JP2013044012A - Non-oriented electromagnetic steel sheet, and method of producing the same - Google Patents

Non-oriented electromagnetic steel sheet, and method of producing the same Download PDF

Info

Publication number
JP2013044012A
JP2013044012A JP2011181848A JP2011181848A JP2013044012A JP 2013044012 A JP2013044012 A JP 2013044012A JP 2011181848 A JP2011181848 A JP 2011181848A JP 2011181848 A JP2011181848 A JP 2011181848A JP 2013044012 A JP2013044012 A JP 2013044012A
Authority
JP
Japan
Prior art keywords
less
hot
rolled
steel sheet
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011181848A
Other languages
Japanese (ja)
Other versions
JP5824965B2 (en
Inventor
Hirotoshi Tada
裕俊 多田
Ichiro Tanaka
一郎 田中
Hiroyoshi Yashiki
裕義 屋鋪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2011181848A priority Critical patent/JP5824965B2/en
Publication of JP2013044012A publication Critical patent/JP2013044012A/en
Application granted granted Critical
Publication of JP5824965B2 publication Critical patent/JP5824965B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-oriented electromagnetic steel sheet having low high-frequency iron loss and a high flux density, and suitable for use in an iron core of a high efficiency motor primarily used in a high-speed rotation range.SOLUTION: The non-oriented electromagnetic steel sheet is characterized by including a chemical composition comprising, by mass, Si: at least 1.8% and not more than 3.0%, sol. Al: at least 0.1% and not more than 3.0%, Mn: at least 0.05% and not more than 3.0%, P: at least 0.03% and not more than 0.10%, S: at least 0.0010% and not more than 0.0050%, C: not more than 0.0050%, As: not more than 0.0050%, Nb: not more than 0.0030%, Ti: not more than 0.0030%, V: not more than 0.0030%, Zr: not more than 0.0030%, and N: not more than 0.0050% with the balance being Fe and impurities while satisfying the relation: S+As+Nb+Ti+V+Zr+N≤0.018, by having a steel structure in which the average crystal grain size is at least 60 μm and not larger than 180 μm, by having a magnetic characteristic being an iron loss Wof not greater than 50 W/kg, and by having a sheet thickness of at least 0.10 mm and not greater than 0.33 mm.

Description

本発明は、無方向性電磁鋼板およびその製造方法に関する。より詳しくは、本発明は、エアコンや冷蔵庫などのコンプレッサーモータ、電気自動車やハイブリッド自動車などの駆動モータおよび発電機など、高速回転域で使用される頻度の高い高効率モータの鉄心に使用することが好適な無方向性電磁鋼板およびその製造方法に関する。   The present invention relates to a non-oriented electrical steel sheet and a method for producing the same. More specifically, the present invention can be used for iron cores of high-efficiency motors frequently used in a high-speed rotation range, such as compressor motors such as air conditioners and refrigerators, drive motors and generators such as electric vehicles and hybrid vehicles. The present invention relates to a suitable non-oriented electrical steel sheet and a method for producing the same.

地球温暖化ガスを削減するため、自動車や家電製品等の分野では消費エネルギーの少ない製品の普及が急速に進んでいる。例えば、自動車分野においては、ガソリンエンジンとモータとを組み合わせた駆動系を持つハイブリッド自動車、モータ駆動の電気自動車等の低燃費自動車がある。また、家電製品分野においては、年間電気消費量の少ない高効率エアコン、冷蔵庫等がある。これらに共通する技術はモータであり、モータの高効率化が重要な技術となっており、モータの高効率化のために、鉄心材料である無方向性電磁鋼板の鉄損低減と磁束密度向上が要求されている。上記のような自動車の駆動モータや家電製品のコンプレッサーモータなどは高速回転域で使用される頻度が高いため、鉄心材料としては高周波条件下での鉄損が低い無方向性電磁鋼板が好適である。   In order to reduce global warming gas, products with low energy consumption are rapidly spreading in the fields of automobiles and home appliances. For example, in the automobile field, there are low fuel consumption vehicles such as hybrid vehicles having a drive system in which a gasoline engine and a motor are combined, and motor-driven electric vehicles. In the field of home appliances, there are high-efficiency air conditioners, refrigerators and the like that consume less electricity annually. The technology common to these is the motor, and it is important to improve the motor efficiency. To increase the efficiency of the motor, iron loss reduction and magnetic flux density improvement of the non-oriented electrical steel sheet, which is the core material, are performed. Is required. Since motor drive motors and home appliance compressor motors such as those described above are frequently used in high-speed rotation regions, non-oriented electrical steel sheets with low iron loss under high-frequency conditions are suitable as the iron core material. .

高周波鉄損低減の手段としては、板厚を低減する手段やSiやAlなどの比抵抗を増加させる効果を有する合金元素の含有量を増加させる手段が一般的である。しかしながら、板厚低減に伴って製造が困難となるため、板厚の低減による鉄損低減には限界がある。また、合金元素量の増加によって磁束密度が低下してモータトルクが低下するため、モータを大型化する必要が生じるという問題がある。   As a means for reducing the high-frequency iron loss, a means for reducing the plate thickness and a means for increasing the content of an alloy element having an effect of increasing the specific resistance such as Si and Al are generally used. However, since the manufacture becomes difficult as the plate thickness is reduced, there is a limit to reducing the iron loss by reducing the plate thickness. Further, since the magnetic flux density is reduced due to the increase in the amount of alloy elements and the motor torque is reduced, there is a problem that the motor needs to be enlarged.

また、磁束密度を向上させる手段としては、Pを積極的に添加する手段が提案されている(特許文献1参照)。特許文献1に開示された発明は、磁束密度を向上させることにより、さらなる合金元素量の増加による高周波鉄損低減を可能にするので、主に高速回転域で使用される頻度の高いモータの高効率化に寄与する非常に優れた発明である。   Moreover, as means for improving the magnetic flux density, means for positively adding P has been proposed (see Patent Document 1). The invention disclosed in Patent Document 1 enables high-frequency iron loss reduction by further increasing the amount of alloying elements by improving the magnetic flux density. It is a very excellent invention that contributes to efficiency.

