when C and / or N is excessively contained, the carbonitride precipitates with an appropriate dispersion before the finish annealing, and the crystal grain growth during the annealing can be reliably suppressed.
 本発明において、炭化物、窒化物及び炭窒化物は非常に重要な役割を持つが、この中でも窒化物及び炭窒化物が有用であり、特に窒化物は顕著な効果を有する。即ち、炭化物と窒化物とを比較すると、窒化物の方が本発明の効果にとって有効であり、窒化物の方が少ない量で本発明の効果に寄与する作用を発揮する。また、同量の炭化物と窒化物とを比較すると、窒化物の方が大きな好ましい効果を得ることができ、好ましくない副作用を抑制することができる。ここでいう「好ましい効果」とは、結晶粒の微細化、高強度化、高温での安定性を意味し、「好ましくない副作用」とは、鉄損の上昇、析出物を起点とする割れ(特に脆化)を意味する。 In the present invention, carbides, nitrides, and carbonitrides have a very important role. Among these, nitrides and carbonitrides are useful, and nitrides have a remarkable effect. That is, when carbide and nitride are compared, nitride is more effective for the effect of the present invention, and nitride contributes to the effect of the present invention in a smaller amount. In addition, when the same amount of carbide and nitride are compared, nitride can provide a more favorable effect, and undesirable side effects can be suppressed. As used herein, “preferable effect” means crystal grain refinement, increased strength, and stability at high temperatures, and “unfavorable side effects” include increased iron loss, cracks originating from precipitates ( In particular embrittlement).
 このような析出物の種類によって無方向性電磁鋼板の特性が変化するメカニズムは明確ではないが、析出物のサイズ、形態(異方性)、母相との整合性、析出場所等の影響を受けているためであると考えられる。また、これらの析出物のサイズ等は、構成元素の溶解度の相違、析出物の結晶構造の相違、構成原子のサイズの相違等の影響を受けていると考えられる。 The mechanism by which the properties of non-oriented electrical steel sheets change depending on the type of precipitates is not clear, but the effects of precipitate size, morphology (anisotropic), consistency with the parent phase, precipitation location, etc. It is thought that it is because they have received it. In addition, it is considered that the size and the like of these precipitates are influenced by the difference in the solubility of the constituent elements, the difference in the crystal structure of the precipitate, the difference in the size of the constituent atoms, and the like.
 このように、Nb、Zr、Ti、及びVの含有量のみならず、Cの含有量とのバランス及び製造工程における熱履歴を考慮してNの含有量を適切なものとしているため、本発明では、窒化物が従来の電磁鋼板と比較して優先的に形成される。この結果、高温での結晶粒成長が抑制され、鉄損の上昇及び脆化を抑制することができる。 Thus, since the N content is appropriate in consideration of not only the contents of Nb, Zr, Ti, and V but also the balance with the content of C and the thermal history in the manufacturing process, the present invention Then, nitride is formed preferentially as compared with the conventional electromagnetic steel sheet. As a result, crystal grain growth at a high temperature is suppressed, and an increase in iron loss and embrittlement can be suppressed.
 また、炭窒化物については、形成の過程に応じてその構成が多種になるため、その特性及び作用は一概なものとはならないが、少なくとも炭化物のみからなる析出物よりも好ましい作用を呈するといえる。従って、Cの含有量に対するNの含有量の割合は高いことが好ましく、[N]/[C]が3以上であることが好ましく、5以上であることがより好ましい。なお、窒化物の構成は、例えば、炭化物を初期形成物としているか、窒化物を初期形成物としているか、成長の過程で炭化物に似た構造を持っているか、成長の過程で窒化物に似た構造をもっているか等の影響により変化すると考えられる。 In addition, since carbonitrides have various configurations depending on the formation process, their characteristics and functions are not unambiguous, but it can be said that they exhibit a more favorable action than at least precipitates consisting of carbides. . Accordingly, the ratio of the N content to the C content is preferably high, and [N] / [C] is preferably 3 or more, and more preferably 5 or more. The composition of nitride is, for example, whether carbide is an initial formation, nitride is an initial formation, has a structure similar to carbide in the growth process, or is similar to nitride in the growth process. It is considered to change due to the effect of having a structure.
 式(2)の第2項の値(パラメータ値)が1.0×10-3未満の場合、炭窒化物の熱的安定性は弱くなる。例えば、仕上焼鈍の再結晶直前に析出して再結晶を遅延させ、さらに、焼鈍温度を高めると、析出物が再固溶して、結晶粒が粗大化し、安定した微細粒の形成が困難となる。一方、パラメータ値が3.0×10-3を超えるレベルまでC及び/又はNが過剰になると、冷却中に焼き入れが生じて、鋼板の伸び及び靭性が劣化してしまう。 When the value (parameter value) of the second term of the formula (2) is less than 1.0 × 10 −3 , the thermal stability of the carbonitride is weakened. For example, if the recrystallization is delayed immediately after the recrystallization of the finish annealing and the annealing temperature is further increased, the precipitates are re-dissolved, the crystal grains become coarse, and the formation of stable fine grains is difficult. Become. On the other hand, if C and / or N is excessive to a level where the parameter value exceeds 3.0 × 10 −3 , quenching occurs during cooling, and the elongation and toughness of the steel sheet deteriorate.
 以上の理由により、式(2)のパラメータ値の下限は1.0×10-3とし、上限は3.0×10-3とする。 For the above reason, the lower limit of the parameter value in the equation (2) is 1.0 × 10 −3 and the upper limit is 3.0 × 10 −3 .
 高強度無方向性電磁鋼板そのものの再結晶面積率が50%未満の場合、製品特性、特に、破断伸びが著しく低下する。従って、この再結晶面積率は、50%以上とする。 When the recrystallization area ratio of the high-strength non-oriented electrical steel sheet itself is less than 50%, the product characteristics, particularly the elongation at break, are significantly reduced. Therefore, the recrystallization area ratio is set to 50% or more.
 引張試験の降伏応力については、高速回転するロータに必要とされる強度を勘案して、700MPa以上とする。なお、ここで規定する降伏応力は、下降伏点である。 The yield stress in the tensile test is set to 700 MPa or more in consideration of the strength required for a rotor that rotates at high speed. The yield stress specified here is the lower yield point.
 破断伸びは、モータコア打ち抜き端面の亀裂を抑制する観点から、10%以上とする。 The elongation at break is 10% or more from the viewpoint of suppressing cracks in the punched end face of the motor core.
 渦電流損とは、励磁の際、鋼板に電流が流れて生じる損失であり、この損失が大きい場合、モータコアが容易に発熱して、磁石の減磁を引きおこす。渦電流損We10/400は、鋼板の板厚への依存性が大きいので、板厚t(mm)をパラメータとし、ロータ発熱の許容範囲として、式(3)に示すように、70×t以下とする。
 We10/400≦70×t  ・・・(3)
