JP5592874B2 - Non-oriented electrical steel sheet - Google Patents

Non-oriented electrical steel sheet Download PDF

Info

Publication number
JP5592874B2
JP5592874B2 JP2011507357A JP2011507357A JP5592874B2 JP 5592874 B2 JP5592874 B2 JP 5592874B2 JP 2011507357 A JP2011507357 A JP 2011507357A JP 2011507357 A JP2011507357 A JP 2011507357A JP 5592874 B2 JP5592874 B2 JP 5592874B2
Authority
JP
Japan
Prior art keywords
steel sheet
oriented electrical
electrical steel
less
specific resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011507357A
Other languages
Japanese (ja)
Other versions
JP2011522963A (en
Inventor
キム,ジェ−フン
キム,ジェ−クヮン
ハン,チャン−ヒ
弘道 輿石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Co Ltd
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2011522963A publication Critical patent/JP2011522963A/en
Application granted granted Critical
Publication of JP5592874B2 publication Critical patent/JP5592874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Description

本発明は,回転機器の鉄心材料として広く用いられる無方向性電磁鋼板に係り,特に,鉄損が低くかつ磁束密度が高い無方向性電磁鋼板に関する。 The present invention relates to a non-oriented electrical steel sheet widely used as a core material of the rotating device, in particular, it relates to and the magnetic flux density low core loss is high non-oriented electrical steel sheet.

無方向性電磁鋼板は,回転機器において電気的エネルギーから機械的エネルギーへの変換に必要な重要部品であって,省エネルギーのためには,その磁気的特性,すなわち低い鉄損と高い磁束密度を有することが重要である。ここで,鉄損はエネルギー変換過程で熱に変わって消えてしまうエネルギーなので,低ければ低いほど効率的であり,これに対し,磁束密度は動力を発生させる力なので,高ければ高いほど効率的である。 Non-oriented electrical steel sheet is an important part necessary for the conversion of electrical energy into mechanical energy in rotating machinery. For energy saving, it has its magnetic properties, ie low iron loss and high magnetic flux density. This is very important. Here, iron loss is energy that disappears in the process of energy conversion and disappears, so the lower it is, the more efficient it is. The magnetic flux density is the force that generates power. is there.

近年,エネルギーの効率的な利用及びCO低減のための対策の一環として,自動車の駆動をガソリンあるいはディーゼルエンジン方式から一部(ハイブリッド式)あるいは全部を電気式に転換する技術が急速に発展している。 In recent years, as part of measures to efficiently use energy and reduce CO 2, technology has been rapidly developed to convert the driving of automobiles from gasoline or diesel engine systems to some (hybrid) or all electric. ing.

この技術に使われるモータは次の2つの特性が要求される。一つは出発時の加速性能に優れることであり,もう一つは走行中の燃費が高い(電力消費量が少ない)ことである。このようにモータに求められる特性を無方向性電磁鋼板の磁気的特性に置き替えて言えば,前者は飽和磁束密度(Bs)が高いこと,後者は高周波鉄損(W10/400,W5/1000)が少ないことである。これを製造条件に置き替えて言えば,前者はSiなどの合金元素量を減らして固有抵抗を低くすればするほど良くなり,後者は逆にSiなどの合金元素量を増やして固有抵抗を高くすればするほど良くなるという二律背反の関係に置かれる。 The motor used in this technology is required to have the following two characteristics. One is excellent acceleration performance at the time of departure, and the other is high fuel efficiency while driving (low power consumption). If the characteristics required of the motor are replaced with the magnetic characteristics of the non-oriented electrical steel sheet, the former has a high saturation magnetic flux density (Bs), and the latter has a high-frequency iron loss (W10 / 400, W5 / 1000). ) Is less. If this is replaced with manufacturing conditions, the former is better when the amount of alloying elements such as Si is reduced to lower the specific resistance, while the latter is increased by increasing the amount of alloying elements such as Si to increase the specific resistance. The more you do it, the more you will get better.

