KR101353462B1 - Non-oriented electrical steel shteets and method for manufactureing the same - Google Patents

Non-oriented electrical steel shteets and method for manufactureing the same Download PDF

Info

Publication number
KR101353462B1
KR101353462B1 KR1020110145174A KR20110145174A KR101353462B1 KR 101353462 B1 KR101353462 B1 KR 101353462B1 KR 1020110145174 A KR1020110145174 A KR 1020110145174A KR 20110145174 A KR20110145174 A KR 20110145174A KR 101353462 B1 KR101353462 B1 KR 101353462B1
Authority
KR
South Korea
Prior art keywords
steel sheet
less
electrical steel
oriented electrical
weight
Prior art date
Application number
KR1020110145174A
Other languages
Korean (ko)
Other versions
KR20130076546A (en
Inventor
배병근
박준수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020110145174A priority Critical patent/KR101353462B1/en
Publication of KR20130076546A publication Critical patent/KR20130076546A/en
Application granted granted Critical
Publication of KR101353462B1 publication Critical patent/KR101353462B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

본 발명은 무방향성 전기강판 및 그 제조방법에 관한 것으로, 중량 퍼센트(%)로, C: 0.005%이하, Si: 1.0~4.0%, Al: 0.3~0.8%, Mn: 0.01~0.2%, P: 0.02~0.3%, N: 0.005%이하, S: 0.001~0.005%, Ti: 0.005%이하, 잔부는 Fe 및 기타 불가피하게 첨가되는 불순물을 포함하고 상기 성분계는 [Mn]<[P]이고, 하기의 조성 관계식을 만족하는 무방향성 전기강판 및 그 제조방법을 제공하여,
0.02≤{[Ti]*([C]+[N])}/{[Mn]*[S]}≤10,
(단, [Ti], [C], [N], [Mn], [S], [P]는 각각 Ti, C, N, Mn, S, P의 중량 퍼센트(%)이다.)
미세한 Ti(C,N) 개재물들의 생성을 억제하고 (Mn,Cu,Ti)S의 조대한 황화물을 형성시켜 Ti가 포함된 (Mn,Cu,Ti)S의 황화물의 개수를 조절함으로써 결정립 성장과 자구벽의 이동이 원활하도록 하여 무방향성 전기강판의 고주파 자성을 향상시킬 수 있다.
The present invention relates to a non-oriented electrical steel sheet and a method for manufacturing the same, in weight percent (%), C: 0.005% or less, Si: 1.0 ~ 4.0%, Al: 0.3 ~ 0.8%, Mn: 0.01 ~ 0.2%, P : 0.02 to 0.3%, N: 0.005% or less, S: 0.001 to 0.005%, Ti: 0.005% or less, the balance includes Fe and other unavoidable impurities, and the component system is [Mn] <[P], By providing a non-oriented electrical steel sheet and a method of manufacturing the same satisfying the following compositional expression,
0.02≤ {[Ti] * ([C] + [N])} / {[Mn] * [S]} ≤10,
(However, [Ti], [C], [N], [Mn], [S], and [P] are the weight percentages of Ti, C, N, Mn, S, and P, respectively.)
Inhibit the formation of fine Ti (C, N) inclusions and form coarse sulfides of (Mn, Cu, Ti) S to control the growth of grains by controlling the number of sulfides of (Mn, Cu, Ti) S containing Ti By smoothly moving the magnetic domain wall can improve the high-frequency magnetism of the non-oriented electrical steel sheet.

Description

무방향성 전기강판 및 제조 방법{NON-ORIENTED ELECTRICAL STEEL SHTEETS AND METHOD FOR MANUFACTUREING THE SAME}Non-oriented electrical steel sheet and manufacturing method {NON-ORIENTED ELECTRICAL STEEL SHTEETS AND METHOD FOR MANUFACTUREING THE SAME}

본 발명은 무방향성 전기강판 및 그 제조방법에 관한 것으로, 보다 상세하게는 전기강판의 성분계를 제어하여 결정립 성장과 자벽의 이동을 방해하는 미세한 개재물 생성을 억제하고 보다 조대한 개재물을 생성시켜 자성이 향상된 무방향성 전기강판 및 그 제조방법에 관한 것이다.The present invention relates to a non-oriented electrical steel sheet and a method for manufacturing the same, and more particularly, to control the component system of the electrical steel sheet to suppress the formation of fine inclusions that interfere with grain growth and the movement of the magnetic wall and to produce more coarse inclusions An improved non-oriented electrical steel sheet and a method of manufacturing the same.

일반적으로 무방향성 전기강판은 모터, 발전기 등의 회전 기기와 소형 변압기 등의 정지기기에서 철심용 재료로 사용되어 전기적 에너지를 기계적 에너지로 바꾸어 주는데 사용된다. 따라서, 무방향성 전기강판은 전기 기기의 에너지 효율을 결정하는데 중요한 역할을 하며 최근 에너지의 절감, 전기 기기의 소형화 등에 대한 요구는 무방향성 전기강판의 특성 개선에 대한 요구를 증가시키고 있다. 전기강판의 자기적 특성이 좋다는 것은 철손이 작고, 자속밀도가 높다는 것을 의미하는데 이는 철심에 전기를 부가하여 자기장을 유도할 때, 철손이 낮을수록 열로 손실되는 에너지를 줄일 수 있으며, 자속밀도가 높을 수록 똑같은 에너지로 더 큰 자기장을 유도할 수 있기 때문이다.In general, non-oriented electrical steel sheet is used as a material for iron cores in rotating devices such as motors and generators and stationary devices such as small transformers, and is used to convert electrical energy into mechanical energy. Therefore, the non-oriented electrical steel sheet plays an important role in determining the energy efficiency of the electrical equipment, and the recent demand for energy saving, miniaturization of the electrical equipment has increased the demand for improving the characteristics of the non-oriented electrical steel sheet. The good magnetic properties of electrical steel mean that the iron loss is small and the magnetic flux density is high. This means that when iron is added to the core to induce a magnetic field, the lower the iron loss, the less energy is lost to heat. This is because the same energy can induce a larger magnetic field.

무방향성 전기강판의 자기적 성질 중, 고주파에서의 철손을 개선하기 위해서는 전기저항 증가를 위해 비저항이 큰 합금 원소인 Si, Al, Mn등을 첨가하는 방법이 일반적으로 사용된다. 그러나, 합금 원소를 첨가하게 되면 철손은 감소하나 포화 자속밀도 감소로 인해 자속밀도의 감소 역시 피할 수 없게 된다.Among the magnetic properties of non-oriented electrical steel sheet, in order to improve the iron loss at high frequencies, a method of adding Si, Al, Mn, etc., which are alloy elements having a large resistivity, is generally used to increase electrical resistance. However, when the alloying element is added, the iron loss is reduced, but the decrease in the magnetic flux density is also inevitable due to the decrease in the saturation magnetic flux density.

따라서, 철손은 낮추면서 자속밀도도 향상시키기 위하여 미량 합금 원소의 첨가를 통해 자기적 성질에 유리한 집합 조직인 {100} 집합조직(texture)을 증가시키고 유해한 집합 조직인 {111} 집합조직을 감소시키거나 불순물의 양을 극저화시켜 청정강을 제조하는 기술 등이 사용되고 있다. 그러나 이러한 기술들은 제조 원가의 상승을 야기하고 대량 생산의 어려움이 따르기 때문에 제조 원가는 크게 상승시키지 않으면서 자성 개선 효과가 탁월한 기술이 필요하다.Therefore, in order to lower the iron loss and improve the magnetic flux density, the addition of a trace alloy element increases the {100} texture, which is advantageous to magnetic properties, and reduces the {111} texture, which is harmful, or impurity. Techniques for producing clean steel by minimizing the amount of copper have been used. However, since these technologies cause an increase in manufacturing cost and the difficulty of mass production, it is necessary to have a technology with excellent magnetic improvement effect without increasing the manufacturing cost significantly.

일본 공개특허공보 제1997-125144호에서는 합금량을 감소시켜 열간압연시 오스테나이트상에서 압연을 종료하는 것을 특징으로 하는데, 이는 페라이트상에서 압연한 조직 대비 집합조직이 열위하고 결정립도 미세화되는 단점이 있으며, 스킨패스 압연을 추가하는 공정이 필요하다. 또한, 미국특허 제6,531,001호는 Al을 0.1%이하로 관리하고 있어서 AlN 등의 불순물이 집합조직을 나쁘게 할 수 있는 문제가 있었다.Japanese Laid-Open Patent Publication No. 1997-125144 is characterized in that the rolling amount is terminated on austenite during hot rolling by reducing the amount of alloy, which is disadvantageous in that the texture is inferior to the texture rolled on the ferrite and the grain size is fine. There is a need for a process of adding pass rolling. In addition, U.S. Patent No. 6,531,001 manages Al to 0.1% or less, and there is a problem that impurities such as AlN may worsen the texture.