Eddy current loss is loss caused by current flowing through a steel plate during excitation. When this loss is large, the motor core easily generates heat and causes demagnetization of the magnet. Since the eddy current loss We 10/400 is highly dependent on the plate thickness of the steel plate, the plate thickness t (mm) is used as a parameter, and the allowable range of heat generation by the rotor is expressed as 70 × t as shown in Equation (3). 2 or less.
We 10/400 ≦ 70 × t 2 (3)
 この渦電流損の算出方法としては、二周波法を用いる。例えば、1.0Tの最大磁束密度Bmaxで周波数fの鉄損をW、周波数fの鉄損をWとすると、W10/400の渦電流損We10/400は、「(W/f-W/f)/(f-f1)×400×400」で計算することができる。 As a method for calculating this eddy current loss, a two-frequency method is used. For example, assuming that the iron loss at frequency f 1 is W 1 and the iron loss at frequency f 2 is W 2 at a maximum magnetic flux density Bmax of 1.0 T , the eddy current loss We 10/400 of W 10/400 is “(W 2 / f 2 −W 1 / f 1 ) / (f 2 −f 1 ) × 400 × 400 ”.
 1.0Tの最大磁束密度Bmaxで、周波数の異なる複数の鉄損値があれば、計算が可能であるので、測定周波数は、特に規定するものではない。但し、できれば、400Hzに近い周波数、例えば、100~800Hz程度の周波数範囲で計算するのが好ましい。なお、最大磁束密度Bmaxは、鉄損測定の際に励磁する最大磁束密度である。 Since the calculation is possible if there is a plurality of iron loss values with different frequencies at a maximum magnetic flux density Bmax of 1.0 T, the measurement frequency is not particularly specified. However, if possible, it is preferable to calculate at a frequency close to 400 Hz, for example, a frequency range of about 100 to 800 Hz. The maximum magnetic flux density Bmax is the maximum magnetic flux density that is excited when the iron loss is measured.
 次に、本発明に係る高強度無方向性電磁鋼板の製造方法における数値の限定理由について述べる。 Next, the reasons for limiting the numerical values in the method for producing a high-strength non-oriented electrical steel sheet according to the present invention will be described.
 仕上焼鈍では、Cuを、一旦固溶させ、かつ、冷却中に析出させることで高強度が得られる。したがって、仕上焼鈍の均熱温度T(℃)は、Cuの固溶温度以上でなければならない。この固溶温度は、Cuの含有量に依存する。Cu含有量をa(質量%)としたとき、200×a+500の温度(℃)以上であれば、Cuは完全に固溶するので、式(4)に示すように、仕上焼鈍の均熱温度T(℃)は200×a+500以上とする。
 T≧200×a+500  ・・・(4)
In the finish annealing, high strength can be obtained by temporarily dissolving Cu and precipitating it during cooling. Therefore, the soaking temperature T (° C.) of finish annealing must be equal to or higher than the solid solution temperature of Cu. This solid solution temperature depends on the Cu content. Assuming that the Cu content is a (mass%), if the temperature is 200 × a + 500 or higher (° C.), Cu completely dissolves, so as shown in the equation (4), the soaking temperature of finish annealing T (° C.) is 200 × a + 500 or more.
T ≧ 200 × a + 500 (4)
 熱間圧延時の巻取温度が550℃を超えると、炭窒化物及びCu析出物が、熱間圧延板によっては、その靭性を著しく低下させる。従って、熱間圧延時の巻取温度は550℃以下とする。熱間圧延板の靭性に関し、冷間圧延時の破断抑制の観点から、シャルピー衝撃試験における延性脆性破面遷移温度は、70℃以下とする。 When the coiling temperature during hot rolling exceeds 550 ° C., carbonitride and Cu precipitates remarkably reduce the toughness of some hot rolled sheets. Therefore, the coiling temperature during hot rolling is set to 550 ° C. or lower. Regarding the toughness of the hot-rolled sheet, the ductile brittle fracture surface transition temperature in the Charpy impact test is set to 70 ° C. or less from the viewpoint of suppressing fracture during cold rolling.
 熱間圧延板の焼鈍に関し、900℃から500℃までの冷却速度が、50℃/secより低いと、炭窒化物やCu析出物によって、熱延焼鈍板の靭性が著しく低下する。従って、この温度範囲での冷却速度は50℃/sec以上とする。焼鈍後の鋼板の靭性に関し、冷間圧延時の破断抑制の観点から、シャルピー衝撃試験における延性脆性破面遷移温度は、70℃以下とする。 Regarding the annealing of hot-rolled sheets, if the cooling rate from 900 ° C. to 500 ° C. is lower than 50 ° C./sec, the toughness of the hot-rolled annealed sheet is significantly reduced by carbonitrides and Cu precipitates. Therefore, the cooling rate in this temperature range is set to 50 ° C./sec or more. Regarding the toughness of the steel sheet after annealing, the ductile brittle fracture surface transition temperature in the Charpy impact test is set to 70 ° C. or less from the viewpoint of suppressing fracture during cold rolling.
 なお、熱間圧延板の焼鈍温度については、特に規定するものではないが、熱間圧延板の焼鈍の目的が熱間圧延板の再結晶と粒成長促進であることから、900℃以上が好ましく、一方で、脆性の観点から、1100℃以下が好ましい。 The annealing temperature of the hot-rolled sheet is not particularly specified, but 900 ° C. or higher is preferable because the purpose of annealing the hot-rolled sheet is to recrystallize the hot-rolled sheet and promote grain growth. On the other hand, from a brittle viewpoint, 1100 degrees C or less is preferable.
 ここで規定した遷移温度は、日本工業規格(JIS)に規定されている通り、試験温度と延性破面率の関係を示す遷移曲線において、延性破面率が50%の温度である。延性破面率が0%及び100%における吸収エネルギの平均値に対応する温度を採用してもよい。 The transition temperature defined here is a temperature at which the ductile fracture surface ratio is 50% in the transition curve showing the relationship between the test temperature and the ductile fracture surface ratio, as defined in Japanese Industrial Standards (JIS). You may employ | adopt the temperature corresponding to the average value of the absorbed energy in a ductile fracture surface rate is 0% and 100%.
 シャルピー衝撃試験に用いる試験片の長さ及び高さは、JISに規定されたサイズとする。一方、試験片の幅は、熱間圧延板の厚みとする。したがって、サイズとしては、圧延方向に、長さ55mm、高さ10mm、幅は、熱間圧延板の厚みに応じて、1.5mm~3.0mm程度である。さらに、試験に際しては、試験片を複数本重ね、正規の試験条件である厚み10mmに近づける方が好ましい。 The length and height of the specimen used for the Charpy impact test shall be the size specified in JIS. On the other hand, the width of the test piece is the thickness of the hot rolled plate. Accordingly, the size is 55 mm in length in the rolling direction, the height is 10 mm, and the width is about 1.5 mm to 3.0 mm depending on the thickness of the hot rolled sheet. Further, in the test, it is preferable to stack a plurality of test pieces and bring them closer to a thickness of 10 mm which is a normal test condition.
 (実施例1)
 真空溶解炉にて、質量%で、Si:2.9%、Mn:0.2%、Al:0.7%、及びCu:1.5%を含有し、C、N、Nb、Zr、Ti、及びVの質量%が異なる鋼を作製し、1150℃で60分加熱した後、直ちに熱間圧延して、板厚が2.3mmの熱間圧延板を得た。その後、この熱間圧延板に酸洗を施し、一回の冷間圧延にて、板厚が0.5mmの冷間圧延板を得た。この冷間圧延板に、900℃で60秒の仕上焼鈍を施した。表5に、成分と諸特性の測定結果を示す。