現在,電気自動車の駆動モータとして採用されている高級製品の無方向性電磁鋼板は,35A300〜35A230(JIS規格基準)であるが,前記製品は,Siなどの合金元素添加量が多いため,冷間加工性が不良であって生産性が劣る。また,高速回転時の熱損失に該当する高周波鉄損を向上させるためには薄物化を必要とするが,現在使用中の前記製品は,加工性が不良であって薄物化が容易でないため,生産性が劣る。このような問題点,すなわち高周波域における鉄損と生産性低下を改善するために,Siと同等水準の固有抵抗を有する成分Alの含有量を高め,Siの含有量を減らし,あるいはSiに対して半分程度の固有抵抗を有するMnを添加することにより,{100}集合組織を強化する方法が提案されている。このような従来の技術は,日本特開2002−146490号,同2001−59145号,及び同2003−293099号で取り扱われているが,結晶粒成長性,硬度,磁性などの複合的な問題により未だ量産には至っていない。したがって,良好な結晶粒成長性,低い硬度,及び優れた磁性を有する無方向性電磁鋼板を製造するための最適な組成成分に対する設計が求められている。 Currently, high-grade non-oriented electrical steel sheets that are used as drive motors for electric vehicles are 35A300 to 35A230 (JIS standard). However, since these products contain a large amount of addition of alloy elements such as Si, Interworkability is poor and productivity is poor. In addition, thinning is required to improve high-frequency iron loss corresponding to heat loss during high-speed rotation, but the products currently in use are poor in workability and cannot be thinned easily. Productivity is inferior. In order to improve such problems, that is, iron loss and productivity reduction in the high frequency region, the content of the component Al having a specific resistance equivalent to that of Si is increased, the content of Si is reduced, or compared with Si. Thus, a method has been proposed in which {100} texture is strengthened by adding Mn having about half the specific resistance. Such conventional techniques are dealt with in Japanese Patent Application Laid-Open Nos. 2002-146490, 2001-59145, and 2003-293099, but due to complex problems such as crystal grain growth, hardness, and magnetism. It has not yet reached mass production. Therefore, there is a need for a design for optimum compositional components for producing a non-oriented electrical steel sheet having good crystal grain growth, low hardness, and excellent magnetism.

発明の開示
技術的課題
本発明は,上述した従来技術の問題点を解決するためのもので,その目的は,Al,Si,Mn,Pの添加成分を最適化して結晶粒成長性を向上させることにより,低い硬度及び優れた磁性を有する無方向性電磁鋼板を提供することにある。
DISCLOSURE OF THE INVENTION Technical Problem The present invention is to solve the above-mentioned problems of the prior art, and its purpose is to optimize the additive components of Al, Si, Mn, and P to improve the grain growth property. Thus, an object is to provide a non-oriented electrical steel sheet having low hardness and excellent magnetism.

技術的解決方法
上記技術的課題を解決するために,本発明は,化学組成が,重量%で,Al:1.3〜2.5%,Si:0.8〜2.0%,Mn:0.6%以上1.0未満,P:0.05〜0.2%,C:0.004%以下,S:0.004%以下,N:0.002%以下,残部がFeおよびその他不可避的不純物からなり,Al+Si+Mn+P=3.9〜4.45%,Al+Si=2.5〜3.8%,Al/Si=0.65〜3.1,Mn/P=4〜16の組成式を満足し,固有抵抗を50〜60μΩ・cmに維持すると共に,断面のビッカース硬さ(Hv)が185以下,結晶粒径は70〜130μmであることを特徴とする,無方向性電磁鋼板を提供する。
Technical Solution In order to solve the above technical problem, the present invention has a chemical composition in weight%, Al: 1.3 to 2.5%, Si: 0.8 to 2.0%, Mn: 0.6 % or more and less than 1.0 %, P: 0.05 to 0.2%, C: 0.004% or less, S: 0.004% or less, N: 0.002% or less, the balance being Fe and It consists of other inevitable impurities, and Al + Si + Mn + P = 3.9 to 4.45%, Al + Si = 2.5 to 3.8%, Al / Si = 0.65 to 3.1, Mn / P = 4 to 16 Non-oriented electrical steel sheet characterized by satisfying the equation, maintaining a specific resistance of 50 to 60 μΩ · cm, having a Vickers hardness (Hv) of a cross section of 185 or less and a crystal grain size of 70 to 130 μm I will provide a.

発明の効果
本発明は,Al,Si,Mn,Pの添加成分を最適化することにより,硬度が低く,高周波数域で優れた磁気特性が発現されるうえ,生産加工性が容易であって生産コストが低く,生産性を向上させる効果を期待することができる。
Advantages of the Invention By optimizing the additive components of Al, Si, Mn, and P, the present invention exhibits low hardness, excellent magnetic properties in a high frequency range, and easy production processability. The production cost is low and the effect of improving productivity can be expected.

本発明のMn,Pの添加量の最適範囲を示す図。The figure which shows the optimal range of the addition amount of Mn and P of this invention. 本発明のAl,Siの添加量の最適範囲を示す図。The figure which shows the optimal range of the addition amount of Al of this invention, and Si.

本発明は,上述した問題点を解決するために,鋼に添加する合金元素として,Al,Si,Mnだけでなく,Pの添加量とAl/Si及びMn/Pの比率を異ならせて,各組成成分系による硬度値,結晶方位及び結晶粒成長性を確認することにより,優れた磁気物性を示しかつ鋼板の生産性が著しく改善される範囲を見付けようとした。   In order to solve the above-described problems, the present invention provides not only Al, Si, and Mn as alloy elements to be added to steel, but also the addition amount of P and the ratio of Al / Si and Mn / P are different. By confirming the hardness value, crystal orientation, and grain growth of each composition component system, we tried to find a range that showed excellent magnetic properties and markedly improved steel plate productivity.