본 발명의 실시예들은 강의 합금 원소 중 Ti, C, N, Mn, S의 성분을 제어하여 Ti를 Mn등과 함께 (Mn,Cu,Ti)S 등의 구상 타입의 황화물로 형성시켜 미세한 Ti 개재물의 형성을 억제하고 조대한 개재물의 분포를 증가시키는 무방향성 전기강판 및 그 제조방법을 제공하고자 한다. Embodiments of the present invention by controlling the components of Ti, C, N, Mn, S of the alloy elements of the steel to form Ti with a spherical type sulfide such as (Mn, Cu, Ti) S together with Mn and fine Ti inclusions It is an object of the present invention to provide a non-oriented electrical steel sheet and a method of manufacturing the same to suppress the formation and increase the distribution of coarse inclusions.

본 발명의 하나 또는 다수의 실시예에서는 중량 퍼센트(%)로, C: 0.005%이하, Si: 1.0~4.0%, Al: 0.3~0.8%, Mn: 0.01~0.2%, P: 0.02~0.3%, N: 0.005%이하, S: 0.001~0.005%, Ti: 0.005%이하, 잔부는 Fe 및 기타 불가피하게 첨가되는 불순물을 포함하고 상기 성분계는 [Mn]<[P]이고, 하기의 조성 관계식을 만족하는 무방향성 전기강판이 제공될 수 있다.In one or more embodiments of the present invention, in weight percent (%), C: 0.005% or less, Si: 1.0-4.0%, Al: 0.3-0.8%, Mn: 0.01-0.2%, P: 0.02-0.3% , N: 0.005% or less, S: 0.001% to 0.005%, Ti: 0.005% or less, the balance includes Fe and other unavoidable impurities, and the component system is [Mn] <[P]. Satisfactory non-oriented electrical steel sheet may be provided.

0.02≤{[Ti]*([C]+[N])}/{[Mn]*[S]}≤10,0.02≤ {[Ti] * ([C] + [N])} / {[Mn] * [S]} ≤10,

(단, [Ti], [C], [N], [Mn], [S], [P]는 각각 Ti, C, N, Mn, S, P의 중량 퍼센트(%)이다.)(However, [Ti], [C], [N], [Mn], [S], and [P] are the weight percentages of Ti, C, N, Mn, S, and P, respectively.)

본 발명의 하나 또는 다수의 실시예에서는 Sn 및 Sb 중 적어도 하나를 0.01~0.2중량% 포함할 수 있고, 상기 전기강판의 미세조직은 (Mn,Cu,Ti)S의 황화물을 포함할 수 있는데, 상기 황화물의 개수는 1개/1042~10개/1042 이고, 평균 크기는 0.1㎛이상인 것을 특징으로 한다.In one or more embodiments of the present invention may include 0.01 to 0.2% by weight of at least one of Sn and Sb, the microstructure of the electrical steel sheet may include a sulfide of (Mn, Cu, Ti) S, The number of sulfides is 1/10 42 ~ 10/10 42 , the average size is characterized in that more than 0.1㎛.

또한, 본 발명의 하나 또는 다수의 실시예에서는 중량 퍼센트(%)로, C: 0.005%이하, Si: 1.0~4.0%, Al: 0.3~0.8%, Mn: 0.01~0.2%, P: 0.02~0.3%, N: 0.005%이하, S: 0.001~0.005%, Ti: 0.005%이하, 잔부는 Fe 및 기타 불가피하게 첨가되는 불순물을 포함하고, [Mn]<[P]이고, 하기의 조성 관계식을 만족하는 슬라브를 제공하는 단계; 상기 슬라브를 1200℃이하로 재가열한 후 압연하여 열연강판을 제조하는 단계; 상기 열연강판을 산세한 후 0.10 ~ 0.70mm의 두께의 냉연강판을 제조하는 단계; 상기 냉연강판을 850~1100℃에서 최종 소둔하는 무방향성 전기강판 제조방법이 제공될 수 있다.In addition, in one or more embodiments of the present invention, the weight percentage (%), C: 0.005% or less, Si: 1.0-4.0%, Al: 0.3-0.8%, Mn: 0.01-0.2%, P: 0.02-- 0.3%, N: 0.005% or less, S: 0.001% to 0.005%, Ti: 0.005% or less, the balance includes Fe and other unavoidable impurities, [Mn] <[P], and the following compositional formula Providing a satisfying slab; Reheating the slab to 1200 ° C. or less and rolling the slab to produce a hot rolled steel sheet; Manufacturing a cold rolled steel sheet having a thickness of 0.10 to 0.70 mm after pickling the hot rolled steel sheet; A non-oriented electrical steel sheet manufacturing method for annealing the cold rolled steel sheet at 850 ~ 1100 ℃ can be provided.

0.02≤{[Ti]*([C]+[N])}/{[Mn]*[S]}≤10,0.02≤ {[Ti] * ([C] + [N])} / {[Mn] * [S]} ≤10,

(단, [Ti], [C], [N], [Mn], [S], [P]는 각각 Ti, C, N, Mn, S, P의 중량 퍼센트(%)이다.)(However, [Ti], [C], [N], [Mn], [S], and [P] are the weight percentages of Ti, C, N, Mn, S, and P, respectively.)

본 발명에 따른 하나 또는 다수의 실시예에서는 상기 불가피하게 첨가되는 불순물은 Cu, Ni, Cr, Zr, Mo, V 중 하나 이상을 포함하되, 상기 Cu, Ni, Cr 은 각각 0.05 중량 퍼센트(%) 이하로 제한되며, 상기 Zr, Mo, V 은 각각 0.01 중량 퍼센트(%) 이하로 제한되는 것을 특징으로 한다.In one or more embodiments according to the present invention, the inevitable added impurities include one or more of Cu, Ni, Cr, Zr, Mo, and V, wherein Cu, Ni, and Cr are each 0.05 weight percent (%). Limited to below, the Zr, Mo, V is characterized in that each limited to less than 0.01% by weight (%).

본 발명의 실시예들은 미세한 Ti(C,N) 개재물들의 생성을 억제하고 (Mn,Cu,Ti)S의 조대한 황화물을 형성시켜 Ti가 포함된 (Mn,Cu,Ti)S의 황화물의 개수를 조절함으로써 결정립 성장과 자구벽의 이동이 원활하도록 하여 무방향성 전기강판의 고주파 자성을 향상시킬 수 있다.Embodiments of the present invention inhibit the formation of fine Ti (C, N) inclusions and form coarse sulfides of (Mn, Cu, Ti) S to form Ti sulfides of (Mn, Cu, Ti) S It is possible to improve the high-frequency magnetism of the non-oriented electrical steel sheet by controlling the grain growth and the movement of the magnetic domain wall smoothly.

이하, 첨부한 도면을 참조하여, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 위주로 설명한다. Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings so that those skilled in the art can easily carry out the present invention.

이러한 실시예는 본 발명에 따른 일실시예로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 여러 가지 상이한 형태로 구현할 수 있으므로, 본 발명의 권리범위는 이하에서 설명하는 실시예에 한정되지 않는다 할 것이다.
It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to be illustrative of the invention, and are not intended to limit the scope of the inventions. I will do it.

본 발명에 따른 실시예에서는 Si, Al, Mn 및 P를 첨가한 성분계에서 페라이트 확장원소인 Al과 P를 많이 첨가, 즉 Al을 0.3~0.8% 첨가하고, 또한 P량을 적어도 Mn량 보다 많이 첨가하면서, Mn과 불순물 원소인 Ti, C, S, N의 첨가량을 엄격하게 관리한다. 그 첨가량은 Mn이 0.01~0.2%로, Ti, C, N을 각각 0.005%이하로, S를 0.001~0.005%의 범위로 제어함으로써 미세한 Ti(C,N)등의 생성을 억제하고 Ti를 Mn등과 함께 (Mn,Cu,Ti)S 등의 조대한 황화물을 형성시킴으로써 조대한 개재물의 분포밀도를 높임으로써 고주파 자성을 개선하고자 하였다.In the embodiment according to the present invention, a large amount of Al and P, which are ferrite expansion elements, are added, that is, 0.3 to 0.8% of Al, and P is added to at least Mn. In doing so, the amounts of Mn and Ti, C, S, and N which are impurity elements are strictly controlled. The amount of Mn is 0.01 to 0.2%, Ti, C and N are controlled to 0.005% or less, and S is controlled to 0.001 to 0.005% to suppress the formation of fine Ti (C, N) and the like. In addition, coarse sulfides such as (Mn, Cu, Ti) S were formed to increase the distribution density of coarse inclusions, thereby improving high frequency magnetism.