特開2005−200756号公報JP 2005-200756 A

近年のさらなるモータの高効率化の要求により、より一層の高周波鉄損低減を可能にする磁束密度の向上手段が求められている。
本発明は上記実情に鑑みてなされたものであり、その課題はエアコンや冷蔵庫などのコンプレッサーモータ、電気自動車やハイブリッド自動車などの駆動モータおよび発電機など、主に高速回転域で使用される高効率モータ鉄心に使用することが好適な、高周波鉄損が低く、磁束密度が高い無方向性電磁鋼板を提供することにある。
Due to the recent demand for higher motor efficiency, a means for improving the magnetic flux density that can further reduce the high-frequency iron loss is required.
The present invention has been made in view of the above circumstances, and its problem is high efficiency mainly used in a high-speed rotation range such as compressor motors such as air conditioners and refrigerators, drive motors and generators such as electric vehicles and hybrid vehicles. An object of the present invention is to provide a non-oriented electrical steel sheet having a low high-frequency iron loss and a high magnetic flux density that is suitable for use in a motor core.

本発明者らは、上記課題を解決すべく、磁束密度に及ぼすPの影響のみならず、磁束密度に及ぼすPと他の元素との相互作用の影響について新たに着目し、これらの相互作用を利用することによりさらなる磁束密度の向上を図ることを新たに着想し、さらに、これを実現するための製造条件を確立すべく、鋭意検討を行った。その結果、Sを微量に含有させたうえで、S、As、Nb、Ti、V、ZrおよびNの合計含有量の上限を規制すること、さらには、適切な熱間圧延条件と冷間圧延条件とを組み合わせることにより、P添加による磁束密度の向上作用が効果的に高められることを新たに知見した。本発明はこれらの新たな知見に基づくものであり、その要旨は以下のとおりである。   In order to solve the above problems, the present inventors have paid attention not only to the influence of P on the magnetic flux density but also to the influence of the interaction between P and other elements on the magnetic flux density. The idea of further improving the magnetic flux density by using it was newly conceived, and further intensive studies were carried out in order to establish manufacturing conditions for realizing this. As a result, after containing a small amount of S, the upper limit of the total content of S, As, Nb, Ti, V, Zr and N is regulated, and further, appropriate hot rolling conditions and cold rolling It has been newly found that the effect of improving the magnetic flux density by adding P can be effectively enhanced by combining the conditions. The present invention is based on these new findings, and the gist thereof is as follows.

すなわち、本発明は、質量%で、Si:1.8%以上3.0%以下、sol.Al:0.1%以上3.0%以下、Mn:0.05%以上3.0%以下、P:0.03%以上0.10%以下、S:0.0010%以上0.0050%以下、C:0.0050%以下、As:0.0050%以下、Nb:0.0030%以下、Ti:0.0030%以下、V:0.0030%以下、Zr:0.0030%以下およびN:0.0050%以下を含有し、残部がFeおよび不純物からなるとともに、下記式(1)を満足する化学組成を有し、平均結晶粒径が60μm以上180μm以下である鋼組織を有し、周波数800Hz、磁束密度1.0Tで磁化した際の鉄損W10/800が50W/kg以下である磁気特性を有し、板厚が0.10mm以上0.33mm以下であることを特徴とする無方向性電磁鋼板を提供する。
S+As+Nb+Ti+V+Zr+N≦0.018 (1)
(ここで、式中の各元素記号は鋼中の各元素の含有量(単位:質量%)を示す。)
That is, the present invention relates to mass%, Si: 1.8% to 3.0%, sol. Al: 0.1% to 3.0%, Mn: 0.05% to 3.0%, P: 0.03% to 0.10%, S: 0.0010% to 0.0050% Hereinafter, C: 0.0050% or less, As: 0.0050% or less, Nb: 0.0030% or less, Ti: 0.0030% or less, V: 0.0030% or less, Zr: 0.0030% or less, and N: 0.0050% or less, with the balance being Fe and impurities, having a chemical composition satisfying the following formula (1), and having an average crystal grain size of 60 μm or more and 180 μm or less The magnetic loss W 10/800 when magnetized at a frequency of 800 Hz and a magnetic flux density of 1.0 T has a magnetic property of 50 W / kg or less, and the plate thickness is 0.10 mm or more and 0.33 mm or less. A non-oriented electrical steel sheet is provided.
S + As + Nb + Ti + V + Zr + N ≦ 0.018 (1)
(Here, each element symbol in the formula indicates the content (unit: mass%) of each element in the steel.)

また本発明は、下記工程(A)〜(D)を有することを特徴とする無方向性電磁鋼板の製造方法を提供する。
(A)上述の化学組成を有するスラブに、仕上温度:700℃以上および巻取温度:300℃以上の熱間圧延を施して熱延鋼板とする熱間圧延工程;
(B)上記熱延圧延工程により得られた熱延鋼板に酸洗および熱延板焼鈍を施して熱延焼鈍板とする酸洗・熱延板焼鈍工程;
(C)上記酸洗・熱延板焼鈍工程により得られた熱延焼鈍板に圧下率85%以上の冷間圧延を施して板厚0.10mm以上0.33mm以下の冷延鋼板とする冷間圧延工程;および
(D)上記冷間圧延工程により得られた冷延鋼板に仕上焼鈍を施す仕上焼鈍工程
Moreover, this invention provides the manufacturing method of the non-oriented electrical steel sheet characterized by having the following process (A)-(D).
(A) A hot rolling step in which hot rolling at a finishing temperature of 700 ° C. or higher and a winding temperature of 300 ° C. or higher is performed on a slab having the above chemical composition to form a hot rolled steel sheet;
(B) A pickling / hot-rolled sheet annealing step in which a hot-rolled steel sheet obtained by the hot-rolled rolling process is subjected to pickling and hot-rolled sheet annealing to obtain a hot-rolled annealed sheet;
(C) Cold rolling a cold rolled steel sheet having a sheet thickness of 0.10 mm to 0.33 mm by subjecting the hot rolled annealed sheet obtained by the pickling / hot rolled sheet annealing step to cold rolling with a reduction ratio of 85% or more. And (D) a finish annealing step for subjecting the cold-rolled steel sheet obtained by the cold rolling step to finish annealing.

本発明に係る無方向性電磁鋼板により、モータ効率の向上が期待できる。また、本発明に係る無方向性電磁鋼板の製造方法は特殊な設備を要しないため、製造コスト面でも優れている。   The non-oriented electrical steel sheet according to the present invention can be expected to improve motor efficiency. Moreover, since the manufacturing method of the non-oriented electrical steel sheet which concerns on this invention does not require special equipment, it is excellent also in terms of manufacturing cost.

以下、本発明の無方向性電磁鋼板およびその製造方法について詳細に説明する。   Hereinafter, the non-oriented electrical steel sheet and the manufacturing method thereof according to the present invention will be described in detail.