次に,各添加元素を選択した理由,及び添加比率を限定した事由について説明する。   Next, the reason for selecting each additive element and the reason for limiting the addition ratio will be described.

現在使われているFe−Si系無方向性電磁鋼板35A300〜35A230(JIS規格基準)と同等の飽和磁束密度(Bs)を維持するために,固有抵抗(ρ)が50〜60μΩ・cmの同一範囲であることを前提とした,成分系(%)と固有抵抗(ρ)との関係は次の実験式を用いた。
ρ=13.25+11.3(Al+Si+P+Mn/2)
In order to maintain the saturation magnetic flux density (Bs) equivalent to the currently used Fe-Si non-oriented electrical steel sheets 35A300 to 35A230 (JIS standard), the same specific resistance (ρ) is 50 to 60μΩ · cm. The following empirical formula was used for the relationship between the component system (%) and the specific resistance (ρ) on the assumption that the range.
ρ = 13.25 + 11.3 (Al + Si + P + Mn / 2)

本発明において,高級鋼の固有抵抗値は通常の鋼より高く,具体的には50μΩ・cm以上の値にすることを要する。高級鋼に使用するためには固有抵抗値が高くなければならないが,これは,固有抵抗が低ければ,渦電流の損失が大きくなるので高級用無方向性電磁鋼板への使用が困難になるためである。このような固有抵抗を与えるための特定の組成成分にはSi,Pなどがあり,これらの元素などは,固有抵抗を増大させかつ渦電流の損失を低減する効果があるが,前記元素,特にSiの含有量がある程度高い場合は,磁束密度の低下と加工性の悪化をもたらす。 In the present invention, the specific resistance value of high-grade steel is higher than that of normal steel, specifically, it is necessary to set the value to 50 μΩ · cm or more. In order to use it in high-grade steel, the specific resistance value must be high. However, if the specific resistance is low, the loss of eddy current increases, making it difficult to use it in high-grade non-oriented electrical steel sheets. It is. Specific composition components for giving such a specific resistance include Si, P and the like, and these elements have the effect of increasing the specific resistance and reducing the loss of eddy current. When the Si content is high to some extent, the magnetic flux density is lowered and the workability is deteriorated.

したがって,渦電流の損失を減らしかつ良好な加工性を得るためには,固有抵抗の範囲が50〜60μΩ・cmの範囲内で調整されなければならない。   Therefore, in order to reduce the loss of eddy current and obtain good workability, the specific resistance range must be adjusted within the range of 50 to 60 μΩ · cm.

本発明は,合金元素としてAl,Si,Mn,Pの4つの成分を選択することにより,これらの効果を確認しようとした。表1に示すように,現行のFe−Si系はS0,Fe−Al系はS1,Fe−Al−Si系はS2,Fe−Al−Si−Mn−P系はS3でそれぞれ表示した。さらに,固有抵抗はいずれも56μΩ・cmに固定されるようにして,4つの成分に対する比較を行った。無方向性電磁鋼板の製造工程では,まず熱延板焼鈍を行った後,一段冷延を施し,最後に1050℃,38秒で最終焼鈍を行った。こうして得られた結果を表1に示した。 The present invention tried to confirm these effects by selecting four components of Al, Si, Mn, and P as alloy elements. As shown in Table 1, the current Fe-Si system is represented by S0, the Fe-Al system is represented by S1, the Fe-Al-Si system is represented by S2, and the Fe-Al-Si-Mn-P system is represented by S3. Furthermore, the specific resistance was fixed to 56 μΩ · cm, and comparison was made for four components. In the manufacturing process of the non-oriented electrical steel sheet, first, hot-rolled sheet annealing was performed, then one-stage cold rolling was performed, and finally final annealing was performed at 1050 ° C. for 38 seconds. The results thus obtained are shown in Table 1.

S0の場合は,硬度(Hv)が200と高くて脆性が強いため,生産性が不良であった。S1及びS2の場合は,結晶粒成長性がS0に比べて劣るため,結果として鉄損の面で劣位にあった。これに対し,MnとPを増加させたS3の場合は,結晶粒成長性が良好であって,結晶方位及び鉄損の値がS0に近似していた。よって,結晶粒成長性を向上させる最適なMnとPの組み合わせが必要であることが分かる。   In the case of S0, the hardness (Hv) was as high as 200 and the brittleness was strong, so the productivity was poor. In the case of S1 and S2, crystal grain growth was inferior to that of S0, and as a result, it was inferior in terms of iron loss. On the other hand, in the case of S3 in which Mn and P were increased, the crystal grain growth was good, and the values of crystal orientation and iron loss were close to S0. Therefore, it can be seen that an optimal combination of Mn and P for improving the crystal grain growth is necessary.