Example 1
In a vacuum melting furnace, by mass%, Si: 2.9%, Mn: 0.2%, Al: 0.7%, and Cu: 1.5%, C, N, Nb, Zr, Steels having different mass percentages of Ti and V were prepared, heated at 1150 ° C. for 60 minutes, and then immediately hot-rolled to obtain a hot-rolled plate having a plate thickness of 2.3 mm. Thereafter, the hot-rolled sheet was pickled and a cold-rolled sheet having a thickness of 0.5 mm was obtained by one cold rolling. This cold-rolled sheet was subjected to finish annealing at 900 ° C. for 60 seconds. Table 5 shows the measurement results of the components and various characteristics.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 式(1)を満足しない符号a1では、降伏応力と渦電流損We10/400が、本発明で規定する範囲から外れていた。また、式(2)を満足しない符号a14~a17では、再結晶率と破断伸びが、本発明で規定する範囲から外れていた。C含有量が本発明で規定する範囲の上限を超え、かつ、式(2)を満足しない符号a20では、破断伸びが、本発明で規定する範囲から外れていた。各要件が、本発明で規定する範囲内にある他のサンプル(符号a2、a3、a18及びa19)では、良好な特性が得られた。 In the sign a1 that does not satisfy the expression (1), the yield stress and the eddy current loss We 10/400 are out of the range defined in the present invention. Further, in the symbols a14 to a17 that do not satisfy the formula (2), the recrystallization rate and the elongation at break were out of the ranges defined in the present invention. In the code | symbol a20 in which C content exceeds the upper limit of the range prescribed | regulated by this invention, and does not satisfy Formula (2), the breaking elongation was remove | deviated from the range prescribed | regulated by this invention. Good characteristics were obtained with other samples (reference symbols a2, a3, a18, and a19) in which each requirement is within the range defined by the present invention.
 (実施例2)
 真空溶解炉にて、質量%で、Si:3.7%、Mn:0.1%、Al:0.2%、及びCu:1.4%を含有し、C、N、Nb、Zr、Ti、及びVの質量%が異なる鋼を作製し、1150℃で60分加熱した後、直ちに熱間圧延して、板厚が2.3mmの熱間圧延板を得た。その後、この熱間圧延板に酸洗を施し、一回の冷間圧延にて、板厚が0.5mmの冷間圧延板を得た。この冷間圧延板に、900℃で60秒の仕上焼鈍を施した。表6に、成分と諸特性の測定結果を示す。
(Example 2)
In a vacuum melting furnace, by mass%, Si: 3.7%, Mn: 0.1%, Al: 0.2%, and Cu: 1.4%, C, N, Nb, Zr, Steels having different mass percentages of Ti and V were prepared, heated at 1150 ° C. for 60 minutes, and then immediately hot-rolled to obtain a hot-rolled plate having a plate thickness of 2.3 mm. Thereafter, the hot-rolled sheet was pickled and a cold-rolled sheet having a thickness of 0.5 mm was obtained by one cold rolling. This cold-rolled sheet was subjected to finish annealing at 900 ° C. for 60 seconds. Table 6 shows the measurement results of the components and various characteristics.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 式(1)を満足しない符号b1では、降伏応力と渦電流損We10/400が、本発明で規定する範囲から外れていた。また、式(2)を満足しない符号b14~b17では、再結晶率と破断伸びが、本発明で規定する範囲から外れていた。同じく、式(2)を満足しない符号b20では、破断伸びが、本発明で規定する範囲から外れていた。各要件が、本発明で規定する範囲内にある他のサンプル(符号b2、b3、b18及びb19)では、良好な特性が得られた。 In the sign b1 not satisfying the expression (1), the yield stress and the eddy current loss We 10/400 are out of the range defined in the present invention. In addition, in the symbols b14 to b17 that do not satisfy the formula (2), the recrystallization rate and the elongation at break were outside the ranges defined in the present invention. Similarly, in the code | symbol b20 which does not satisfy Formula (2), breaking elongation was remove | deviated from the range prescribed | regulated by this invention. Good characteristics were obtained in other samples (reference numerals b2, b3, b18, and b19) in which each requirement is within the range defined by the present invention.
 (実施例3)
 真空溶解炉にて、質量%で、C:0.022%、Mn:0.5%、Al:2.0%、N:0.003%、Ni:1.0%、Nb:0.031%、Zr:0.004%、Ti:0.003%、及びV:0.004%を含有し、Si量とCu量を変化させた鋼を作製し、1120℃で120分加熱した後、直ちに熱間圧延して、板厚が2.0mmの熱間圧延板を得た。その後、この熱間圧延板に酸洗を施し、一回の冷間圧延にて、板厚が0.25mmの冷間圧延板を得た。この冷間圧延板に、1000℃で45秒の仕上焼鈍を施した。表7に、Si量、Cu量、及び諸特性の測定結果を示す。
(Example 3)
In a vacuum melting furnace, in mass%, C: 0.022%, Mn: 0.5%, Al: 2.0%, N: 0.003%, Ni: 1.0%, Nb: 0.031 %, Zr: 0.004%, Ti: 0.003%, and V: 0.004%, a steel with varying amounts of Si and Cu was prepared and heated at 1120 ° C for 120 minutes, Immediately hot-rolled, a hot-rolled sheet having a thickness of 2.0 mm was obtained. Thereafter, the hot-rolled sheet was pickled and a cold-rolled sheet having a thickness of 0.25 mm was obtained by one cold rolling. The cold-rolled sheet was subjected to a finish annealing at 1000 ° C. for 45 seconds. Table 7 shows the measurement results of the Si amount, the Cu amount, and various characteristics.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 Siの含有量が本発明で規定する範囲よりも低い1.8%のサンプル(符号c1~c5)では、降伏応力と渦電流損We10/400が、本発明で規定する範囲から外れていた。また、Siの含有量が本発明で規定する範囲を超える4.1%のサンプル(符号c21~c25)では、破断伸びが、著しく低かった。 In 1.8% samples (symbols c1 to c5) having a Si content lower than the range defined in the present invention, the yield stress and eddy current loss We 10/400 were outside the range defined in the present invention. . Further, in the 4.1% sample (reference numerals c21 to c25) in which the Si content exceeds the range specified in the present invention, the elongation at break was extremely low.
 さらに、Siの含有量が、本発明で規定する範囲内であっても、Cuが0.5%未満のサンプル(符号c6、c11、及びc16)では、降伏応力が低く、本発明で規定する範囲から外れていた。また、Ni/Cuが0.5以上のサンプル(符号c1~c4、c6~c9、c11~c14、c16~c19、及びc21~c24))については、ヘゲ疵がみられなかった。 Furthermore, even if the Si content is within the range defined by the present invention, the samples with Cu less than 0.5% (reference numerals c6, c11, and c16) have low yield stress, and are defined by the present invention. It was out of range. Further, the samples with Ni / Cu of 0.5 or more (reference numerals c1 to c4, c6 to c9, c11 to c14, c16 to c19, and c21 to c24) did not show baldness.
 (実施例4)