이를 위하여 본 발명에 따른 실시예에서는 중량 퍼센트(%)로, Si:1.0~4.0%, Al:0.3~0.8%, Mn:0.01~0.2%, P:0.02~0.3%, N:0.005%이하, S:0.001~0.005%, 잔부는 Fe 및 기타 불가피하게 첨가되는 불순물을 포함하고, [Mn]<[P]이며, 상기 Mn, Al, P, S는 하기 식을 만족하는 무방향성 전기강판이 제공된다.To this end, in the embodiment according to the present invention by weight percent (%), Si: 1.0 ~ 4.0%, Al: 0.3 ~ 0.8%, Mn: 0.01 ~ 0.2%, P: 0.02 ~ 0.3%, N: 0.005% or less, S: 0.001% to 0.005%, the balance includes Fe and other inevitable impurities, [Mn] <[P], and Mn, Al, P, and S are provided by a non-oriented electrical steel sheet satisfying the following formula: do.

0.02≤{[Ti]*([C]+[N])}/{[Mn]*[S]}≤10 -----------------(1)0.02≤ {[Ti] * ([C] + [N])} / {[Mn] * [S]} ≤10 ----------------- (1)

상기 [Mn], [S], [Al], [P]는 각각 Mn, S, Al, P의 중량%를 의미한다.
[Mn], [S], [Al], and [P] mean weight percent of Mn, S, Al, and P, respectively.

먼저, 본 발명에 따른 실시예에서의 성분 한정 이유를 살펴본다.
First, look at the reasons for component limitation in the embodiment according to the present invention.

Si:1.0~4.0중량% Si: 1.0 to 4.0 wt%

상기 Si는 강의 비저항을 증가시켜서 철손 중 와류손실을 낮추는 성분이기 때문에 첨가되는 주요 원소로서, 1.0% 이하에서는 저철손 특성을 얻기 어렵고, 4.0%를 초과하여 첨가되면 냉간 압연시 판파단이 일어나기 때문에 1.0~4.0중량%로 제한한다.
The Si is a main element added because it increases the specific resistance of the steel and lowers the vortex loss in iron loss, and it is difficult to obtain low iron loss characteristics below 1.0%, and when added in excess of 4.0%, breakage occurs during cold rolling. It is limited to ~ 4.0% by weight.

Mn:0.01~0.2중량% Mn: 0.01% to 0.2% by weight

상기 Mn은 Si, Al등과 더불어 비저항을 증가시켜 철손을 낮추는 효과가 있기 때문에 철손을 개선하려는 목적으로 첨가된다. 그러나, Mn 첨가량이 증가할수록 포화자속밀도가 감소하기 때문에 자속밀도가 감소하며 S와 결합하여 미세한 MnS 개재물을 형성하여 결정립 성장을 억제하며 자구벽 이동을 방해하여 철손 중 특히 이력 손실을 증가시키는 단점이 있다. 따라서 자속밀도 향상 및 개재물에 의한 철손 증가 방지를 위하여 Mn 첨가량을 0.01~0.2%로 제한한다.
The Mn is added for the purpose of improving iron loss because it has an effect of lowering iron loss by increasing specific resistance together with Si and Al. However, as the amount of Mn added increases, the saturation magnetic flux density decreases, so the magnetic flux density decreases. have. Therefore, in order to improve the magnetic flux density and prevent the increase of iron loss by inclusions, the amount of Mn added is limited to 0.01 to 0.2%.

Al:0.3~0.8중량% Al: 0.3-0.8 wt%

상기 Al은 제강공정에서 강의 탈산을 위하여 불가피하게 첨가되는 원소로서 비저항을 증가시키는 주요 원소이기 때문에 철손을 낮추기 위하여 많이 첨가되지만 첨가시 포화 자속밀도를 감소시키는 역할도 한다. 또한, Al 첨가량이 0.3%이하로 낮으면 비저항이 과도하게 낮아서 특히 주파수가 높은 강에서 철손을 저하시키며, 0.8%이상 많이 첨가되면 자속밀도가 감소되는 원인이 되므로 그 첨가량을 0.3~0.8%로 제한한다.
The above Al is an inevitably added element for steel deoxidation in the steelmaking process, which is a major element for increasing the resistivity. Therefore, it is added in order to lower the iron loss, but also serves to decrease the saturation flux density. In addition, if the amount of Al added is less than 0.3%, the specific resistance is excessively low, and the iron loss is lowered, especially in high frequency steel, and if it is added more than 0.8%, the magnetic flux density is reduced, so the amount of addition is limited to 0.3 ~ 0.8%. do.

P:0.02~0.3중량%P: 0.02 to 0.3 wt%

상기 P는 비저항을 증가시켜 철손을 낮추며 결정립계에 편석함으로써 자성에 유해한 {111} 집합 조직의 형성을 억제하고 유리한 집합조직인 {100}을 형성함으로 첨가하며, 0.3%이상 첨가되면 압연성을 저하 및 자성향상 효과가 감소되므로 0.02~0.3중량%로 첨가되는 것이 바람직하다. Mn이 페라이트 형성을 억제하는 원소이며, 반면에 P는 페라이트상을 확장하는 원소인데, [Mn]<[P]의 수식을 만족하도록 Mn량 보다 P함량을 보다 많이 함유시킴으로써 열간압연 및 소둔시 안정된 페라이트상에서 작업이 가능하여 자성에 바람직한 집합조직을 향상시켜서 {100}/{110}의 비가 1.5 이상이 되도록 한다
P is added to increase the resistivity, lower the iron loss and segregate at grain boundaries, thereby inhibiting formation of {111} aggregates that are harmful to magnetism and forming {100}, which is an advantageous texture. Since the improvement effect is reduced, it is preferable to add at 0.02-0.3 weight%. Mn is an element that suppresses the formation of ferrite, while P is an element that expands the ferrite phase, which is more stable during hot rolling and annealing by containing more P content than Mn to satisfy the formula of [Mn] <[P]. Can work on ferrite to improve the desirable texture of magnetism so that the ratio of {100} / {110} is over 1.5

C:0.005중량% 이하C: 0.005 wt% or less

C은 많이 첨가될 경우 오스테나이트 영역을 확대하며 상변태 구간을 증가시키고 소둔 시 페라이트의 결정립 성장을 억제하여 철손을 높이는 효과를 나타내며, Ti등과 결합하여 탄화물을 형성하여 자성을 열위시키며 최종제품에서 전기 제품으로 가공 후 사용시 자기시효에 의하여 철손을 높이기 때문에 0.005%이하로 한정한다.
When C is added a lot, the austenite region is enlarged, the phase transformation period is increased, and ferrite grain growth is suppressed by annealing to increase iron loss, and it is inferior to magnetism by forming carbides in combination with Ti. In order to increase iron loss by self aging, it should be limited to 0.005% or less.

S:0.001~0.005중량% 이하S: 0.001 to 0.005% by weight or less

S는 자기적 특성에 유해한 MnS, CuS 및 (Cu,Mn)S 등의 황화물을 형성하는 원소이므로 가능한 한 낮게 첨가하는 것이 바람직하다. 그러나, 0.001%이하로 첨가될 경우 오히려 집합조직 형성에 불리하여 자성이 저하되기 때문에 0.001%이상 함유토록 하며 또한 0.005%이상 첨가될 경우는 미세한 황화물의 증가로 인해 자성이 열위해지므로 0.001~0.005%로 한정한다.
S is an element which forms sulfides such as MnS, CuS, and (Cu, Mn) S, which are detrimental to magnetic properties. Therefore, it is preferable to add S as low as possible. However, if it is added below 0.001%, the magnetism is deteriorated due to the disadvantage of the formation of aggregates, and if it is added more than 0.001%, the content is more than 0.005% due to the increase of the fine sulfide, which causes the heat to become 0.001 ~ 0.005% It is limited to.