次に,Mn,Pの最適範囲の選定理由について説明する。   Next, the reason for selecting the optimum range of Mn and P will be described.

Mn,Pの最適範囲を調べるために,S3のAl,Siをそれぞれ2.5%,0.8%に固定し,MnとPの添加量を変化させながら行ったが,それらをS3−1,S3−2,S3−3,S3−4で表記し,その結果を表2に示した。 In order to investigate the optimum range of Mn and P, Al and Si of S3 were fixed to 2.5% and 0.8%, respectively, and the addition amount of Mn and P was changed. , S3-2, S3-3, represented by S3- 4, and the results are shown in Table 2.

比較例S3−1を除いた残りの本発明の実施例は,鉄損が低く,結晶粒成長性が良好であった。よって,Mn,Pの最適範囲はMn:0.6〜1.2%,P:0.05〜0.2%であり,Mn/Pの比はMn/P=4〜16となり,これを図1に示すと,太い線の内部がこれに該当する。すなわち,この範囲内で結晶粒成長性が最も良くなるが,これを超過すると,硬度が高くなりすぎて脆性が大きくなる。   The remaining examples of the present invention excluding Comparative Example S3-1 had low iron loss and good crystal grain growth. Therefore, the optimum ranges of Mn and P are Mn: 0.6 to 1.2% and P: 0.05 to 0.2%, and the ratio of Mn / P is Mn / P = 4 to 16, In FIG. 1, the inside of the thick line corresponds to this. That is, the crystal grain growth property is the best within this range, but if this is exceeded, the hardness becomes too high and the brittleness increases.

次に,Al,Siの最適範囲の選定理由について説明する。   Next, the reason for selecting the optimum range of Al and Si will be described.

Al,Siの最適値を調べるために,結晶粒成長性を示すMn,Pの値をMn=0.8%,P=0.08%に固定し,固有抵抗56μΩ・cmの範囲内でAl/Siを変化させた。Al/Siがそれぞれ1.5,1.0,0.65の実施例をそれぞれT1,T2,T3で表示した。比較例としてのS0も表3に示した。   In order to investigate the optimum values of Al and Si, the values of Mn and P indicating crystal grain growth were fixed to Mn = 0.8% and P = 0.08%, and Al was within the range of specific resistance 56 μΩ · cm. / Si was changed. Examples with Al / Si of 1.5, 1.0, and 0.65 are indicated by T1, T2, and T3, respectively. Table 3 also shows S0 as a comparative example.

表3から分かるように,本発明の実施例は,比較例としてのS0に比べて硬度が低く,磁性が良好である。したがって,最適のAl/Si比は0.65〜3.1であることが分かり,MnとPを考慮し,固有抵抗50〜60μΩ・cmを満足する組成比率はAl+Si=2.5〜3.8%,Al=1.3〜2.5%,Si=0.8〜2.0%となる。このような条件を図2に示すと,最適範囲は太い線の内部となる。   As can be seen from Table 3, the examples of the present invention have lower hardness and better magnetism than S0 as a comparative example. Therefore, it can be seen that the optimum Al / Si ratio is 0.65 to 3.1. Considering Mn and P, the composition ratio satisfying the specific resistance of 50 to 60 μΩ · cm is Al + Si = 2.5 to 3. 8%, Al = 1.3 to 2.5%, and Si = 0.8 to 2.0%. When such a condition is shown in FIG. 2, the optimum range is inside a thick line.

次に,Al,Si,Mn,Pの最適範囲組み合わせの理由について説明する。   Next, the reason for the optimum range combination of Al, Si, Mn, and P will be described.

固有抵抗50〜60μΩ・cmを満足するAl,Si,Mn,Pの最適組み合わせにおいて,Al+Siが3.8%の場合,固有抵抗が60μΩ・cmを満足するためのMn,Pの値は最小にならなければならないので,各成分の最小含有量はそれぞれ0.6%,0.05%になる。逆に,Al+Siが2.5%の場合,固有抵抗が50μΩ・cmを満足するためのMn,Pの値は最大にならなければならないので,各成分の最大含有量はそれぞれ1.2%,0.2%になる。よって,Al+Si+Mn+Pの範囲は3.9〜4.45%になる。   In the optimum combination of Al, Si, Mn, and P satisfying the specific resistance of 50 to 60 μΩ · cm, when Al + Si is 3.8%, the values of Mn and P for satisfying the specific resistance of 60 μΩ · cm are minimized. Therefore, the minimum content of each component is 0.6% and 0.05%, respectively. Conversely, when Al + Si is 2.5%, the values of Mn and P for satisfying the specific resistance of 50 μΩ · cm must be maximized, so the maximum content of each component is 1.2%, 0.2%. Therefore, the range of Al + Si + Mn + P is 3.9 to 4.45%.