 真空溶解炉にて、質量%で、C:0.003%、Si:3.3%、Mn:0.2%、Al:0.7%、N:0.022%、Ni:1.5%、Nb:0.032%、Zr:0.004%、Ti:0.003%、及びV:0.003%を含有し、B量及びSn量を変化させた鋼を作製し、1110℃で80分加熱した後、直ちに熱間圧延して、板厚が2.7mmの熱間圧延板を得た。この熱間圧延における巻取温度は530℃とした。その後、この熱間圧延板に、1050℃で60秒の焼鈍(中間焼鈍)を施し、更に酸洗を施し、一回の冷間圧延にて、板厚が0.35mmの冷間圧延板を得た。この冷間圧延板に、950℃で60秒の仕上焼鈍を施した。表8に、B量、Sn量、中間焼鈍後の遷移温度、及び仕上焼鈍後の磁束密度を示す。
Example 4
In a vacuum melting furnace, in mass%, C: 0.003%, Si: 3.3%, Mn: 0.2%, Al: 0.7%, N: 0.022%, Ni: 1.5 %, Nb: 0.032%, Zr: 0.004%, Ti: 0.003%, and V: 0.003%, and a steel in which the B content and the Sn content were changed was produced at 1110 ° C. Was heated for 80 minutes and then immediately hot rolled to obtain a hot rolled plate having a thickness of 2.7 mm. The coiling temperature in this hot rolling was 530 ° C. Thereafter, this hot rolled sheet is subjected to annealing (intermediate annealing) at 1050 ° C. for 60 seconds, further pickled, and a cold rolled sheet having a sheet thickness of 0.35 mm by one cold rolling. Obtained. This cold-rolled sheet was subjected to finish annealing at 950 ° C. for 60 seconds. Table 8 shows the B amount, Sn amount, transition temperature after intermediate annealing, and magnetic flux density after finish annealing.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 B量が0.0010%以上の符号d6~d25では、熱延焼鈍板の遷移温度が低かった。Sn量が0.010%以上の符号d2~d5、d7~d10、d12~d15、d17~d20、及びd22~d25では、高い磁束密度が得られた。なお、B量が0.0050%を超える符号d21~d25では、スラブ割れが発生し、Sn量が0.010%を超えるd5、d10、d15、d20、及びd25では、ヘゲ疵が発生した。 The transition temperature of the hot-rolled annealed sheet was low when the amount of B was 0.0010% or more and d6 to d25. A high magnetic flux density was obtained with the codes d2 to d5, d7 to d10, d12 to d15, d17 to d20, and d22 to d25 having an Sn content of 0.010% or more. It should be noted that slab cracking occurred in the signs d21 to d25 where the B amount exceeded 0.0050%, and baldness occurred in d5, d10, d15, d20, and d25 where the Sn amount exceeded 0.010%. .
 (実施例5)
 真空溶解炉にて、質量%で、C:0.028%、Si:2.9%、Mn:0.8%、Al:1.4%、N:0.012%、Ni:1.4%、Nb:0.003%、Zr:0.04%、Ti:0.003%、及びV:0.003%を含有し、Cu量を変化させた鋼を作製し、1120℃で90分加熱した後、直ちに熱間圧延して、板厚が2.0mmの熱間熱延板を得た。その後、この熱間圧延板に、950℃で60秒の熱延板焼鈍を施し、更に酸洗を施し、一回の冷間圧延にて、板厚が0.35mmの冷間圧延板を得た。この冷間圧延板に、均熱温度を変化させて、仕上焼鈍を施した。表9に、Cu量、仕上焼鈍の温度及び諸特性の結果を示す。
(Example 5)
In a vacuum melting furnace, in mass%, C: 0.028%, Si: 2.9%, Mn: 0.8%, Al: 1.4%, N: 0.012%, Ni: 1.4 %, Nb: 0.003%, Zr: 0.04%, Ti: 0.003%, and V: 0.003%, and steel with varying amounts of Cu was prepared, and 90 minutes at 1120 ° C. After heating, it was immediately hot rolled to obtain a hot hot rolled sheet having a thickness of 2.0 mm. Thereafter, this hot-rolled sheet is subjected to hot-rolled sheet annealing at 950 ° C. for 60 seconds, further pickled, and a cold-rolled sheet having a thickness of 0.35 mm is obtained by one cold rolling. It was. This cold-rolled sheet was subjected to finish annealing while changing the soaking temperature. Table 9 shows the results of the amount of Cu, the temperature of finish annealing, and various characteristics.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 均熱温度が式(4)を満たすサンプル(符号e1~e10、e13~e15、e18~e20、及びe23では、降伏応力、破断伸び、及びWe10/400が、本発明で規定する範囲内にあり、良好な特性が得られた。 Samples where the soaking temperature satisfies the formula (4) (in the case of the symbols e1 to e10, e13 to e15, e18 to e20, and e23, the yield stress, breaking elongation, and We 10/400 are within the range defined by the present invention. And good characteristics were obtained.
 均熱温度が式(4)を満たさないサンプル(符号e11、e12、e16、e17、e21、及びe22)では、再結晶面積率が50%未満及び/又は破断伸びが10%未満であり、本発明で規定する範囲から外れていた。 In samples where the soaking temperature does not satisfy the formula (4) (reference numerals e11, e12, e16, e17, e21, and e22), the recrystallization area ratio is less than 50% and / or the elongation at break is less than 10%. It was outside the range defined by the invention.
 (実施例6)
 真空溶解炉にて、質量%で、C:0.027%、Si:3.6%、Mn:0.1%、Al:1.8%、N:0.005%、Ni:2.0%、Nb:0.003%、Zr:0.004%、Ti:0.03%、及びV:0.01%を含有する複数の鋼片を作製した。これらの鋼片を、1170℃で90分加熱した後、直ちに熱間圧延して、板厚が2.5mmの熱間圧延板を得た。この熱間圧延板の作製に際し、巻取温度を変化させた。更に、作製した熱間圧延板に、1000℃で60秒の焼鈍を施して、焼鈍板を得た。この焼鈍に際し、900℃から500℃までの冷却速度を変化させた。これらの熱間圧延板及び焼鈍板から、シャルピー試験片を製作し、衝撃試験によって、遷移温度を測定した。この結果を表10に示す。
(Example 6)
In a vacuum melting furnace, in mass%, C: 0.027%, Si: 3.6%, Mn: 0.1%, Al: 1.8%, N: 0.005%, Ni: 2.0 %, Nb: 0.003%, Zr: 0.004%, Ti: 0.03%, and V: 0.01%. These steel slabs were heated at 1170 ° C. for 90 minutes and immediately hot rolled to obtain hot rolled sheets having a plate thickness of 2.5 mm. During the production of this hot-rolled sheet, the winding temperature was changed. Furthermore, the produced hot rolled sheet was annealed at 1000 ° C. for 60 seconds to obtain an annealed sheet. During this annealing, the cooling rate from 900 ° C. to 500 ° C. was changed. Charpy test pieces were produced from these hot-rolled plates and annealed plates, and the transition temperature was measured by an impact test. The results are shown in Table 10.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 巻取温度が550℃以下のサンプル(符号f1~f3)において、遷移温度が70℃以下の良好な靭性が得られた。また、焼鈍板については、巻取温度にかかわらず、900℃から500℃までの冷却速度が50℃/sec以上のサンプル(符号f8~f10、f13~f15及びf18~f20)において、遷移温度が70℃以下の良好な靭性が得られた。 Good toughness with a transition temperature of 70 ° C. or lower was obtained for samples with a winding temperature of 550 ° C. or lower (reference symbols f1 to f3). For the annealed plate, regardless of the coiling temperature, in the samples (reference numerals f8 to f10, f13 to f15, and f18 to f20) where the cooling rate from 900 ° C. to 500 ° C. is 50 ° C./sec or more, the transition temperature is Good toughness of 70 ° C. or less was obtained.
 本発明によれば、モータコアや鋼板製造時の歩留まりや生産性を犠牲にすることなく、強度に優れた無方向性電磁鋼板を、低コストで提供することができる。 According to the present invention, a non-oriented electrical steel sheet having excellent strength can be provided at a low cost without sacrificing the yield and productivity in manufacturing the motor core and the steel sheet.