N:0.005중량% 이하N: 0.005 wt% or less

N는 Al, Ti등과 강하게 결합함으로써 질화물을 형성하여 결정립성장을 억제하는 등 자성에 해로운 원소이므로 적게 함유시키는 것이 바람직하며, 본 발명에서는 0.005중량% 이하로 제한한다.
N is an element which is harmful to magnetism, such as to form nitrides by strongly bonding with Al, Ti and the like to inhibit grain growth, and therefore it is preferable to contain N less than 0.005% by weight or less.

Ti:0.005중량% 이하Ti: 0.005 wt% or less

Ti는 미세한 탄화물과 질화물을 형성하여 결정립성장을 억제하며 많이 첨가될 수록 증가된 탄화물과 질화물로 인해 집합 조직도 열위하게 되어 자성이 나빠지게 되므로 본 발명에서는 0.005%이하로 제한한다.
Ti suppresses grain growth by forming fine carbides and nitrides, and as the amount of Ti increases, the carbides and nitrides increase inferior texture due to increased carbides and nitrides.

Sn 또는 Sb:0.01~0.2중량% Sn or Sb: 0.01 to 0.2 wt%

상기 Sn과 Sb는 결정립계에 편석원소로써 결정립계를 통한 질소의 확산을 억제하며 자성에 해로운 {111} 집합조직(texture)을 억제하고 유리한 {100} 집합조직을 증가시켜 자기적 특성을 향상시키기 위하여 첨가하며, Sn과 Sb 단독 또는 그 합이 0.2%이상 첨가하면 결정립 성장을 억제하여 자성을 떨어뜨리고 압연성상이 나빠지기 때문에 Sn, Sb 단독 또는 그 합이 0.01~0.2%로 첨가한다.
The Sn and Sb are added to improve the magnetic properties by inhibiting the diffusion of nitrogen through the grain boundary as a segregation element in the grain boundary, inhibiting {111} texture harmful to magnetism and increasing the advantageous {100} texture. If Sn or Sb alone or a sum of 0.2% or more is added, the grain growth is suppressed to decrease the magnetism and the rolling property worsens. Therefore, Sn or Sb alone or the sum thereof is added at 0.01 to 0.2%.

상기 원소 외에 제강 공정에서 불가피하게 첨가되는 원소인 Cu, Ni, Cr의 경우 불순물 원소들과 반응하여 미세한 황화물, 탄화물 및 질화물을 형성하여 자성에 유해한 영향을 미치므로 이들 함유량을 각각 0.05중량%이하로 제한한다. 또한 Zr, Mo, V등도 강력한 탄질화물 형성 원소이기 때문에 가능한 첨가되지 않는 것이 바람직하며 각각 0.01중량%이하로 함유되도록 한다.In addition to the above elements, Cu, Ni, and Cr, which are inevitably added in the steelmaking process, react with the impurity elements to form fine sulfides, carbides, and nitrides, which have a harmful effect on magnetism. Restrict. In addition, Zr, Mo, and V is also a strong carbonitride-forming element, so it is preferable not to be added as much as possible.

상기한 조성 이외에 나머지는 Fe 및 기타 불가피한 불순물로 조성된다. 본 발명에 따른 실시예에서는 상기 Mn에 비하여 P를 많이 첨가하여야 하는데, 이는 P가 집합조직에 영향을 미치기 때문이다.In addition to the above composition, the remainder is composed of Fe and other unavoidable impurities. In the embodiment according to the present invention, P must be added more than Mn, because P affects the texture.

또한, Al함량을 0.3%이상 최대한 0.8%로 증가시키고 [Mn]<[P]의 수식을 만족하도록 P함량을 적어도 Mn량 보다 많이 함유시키면, Mn함량이 증가되어도 미세한 석출물은 억제되면서 자성이 향상될 수 있다. 따라서 Al이 0.3~0.8%이고, S가 0.001~0.005%인 무방향성 전기강판에서, Mn을 0.01~0.2%로 함유시키고, P를 0.02~0.3%로 함유시키되 [Mn]<[P]를 만족하도록 Mn 보다 P를 높게 첨가함으로써 고주파 자성이 향상되도록 한다.In addition, if the Al content is increased to 0.3% as much as 0.3% or more and the P content is contained at least Mn to satisfy the formula of [Mn] <[P], the fine precipitates are suppressed even when the Mn content is increased, thereby improving the magnetic properties. Can be. Therefore, in the non-oriented electrical steel sheet having 0.3 to 0.8% of Al and 0.001 to 0.005% of S, Mn is contained in 0.01 to 0.2% and P is contained in 0.02 to 0.3%, but satisfies [Mn] <[P]. By adding P higher than Mn, the high frequency magnetism is improved.

상기 Mn은 페라이트형성을 억제하는 원소이며, 반면에 Al과 P는 페라이트상을 확장하는 원소이어서 페라이트 형성원소인 Al과 P를 증가시킴으로써 열간압연 및 소둔시 안정된 페라이트상에서 작업이 가능해지며, P는 결정립계에 편석하여 자성에 유리한 {100} 집합조직을 잘 발달시켜서 자성을 향상시킬 수 있다.Mn is an element that suppresses the formation of ferrite, whereas Al and P are elements that expand the ferrite phase, so that the ferrite forming elements Al and P are increased to work on a stable ferrite phase during hot rolling and annealing, and P is a grain boundary. By segregating in the well-developed {100} texture, which is advantageous for magnetism, the magnetic properties can be improved.

본 발명에 따른 실시예에서 첨가하는 원소는 Si, Mn, Al, P 또는 Sn, Sb이고, 그 외의 첨가되는 원소는 불순물 원소이다. 그러나, Ti, C, N, S등은 엄격히 관리되어야 한다. 무방향성 전기강판의 개재물에는 MnS, CuS, 또는 이들의 복합 황화물, AlN, Ti(C,N)등이 있으며 일반적으로 그 크기가 0.05㎛정도로 미세하여 결정립 성장을 억제하고 자구벽의 이동을 방해함으로써 자성에 큰 영향을 미치게 된다. 특히 Ti(C,N)의 경우 그 크기가 미세하며 개재물 형상이 구형 타입(spherical type)이 아닌 큐빅 타입(cubic type)으로 결정립 성장 억제력이 매우 크다고 할 수 있다. 따라서 자성의 열화가 최소화되도록 이러한 미세한 Ti(C,N) 개재물의 생성을 억제하고 조대한 개재물의 형성 빈도를 높일 필요성이 있다. In the embodiment according to the present invention, the element added is Si, Mn, Al, P or Sn, and Sb, and the other elements to be added are impurity elements. However, Ti, C, N, S, etc. must be strictly managed. Inclusions of non-oriented electrical steel sheets include MnS, CuS, or their complex sulfides, AlN, Ti (C, N), etc., and generally have a size of about 0.05 μm, which suppresses grain growth and impedes movement of the magnetic domain walls. It will have a big impact on magnetism. Particularly, Ti (C, N) has a small size and the inclusion shape is a cubic type rather than a spherical type. Therefore, there is a need to suppress the formation of such fine Ti (C, N) inclusions and to increase the frequency of formation of coarse inclusions so as to minimize magnetic deterioration.

이를 위해 본 발명에 따른 실시예에서는 Ti, C, N, Mn, S가 상기 조성 관계식(1)을 만족하도록 제어하여 Ti가 미세한 큐빅 타입의 Ti(C,N) 개재물로 형성되던 것과는 다르게 Mn,Cu등과 함께 구형 타입의 (Mn,Cu,Ti)S등의 조대한 황화물을 형성하여 0.05㎛ ~ 0.5㎛의 크기를 갖는 Ti가 포함된 (Mn,Cu,Ti)S등의 황화물의 개수가 1개/1042~10개/1042이며, 0.05 ~ 0.5㎛의 크기를 갖는 Ti가 포함된 (Mn,Cu,Ti)S등의 평균 크기가 0.1㎛이상이 되는 현상을 관찰하였고, 이러한 개재물의 분포밀도를 조정함으로써 무방향성 전기강판의 철손을 낮추고 자속밀도를 높여 고주파 자성이 향상되도록 한다.To this end, in an embodiment according to the present invention, Ti, C, N, Mn, and S are controlled to satisfy the composition relation (1), so that Ti is formed of fine cubic Ti (C, N) inclusions, unlike Mn, Coarse sulfides such as spherical type (Mn, Cu, Ti) S together with Cu are formed, and the number of sulfides such as (Mn, Cu, Ti) S containing Ti having a size of 0.05 μm to 0.5 μm is 1 number / 10 and 4 2 ~ 2 10 number / 10 4 ㎛, observed a phenomenon in which the average size, such as the (Mn, Cu, Ti) S contains a Ti having a size of 0.05 ~ 0.5㎛ becomes equal to or greater than 0.1㎛ By adjusting the distribution density of these inclusions, the high-frequency magnetism is improved by lowering iron loss and increasing magnetic flux density of the non-oriented electrical steel sheet.