次に,不純物元素の限定理由について説明する。   Next, the reason for limiting the impurity elements will be described.

Cは磁気時効を起こすので,0.004%以下,好ましくは0.003%以下であることがよく,S,NはMn,Alと組み合わせてMnS,AlNを形成して結晶粒成長性を妨害するので,0.004%以下,好ましくは0.002%以下であることがよい。Tiは,無方向性電磁鋼板において望ましくない結晶方位[111]の成長を促進するので,0.004%以下,好ましくは0.002%以下であることがよい。 Since C causes magnetic aging, it should be 0.004% or less, preferably 0.003% or less. S and N are combined with Mn and Al to form MnS and AlN, thereby hindering crystal grain growth. Therefore, it is good that it is 0.004% or less, preferably 0.002% or less. Ti promotes the growth of an undesirable crystal orientation [111] in the non-oriented electrical steel sheet, so it is 0.004% or less, preferably 0.002% or less.

次に,結晶粒径と磁性の限定理由について説明する。   Next, the reasons for limiting the crystal grain size and magnetism will be described.

表1に示すように,鉄損と結晶粒径とは強い相関関係を示すが,固有抵抗50〜60μΩ・cmの高級鋼を製造するためには,鉄損が良好でなければならず,平均結晶粒径が100μm以上でなければならない。これに対し,本発明の組成成分の範囲内で,鋼板厚さ0.35mmにおける平均結晶粒径は100μm以上である。また,周波数との相関関係を考察すると,商用周波数50,60Hzにおける結晶粒径は100〜200μmと大きい方が好ましく,400Hz以上の高周波域における結晶粒径は70〜100μmと小さい方が好ましい。よって,本発明の組成成分範囲内で,鋼板の厚さ0.30〜0.15mmにおける結晶粒径は70〜130μmの範囲に限定することが好ましい。   As shown in Table 1, there is a strong correlation between iron loss and crystal grain size, but in order to manufacture high-grade steel with a specific resistance of 50-60 μΩ · cm, the iron loss must be good and the average The crystal grain size must be 100 μm or more. On the other hand, within the range of the composition component of the present invention, the average crystal grain size at a steel sheet thickness of 0.35 mm is 100 μm or more. In consideration of the correlation with the frequency, the crystal grain size at commercial frequencies of 50 and 60 Hz is preferably as large as 100 to 200 μm, and the crystal grain size in the high frequency region of 400 Hz or higher is preferably as small as 70 to 100 μm. Therefore, it is preferable to limit the crystal grain size within the range of the composition component of the present invention to the range of 70 to 130 μm when the thickness of the steel sheet is 0.30 to 0.15 mm.

以下,本発明の実施例によってさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

Fe−Si系のS0を比較例とし,Fe−Al−Si−Mn−P系のS3,T1,T2,T3,T4で実施した。その結果を表4に示した。 The Fe-Si system of S0 and Comparative Examples were carried out in Fe-Al-Si-Mn- P system S3, T1, T2, T3, T 4. The results are shown in Table 4.

上述した組成成分を満たす鋼塊を製造した後,鋼塊を1150℃で加熱し,850℃で熱延仕上げして,鋼板厚さ2.0mmの熱延板を製作した。次に,950℃で4分間前記熱延板を焼き鈍し,酸洗処理後,冷間圧延を施して鋼板厚さを0.35〜0.15mmにし,しかる後に,1050℃で38秒間最終焼鈍を行った。こうして得られた結果を表5に示した。   After manufacturing the steel ingot which satisfy | fills the composition component mentioned above, the steel ingot was heated at 1150 degreeC and hot rolled at 850 degreeC, and the hot rolled sheet with a steel plate thickness of 2.0 mm was manufactured. Next, the hot-rolled sheet is annealed at 950 ° C. for 4 minutes, pickled, then cold-rolled to a thickness of 0.35 to 0.15 mm, and then finally annealed at 1050 ° C. for 38 seconds. went. The results thus obtained are shown in Table 5.

硬度はSiの含有量と強い関係を示すため,比較例としてのFe−Al系のS0は硬度(Hv)が204と非常に高かったが,本発明の実施例に係るFe−Al−Si−Mn−P系のS3,T1,T2,T3,T4は硬度(Hv)が183以下と非常に低く,冷間加工性も良好であった。 Since the hardness shows a strong relationship with the Si content, the Fe—Al-based S0 as a comparative example had a very high hardness (Hv) of 204, but the Fe—Al—Si— according to the example of the present invention. Mn-P based S3, T1, T2, T3, T 4 has the hardness (Hv) is 183 or less and very low cold workability was also good.