A.無方向性電磁鋼板
まず、本発明の無方向性電磁鋼板における各構成について説明する。
1.化学組成
はじめに、鋼板の化学組成の限定理由について説明する。なお、各元素の含有量を示す「%」は、特に断りのない限り「質量%」を意味するものである。
A. Non-oriented electrical steel sheet First, each structure in the non-oriented electrical steel sheet of the present invention will be described.
1. Chemical composition First, the reasons for limiting the chemical composition of the steel sheet will be described. “%” Indicating the content of each element means “mass%” unless otherwise specified.

Siは、鋼板の比抵抗を高めて鉄損を低減させるのに有効な元素である。したがって、Si含有量は1.8%以上とする。好ましくは、2.0%以上である。一方、過剰に含有させると鋼板が硬化し、冷間圧延での破断率が増加する。このため、Si含有量は3.0%以下とする。   Si is an element effective for increasing the specific resistance of a steel sheet and reducing iron loss. Therefore, the Si content is 1.8% or more. Preferably, it is 2.0% or more. On the other hand, if it is contained excessively, the steel sheet is hardened and the breaking rate in cold rolling increases. For this reason, Si content shall be 3.0% or less.

sol.Alは、鋼板の比抵抗を高めて鉄損を低減させるのに有効な元素である。したがって、sol.Alは0.1%以上とする。好ましくは、0.6%以上である。一方、過剰に含有させると磁束密度が著しく低下する。このため、sol.Alは3.0%以下とする。   sol. Al is an element effective for increasing the specific resistance of the steel sheet and reducing iron loss. Therefore, sol. Al is 0.1% or more. Preferably, it is 0.6% or more. On the other hand, when it is excessively contained, the magnetic flux density is remarkably lowered. For this reason, sol. Al is 3.0% or less.

Mnは、鋼板の比抵抗を高めて鉄損を低減させるのに有効な元素である。したがって、Mn含有量は0.05%以上とする。好ましくは、0.4%以上である。一方、MnはSiやAlに比べて合金コストが高いため、Mn含有量が高くなると経済的に不利となる。このため、Mn含有量は3.0%以下とする。   Mn is an element effective for increasing the specific resistance of the steel sheet and reducing iron loss. Therefore, the Mn content is 0.05% or more. Preferably, it is 0.4% or more. On the other hand, since Mn has a higher alloy cost than Si and Al, an increase in Mn content is economically disadvantageous. For this reason, Mn content shall be 3.0% or less.

Pは、集合組織を改善して磁気特性を向上させる作用を有する。したがって、P含有量は0.03%以上とする。好ましくは、0.04%以上である。一方、P含有量が過剰になると、Pの粒界偏析が顕著となり冷間圧延での破断率が増加する。したがって、P含有量は0.10%以下とする。好ましくは、0.08%以下である。   P has the effect of improving the texture by improving the texture. Therefore, the P content is 0.03% or more. Preferably, it is 0.04% or more. On the other hand, when the P content is excessive, the grain boundary segregation of P becomes remarkable and the breaking rate in cold rolling increases. Therefore, the P content is 0.10% or less. Preferably, it is 0.08% or less.

Sは、一般に不純物として鋼中に含有される元素であり、鋼中のMnと結合して微細なMnSを形成し、焼鈍時の結晶粒の成長を阻害して磁気特性を劣化させることから、従来はその含有量を低減することが求められてきた元素である。しかしながら、上述した本発明者らの検討によって、Sを微量に含有させたうえで、S、As、Nb、Ti、V、ZrおよびNの合計含有量の上限を規制することにより、P添加による磁束密度の向上作用が効果的に高められることが初めて明らかとなった。したがって、S含有量は0.0010%以上とする。一方、S含有量が過剰になると、焼鈍時の結晶粒成長の阻害により磁気特性の劣化が顕著となる。したがって、S含有量は0.0050%以下とする。好ましくは、0.0035%以下である。   S is an element that is generally contained in steel as an impurity, and combines with Mn in steel to form fine MnS, which inhibits the growth of crystal grains during annealing and deteriorates magnetic properties. Conventionally, this element has been required to reduce its content. However, as a result of the above-described investigation by the present inventors, after adding a small amount of S, by regulating the upper limit of the total content of S, As, Nb, Ti, V, Zr and N, by adding P It has been clarified for the first time that the effect of improving the magnetic flux density can be effectively enhanced. Therefore, the S content is 0.0010% or more. On the other hand, when the S content is excessive, the deterioration of magnetic properties becomes significant due to the inhibition of crystal grain growth during annealing. Therefore, the S content is 0.0050% or less. Preferably, it is 0.0035% or less.

Cは、不純物として含有され、磁気特性を劣化させる元素である。このため、C含有量は0.0050%以下とする。好ましくは、0.0035%以下である。   C is an element that is contained as an impurity and deteriorates magnetic properties. For this reason, C content shall be 0.0050% or less. Preferably, it is 0.0035% or less.

As、Nb、Ti、VおよびZrは、不純物として含有され、磁気特性を劣化させる元素である。したがって、As含有量は0.0050%以下、Nb含有量は0.0030%以下、Ti含有量は0.0030%以下、V含有量は0.0030%以下、Zr含有量は0.0030%以下とする。好ましくは、As含有量は0.0035%以下、Nb含有量は0.0020%以下、Ti含有量は0.0020%以下、V含有量は0.0020%以下、Zr含有量は0.0020%以下である。   As, Nb, Ti, V, and Zr are elements that are contained as impurities and deteriorate magnetic properties. Therefore, As content is 0.0050% or less, Nb content is 0.0030% or less, Ti content is 0.0030% or less, V content is 0.0030% or less, Zr content is 0.0030%. The following. Preferably, the As content is 0.0035% or less, the Nb content is 0.0020% or less, the Ti content is 0.0020% or less, the V content is 0.0020% or less, and the Zr content is 0.0020. % Or less.

Nは、不純物として含有され、Alなどと結合して微細な介在物を形成し、焼鈍時の結晶粒の成長を阻害して磁気特性を劣化させる。このため、N含有量を0.0050%以下とする。好ましくは、0.0035%以下である。   N is contained as an impurity and combines with Al to form fine inclusions, which inhibits the growth of crystal grains during annealing and deteriorates magnetic properties. For this reason, N content shall be 0.0050% or less. Preferably, it is 0.0035% or less.