본 발명에 따른 실시예에서 개재물의 크기, 종류 및 분포를 분석하기 위한 방법으로는 시편으로부터 추출된 탄소 모형(carbon replica)을 TEM으로 관찰하며 EDS로 분석하는 방법이 사용되었다. TEM 관찰은 치우침이 없이 무작위로 선택된 영역으로 0.01㎛ 이상의 개재물이 명확히 관찰되는 배율로 설정 후 적어도 100장 이상의 이미지(Image)로 촬영하여 나타나는 모든 개재물의 크기, 형상 및 분포를 측정하였고, 또한 EDS 스펙트럼(spectrum)을 통하여 개재물의 종류를 분석하였다. 본 발명에 따른 실시예에서 개재물의 크기 및 분포를 분석함에 있어서 0.01㎛이하의 개재물의 경우 관찰 및 측정에 어려움이 있을 뿐만 아니라 자성에 미치는 영향이 작고, 1㎛이상의 SiO2, Al2O3와 같은 산화물들도 관찰되었으나 자성에 미치는 영향이 작아서 본 발명의 분석 대상에는 포함시키지 않았다.
In the embodiment according to the present invention as a method for analyzing the size, type and distribution of inclusions was used to observe the carbon replica (sample) extracted from the specimen (TEM) by TEM analysis. TEM observation was set at a magnification in which at least 0.01 μm of inclusions were clearly observed in a randomly selected area without bias, and then measured the size, shape, and distribution of all inclusions appearing by taking at least 100 images. The types of inclusions were analyzed by spectrum. In analyzing the size and distribution of inclusions in the embodiment according to the present invention, the inclusions of 0.01 μm or less are not only difficult to observe and measure, but also have a small effect on magnetism, and SiO 2 , Al 2 O 3 and 1 μm or more. The same oxides were also observed but the effect on the magnet was small and was not included in the analyte of the present invention.

본 발명에 따른 실시예에서는 {[Ti]*([C]+[N])}/{[Mn]*[S]}의 범위를 상기 조성 관계식(1)로 한정되는데 그 이유는 Ti와 C,N의 양은 Ti(C,N) 개재물의 크기 및 분포에 큰 영향을 미치며 Mn, S의 양은 개재물, 특히 황화물의 분포와 크기를 결정하는데 중요하기 때문에 개재물 형성에 영향을 미치는 Ti, C, N과 Mn, S의 첨가량 비율은 개재물의 분포 및 크기 형성에 있어서 매우 중요한 영향을 미친다. 상기 조성 관계식의 값이 0.02보다 작거나 10보다 큰 경우는 Ti가 Ti(C,N)으로 미세하게 형성되고 개재물이 조대화되지 않아 미세한 개재물들의 분포밀도가 증가하여 결정립 성장을 억제하고 자구 이동을 방해하는 등 자성을 열위시키게 된다.
In the embodiment according to the present invention, the range of {[Ti] * ([C] + [N])} / {[Mn] * [S]} is limited to the compositional relationship (1), because the Ti and C The amount of, N has a significant effect on the size and distribution of Ti (C, N) inclusions, and the amount of Mn, S is important for determining the distribution and size of inclusions, especially sulfides, and thus affects Ti, C, N The addition ratio of Mn and S has a very important effect in forming distribution and size of inclusions. When the value of the composition relation expression is smaller than 0.02 or larger than 10, Ti is finely formed as Ti (C, N) and the inclusions are not coarsened so that the distribution density of the fine inclusions is increased, thereby suppressing grain growth and moving the domain. It interferes with magnetism such as obstruction.

이하에서는 본 발명에 따른 무방향성 전기강판의 제조방법에 대하여 살펴본다.Hereinafter, look at the manufacturing method of the non-oriented electrical steel sheet according to the present invention.

상기와 같이 조성되는 무방향성 전기강판 강 슬라브는 1200℃이하로 재가열한 다음 열간압연 한다. 재가열 온도가 1200℃이상일 경우 슬라브 내에 존재하는 AlN, MnS등의 석출물이 재고용된 후 열간압연시 미세 석출되어 결정립 성장을 억제하고 자성을 저하시키므로 재가열 온도는 1200℃이하로 제한한다. 열간압연시 사상압연에서의 마무리압연은 페라이트상에서 종료하며 판형상 교정을 위하여 최종 압하율은 20%이하로 실시한다. The non-oriented steel sheet steel slab prepared as described above is reheated to a temperature of 1200 DEG C or less and then hot rolled. If the reheating temperature is more than 1200 ℃ re-heating temperature is limited to less than 1200 ℃ because the precipitates such as AlN, MnS existing in the slab is re-used and fine precipitated during hot rolling to inhibit grain growth and decrease the magnetism. Finishing rolling in hot rolling is finished in ferrite phase and final rolling reduction is 20% or less for plate shape calibrating.

상기와 같이 제조된 열연판은 700℃이하에서 권취하고, 공기 중에서 냉각한다. 권취 냉각된 열연판은 필요시 열연판 소둔을 실시하고 산세한 후, 냉간압연하고 마지막으로 냉연판소둔을 실시한다.The hot rolled sheet prepared as described above is wound at 700 ° C. or lower and cooled in air. The coiled and cooled hot rolled sheet is subjected to hot rolled sheet annealing and pickling as necessary, followed by cold rolling and finally cold rolled sheet annealing.

상기 열연판 소둔은 자성 개선을 위하여 필요할 경우에 열연판을 소둔하는 것이며, 열연판 소둔온도는 850~1150℃로 한다. 열연판 소둔온도가 850℃보다 낮으면 결정립 성장이 불충분하며, 1150℃를 초과하는 경우에는 결정립이 과도하게 성장하고 판의 표면 결함이 과다해지므로 소둔온도는 850~1150℃로 한다. The hot rolled sheet annealing is to anneal the hot rolled sheet if necessary to improve the magnetic, the hot rolled sheet annealing temperature is set to 850 ~ 1150 ℃. When the hot-rolled sheet annealing temperature is lower than 850 ° C, grain growth is insufficient. When the hot-rolled sheet annealing temperature is lower than 850 ° C, the grains grow excessively and the surface defects of the plate become excessive, so the annealing temperature is set to 850-1150 ° C.

이후에는 통상의 방법으로 산세한 열연판 또는 소둔한 열연판은 냉간압연한다. Thereafter, the hot rolled sheet or the annealed hot rolled sheet pickled by a conventional method is cold rolled.

냉간압연 단계에서는 0.10 ~ 0.70mm의 두께로 최종 압연한다. 필요시 1차 냉간압연과 중간소둔 후 2차 냉간압연할 수 있으며, 최종 압하율은 50~95%의 범위로 한다. In the cold rolling step, the final rolling is carried out to a thickness of 0.10 ~ 0.70mm. If necessary, it can be subjected to primary cold rolling and intermediate annealing followed by secondary cold rolling, and the final rolling reduction is in the range of 50 to 95%.

이후에는 최종 냉간압연된 냉연강판을 소둔한다. 냉연강판을 소둔하는 공정에서 소둔시 냉연판 소둔의 균열온도는 850~1100℃로 한다. 냉연판 소둔온도가 850℃이하에서는 결정립의 성장이 미흡하며, {100}/{110}의 비가 감소하며, 1100℃이상에서는 결정립이 과도하게 성장하여 자성에 나쁜 영향을 미칠 수 있기 때문에 냉연판의 균열온도는 850~1100℃로 한다.
Thereafter, the final cold rolled cold rolled steel sheet is annealed. In the annealing process of the cold rolled steel sheet, the cracking temperature of the cold rolled sheet annealing is 850 ~ 1100 ℃. When the cold-rolled sheet annealing temperature is lower than 850 ℃, the grain growth is insufficient, the ratio of {100} / {110} decreases, and the grains grow excessively above 1100 ℃, which may adversely affect the magnetic properties of the cold-rolled sheet The cracking temperature is set at 850 ~ 1100 ℃.

이하에서는 본 발명에 따른 실시예를 보다 상세하게 설명한다.Hereinafter, embodiments according to the present invention will be described in more detail.