磁束密度(B50)は鋼板厚さが薄くなるにつれて減少するが,比較例としてのS0と本発明の実施例の磁束密度を比較するとき,本発明の磁束密度は厚さが薄くなってもS0程減少しないが,これは本発明の場合に冷間圧下率の影響を少なく受けるためである。このような現象は熱延板の厚さの選択幅を広めることができるという利点に繋がる。   The magnetic flux density (B50) decreases as the steel plate thickness decreases. However, when comparing the magnetic flux density of S0 as a comparative example and the embodiment of the present invention, the magnetic flux density of the present invention is S0 even if the thickness is reduced. Although it does not decrease as much, this is because the present invention is less affected by the cold rolling reduction. Such a phenomenon leads to an advantage that the selection range of the thickness of the hot-rolled sheet can be widened.

高周波鉄損(W10/400,W5/1000)は,鋼板厚さとの関係が明確であって,厚さが薄くなるほど高周波鉄損は向上する。W10/400の場合,0.35mmにおける鉄損を基準として,0.30mmでは約88%,0.25mmでは75%,0.20mmでは約65%,0.15mmでは約60%になる。W5/1000の場合,0.15mmにおける鉄損は0.35mmにおける鉄損に比べて約50%まで低下する。よって,高周波鉄損向上の最も効果的な方法は鋼板厚さの薄物化であることが分かる。   The high-frequency iron loss (W10 / 400, W5 / 1000) has a clear relationship with the steel plate thickness, and the high-frequency iron loss improves as the thickness decreases. In the case of W10 / 400, based on the iron loss at 0.35 mm, it is about 88% at 0.30 mm, 75% at 0.25 mm, about 65% at 0.20 mm, and about 60% at 0.15 mm. In the case of W5 / 1000, the iron loss at 0.15 mm is reduced to about 50% compared to the iron loss at 0.35 mm. Therefore, it can be seen that the most effective method for improving the high-frequency iron loss is to reduce the thickness of the steel sheet.

Claims (2)

重量%で,Al:1.3〜2.5%,Si:0.8〜2.0%,Mn:0.6%以上1.0未満,P:0.05〜0.2%,C:0.004%以下,S:0.004%以下,N:0.002%以下,残部がFeおよびその他不可避的不純物からなり,Al+Si+Mn+P=3.9〜4.45%,Al+Si=2.5〜3.8%,Al/Si=0.65〜3.1,Mn/P=4〜16の組成式を満足し,固有抵抗を50〜60μΩ・cmに維持すると共に,断面のビッカース硬さ(Hv)が185以下,結晶粒径が70〜130μmであることを特徴とする無方向性電磁鋼板。 In weight percent, Al: 1.3-2.5%, Si: 0.8-2.0%, Mn: 0.6 % or more and less than 1.0 %, P: 0.05-0.2%, C: 0.004% or less, S: 0.004% or less, N: 0.002% or less, the balance is made of Fe and other inevitable impurities, Al + Si + Mn + P = 3.9 to 4.45%, Al + Si = 2. It satisfies the composition formula of 5 to 3.8%, Al / Si = 0.65 to 3.1, Mn / P = 4 to 16, maintains the specific resistance at 50 to 60 μΩ · cm, and has a Vickers hardness of the cross section. A non-oriented electrical steel sheet having a thickness (Hv) of 185 or less and a crystal grain size of 70 to 130 μm. 前記無方向性電磁鋼板の磁束密度(B50)は1.60〜1.70Tであり,鉄損はW10/400で11.0〜25.0W/Kgであり,W5/1000では11.0〜27.0W/Kgであることを特徴とする請求項1記載の無方向性電磁鋼板。   The non-oriented electrical steel sheet has a magnetic flux density (B50) of 1.60 to 1.70 T, an iron loss of 11.0 to 25.0 W / Kg at W10 / 400, and 11.0 to W5 / 1000. The non-oriented electrical steel sheet according to claim 1, wherein the non-oriented electrical steel sheet is 27.0 W / Kg.
JP2011507357A 2008-05-23 2009-05-04 Non-oriented electrical steel sheet Active JP5592874B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20080048159A KR101010627B1 (en) 2008-05-23 2008-05-23 Non oriented electrical steel
KR10-2008-0048159 2008-05-23
PCT/KR2009/002344 WO2009142401A1 (en) 2008-05-23 2009-05-04 Non-oriented electrical steel

Publications (2)

Publication Number Publication Date
JP2011522963A JP2011522963A (en) 2011-08-04
JP5592874B2 true JP5592874B2 (en) 2014-09-17