不純物元素であるS、As、Nb、Ti、V、ZrおよびNの含有量を低減することで、鉄損が低減されることは従来から知られていた。しかしながら、上述した本発明者らの検討によって、Sを微量に含有させたうえで、S、As、Nb、Ti、V、ZrおよびNの合計含有量の上限を規制することにより、P添加による磁束密度の向上作用が効果的に高められることが初めて明らかとなった。したがって、S、As、Nb、Ti、V、ZrおよびNの合計含有量は下記式(1)を満足するものとする。中でも、下記式(2)を満足することが好ましく、下記式(3)を満足することがさらに好ましい。
S+As+Nb+Ti+V+Zr+N≦0.018 (1)
S+As+Nb+Ti+V+Zr+N≦0.016 (2)
S+As+Nb+Ti+V+Zr+N≦0.014 (3)
ここで、式中の各元素記号は鋼中の各元素の含有量(単位:質量%)を示す。
It has been conventionally known that iron loss is reduced by reducing the contents of impurity elements S, As, Nb, Ti, V, Zr and N. However, as a result of the above-described investigation by the present inventors, after adding a small amount of S, by regulating the upper limit of the total content of S, As, Nb, Ti, V, Zr and N, by adding P It has been clarified for the first time that the effect of improving the magnetic flux density can be effectively enhanced. Accordingly, the total content of S, As, Nb, Ti, V, Zr and N shall satisfy the following formula (1). Especially, it is preferable that the following formula (2) is satisfied, and it is more preferable that the following formula (3) is satisfied.
S + As + Nb + Ti + V + Zr + N ≦ 0.018 (1)
S + As + Nb + Ti + V + Zr + N ≦ 0.016 (2)
S + As + Nb + Ti + V + Zr + N ≦ 0.014 (3)
Here, each element symbol in the formula indicates the content (unit: mass%) of each element in the steel.

2.平均結晶粒径
結晶粒径は、大き過ぎても小さ過ぎても鉄損が劣化する。したがって、平均結晶粒径は60μm以上180μm以下とする。
なお、平均結晶粒径は、縦断面組織写真において、板厚方向および圧延方向について切断法により測定した結晶粒径の平均値を用いればよい。この縦断面組織写真としては光学顕微鏡写真を用いることができ、例えば50倍の倍率で撮影した写真を用いればよい。
2. Average crystal grain size If the crystal grain size is too large or too small, the iron loss deteriorates. Therefore, the average crystal grain size is 60 μm or more and 180 μm or less.
The average crystal grain size may be the average value of the crystal grain sizes measured by the cutting method in the plate thickness direction and the rolling direction in the longitudinal sectional structure photograph. An optical micrograph can be used as the longitudinal cross-sectional structure photograph. For example, a photograph taken at a magnification of 50 times may be used.

3.鉄損
高速回転域で使用される頻度が高いモータの鉄心材料としては、高周波鉄損が低い無方向性電磁鋼板が好適である。したがって、周波数800Hz、磁束密度1.0Tで磁化した際の鉄損W10/800を50W/kg以下とする。好ましくは、46W/kg以下である。
3. Iron loss As the iron core material of a motor that is frequently used in a high-speed rotation region, a non-oriented electrical steel sheet having a low high-frequency iron loss is suitable. Therefore, the iron loss W 10/800 when magnetized at a frequency of 800 Hz and a magnetic flux density of 1.0 T is set to 50 W / kg or less. Preferably, it is 46 W / kg or less.

4.板厚
エアコンや冷蔵庫などのコンプレッサーモータ、電気自動車やハイブリッド自動車などの駆動モータおよび発電機はインバータ制御により、幅広い回転速度領域で使用されるが、鉄損がきわめて大きくなる高速回転域の使用頻度が高いため、鉄心材料である無方向性電磁鋼板は高周波域での鉄損が低いものが望ましい。鉄損は、板厚が薄いほど低減されるため、板厚は0.33mm以下とする。好ましくは0.30mm以下である。一方、過度の薄肉化は鋼板やモータの生産性を著しく低下させる。したがって、板厚は0.10mm以上とする。好ましくは0.15mm以上である。
4). Thickness Compressor motors such as air conditioners and refrigerators, and drive motors and generators such as electric vehicles and hybrid vehicles are used in a wide range of rotational speeds by inverter control. Therefore, it is desirable that the non-oriented electrical steel sheet, which is a core material, has a low iron loss in a high frequency range. Since the iron loss is reduced as the plate thickness is reduced, the plate thickness is set to 0.33 mm or less. Preferably it is 0.30 mm or less. On the other hand, excessive thinning significantly reduces the productivity of steel plates and motors. Therefore, the plate thickness is 0.10 mm or more. Preferably it is 0.15 mm or more.

B.無方向性電磁鋼板の製造方法
次に、本発明の無方向性電磁鋼板の製造方法について説明する。
本発明の無方向性電磁鋼板の製造方法は、下記工程(A)〜(D)を有することを特徴とする。
(A)上述の化学組成を有するスラブに、仕上温度:700℃以上および巻取温度:300℃以上の熱間圧延を施して熱延鋼板とする熱間圧延工程;
(B)上記熱延圧延工程により得られた熱延鋼板に酸洗および熱延板焼鈍を施して熱延焼鈍板とする酸洗・熱延板焼鈍工程;
(C)上記酸洗・熱延板焼鈍工程により得られた熱延焼鈍板に圧下率85%以上の冷間圧延を施して板厚0.10mm以上0.33mm以下の冷延鋼板とする冷間圧延工程;および
(D)上記冷間圧延工程により得られた冷延鋼板に仕上焼鈍を施す仕上焼鈍工程
以下、本発明に係る無方向性電磁鋼板の製造方法における各工程について説明する。
B. Next, a method for producing a non-oriented electrical steel sheet according to the present invention will be described.
The manufacturing method of the non-oriented electrical steel sheet of this invention has the following process (A)-(D), It is characterized by the above-mentioned.
(A) A hot rolling step in which hot rolling at a finishing temperature of 700 ° C. or higher and a winding temperature of 300 ° C. or higher is performed on a slab having the above chemical composition to form a hot rolled steel sheet;
(B) A pickling / hot-rolled sheet annealing step in which a hot-rolled steel sheet obtained by the hot-rolled rolling process is subjected to pickling and hot-rolled sheet annealing to obtain a hot-rolled annealed sheet;
(C) Cold rolling a cold rolled steel sheet having a sheet thickness of 0.10 mm to 0.33 mm by subjecting the hot rolled annealed sheet obtained by the pickling / hot rolled sheet annealing step to cold rolling with a reduction ratio of 85% or more. And (D) Finish annealing step for subjecting the cold-rolled steel sheet obtained by the cold rolling step to finish annealing Hereinafter, each step in the method for producing a non-oriented electrical steel sheet according to the present invention will be described.