[실시예 1] [Example 1]

표 1과 같이 조성되는 강괴를 제조하여 Ti, C, N, Mn, S, P의 양을 변화시켜 그 영향을 보고자 하였다. 각 강괴는 1150℃에서 가열하고, 2.5mm의 두께로 열간압연한 후 권취하였다. 공기 중에서 권취하고 냉각한 열연강판은 1060℃에서 4분간 소둔하고, 산세한 다음 0.35mm 두께로 냉간압연하고, 냉연판 소둔은 1060℃에서 100초간 최종 소둔을 하였다. 각각의 시편에 대하여 (Mn,Cu,Ti)S 황화물의 수 및 크기, 집합조직, 철손 및 자속밀도를 측정하였고 그 결과를 하기 표 2에 나타내었다.The steel ingot was prepared as shown in Table 1 to change the amount of Ti, C, N, Mn, S, P to see the effect. Each ingot was heated at 1150 ° C., hot rolled to a thickness of 2.5 mm and wound up. The hot rolled steel sheet wound and cooled in air was annealed at 1060 ° C. for 4 minutes, pickled, and cold rolled to a thickness of 0.35 mm, and the cold rolled sheet annealing was finally annealed at 1060 ° C. for 100 seconds. For each specimen, the number and size of the (Mn, Cu, Ti) S sulfide, texture, iron loss and magnetic flux density were measured and the results are shown in Table 2 below.

강종Steel grade CC SiSi MnMn PP SS AlAl NN TiTi SnSn SbSb 비고
Remarks
A1A1 0.00210.0021 1.2 1.2 0.030.03 0.20 0.20 0.003 0.003 0.350.35 0.00210.0021 0.00160.0016 0.0360.036 발명예Honor A2A2 0.00250.0025 2.0 2.0 0.010.01 0.25 0.25 0.004 0.004 0.320.32 0.00230.0023 0.00190.0019 0.0340.034 발명예Honor A3A3 0.00290.0029 2.6 2.6 0.050.05 0.08 0.08 0.002 0.002 0.410.41 0.0020.002 0.00250.0025 0.0150.015 0.020.02 발명예Honor A4A4 0.00250.0025 2.5 2.5 0.0020.002 0.08 0.08 0.003 0.003 0.0060.006 0.00210.0021 0.00150.0015 0.0350.035 비교예Comparative Example A5A5 0.00210.0021 2.4 2.4 0.020.02 0.05 0.05 0.003 0.003 1.51.5 0.00150.0015 0.00250.0025 0.0360.036 0.010.01 비교예Comparative Example A6A6 0.00240.0024 2.5 2.5 0.060.06 0.01 0.01 0.003 0.003 0.270.27 0.00210.0021 0.00230.0023 0.0440.044 비교예Comparative Example A7A7 0.00250.0025 2.6 2.6 1.51.5 0.05 0.05 0.0005 0.0005 0.510.51 0.00210.0021 0.00210.0021 0.020.02 비교예Comparative Example A8A8 0.00380.0038 3.4 3.4 0.550.55 0.08 0.08 0.003 0.003 0.560.56 0.00170.0017 0.00260.0026 비교예Comparative Example A9A9 0.00350.0035 3.2 3.2 0.010.01 0.18 0.18 0.001 0.001 0.450.45 0.00250.0025 0.00380.0038   발명예Honor A10A10 0.00250.0025 3.1 3.1 0.180.18 0.20 0.20 0.001 0.001 0.460.46 0.00150.0015 0.00150.0015 0.0480.048   발명예Honor A11A11 0.00260.0026 3.2 3.2 0.070.07 0.25 0.25 0.003 0.003 0.450.45 0.00140.0014 0.00210.0021 0.0390.039   발명예Honor A12A12 0.00280.0028 3.6 3.6 0.030.03 0.12 0.12 0.004 0.004 0.430.43 0.00150.0015 0.00260.0026   발명예Honor A13A13 0.00230.0023 3.9 3.9 0.050.05 0.07 0.07 0.002 0.002 0.350.35 0.0020.002 0.00240.0024 0.0480.048   발명예Honor A14A14 0.00260.0026 3.8 3.8 0.06 0.06 0.02 0.02 0.004 0.004 0.40.4 0.00170.0017 0.00210.0021 0.0450.045 비교예Comparative Example A15A15 0.00280.0028 3.5 3.5 0.03 0.03 0.04 0.04 0.0005 0.0005 0.270.27 0.00190.0019 0.00240.0024 0.030.03 비교예Comparative Example A16A16 0.00250.0025 3.1 3.1 0.12 0.12 0.06 0.06 0.003 0.003 0.310.31 0.00210.0021 0.00240.0024 0.0410.041 비교예Comparative Example

강종Steel grade [Mn]<[P][Mn] < [P] {[Ti]*([C]+[N])}
/
{[Mn]*[S]}
{[Ti] * ([C] + [N])}
Of
{[Mn] * [S]}
0.05~0.5μm크기의 (Mn,Cu,Ti)S의 개수
(개/104μm2)
Number of (Mn, Cu, Ti) S of 0.05 ~ 0.5μm size
(Piece / 10 4 μm 2 )
철손
(W10 /400)
W/kg
Iron loss
(W 10/400)
W / kg
자속
밀도
(B50)
Tesla
Magnetic flux
density
(B 50 )
Tesla
비고Remarks
A1A1 OO 0.07 0.07 2.12.1 18.1 18.1 1.79 1.79 발명예Honor A2A2 OO 0.23 0.23 2.42.4 15.5 15.5 1.78 1.78 발명예Honor A3A3 OO 0.12 0.12 1.81.8 14.3 14.3 1.77 1.77 발명예Honor A4A4 OO 1.15 1.15 0.80.8 18.8 18.8 1.68 1.68 비교예Comparative Example A5A5 OO 0.15 0.15 0.70.7 19.4 19.4 1.69 1.69 비교예Comparative Example A6A6 XX 0.06 0.06 0.40.4 20.3 20.3 1.67 1.67 비교예Comparative Example A7A7 XX 0.01 0.01 0.60.6 19.5 19.5 1.66 1.66 비교예Comparative Example A8A8 XX 0.01 0.01 0.80.8 18.9 18.9 1.65 1.65 비교예Comparative Example A9A9 OO 2.28 2.28 2.62.6 14.3 14.3 1.74 1.74 발명예Honor A10A10 OO 0.03 0.03 4.54.5 14.5 14.5 1.79 1.79 발명예Honor A11A11 OO 0.04 0.04 3.53.5 13.5 13.5 1.75 1.75 발명예Honor A12A12 OO 0.09 0.09 3.23.2 12.9 12.9 1.74 1.74 발명예Honor A13A13 OO 0.10 0.10 2.62.6 12.5 12.5 1.75 1.75 발명예Honor A14A14 XX 0.04 0.04 0.60.6 19.5 19.5 1.65 1.65 비교예Comparative Example A15A15 OO 0.75 0.75 0.80.8 20.8 20.8 1.66 1.66 비교예Comparative Example A16A16 XX 0.03 0.03 0.70.7 19.4 19.4 1.64 1.64 비교예Comparative Example

1) 철손(W10/400)은 400Hz주파수에서 1.0Tesla의 자속밀도가 유기되었을 때의 압연방향과 압연방향 수직방향의 평균 손실(W/kg)이다.1) Iron loss (W 10/400 ) is the average loss (W / kg) in the rolling direction and the vertical direction when the magnetic flux density of 1.0 Tesla is induced at 400 Hz.

2) 자속밀도(B50)은 5000A/m의 자기장을 부가하였을 때 유도되는 자속밀도의 크기(Tesla)이다.2) Magnetic flux density (B 50 ) is the magnitude of magnetic flux density (Tesla) induced when a magnetic field of 5000 A / m is added.

상기 표 2에 나타난 바와 같이, 본 발명의 [Ti], [C], [N], [Mn], [S], [P]가 [Mn]<[P]이고, 0.02≤{[Ti]*([C]+[N])}/{[Mn]*[S]}≤10의 조성식을 만족하는 강종 A1~A3, A9~A13은 0.05~0.5㎛크기의 (Mn,Cu,Ti)S 개수(개/1042)도 1~10개로 나타났고, (Mn,Cu,Ti)S의 평균크기도 0.1㎛이상이며 그 결과 고주파에서의 철손이 낮고 자속밀도도 높게 나타났다.As shown in Table 2, [Ti], [C], [N], [Mn], [S], and [P] of the present invention are [Mn] <[P], and 0.02≤ {[Ti] * ([C] + [N])} / {[Mn] * [S]} Steel grades A1 to A3 and A9 to A13 satisfying the compositional formula of (10) are (Mn, Cu, Ti) having a size of 0.05 to 0.5 µm. The number of S (dog / 10 4 μm 2 ) was also 1-10, and the average size of (Mn, Cu, Ti) S was 0.1 μm or more. As a result, the iron loss at high frequency was high and the magnetic flux density was high.