Claims (12)

  1.  質量%で、
     C:0.002%以上0.05%以下、
     Si:2.0%以上4.0%以下、
     Mn:0.05%以上1.0%以下、
     N:0.002%以上0.05%以下、及び
     Cu:0.5%以上3.0%以下を含有し、
     Alの含有量が3.0%以下であり、
     Nbの含有量(%)を[Nb]、Zrの含有量(%)を[Zr]、Tiの含有量(%)を[Ti]、Vの含有量(%)を[V]、Cの含有量(%)を[C]、Nの含有量(%)を[N]としたとき、式(1)及び式(2)が満たされ、
     残部がFe及び不可避的不純物からなり、
     再結晶面積率が50%以上であり、
     引張試験の降伏応力が700MPa以上であり、
     破断伸びが10%以上であり、
     渦電流損We10/400(W/kg)が鋼板の板厚t(mm)との関係において、式(3)を満足することを特徴とする高強度無方向性電磁鋼板。
     2.0×10-4≦[Nb]/93+[Zr]/91+[Ti]/48+[V]/51  ・・・(1)
     1.0×10-3≦[C]/12+[N]/14-([Nb]/93+[Zr]/91+[Ti]/48+[V]/51)≦3.0×10-3  ・・・(2)
     We10/400≦70×t  ・・・(3)
    % By mass
    C: 0.002% to 0.05%,
    Si: 2.0% to 4.0%,
    Mn: 0.05% or more and 1.0% or less,
    N: 0.002% or more and 0.05% or less, and Cu: 0.5% or more and 3.0% or less,
    Al content is 3.0% or less,
    The content (%) of Nb is [Nb], the content (%) of Zr is [Zr], the content (%) of Ti is [Ti], the content (%) of V is [V], When the content (%) is [C] and the content (%) of N is [N], the expressions (1) and (2) are satisfied,
    The balance consists of Fe and inevitable impurities,
    The recrystallization area ratio is 50% or more,
    The yield stress of the tensile test is 700 MPa or more,
    The elongation at break is 10% or more,
    A high-strength non-oriented electrical steel sheet, wherein the eddy current loss We 10/400 (W / kg) satisfies the formula (3) in relation to the thickness t (mm) of the steel sheet.
    2.0 × 10 −4 ≦ [Nb] / 93 + [Zr] / 91 + [Ti] / 48 + [V] / 51 (1)
    1.0 × 10 −3 ≦ [C] / 12 + [N] / 14 − ([Nb] / 93 + [Zr] / 91 + [Ti] / 48 + [V] / 51) ≦ 3.0 × 10 −3 (2)
    We 10/400 ≦ 70 × t 2 (3)
  2.  さらに、質量%で、Ni:0.5%以上3.0%以下を含有することを特徴とする請求項1に記載の高強度無方向性電磁鋼板。 The high strength non-oriented electrical steel sheet according to claim 1, further comprising Ni: 0.5% to 3.0% by mass.
  3.  さらに、質量%で、Sn:0.01%以上0.10%以下を含有することを特徴とする請求項1に記載の高強度無方向性電磁鋼板。 The high-strength non-oriented electrical steel sheet according to claim 1, further comprising Sn: 0.01% to 0.10% by mass.
  4.  さらに、質量%で、Sn:0.01%以上0.10%以下を含有することを特徴とする請求項2に記載の高強度無方向性電磁鋼板。 The high-strength non-oriented electrical steel sheet according to claim 2, further comprising Sn: 0.01% or more and 0.10% or less in mass%.
  5.  さらに、質量%で、B:0.0010%以上0.0050%以下を含有することを特徴とする請求項1に記載の高強度無方向性電磁鋼板。 The high-strength non-oriented electrical steel sheet according to claim 1, further comprising, in mass%, B: 0.0010% or more and 0.0050% or less.
  6.  さらに、質量%で、B:0.0010%以上0.0050%以下を含有することを特徴とする請求項2に記載の高強度無方向性電磁鋼板。 The high-strength non-oriented electrical steel sheet according to claim 2, further comprising, in mass%, B: 0.0010% or more and 0.0050% or less.
  7.  さらに、質量%で、B:0.0010%以上0.0050%以下を含有することを特徴とする請求項3に記載の高強度無方向性電磁鋼板。 The high-strength non-oriented electrical steel sheet according to claim 3, further comprising, in mass%, B: 0.0010% or more and 0.0050% or less.
  8.  さらに、質量%で、B:0.0010%以上0.0050%以下を含有することを特徴とする請求項4に記載の高強度無方向性電磁鋼板。 The high-strength non-oriented electrical steel sheet according to claim 4, further comprising, in mass%, B: 0.0010% or more and 0.0050% or less.
  9.  質量%で、
     C:0.002%以上0.05%以下、
     Si:2.0%以上4.0%以下、
     Mn:0.05%以上1.0%以下、
     N:0.002%以上0.05%以下、及び
     Cu:0.5%以上3.0%以下を含有し、
     Alの含有量が3.0%以下であり、
     Nbの含有量(%)を[Nb]、Zrの含有量(%)を[Zr]、Tiの含有量(%)を[Ti]、Vの含有量(%)を[V]、Cの含有量(%)を[C]、Nの含有量(%)を[N]としたとき、式(1)及び式(2)が満たされ、
     残部がFe及び不可避的不純物からなるスラブを作製する工程と、
     前記鋼の熱間圧延を行うことにより、熱間圧延板を得る工程と、
     前記熱延圧延板の酸洗を行う工程と、
     次に、前記熱延圧延板の冷間圧延を行うことにより、冷間圧延板を得る工程と、
     前記冷間圧延板の仕上焼鈍を行う工程と、
     を有し、
     前記仕上焼鈍の均熱温度T(℃)と前記冷間圧延板のCu含有量a(質量%)が式(4)を満たすことを特徴とする高強度無方向性電磁鋼板の製造方法。
     2.0×10-4≦[Nb]/93+[Zr]/91+[Ti]/48+[V]/51  ・・・(1)
     1.0×10-3≦[C]/12+[N]/14-([Nb]/93+[Zr]/91+[Ti]/48+[V]/51)≦3.0×10-3  ・・・(2)
     T≧200×a+500  ・・・(4)
    % By mass
    C: 0.002% to 0.05%,
    Si: 2.0% to 4.0%,
    Mn: 0.05% or more and 1.0% or less,
    N: 0.002% or more and 0.05% or less, and Cu: 0.5% or more and 3.0% or less,
    Al content is 3.0% or less,
    The content (%) of Nb is [Nb], the content (%) of Zr is [Zr], the content (%) of Ti is [Ti], the content (%) of V is [V], When the content (%) is [C] and the content (%) of N is [N], the expressions (1) and (2) are satisfied,
    Producing a slab with the balance being Fe and inevitable impurities;
    A step of hot rolling the steel to obtain a hot rolled sheet;
    Pickling the hot-rolled rolled sheet; and
    Next, by performing cold rolling of the hot-rolled rolled sheet, a step of obtaining a cold-rolled sheet,
    A step of finish annealing the cold-rolled sheet;
    Have
    A method for producing a high-strength non-oriented electrical steel sheet, characterized in that the soaking temperature T (° C.) of the finish annealing and the Cu content a (mass%) of the cold-rolled sheet satisfy the formula (4).
    2.0 × 10 −4 ≦ [Nb] / 93 + [Zr] / 91 + [Ti] / 48 + [V] / 51 (1)
    1.0 × 10 −3 ≦ [C] / 12 + [N] / 14 − ([Nb] / 93 + [Zr] / 91 + [Ti] / 48 + [V] / 51) ≦ 3.0 × 10 −3 (2)
    T ≧ 200 × a + 500 (4)
  10.  前記熱間圧延板を得る工程と前記酸洗を行う工程との間に、前記熱間圧延板の焼鈍を行う工程を有することを特徴とする請求項9に記載の高強度無方向性電磁鋼板の製造方法。 The high-strength non-oriented electrical steel sheet according to claim 9, further comprising a step of annealing the hot-rolled plate between the step of obtaining the hot-rolled plate and the step of pickling. Manufacturing method.