1.熱間圧延工程
熱間圧延工程における仕上温度は700℃以上、巻取温度は300℃以上とする。仕上温度が700℃未満であったり、巻取温度が300℃未満であったりすると、所望のP添加によるB50の向上効果を得ることができない場合がある。仕上温度および巻取温度の上限は、磁気特性の観点からは特に規定する必要はないが、スケールロスによる歩留り低下を抑制する観点から、仕上温度は1000℃以下とすることが好ましく、巻取温度は800℃以下とすることが好ましい。
熱間圧延工程における他の条件は特に規定されるものではない。
1. Hot rolling step The finishing temperature in the hot rolling step is 700 ° C or higher, and the winding temperature is 300 ° C or higher. If the finishing temperature is less than 700 ° C. or the coiling temperature is less than 300 ° C., it may not be possible to obtain the effect of improving B 50 by the desired addition of P. The upper limit of the finishing temperature and the winding temperature need not be specified from the viewpoint of magnetic properties, but the finishing temperature is preferably set to 1000 ° C. or less from the viewpoint of suppressing the yield reduction due to scale loss. Is preferably 800 ° C. or lower.
Other conditions in the hot rolling process are not particularly defined.

2.酸洗・熱延板焼鈍工程
酸洗・熱延板焼鈍工程における諸条件は特に規定されるものではないが、再結晶を促進して優れた磁気特性を確保する観点から、焼鈍温度は730℃以上とすることが好ましく、焼鈍時間は1時間以上とすることが好ましい。焼鈍時間は3時間以上とすることがさらに好ましい。一方、設備への負荷や製造コストの観点から、焼鈍温度は850℃以下とすることが好ましく、焼鈍時間は50時間以下とすることが好ましい。焼鈍温度は810℃以下とすることがさらに好ましく、790℃以下とすることが特に好ましい。焼鈍時間は40時間以下とすることがさらに好ましい。
酸洗および熱延板焼鈍は順不同であり、酸洗後に熱延板焼鈍を施してもよく、熱延板焼鈍後に酸洗を施してもよい。
2. Pickling / Hot Rolled Sheet Annealing Process Various conditions in the pickling / hot rolled sheet annealing process are not specified, but the annealing temperature is 730 ° C. from the viewpoint of promoting recrystallization and ensuring excellent magnetic properties. Preferably, the annealing time is 1 hour or longer. More preferably, the annealing time is 3 hours or more. On the other hand, the annealing temperature is preferably 850 ° C. or less, and the annealing time is preferably 50 hours or less, from the viewpoint of load on equipment and manufacturing cost. The annealing temperature is more preferably 810 ° C. or less, and particularly preferably 790 ° C. or less. More preferably, the annealing time is 40 hours or less.
Pickling and hot-rolled sheet annealing are in no particular order, and hot-rolled sheet annealing may be performed after pickling, or pickling may be performed after hot-rolled sheet annealing.

3.冷間圧延工程
冷間圧延工程における圧下率は85%以上とする。圧下率が85%未満であると、所望のP添加によるB50の向上効果を得ることができない場合がある。
冷間圧延工程における他の条件は特に規定されるものではない。
3. Cold rolling step The rolling reduction in the cold rolling step is 85% or more. If the rolling reduction is less than 85%, it may not be possible to obtain the effect of improving B 50 by adding desired P.
Other conditions in the cold rolling process are not particularly defined.

4.仕上焼鈍工程
仕上焼鈍工程における諸条件は特に規定されるものではないが、十分な粒成長を促して優れた磁気特性を確保する観点から、焼鈍温度は900℃以上とすることが好ましく、焼鈍時間は1秒間以上とすることが好ましい。一方、設備への負荷や製造コストの観点から、焼鈍温度は1180℃以下とすることが好ましく、焼鈍時間は300秒間以下とすることが好ましい。
4). Finish annealing process The conditions in the finish annealing process are not particularly specified, but from the viewpoint of securing sufficient magnetic properties by promoting sufficient grain growth, the annealing temperature is preferably 900 ° C. or higher, and the annealing time. Is preferably 1 second or longer. On the other hand, the annealing temperature is preferably 1180 ° C. or less, and the annealing time is preferably 300 seconds or less, from the viewpoint of load on equipment and manufacturing cost.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

以下、実施例および比較例を例示して、本発明を具体的に説明する。   Hereinafter, the present invention will be described specifically by way of examples and comparative examples.

[実施例1]
下記表1に示す化学組成を有するスラブに、仕上温度800℃、巻取温度500℃の熱間圧延を施して板厚2.0mmの熱延鋼板とし、酸洗を施した。これらの酸洗鋼板に790℃で10〜20時間保持する熱延板焼鈍を施して、平均結晶粒径を100μmに揃えた。これらの熱延焼鈍板に、圧下率87.5%の冷間圧延を施して仕上板厚0.25mmの冷延鋼板とした。このとき、一部は冷間圧延にて破断した。破断が生じなかった冷延鋼板に1100℃で10秒間保持する仕上焼鈍を施して、平均結晶粒径97〜134μmの無方向性電磁鋼板を得た。
[Example 1]
A slab having the chemical composition shown in Table 1 below was hot-rolled at a finishing temperature of 800 ° C. and a coiling temperature of 500 ° C. to obtain a hot-rolled steel plate having a thickness of 2.0 mm, and pickled. These pickled steel sheets were subjected to hot-rolled sheet annealing that was held at 790 ° C. for 10 to 20 hours, so that the average crystal grain size was adjusted to 100 μm. These hot-rolled annealed sheets were cold-rolled with a rolling reduction of 87.5% to obtain cold-rolled steel sheets with a finished sheet thickness of 0.25 mm. At this time, a part was broken by cold rolling. The cold-rolled steel sheet that did not break was subjected to finish annealing that was held at 1100 ° C. for 10 seconds to obtain a non-oriented electrical steel sheet having an average crystal grain size of 97 to 134 μm.

これらの無方向性電磁鋼板について、周波数800Hz、磁束密度1.0Tで磁化した際の鉄損W10/800および磁化力5000A/mで磁化した際の磁束密度B50を測定した。ここで、鋼板No.1はPがほとんど添加されていない基準材であり、この基準材のB50と鋼板No.2〜12のB50との差ΔB50を算出して、P添加によるB50の向上効果の大きさを評価した。このΔB50が大きくなるほどP添加によるB50の向上効果が大きいことを意味している。また、P含有量が多いほどΔB50は大きくなるため、その点を考慮して、下記式(4)よりXを算出し、Xが0以上であることを目標特性とした。
X=ΔB50−0.4×(P−0.01) (4)
(ここで、式中のPは鋼中のP含有量(単位:質量%)を示す。)
平均結晶粒径と磁気測定の結果を併せて表1に示す。
For these non-oriented electrical steel sheets, the iron loss W 10/800 when magnetized at a frequency of 800 Hz and a magnetic flux density of 1.0 T and the magnetic flux density B 50 when magnetized at a magnetizing force of 5000 A / m were measured. Here, the steel plate No. 1 is a reference material P are hardly added, B 50 of the reference material and the steel sheet No. The difference ΔB 50 between 2 and 12 B 50 was calculated, and the magnitude of the B 50 improvement effect due to the addition of P was evaluated. This means that the greater the ΔB 50 , the greater the effect of improving B 50 by adding P. Further, since ΔB 50 increases as the P content increases, X is calculated from the following formula (4) in consideration of this point, and the target characteristic is that X is 0 or more.
X = ΔB 50 −0.4 × (P−0.01) (4)
(Here, P in the formula represents the P content (unit: mass%) in the steel.)
The average crystal grain size and magnetic measurement results are shown together in Table 1.