상세히 살펴보면, 비교예인 A4는 [Mn]<[P]이나, Al, S가 범위를 만족하지 않고 있으며, A5는 Al 함량이 과다하며, A6는 P와 Al이 낮다. A7, A8은 [Mn]<[P]이고, A7은 S가 낮다. A14~16은 [Mn]<[P이고, 기타 원소도 발명의 범위를 만족하지 못하여 자성이 미흡한 것으로 조사되었다.
In detail, A4, which is a comparative example, has [Mn] <[P], but Al and S do not satisfy the range, A5 has excessive Al content, and A6 has low P and Al. A7 and A8 are [Mn] <[P], and A7 has a low S. A14-16 were [Mn] <[P, and other elements also did not satisfy the scope of the invention, and it was investigated that magnetism was insufficient.

[실시예 2] [Example 2]

중량%로, C: 0.0021%, Si: 3.06%, Mn:0.05%, P: 0.18%, S: 0.0015%, Al: 0.45%, N: 0.0014%, Ti: 0.0017%, 나머지Fe 및 기타 불가피한 불순물로 조성되는 슬라브를 1170℃로 재가열한 다음 2.0mm 두께의 열연강판으로 제조하고, 640℃로 권취하고 공기중에서 냉각하였다. [Mn]<[P] 이고, {[Ti]*([C]+[N])}/{[Mn]*[S]}의 값은 0.8이었다. 열연판은 표 3과 같이 3분간 연속소둔하고 산세하고, 0.2mm의 두께로 냉간압연하고, 냉연판 소둔은 질소 70%, 수소 30%에서 1분간 소둔하였다   By weight, C: 0.0021%, Si: 3.06%, Mn: 0.05%, P: 0.18%, S: 0.0015%, Al: 0.45%, N: 0.0014%, Ti: 0.0017%, remaining Fe and other unavoidable impurities The slab, which was composed of a slab, was reheated to 1170 ° C. and then made into a hot rolled steel sheet having a thickness of 2.0 mm, wound up to 640 ° C., and cooled in air. [Mn] <[P], and the value of {[Ti] * ([C] + [N])} / {[Mn] * [S]} was 0.8. The hot rolled sheet was continuously annealed and pickled for 3 minutes as shown in Table 3, cold rolled to a thickness of 0.2 mm, and the cold rolled sheet was annealed at 70% nitrogen and 30% hydrogen for 1 minute.

각각의 시편에 대하여 (Mn,Cu,Ti)S 황화물의 수 및 크기, 고주파 철손 및 자속밀도를 하기 표 4에 나타내었다.
The number and size of (Mn, Cu, Ti) S sulfides, high frequency iron loss and magnetic flux density for each specimen are shown in Table 4 below.

구분division 열연판
온도(℃)
Hot-rolled plate
Temperature (℃)
냉연판 소둔온도(℃)Annealing temperature of cold rolled sheet (℃) 0.05~0.5μm크기의(Mn,Cu,Ti)S의 개수(개/104μm2)Number of (Mn, Cu, Ti) S of 0.05 ~ 0.5μm size (piece / 10 4 μm 2 ) 철손
(W10/400)
(W/kg)
Iron loss
(W10 / 400)
(W / kg)
자속밀도
B50
Magnetic flux density
B50
Ns ≥0.1㎛
/NTot
 
N s ≥0.1 μm
/ N Tot
비고Remarks
B1B1 10501050 950950 2.102.10 9.99.9 1.701.70 0.650.65 발명예Honor B2B2 10501050 10001000 2.352.35 9.59.5 1.691.69 0.550.55 발명예Honor B3B3 10501050 10501050 2.702.70 10.110.1 1.711.71 0.580.58 발명예Honor B4B4 800800 10001000 0.750.75 12.512.5 1.621.62 0.450.45 비교예Comparative Example B5B5 10501050 800800 0.910.91 14.914.9 1.631.63 0.350.35 비교예Comparative Example B6B6 12001200 10501050 0.840.84 13.913.9 1.641.64 0.350.35 비교예Comparative Example

상기 발명은 본 발명의 [Ti], [C], [N], [Mn], [S], [P]를 만족하고, {Mn}<[P]이고, 상기 조성 관계식(1)을 만족하며, 열연판 소둔온도와 냉연판 소둔온도를 만족하는 강종 B1~B3은 0.05~0.5㎛크기의 (Mn,Cu,Ti)S 개수(개/1042)도 1~10개로 나타나 고주파 철손이 낮고 자속밀도도 높게 나타났다.The present invention satisfies [Ti], [C], [N], [Mn], [S], and [P] of the present invention, {Mn} <[P], and satisfies the compositional expression (1). Steel grades B1 to B3 which satisfy the hot rolled sheet annealing temperature and cold rolled sheet annealing temperature are also shown as 1 ~ 10 (Mn, Cu, Ti) S number (10/10 42 ) of 0.05 ~ 0.5㎛ size. Low and high magnetic flux density.

반면, B4~B6은 열연판 소둔 온도와 최종 소둔 온도가 본 발명의 범위를 벗어나 0.05~0.5㎛크기의 (Mn,Cu,Ti)S 개수(개/1042)도 1개 이하로 나타났고, 그 평균크기도 작아서 고주파 철손과 자속밀도가 열위하게 나타난 것을 알 수 있었다.On the other hand, B4 ~ B6, the hot-rolled sheet annealing temperature and the final annealing temperature is out of the scope of the present invention, the number of (Mn, Cu, Ti) S of 0.05 ~ 0.5㎛ size (10/10 42 ) is also shown as one or less The average size was also small, indicating that high frequency iron loss and magnetic flux density were inferior.

이상으로 본 발명에 관한 바람직한 실시예를 설명하였으나, 본 발명은 상기 실시예에 한정되지 아니하며, 본 발명의 실시예로부터 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의한 용이하게 변경되어 균등하다고 인정되는 범위의 모든 변경을 포함한다. While the present invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, And all changes to the scope that are deemed to be valid.

Claims (12)