  11.  質量%で、
     C:0.002%以上0.05%以下、
     Si:2.0%以上4.0%以下、
     Mn:0.05%以上1.0%以下、
     N:0.002%以上0.05%以下、及び
     Cu:0.5%以上3.0%以下を含有し、
     Alの含有量が3.0%以下であり、
     Nbの含有量(%)を[Nb]、Zrの含有量(%)を[Zr]、Tiの含有量(%)を[Ti]、Vの含有量(%)を[V]、Cの含有量(%)を[C]、Nの含有量(%)を[N]としたとき、式(1)及び式(2)が満たされ、
     残部がFe及び不可避的不純物からなるスラブを作製する工程と、
     前記鋼の熱間圧延を行うことにより、熱間圧延板を得る工程と、
     次に、前記熱延圧延板の酸洗を行う工程と、
     次に、前記熱延圧延板の冷間圧延を行うことにより、冷間圧延板を得る工程と、
     前記冷間圧延板の仕上焼鈍を行う工程と、
     を有し、
     前記熱間圧延の巻取温度が550℃以下で、かつ、前記熱間圧延板のシャルピー衝撃試験における延性脆性破面遷移温度が70℃以下であることを特徴とする高強度無方向性電磁鋼板の製造方法。
     2.0×10-4≦[Nb]/93+[Zr]/91+[Ti]/48+[V]/51  ・・・(1)
     1.0×10-3≦[C]/12+[N]/14-([Nb]/93+[Zr]/91+[Ti]/48+[V]/51)≦3.0×10-3  ・・・(2)
    % By mass
    C: 0.002% to 0.05%,
    Si: 2.0% to 4.0%,
    Mn: 0.05% or more and 1.0% or less,
    N: 0.002% or more and 0.05% or less, and Cu: 0.5% or more and 3.0% or less,
    Al content is 3.0% or less,
    The content (%) of Nb is [Nb], the content (%) of Zr is [Zr], the content (%) of Ti is [Ti], the content (%) of V is [V], When the content (%) is [C] and the content (%) of N is [N], the expressions (1) and (2) are satisfied,
    Producing a slab with the balance being Fe and inevitable impurities;
    A step of hot rolling the steel to obtain a hot rolled sheet;
    Next, a step of pickling the hot rolled sheet,
    Next, by performing cold rolling of the hot-rolled rolled sheet, a step of obtaining a cold-rolled sheet,
    A step of finish annealing the cold-rolled sheet;
    Have
    A high-strength non-oriented electrical steel sheet, wherein the hot rolling coiling temperature is 550 ° C or lower, and the ductile brittle fracture surface transition temperature in the Charpy impact test of the hot rolled plate is 70 ° C or lower. Manufacturing method.
    2.0 × 10 −4 ≦ [Nb] / 93 + [Zr] / 91 + [Ti] / 48 + [V] / 51 (1)
    1.0 × 10 −3 ≦ [C] / 12 + [N] / 14 − ([Nb] / 93 + [Zr] / 91 + [Ti] / 48 + [V] / 51) ≦ 3.0 × 10 −3 (2)
  12.  質量%で、
     C:0.002%以上0.05%以下、
     Si:2.0%以上4.0%以下、
     Mn:0.05%以上1.0%以下、
     N:0.002%以上0.05%以下、及び
     Cu:0.5%以上3.0%以下を含有し、
     Alの含有量が3.0%以下であり、
     Nbの含有量(%)を[Nb]、Zrの含有量(%)を[Zr]、Tiの含有量(%)を[Ti]、Vの含有量(%)を[V]、Cの含有量(%)を[C]、Nの含有量(%)を[N]としたとき、式(1)及び式(2)が満たされ、
     残部がFe及び不可避的不純物からなるスラブを作製する工程と、
     前記鋼の熱間圧延を行うことにより、熱間圧延板を得る工程と、
     次に、前記熱延圧延板の焼鈍を行う工程と、
     次に、前記熱延圧延板の酸洗を行う工程と、
     次に、前記熱延圧延板の冷間圧延を行うことにより、冷間圧延板を得る工程と、
     前記冷間圧延板の仕上焼鈍を行う工程と、
     を有し、
     前記焼鈍の900℃から500℃までの冷却速度が50℃/sec以上で、かつ、前記熱間圧延板のシャルピー衝撃試験における延性脆性破面遷移温度が70℃以下であることを特徴とする高強度無方向性電磁鋼板の製造方法。
     2.0×10-4≦[Nb]/93+[Zr]/91+[Ti]/48+[V]/51  ・・・(1)
     1.0×10-3≦[C]/12+[N]/14-([Nb]/93+[Zr]/91+[Ti]/48+[V]/51)≦3.0×10-3  ・・・(2)
    % By mass
    C: 0.002% to 0.05%,
    Si: 2.0% to 4.0%,
    Mn: 0.05% or more and 1.0% or less,
    N: 0.002% or more and 0.05% or less, and Cu: 0.5% or more and 3.0% or less,
    Al content is 3.0% or less,
    The content (%) of Nb is [Nb], the content (%) of Zr is [Zr], the content (%) of Ti is [Ti], the content (%) of V is [V], When the content (%) is [C] and the content (%) of N is [N], the expressions (1) and (2) are satisfied,
    Producing a slab with the balance being Fe and inevitable impurities;
    A step of hot rolling the steel to obtain a hot rolled sheet;
    Next, a step of annealing the hot rolled sheet,
    Next, a step of pickling the hot rolled sheet,
    Next, by performing cold rolling of the hot-rolled rolled sheet, a step of obtaining a cold-rolled sheet,
    A step of finish annealing the cold-rolled sheet;
    Have
    A high cooling rate of the annealing from 900 ° C. to 500 ° C. is 50 ° C./sec or more, and a ductile brittle fracture surface transition temperature in the Charpy impact test of the hot-rolled sheet is 70 ° C. or less. A method for producing a strength non-oriented electrical steel sheet.
    2.0 × 10 −4 ≦ [Nb] / 93 + [Zr] / 91 + [Ti] / 48 + [V] / 51 (1)
    1.0 × 10 −3 ≦ [C] / 12 + [N] / 14 − ([Nb] / 93 + [Zr] / 91 + [Ti] / 48 + [V] / 51) ≦ 3.0 × 10 −3 (2)
PCT/JP2009/057453 2008-04-14 2009-04-13 High-strength non-oriented magnetic steel sheet and process for producing the high-strength non-oriented magnetic steel sheet WO2009128428A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/922,772 US20110056592A1 (en) 2008-04-14 2009-04-13 High-strength non-oriented electrical steel sheet and method of manufacturing the same
BRPI0910984A BRPI0910984B8 (en) 2008-04-14 2009-04-13 high strength non oriented electric steel sheet and production method thereof
EP09732579.9A EP2278034B1 (en) 2008-04-14 2009-04-13 High-strength non-oriented electrical steel sheet and method of manufacturing the same
PL09732579T PL2278034T3 (en) 2008-04-14 2009-04-13 High-strength non-oriented electrical steel sheet and method of manufacturing the same
JP2010508206A JP4659135B2 (en) 2008-04-14 2009-04-13 Non-oriented electrical steel sheet and manufacturing method thereof
CN2009801130902A CN102007226B (en) 2008-04-14 2009-04-13 High-strength non-oriented magnetic steel sheet and process for producing the high-strength non-oriented magnetic steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008104940 2008-04-14
JP2008-104940 2008-04-14