Figure 2013044012
Figure 2013044012

鋼板No.3、4、10および11は、Sを微量に含有させることと、S、As、Nb、Ti、V、ZrおよびNの合計含有量を所定の範囲内とすることにより、冷間圧延前の結晶粒径が同等でも、P添加によるB50の向上効果を高めることができた。
鋼板No.2はS含有量が低かったため、鋼板No.5はS、As、Nb、Ti、V、ZrおよびNの合計含有量が高いため、鋼板No.6はTiおよびNの含有量が高かったため、鋼板No.7はNbおよびV含有量が高かったため、鋼板No.8はZrおよびN含有量が高かったため、鋼板No.9はAsおよびTi含有量が高かったために、X<0となり、所望のP添加によるB50の向上効果を得られなかった。また、鋼板No.12はP含有量が多かったために、冷間圧延にて破断した。
Steel plate No. 3, 4, 10 and 11 contain S in a very small amount, and by making the total content of S, As, Nb, Ti, V, Zr and N within a predetermined range, Even if the crystal grain size was the same, the effect of improving B 50 by adding P could be enhanced.
Steel plate No. No. 2 had a low S content, so No. 5 has a high total content of S, As, Nb, Ti, V, Zr and N. No. 6 had a high Ti and N content. No. 7 had high Nb and V contents. No. 8 had a high Zr and N content. Since No. 9 had high As and Ti contents, X <0, and the desired effect of improving B 50 by adding P was not obtained. Steel plate No. Since No. 12 had a large P content, it was broken by cold rolling.

[実施例2]
下記表2に示す化学組成を有するスラブに、仕上温度750〜900℃、巻取温度500〜600℃とした熱間圧延を施して板厚1.6〜2.5mmの熱延鋼板とし、酸洗を施した。これらの酸洗鋼板に750〜790℃で5〜15時間保持する熱延板焼鈍を施した。これらの焼鈍板に冷間圧延を施して仕上板厚0.20〜0.30mmの冷延鋼板とした。これらの冷延鋼板に950〜1130℃で20〜90秒間保持する仕上焼鈍を施して、平均結晶粒径75〜156μmの無方向性電磁鋼板を得た。
[Example 2]
A slab having the chemical composition shown in Table 2 below is subjected to hot rolling at a finishing temperature of 750 to 900 ° C. and a winding temperature of 500 to 600 ° C. to form a hot rolled steel sheet having a thickness of 1.6 to 2.5 mm, and an acid. Washed. These pickled steel sheets were subjected to hot rolled sheet annealing at 750 to 790 ° C. for 5 to 15 hours. These annealed sheets were cold-rolled to form cold-rolled steel sheets having a finished sheet thickness of 0.20 to 0.30 mm. These cold-rolled steel sheets were subjected to finish annealing at 950 to 1130 ° C. for 20 to 90 seconds to obtain non-oriented electrical steel sheets having an average crystal grain size of 75 to 156 μm.

これらの無方向性電磁鋼板について、鉄損W10/800と磁束密度B50を測定した。ここで、鋼板No.13′は、鋼板No.13と同じ製造条件で製造されたものであり、Pがほとんど添加されておらず、鋼板No.13とはP含有量のみが異なり、P添加によるB50の向上効果の大きさを測定するための基準材に相当する。同様に、鋼板No.14′、15′、16′、17′はそれぞれ鋼板No.14、15、16、17の基準材に相当する。各基準材のB50と鋼板No.13〜17のB50との差ΔB50を算出した。また、上記式(4)よりXを算出し、Xが0以上であることを目標特性とした。
表3に、製造条件、平均結晶粒径、および磁気測定の結果を示す。
These non-oriented electrical steel sheets were measured iron loss W 10/800 and the magnetic flux density B 50. Here, the steel plate No. No. 13 'is a steel plate No. No. 13 was produced under the same production conditions as in No. 13, and P was hardly added. It differs from 13 only in the P content and corresponds to a reference material for measuring the magnitude of the effect of improving B 50 by adding P. Similarly, steel plate No. 14 ', 15', 16 ', and 17' are steel plate Nos. It corresponds to the reference materials of 14, 15, 16, and 17. B 50 of each reference material and steel plate No. A difference ΔB 50 between 13 and 17 and B 50 was calculated. Further, X is calculated from the above formula (4), and the target characteristic is that X is 0 or more.
Table 3 shows the manufacturing conditions, average crystal grain size, and magnetic measurement results.

Figure 2013044012
Figure 2013044012

Figure 2013044012
Figure 2013044012

Si、sol.AlおよびMnの含有量、S等の不純物元素の含有量、板厚、製造条件が所定の範囲内であれば、所望のW10/800およびP添加によるB50向上効果を得ることができた。 Si, sol. If the content of Al and Mn, the content of impurity elements such as S, the plate thickness, and the production conditions are within the predetermined ranges, the desired effect of improving B 50 by adding W 10/800 and P could be obtained. .

[実施例3]
下記表4に示す化学組成のスラブを、仕上温度650〜900℃、巻取温度250〜600℃とした熱間圧延にて1.8〜2.4mmの熱延鋼板とした。これらの熱延鋼板を酸洗後、圧下率84.2〜86.4%の冷間圧延を施して仕上板厚0.25〜0.35mmの冷延鋼板とした。これらの冷延鋼板に1100℃で5秒間保持する仕上焼鈍を施して平均結晶粒径99〜121μmの無方向性電磁鋼板を得た。
[Example 3]
The slab having the chemical composition shown in Table 4 below was hot-rolled steel sheet having a thickness of 1.8 to 2.4 mm by hot rolling at a finishing temperature of 650 to 900 ° C and a winding temperature of 250 to 600 ° C. These hot-rolled steel sheets were pickled and then cold-rolled at a rolling reduction of 84.2 to 86.4% to obtain cold-rolled steel sheets having a finished sheet thickness of 0.25 to 0.35 mm. These cold-rolled steel sheets were subjected to finish annealing that was held at 1100 ° C. for 5 seconds to obtain non-oriented electrical steel sheets having an average crystal grain size of 99 to 121 μm.