중량 퍼센트(%)로, C: 0.005%이하(0%를 포함하지 않는다), Si: 1.0~4.0%, Al: 0.3~0.8%, Mn: 0.01~0.2%, P: 0.02~0.3%, N: 0.005%이하(0%를 포함하지 않는다), S: 0.001~0.005%, Ti: 0.005%이하(0%를 포함하지 않는다), 잔부는 Fe 및 기타 불가피하게 첨가되는 불순물을 포함하고 상기 성분계는 [Mn]<[P]이고, 하기의 조성 관계식을 만족하며,
0.02≤{[Ti]*([C]+[N])}/{[Mn]*[S]}≤10,
(단, [Ti], [C], [N], [Mn], [S], [P]는 각각 Ti, C, N, Mn, S, P의 중량 퍼센트(%)이다.)
전기강판의 미세조직 내의 (Mn,Cu,Ti)S의 황화물의 개수는 1개/1042~10개/1042 인 것을 특징으로 하는 무방향성 전기강판.
In weight percent (%), C: 0.005% or less (0%), Si: 1.0-4.0%, Al: 0.3-0.8%, Mn: 0.01-0.2%, P: 0.02-0.3%, N : 0.005% or less (does not contain 0%), S: 0.001% to 0.005%, Ti: 0.005% or less (does not contain 0%), and the balance includes Fe and other unavoidable impurities. [Mn] <[P], satisfying the following compositional expression,
0.02≤ {[Ti] * ([C] + [N])} / {[Mn] * [S]} ≤10,
(However, [Ti], [C], [N], [Mn], [S], and [P] are the weight percentages of Ti, C, N, Mn, S, and P, respectively.)
Non-oriented electrical steel sheet, characterized in that the number of (Mn, Cu, Ti) S sulfide in the microstructure of the electrical steel sheet is 1/10 42 ~ 10/10 42 .
제1항에 있어서,
Sn 및 Sb 중 적어도 하나를 0.01~0.2중량% 포함하는 무방향성 전기강판.
The method of claim 1,
Non-oriented electrical steel sheet containing 0.01 to 0.2% by weight of at least one of Sn and Sb.
제1항 또는 제2항에 있어서,
상기 불가피하게 첨가되는 불순물은 Cu, Ni, Cr, Zr, Mo, V 중 하나 이상을 포함하되, 상기 Cu, Ni, Cr 은 각각 0.05 중량 퍼센트(%) 이하로 제한되며, 상기 Zr, Mo, V 은 각각 0.01 중량 퍼센트(%) 이하로 제한되는 무방향성 전기강판.
3. The method according to claim 1 or 2,
The inevitably added impurities include at least one of Cu, Ni, Cr, Zr, Mo, and V, wherein Cu, Ni, and Cr are each limited to 0.05 weight percent (%) or less, and the Zr, Mo, and V The non-oriented electrical steel sheets are each limited to 0.01% by weight or less.
삭제delete 삭제delete 제1항 또는 제2항에 있어서,
상기 황화물의 평균 크기는 0.1㎛이상인 것을 특징으로 하는 무방향성 전기강판.
3. The method according to claim 1 or 2,
The non-oriented electrical steel sheet, characterized in that the average size of the sulfide is 0.1㎛ or more.
중량 퍼센트(%)로, C: 0.005%이하(0%를 포함하지 않는다), Si: 1.0~4.0%, Al: 0.3~0.8%, Mn: 0.01~0.2%, P: 0.02~0.3%, N: 0.005%이하(0%를 포함하지 않는다), S: 0.001~0.005%, Ti: 0.005%이하(0%를 포함하지 않는다), 잔부는 Fe 및 기타 불가피하게 첨가되는 불순물을 포함하고, [Mn]<[P]이고, 하기의 조성 관계식을 만족하는 슬라브를 제공하는 단계;
0.02≤{[Ti]*([C]+[N])}/{[Mn]*[S]}≤10,
(단, [Ti], [C], [N], [Mn], [S], [P]는 각각 Ti, C, N, Mn, S, P의 중량 퍼센트(%)이다.)
상기 슬라브를 1200℃이하로 재가열한 후 압연하여 열연강판을 제조하는 단계;
상기 열연강판을 산세한 후 0.10 ~ 0.70mm의 두께의 냉연강판을 제조하는 단계;
상기 냉연강판을 850℃~1100℃에서 최종 소둔하는 단계를 포함하며,
상기 최종 소둔이 완료된 전기강판의 미세조직 내의 (Mn,Cu,Ti)S의 황화물의 개수는 1개/1042~10개/1042 인 것을 특징으로 하는 무방향성 전기강판 제조방법.
In weight percent (%), C: 0.005% or less (0%), Si: 1.0-4.0%, Al: 0.3-0.8%, Mn: 0.01-0.2%, P: 0.02-0.3%, N : 0.005% or less (does not contain 0%), S: 0.001% to 0.005%, Ti: 0.005% or less (does not contain 0%), the balance includes Fe and other unavoidable impurities, [Mn Providing a slab satisfying the following compositional relationship;
0.02≤ {[Ti] * ([C] + [N])} / {[Mn] * [S]} ≤10,
(However, [Ti], [C], [N], [Mn], [S], and [P] are the weight percentages of Ti, C, N, Mn, S, and P, respectively.)
Reheating the slab to 1200 ° C. or less and rolling the slab to produce a hot rolled steel sheet;
Manufacturing a cold rolled steel sheet having a thickness of 0.10 to 0.70 mm after pickling the hot rolled steel sheet;
Final annealing the cold rolled steel sheet at 850 ℃ ~ 1100 ℃,
Method for producing a non-oriented electrical steel sheet, characterized in that the number of sulfides of (Mn, Cu, Ti) S in the microstructure of the finished steel sheet is finished 1/10 42 ~ 10/10 42 .
제7항에 있어서,
Sn 및 Sb 중 적어도 하나를 0.01~0.2중량% 포함하는 무방향성 전기강판 제조방법.
The method of claim 7, wherein
Non-oriented electrical steel sheet manufacturing method containing 0.01 to 0.2% by weight of at least one of Sn and Sb.
제7항 또는 제8항에 있어서,
상기 불가피하게 첨가되는 불순물은 Cu, Ni, Cr, Zr, Mo, V 중 하나 이상을 포함하되, 상기 Cu, Ni, Cr 은 각각 0.05 중량 퍼센트(%) 이하로 제한되며, 상기 Zr, Mo, V 은 각각 0.01 중량 퍼센트(%) 이하로 첨가되는 무방향성 전기강판 제조방법.
9. The method according to claim 7 or 8,
The inevitably added impurities include at least one of Cu, Ni, Cr, Zr, Mo, and V, wherein Cu, Ni, and Cr are each limited to 0.05 weight percent (%) or less, and the Zr, Mo, and V The non-oriented electrical steel sheet manufacturing method is added to each 0.01% by weight or less.
삭제delete 삭제delete 제9항에 있어서,
상기 황화물의 평균 크기는 0.1㎛이상인 것을 특징으로 하는 무방향성 전기강판 제조방법.
10. The method of claim 9,
Method for producing a non-oriented electrical steel sheet, characterized in that the average size of the sulfide is 0.1㎛ or more.
KR1020110145174A 2011-12-28 2011-12-28 Non-oriented electrical steel shteets and method for manufactureing the same KR101353462B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110145174A KR101353462B1 (en) 2011-12-28 2011-12-28 Non-oriented electrical steel shteets and method for manufactureing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110145174A KR101353462B1 (en) 2011-12-28 2011-12-28 Non-oriented electrical steel shteets and method for manufactureing the same

Publications (2)

Publication Number Publication Date
KR20130076546A KR20130076546A (en) 2013-07-08
KR101353462B1 true KR101353462B1 (en) 2014-01-24

Family

ID=48990121

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110145174A KR101353462B1 (en) 2011-12-28 2011-12-28 Non-oriented electrical steel shteets and method for manufactureing the same

Country Status (1)

Country Link
KR (1) KR101353462B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104120234A (en) * 2014-07-02 2014-10-29 东北大学 Preparation method of high-magnetic-induction non-oriented high-silicon steel thin plate
WO2023121220A1 (en) * 2021-12-22 2023-06-29 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185365A (en) * 2013-03-22 2014-10-02 Jfe Steel Corp Non-oriented electromagnetic steel sheet excellent in high frequency iron loss property
KR101728028B1 (en) 2015-12-23 2017-04-18 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
TWI796955B (en) * 2021-02-17 2023-03-21 日商日本製鐵股份有限公司 Non-oriented electrical steel sheet and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113185A (en) * 2003-10-06 2005-04-28 Nippon Steel Corp High strength silicon steel sheet excellent in magnetic property, and its production method
KR20080027913A (en) * 2005-07-07 2008-03-28 수미도모 메탈 인더스트리즈, 리미티드 Non-oriented electromagnetic steel sheet and process for producing the same
KR20090121975A (en) * 2008-05-23 2009-11-26 주식회사 포스코 Non oriented electrical steel
JP4681689B2 (en) 2009-06-03 2011-05-11 新日本製鐵株式会社 Non-oriented electrical steel sheet and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113185A (en) * 2003-10-06 2005-04-28 Nippon Steel Corp High strength silicon steel sheet excellent in magnetic property, and its production method
KR20080027913A (en) * 2005-07-07 2008-03-28 수미도모 메탈 인더스트리즈, 리미티드 Non-oriented electromagnetic steel sheet and process for producing the same
KR20090121975A (en) * 2008-05-23 2009-11-26 주식회사 포스코 Non oriented electrical steel
JP4681689B2 (en) 2009-06-03 2011-05-11 新日本製鐵株式会社 Non-oriented electrical steel sheet and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104120234A (en) * 2014-07-02 2014-10-29 东北大学 Preparation method of high-magnetic-induction non-oriented high-silicon steel thin plate
WO2023121220A1 (en) * 2021-12-22 2023-06-29 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
KR20130076546A (en) 2013-07-08

Similar Documents

Publication Publication Date Title
JP7008021B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP6043808B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR101507942B1 (en) Non-oriented electrical steel steet and method for the same
KR101353462B1 (en) Non-oriented electrical steel shteets and method for manufactureing the same
KR20190077025A (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR20170073386A (en) Annealing separating agent for oriented electrical steel, oriented electrical steel, and method for manufacturing oriented electrical steel
KR101877198B1 (en) Non-oriented electrical steels and method for manufacturing the same
KR101353463B1 (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR20150016434A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101410476B1 (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR102353673B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR102325008B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101703071B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101701195B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101707452B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20140058935A (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR101353460B1 (en) Non-oriented electrical steel sheets and method for manufacturing the same
EP4265802A1 (en) Non-oriented electrical steel sheet, and method for manufacturing same
KR101353459B1 (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR101632890B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20140133101A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101630425B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20150016435A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR102348508B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101630427B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170112

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180112

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181122

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20200113

Year of fee payment: 7