Publications (1)

Publication Number Publication Date
WO2009128428A1 true WO2009128428A1 (en) 2009-10-22

Family

ID=41199119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057453 WO2009128428A1 (en) 2008-04-14 2009-04-13 High-strength non-oriented magnetic steel sheet and process for producing the high-strength non-oriented magnetic steel sheet

Country Status (9)

Country Link
US (1) US20110056592A1 (en)
EP (1) EP2278034B1 (en)
JP (1) JP4659135B2 (en)
KR (1) KR20100122116A (en)
CN (1) CN102007226B (en)
BR (1) BRPI0910984B8 (en)
PL (1) PL2278034T3 (en)
TW (1) TWI404806B (en)
WO (1) WO2009128428A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012055223A1 (en) 2010-10-25 2012-05-03 宝山钢铁股份有限公司 High strength non-oriented electric steel having higher magnetic flux density and manufacture method thereof
WO2013024899A1 (en) 2011-08-18 2013-02-21 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet, method for producing same, laminate for motor iron core, and method for producing said laminate
WO2013024894A1 (en) 2011-08-18 2013-02-21 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet, method for producing same, laminate for motor iron core, and method for producing said laminate
JP2014503685A (en) * 2010-12-23 2014-02-13 ポスコ Low iron loss high strength non-oriented electrical steel sheet and method for producing the same
US9362032B2 (en) 2011-04-13 2016-06-07 Nippon Steel & Sumitomo Metal Corporation High-strength non-oriented electrical steel sheet
JP2017137537A (en) * 2016-02-04 2017-08-10 新日鐵住金株式会社 Nonoriented magnetic steel sheet
WO2021206047A1 (en) * 2020-04-07 2021-10-14 日本製鉄株式会社 Slab and method for continuously casting same
CN114657461A (en) * 2022-02-25 2022-06-24 东北大学 High-strength non-oriented silicon steel based on solid solution strengthening and preparation method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101218362B (en) * 2005-07-07 2010-05-12 住友金属工业株式会社 Non-oriented electromagnetic steel sheet and its manufacturing method
CA2822206C (en) * 2011-02-24 2016-09-13 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing the same
US9728312B2 (en) 2011-11-11 2017-08-08 Nippon Steel & Sumitomo Metal Corporation Non-oriented electrical steel sheet and manufacturing method thereof
TWI439010B (en) 2011-11-11 2014-05-21 Ind Tech Res Inst Segmented oriented-permeability structure for a rotating electrical machines
EP3165624B1 (en) * 2014-07-02 2019-05-01 Nippon Steel & Sumitomo Metal Corporation Non-oriented magnetic steel sheet, and manufacturing method for same
CN107208220B (en) * 2015-03-17 2019-03-01 新日铁住金株式会社 Non-oriented electromagnetic steel sheet and its manufacturing method
CN112375965A (en) * 2020-10-17 2021-02-19 北京科技大学 Preparation method of Cu-containing high-strength low-iron-loss non-oriented high-silicon steel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256917A (en) 1986-04-28 1987-11-09 Nippon Steel Corp High-tensile non-oriented electrical steel sheet for rotating machine and its production
JPH06330255A (en) 1993-05-21 1994-11-29 Nippon Steel Corp High tensile strength non-oriented silicon steel sheet and its production
JPH1018005A (en) 1996-06-28 1998-01-20 Sumitomo Metal Ind Ltd High strength nonoriented silicon steel sheet excellent in magnetic property and its production
JP2004084053A (en) 2002-06-26 2004-03-18 Nippon Steel Corp Electromagnetic steel sheet having remarkably superior magnetic property, and manufacturing method therefor
WO2005033349A1 (en) * 2003-10-06 2005-04-14 Nippon Steel Corporation High-strength magnetic steel sheet and worked part therefrom, and process for producing them
JP2007162097A (en) * 2005-12-15 2007-06-28 Sumitomo Metal Ind Ltd Method for manufacturing non-oriented electromagnetic steel sheet for rotor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7513959B2 (en) * 2002-12-05 2009-04-07 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing the same
WO2007063581A1 (en) * 2005-11-30 2007-06-07 Sumitomo Metal Industries, Ltd. Nonoriented electromagnetic steel sheet and process for producing the same
CN101466851B (en) * 2006-06-16 2012-08-22 新日本制铁株式会社 Method of manufacturing high intensity electromagnetic steel plate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256917A (en) 1986-04-28 1987-11-09 Nippon Steel Corp High-tensile non-oriented electrical steel sheet for rotating machine and its production
JPH06330255A (en) 1993-05-21 1994-11-29 Nippon Steel Corp High tensile strength non-oriented silicon steel sheet and its production
JPH1018005A (en) 1996-06-28 1998-01-20 Sumitomo Metal Ind Ltd High strength nonoriented silicon steel sheet excellent in magnetic property and its production
JP2004084053A (en) 2002-06-26 2004-03-18 Nippon Steel Corp Electromagnetic steel sheet having remarkably superior magnetic property, and manufacturing method therefor
WO2005033349A1 (en) * 2003-10-06 2005-04-14 Nippon Steel Corporation High-strength magnetic steel sheet and worked part therefrom, and process for producing them
JP2007162097A (en) * 2005-12-15 2007-06-28 Sumitomo Metal Ind Ltd Method for manufacturing non-oriented electromagnetic steel sheet for rotor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012055223A1 (en) 2010-10-25 2012-05-03 宝山钢铁股份有限公司 High strength non-oriented electric steel having higher magnetic flux density and manufacture method thereof