これらの無方向性電磁鋼板について、鉄損W10/800と磁束密度B50を測定した。ここで、組成Aは、Pがほとんど添加されておらず、組成BとはP含有量のみが異なり、P添加によるB50の向上効果の大きさを測定するための基準材に相当する。組成Aを用いて、組成Bを用いた鋼板No.18〜23とそれぞれ同じ製造条件で製造し、基準材とした。各基準材のB50と鋼板No.18〜23のB50との差ΔB50を算出した。また、上記式(4)よりXを算出し、Xが0以上であることを目標特性とした。
表5に、製造条件、平均結晶粒径、および磁気測定の結果を示す。
These non-oriented electrical steel sheets were measured iron loss W 10/800 and the magnetic flux density B 50. Here, the composition A contains almost no P, differs from the composition B only in the P content, and corresponds to a reference material for measuring the magnitude of the improvement effect of B 50 by the addition of P. Using the composition A, the steel plate No. 18 to 23 were produced under the same production conditions, and used as reference materials. B 50 of each reference material and steel plate No. The difference ΔB 50 between 18 and 23 and B 50 was calculated. Further, X is calculated from the above formula (4), and the target characteristic is that X is 0 or more.
Table 5 shows the manufacturing conditions, average crystal grain size, and magnetic measurement results.

Figure 2013044012
Figure 2013044012

Figure 2013044012
Figure 2013044012

鋼板No.18は熱間圧延での仕上温度が低かったため、鋼板No.19は熱間圧延での巻取温度が低かったため、鋼板No.20は冷間圧延での圧下率が低かったため、所望のP添加によるB50の向上効果を得ることができなかった。鋼板No.21は板厚が厚かったために所望の鉄損を得ることができなかった。 Steel plate No. No. 18 had a low finishing temperature in hot rolling. No. 19 was a steel plate No. 19 because the coiling temperature in hot rolling was low. Since No. 20 had a low rolling reduction in cold rolling, the effect of improving B 50 by the desired addition of P could not be obtained. Steel plate No. No. 21 could not obtain the desired iron loss because the plate thickness was thick.

Claims (2)

質量%で、Si:1.8%以上3.0%以下、sol.Al:0.1%以上3.0%以下、Mn:0.05%以上3.0%以下、P:0.03%以上0.10%以下、S:0.0010%以上0.0050%以下、C:0.0050%以下、As:0.0050%以下、Nb:0.0030%以下、Ti:0.0030%以下、V:0.0030%以下、Zr:0.0030%以下およびN:0.0050%以下を含有し、残部がFeおよび不純物からなるとともに、下記式(1)を満足する化学組成を有し、平均結晶粒径が60μm以上180μm以下である鋼組織を有し、周波数800Hz、磁束密度1.0Tで磁化した際の鉄損W10/800が50W/kg以下である磁気特性を有し、板厚が0.10mm以上0.33mm以下であることを特徴とする無方向性電磁鋼板。
S+As+Nb+Ti+V+Zr+N≦0.018 (1)
(ここで、式中の各元素記号は鋼中の各元素の含有量(単位:質量%)を示す。)
In terms of mass%, Si: 1.8% to 3.0%, sol. Al: 0.1% to 3.0%, Mn: 0.05% to 3.0%, P: 0.03% to 0.10%, S: 0.0010% to 0.0050% Hereinafter, C: 0.0050% or less, As: 0.0050% or less, Nb: 0.0030% or less, Ti: 0.0030% or less, V: 0.0030% or less, Zr: 0.0030% or less, and N: 0.0050% or less, with the balance being Fe and impurities, having a chemical composition satisfying the following formula (1), and having an average crystal grain size of 60 μm or more and 180 μm or less The magnetic loss W 10/800 when magnetized at a frequency of 800 Hz and a magnetic flux density of 1.0 T has a magnetic property of 50 W / kg or less, and the plate thickness is 0.10 mm or more and 0.33 mm or less. Non-oriented electrical steel sheet.
S + As + Nb + Ti + V + Zr + N ≦ 0.018 (1)
(Here, each element symbol in the formula indicates the content (unit: mass%) of each element in the steel.)
下記工程(A)〜(D)を有することを特徴とする無方向性電磁鋼板の製造方法:
(A)請求項1に記載の化学組成を有するスラブに、仕上温度:700℃以上および巻取温度:300℃以上の熱間圧延を施して熱延鋼板とする熱間圧延工程;
(B)前記熱延圧延工程により得られた熱延鋼板に酸洗および熱延板焼鈍を施して熱延焼鈍板とする酸洗・熱延板焼鈍工程;
(C)前記酸洗・熱延板焼鈍工程により得られた熱延焼鈍板に圧下率85%以上の冷間圧延を施して板厚0.10mm以上0.33mm以下の冷延鋼板とする冷間圧延工程;および
(D)前記冷間圧延工程により得られた冷延鋼板に仕上焼鈍を施す仕上焼鈍工程。
A method for producing a non-oriented electrical steel sheet comprising the following steps (A) to (D):
(A) A hot rolling step in which hot rolling at a finishing temperature of 700 ° C. or higher and a winding temperature of 300 ° C. or higher is performed on the slab having the chemical composition according to claim 1 to obtain a hot rolled steel sheet;
(B) A pickling / hot-rolled sheet annealing step in which a hot-rolled steel sheet obtained by the hot-rolled rolling process is subjected to pickling and hot-rolled sheet annealing to obtain a hot-rolled annealed sheet;
(C) Cold rolling a cold-rolled steel sheet having a sheet thickness of 0.10 mm to 0.33 mm by subjecting the hot-rolled annealed sheet obtained by the pickling / hot-rolled sheet annealing step to cold rolling with a reduction rate of 85% or more. And (D) a finish annealing step for subjecting the cold-rolled steel sheet obtained by the cold rolling step to finish annealing.
JP2011181848A 2011-08-23 2011-08-23 Method for producing non-oriented electrical steel sheet Active JP5824965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011181848A JP5824965B2 (en) 2011-08-23 2011-08-23 Method for producing non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011181848A JP5824965B2 (en) 2011-08-23 2011-08-23 Method for producing non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2013044012A true JP2013044012A (en) 2013-03-04
JP5824965B2 JP5824965B2 (en) 2015-12-02