Family

ID=41340299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011507357A Active JP5592874B2 (en) 2008-05-23 2009-05-04 Non-oriented electrical steel sheet

Country Status (4)

Country Link
JP (1) JP5592874B2 (en)
KR (1) KR101010627B1 (en)
CN (1) CN102007227B (en)
WO (1) WO2009142401A1 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101296124B1 (en) * 2010-12-27 2013-08-19 주식회사 포스코 Non-oriented electrical steel sheet with excellent magnetic property, and Method for manufacturing the same
KR101296114B1 (en) * 2009-12-28 2013-08-19 주식회사 포스코 Non-oriented electrical steel sheet with excellent magnetic property, and Method for manufacturing the same
US20120267015A1 (en) * 2009-12-28 2012-10-25 Posco Non-Oriented Electrical Steel Sheet Having Superior Magnetic Properties and a Production Method Therefor
KR101296117B1 (en) * 2010-12-24 2013-08-19 주식회사 포스코 Non-oriented electrical steel sheet with excellent magnetic properties, and Method for manufacturing the same
KR101286243B1 (en) * 2009-12-28 2013-07-15 주식회사 포스코 Non-oriented electrical steel sheet with excellent magnetic and processing property, and Method for manufacturing the same
KR101296116B1 (en) * 2010-12-24 2013-08-19 주식회사 포스코 Non-oriented electrical steel sheet with excellent magnetic property, and Method for manufacturing the same
JP5601078B2 (en) * 2010-08-09 2014-10-08 新日鐵住金株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
KR101296123B1 (en) * 2010-12-24 2013-08-19 주식회사 포스코 Non-oriented electrical steel sheet with excellent magnetic property, and Method for manufacturing the same
KR101296120B1 (en) * 2010-12-24 2013-08-19 주식회사 포스코 Non-oriented electrical steel sheet with excellent magnetic property, and Method for manufacturing the same
KR101296122B1 (en) * 2010-12-24 2013-08-19 주식회사 포스코 Non-oriented electrical steel sheet with excellent magnetic property, and Method for manufacturing the same
KR101296119B1 (en) * 2010-12-24 2013-08-19 주식회사 포스코 Non-oriented electrical steel sheet with excellent magnetic property, and Method for manufacturing the same
KR101296121B1 (en) * 2010-12-24 2013-08-19 주식회사 포스코 Non-oriented electrical steel sheet with excellent magnetic property, and Method for manufacturing the same
KR101296118B1 (en) * 2010-12-24 2013-08-19 주식회사 포스코 Non-oriented electrical steel sheet with excellent magnetic property, and method for manufacturing the same
KR101296126B1 (en) * 2010-12-27 2013-08-19 주식회사 포스코 Non-oriented electrical steel sheet with excellent magnetic property, and Method for manufacturing the same
KR101296127B1 (en) * 2010-12-27 2013-08-19 주식회사 포스코 Non-oriented electrical steel sheet with excellent magnetic property, and Method for manufacturing the same
KR101296130B1 (en) * 2010-12-27 2013-08-19 주식회사 포스코 Non-oriented electrical steel sheet with excellent magnetic properties, and Method for manufacturing the same
KR101296128B1 (en) * 2010-12-27 2013-08-19 주식회사 포스코 Non-oriented electrical steel sheet with excellent magnetic property, and Method for manufacturing the same
KR101296129B1 (en) * 2010-12-27 2013-08-19 주식회사 포스코 Non-oriented electrical steel sheet with excellent magnetic property, and Method for manufacturing the same
KR101286207B1 (en) * 2010-12-27 2013-07-15 주식회사 포스코 Non-oriented electrical steel sheet with excellent magnetic property, and Method for manufacturing the same
KR101296125B1 (en) * 2010-12-27 2013-08-19 주식회사 포스코 Non-oriented electrical steel sheet with excellent magnetic property, and Method for manufacturing the same
JP5972540B2 (en) * 2011-08-23 2016-08-17 新日鐵住金株式会社 Non-oriented electrical steel sheet
JP5712862B2 (en) * 2011-08-23 2015-05-07 新日鐵住金株式会社 Method for producing non-oriented electrical steel sheet
JP5824965B2 (en) * 2011-08-23 2015-12-02 新日鐵住金株式会社 Method for producing non-oriented electrical steel sheet
JP5712864B2 (en) * 2011-08-23 2015-05-07 新日鐵住金株式会社 Method for producing non-oriented electrical steel sheet and method for evaluating cold rollability
JP5712863B2 (en) * 2011-08-23 2015-05-07 新日鐵住金株式会社 Method for producing non-oriented electrical steel sheet
CN104039998B (en) 2011-12-28 2017-10-24 Posco公司 Non-oriented electromagnetic steel sheet and its manufacture method
KR101353460B1 (en) * 2011-12-28 2014-01-21 주식회사 포스코 Non-oriented electrical steel sheets and method for manufacturing the same
KR101353461B1 (en) * 2011-12-28 2014-01-21 주식회사 포스코 Non-oriented electrical steel sheets and method for manufacturing the same
KR101353463B1 (en) * 2011-12-28 2014-01-21 주식회사 포스코 Non-oriented electrical steel sheets and method for manufacturing the same
KR101353462B1 (en) * 2011-12-28 2014-01-24 주식회사 포스코 Non-oriented electrical steel shteets and method for manufactureing the same
KR101353459B1 (en) * 2011-12-28 2014-01-21 주식회사 포스코 Non-oriented electrical steel sheets and method for manufacturing the same
CN103305748A (en) 2012-03-15 2013-09-18 宝山钢铁股份有限公司 Non-oriented electrical steel plate and manufacturing method thereof
CN102747291B (en) * 2012-07-06 2014-06-25 咸宁泉都带钢科技有限责任公司 High-frequency low-iron-loss excellent-magnetic-property non-orientated silicon steel strip and production method thereof
JP5716811B2 (en) * 2013-11-07 2015-05-13 新日鐵住金株式会社 Method for producing non-oriented electrical steel sheet
KR101797129B1 (en) * 2015-12-21 2017-11-13 주식회사 포스코 Adhesive coating composition for non-oriented electrical steel, non-oriented electrical steel product, and method for manufacturing the product
JP6848597B2 (en) * 2017-03-29 2021-03-24 日本製鉄株式会社 Non-oriented electrical steel sheet and its manufacturing method, and motor core and its manufacturing method
JP7176221B2 (en) * 2018-04-11 2022-11-22 日本製鉄株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
CN113414358A (en) * 2021-05-24 2021-09-21 舞阳钢铁有限责任公司 Production method for improving yield of low-Si alloy steel plate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049403A (en) * 1999-08-05 2001-02-20 Nippon Steel Corp Nonoriented silicon steel sheet good in high frequency characteristic and its production
JP2001192788A (en) * 2000-01-12 2001-07-17 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet excellent in workability, and its manufacturing method
JP2001303213A (en) * 2000-04-21 2001-10-31 Kawasaki Steel Corp Nonoriented silicon steel sheet for high efficiency motor
JP3815336B2 (en) * 2002-01-23 2006-08-30 住友金属工業株式会社 Non-oriented electrical steel sheet
JP2003293099A (en) * 2002-04-01 2003-10-15 Nippon Steel Corp Nonoriented magnetic steel sheet which can be excellently blanked and which shows excellent magnetic property after stress-relieving annealing
JP2005200756A (en) * 2004-01-19 2005-07-28 Sumitomo Metal Ind Ltd Method for producing non-oriented silicon steel sheet