JP2014503685A (en) * 2010-12-23 2014-02-13 ポスコ Low iron loss high strength non-oriented electrical steel sheet and method for producing the same
US9362032B2 (en) 2011-04-13 2016-06-07 Nippon Steel & Sumitomo Metal Corporation High-strength non-oriented electrical steel sheet
EP3173503A1 (en) 2011-08-18 2017-05-31 Nippon Steel & Sumitomo Metal Corporation Non-oriented electrical steel sheet and manufacturing method thereof
JP5321764B2 (en) * 2011-08-18 2013-10-23 新日鐵住金株式会社 Non-oriented electrical steel sheet, method for producing the same, laminated body for motor core and method for producing the same
WO2013024894A1 (en) 2011-08-18 2013-02-21 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet, method for producing same, laminate for motor iron core, and method for producing said laminate
US9512500B2 (en) 2011-08-18 2016-12-06 Nippon Steel & Sumitomo Metal Corporation Non-oriented electrical steel sheet, method of manufacturing the same, laminate for motor iron core, and method of manufacturing the same
KR20170005517A (en) 2011-08-18 2017-01-13 신닛테츠스미킨 카부시키카이샤 Non-oriented electromagnetic steel sheet, method for producing same, laminate for motor iron core, and method for producing said laminate
WO2013024899A1 (en) 2011-08-18 2013-02-21 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet, method for producing same, laminate for motor iron core, and method for producing said laminate
US9721706B2 (en) 2011-08-18 2017-08-01 Nippon Steel & Sumitomo Metal Corporation Non-oriented electrical steel sheet, manufacturing method thereof, laminate for motor iron core, and manufacturing method thereof
JP2017137537A (en) * 2016-02-04 2017-08-10 新日鐵住金株式会社 Nonoriented magnetic steel sheet
WO2021206047A1 (en) * 2020-04-07 2021-10-14 日本製鉄株式会社 Slab and method for continuously casting same
JPWO2021206047A1 (en) * 2020-04-07 2021-10-14
JP7222443B2 (en) 2020-04-07 2023-02-15 日本製鉄株式会社 Slab and its continuous casting method
CN114657461A (en) * 2022-02-25 2022-06-24 东北大学 High-strength non-oriented silicon steel based on solid solution strengthening and preparation method thereof
CN114657461B (en) * 2022-02-25 2023-08-08 东北大学 High-strength non-oriented silicon steel based on solid solution strengthening and preparation method thereof

Also Published As

Publication number Publication date
JPWO2009128428A1 (en) 2011-08-04
KR20100122116A (en) 2010-11-19
JP4659135B2 (en) 2011-03-30
CN102007226A (en) 2011-04-06
EP2278034B1 (en) 2020-02-12
EP2278034A1 (en) 2011-01-26
US20110056592A1 (en) 2011-03-10
TW200946695A (en) 2009-11-16
BRPI0910984A2 (en) 2016-01-05
TWI404806B (en) 2013-08-11
EP2278034A4 (en) 2017-01-25
PL2278034T3 (en) 2020-06-29
BRPI0910984B8 (en) 2018-09-25
BRPI0910984B1 (en) 2018-06-05
CN102007226B (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP4659135B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6478004B1 (en) Non-oriented electrical steel sheet
JP5146169B2 (en) High strength non-oriented electrical steel sheet and manufacturing method thereof
JP5228379B2 (en) Non-oriented electrical steel sheet with excellent strength and magnetic properties and manufacturing method thereof
JP4585609B2 (en) Non-oriented electrical steel sheet with low high-frequency iron loss and manufacturing method thereof
KR101011965B1 (en) Highly strong, non-oriented electrical steel sheet and method for manufacture thereof
JP5375149B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5267747B2 (en) High strength non-oriented electrical steel sheet
JP5532187B2 (en) Manufacturing method of electrical steel sheet
JP5194535B2 (en) High strength non-oriented electrical steel sheet
JP5028992B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2012140676A (en) Non-oriented electromagnetic steel sheet and method for producing the same
JP4833523B2 (en) Electrical steel sheet and manufacturing method thereof
JP4349340B2 (en) Method for producing Cu-containing non-oriented electrical steel sheet
JP2010150667A (en) Electromagnetic steel sheet and method for manufacturing the same
JP4415933B2 (en) Method for producing non-oriented electrical steel sheet for rotor
JP5614063B2 (en) High tension non-oriented electrical steel sheet with excellent high-frequency iron loss
JP4929484B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4306490B2 (en) Method for producing high strength non-oriented electrical steel sheet with low iron loss
JP4280139B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4259011B2 (en) Non-oriented electrical steel sheet
JP6852965B2 (en) Electrical steel sheet and its manufacturing method
KR20230129476A (en) Non-oriented electrical steel sheet and manufacturing method thereof
TWI461545B (en) High-strength electromagnetic steel plate and manufacturing method thereof
JP2009001864A (en) Method for producing nonoriented magnetic steel sheet for rotor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980113090.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09732579

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010508206

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 6427/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12922772

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107022839

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009732579

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0910984

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101007