Family

ID=48008154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011181848A Active JP5824965B2 (en) 2011-08-23 2011-08-23 Method for producing non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5824965B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136095A1 (en) * 2015-02-24 2016-09-01 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheets
TWI623629B (en) * 2015-12-28 2018-05-11 Jfe Steel Corp Non-oriented electromagnetic steel sheet and manufacturing method of non-oriented electromagnetic steel sheet
JP2018168412A (en) * 2017-03-29 2018-11-01 新日鐵住金株式会社 Nonoriented electromagnetic steel sheet and method for producing the same, and motor core and method for producing the same
JP2019183228A (en) * 2018-04-11 2019-10-24 日本製鉄株式会社 Nonoriented electromagnetic steel sheet and manufacturing method therefor
CN115398012A (en) * 2020-04-02 2022-11-25 日本制铁株式会社 Non-oriented electromagnetic steel sheet and method for producing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06108149A (en) * 1992-09-29 1994-04-19 Nippon Steel Corp Production of nonoriented silicon steel sheet extremely excellent in core loss after consumer annealing
JPH06330260A (en) * 1993-05-26 1994-11-29 Nkk Corp Non-oriented silicon steel sheet for high-frequency excellent in core loss property
JPH11335793A (en) * 1998-05-26 1999-12-07 Nippon Steel Corp Nonoriented silicon steel sheet high in magnetic flux density and low in core loss, and its production
JP2003213385A (en) * 2002-01-23 2003-07-30 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet
JP2003253404A (en) * 2002-02-26 2003-09-10 Sumitomo Metal Ind Ltd Non-oriented silicon steel sheet for rotating machine and production method thereof
JP2005120403A (en) * 2003-10-15 2005-05-12 Jfe Steel Kk Non-oriented electrical steel sheet with low core loss in high-frequency region
JP2005200756A (en) * 2004-01-19 2005-07-28 Sumitomo Metal Ind Ltd Method for producing non-oriented silicon steel sheet
JP2011522963A (en) * 2008-05-23 2011-08-04 ポスコ Non-oriented electrical steel sheet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06108149A (en) * 1992-09-29 1994-04-19 Nippon Steel Corp Production of nonoriented silicon steel sheet extremely excellent in core loss after consumer annealing
JPH06330260A (en) * 1993-05-26 1994-11-29 Nkk Corp Non-oriented silicon steel sheet for high-frequency excellent in core loss property
JPH11335793A (en) * 1998-05-26 1999-12-07 Nippon Steel Corp Nonoriented silicon steel sheet high in magnetic flux density and low in core loss, and its production
JP2003213385A (en) * 2002-01-23 2003-07-30 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet
JP2003253404A (en) * 2002-02-26 2003-09-10 Sumitomo Metal Ind Ltd Non-oriented silicon steel sheet for rotating machine and production method thereof
JP2005120403A (en) * 2003-10-15 2005-05-12 Jfe Steel Kk Non-oriented electrical steel sheet with low core loss in high-frequency region
JP2005200756A (en) * 2004-01-19 2005-07-28 Sumitomo Metal Ind Ltd Method for producing non-oriented silicon steel sheet
JP2011522963A (en) * 2008-05-23 2011-08-04 ポスコ Non-oriented electrical steel sheet

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136095A1 (en) * 2015-02-24 2016-09-01 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheets
JPWO2016136095A1 (en) * 2015-02-24 2017-04-27 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheet
CN107208171A (en) * 2015-02-24 2017-09-26 杰富意钢铁株式会社 The manufacture method of non orientation electromagnetic steel plate
US10316382B2 (en) 2015-02-24 2019-06-11 Jfe Steel Corporation Method for producing non-oriented electrical steel sheets
TWI623629B (en) * 2015-12-28 2018-05-11 Jfe Steel Corp Non-oriented electromagnetic steel sheet and manufacturing method of non-oriented electromagnetic steel sheet
KR20180087374A (en) * 2015-12-28 2018-08-01 제이에프이 스틸 가부시키가이샤 Non-oriented electrical steel sheet, and method of manufacturing non-oriented electrical steel sheet
KR102104769B1 (en) 2015-12-28 2020-04-27 제이에프이 스틸 가부시키가이샤 Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
US11114227B2 (en) 2015-12-28 2021-09-07 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
JP2018168412A (en) * 2017-03-29 2018-11-01 新日鐵住金株式会社 Nonoriented electromagnetic steel sheet and method for producing the same, and motor core and method for producing the same
JP2019183228A (en) * 2018-04-11 2019-10-24 日本製鉄株式会社 Nonoriented electromagnetic steel sheet and manufacturing method therefor
JP7176221B2 (en) 2018-04-11 2022-11-22 日本製鉄株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
CN115398012A (en) * 2020-04-02 2022-11-25 日本制铁株式会社 Non-oriented electromagnetic steel sheet and method for producing the same

Also Published As

Publication number Publication date
JP5824965B2 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
JP6226072B2 (en) Electrical steel sheet
JP6651759B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5592874B2 (en) Non-oriented electrical steel sheet
JP5228379B2 (en) Non-oriented electrical steel sheet with excellent strength and magnetic properties and manufacturing method thereof
JP5712863B2 (en) Method for producing non-oriented electrical steel sheet
JP5321764B2 (en) Non-oriented electrical steel sheet, method for producing the same, laminated body for motor core and method for producing the same
JP5825494B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5713100B2 (en) Non-oriented electrical steel sheet, method for producing the same, laminated body for motor core and method for producing the same
JP2012036459A (en) Non-oriented magnetic steel sheet and production method therefor
US20140342150A1 (en) Non-oriented electrical steel sheet
JPWO2011105327A1 (en) Non-oriented electrical steel sheet
JP4319889B2 (en) Non-oriented electrical steel sheet with excellent all-round magnetic properties and method for producing the same
JP5824965B2 (en) Method for producing non-oriented electrical steel sheet
JP5447167B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5671869B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP3835227B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2004332042A (en) Method for producing non-oriented magnetic steel sheet excellent in magnetic characteristic in rolling direction and perpendicular direction on sheet surface
JP5712862B2 (en) Method for producing non-oriented electrical steel sheet
JP5671872B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4613414B2 (en) Electrical steel sheet for motor core and method for manufacturing the same
JP4599843B2 (en) Method for producing non-oriented electrical steel sheet
JP2003055746A (en) Nonoriented silicon steel sheet and production method therefor
JP5614063B2 (en) High tension non-oriented electrical steel sheet with excellent high-frequency iron loss
JP2002047542A (en) Nonoriented silicon steel sheet and its manufacturing method
JP5972540B2 (en) Non-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150928

R151 Written notification of patent or utility model registration

Ref document number: 5824965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350