Also Published As

Publication number Publication date
CN102007227B (en) 2013-05-01
JP2011522963A (en) 2011-08-04
KR20090121975A (en) 2009-11-26
WO2009142401A1 (en) 2009-11-26
KR101010627B1 (en) 2011-01-24
CN102007227A (en) 2011-04-06

Similar Documents

Publication Publication Date Title
JP5592874B2 (en) Non-oriented electrical steel sheet
JP6651759B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5716315B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5825494B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR101974674B1 (en) Non-oriented electromagnetic steel sheet and method for producing same
JP2011246810A (en) Nonoriented magnetic steel sheet and motor core using the same
CN104328342A (en) Non-oriented silicon steel used for frequency conversion high efficiency compressor and production method thereof
JP5447167B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP3815336B2 (en) Non-oriented electrical steel sheet
JP5824965B2 (en) Method for producing non-oriented electrical steel sheet
JP4696750B2 (en) Method for producing non-oriented electrical steel sheet for aging heat treatment
JP5671869B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5671872B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5671871B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2003096548A (en) Non-oriented silicon steel sheet, and production method therefor
JP3835216B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2002047542A (en) Nonoriented silicon steel sheet and its manufacturing method
JP5418469B2 (en) Method for producing non-oriented electrical steel sheet for aging heat treatment
JP4424075B2 (en) Non-oriented electrical steel sheet, non-oriented electrical steel sheet for aging heat treatment, and production method thereof
JP5402846B2 (en) Method for producing non-oriented electrical steel sheet
JP2010185119A (en) Non-oriented electromagnetic steel sheet
JP5186781B2 (en) Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same
CN105331879A (en) Non-oriented silicon steel for high-power-density motor and production method
JP5671870B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5648661B2 (en) Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140801

R150 Certificate of patent or registration of utility model

Ref document number: 5592874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250