JP5601078B2 - Non-oriented electrical steel sheet and manufacturing method thereof - Google Patents

Non-oriented electrical steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP5601078B2
JP5601078B2 JP2010178255A JP2010178255A JP5601078B2 JP 5601078 B2 JP5601078 B2 JP 5601078B2 JP 2010178255 A JP2010178255 A JP 2010178255A JP 2010178255 A JP2010178255 A JP 2010178255A JP 5601078 B2 JP5601078 B2 JP 5601078B2
Authority
JP
Japan
Prior art keywords
annealing
cold rolling
rolling
magnetic flux
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010178255A
Other languages
Japanese (ja)
Other versions
JP2012036454A (en
Inventor
一郎 田中
裕俊 多田
薫 藤田
裕義 屋鋪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010178255A priority Critical patent/JP5601078B2/en
Publication of JP2012036454A publication Critical patent/JP2012036454A/en
Application granted granted Critical
Publication of JP5601078B2 publication Critical patent/JP5601078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、無方向性電磁鋼板およびその製造方法に関する。より詳しくは、本発明は、ハイブリッド自動車、電気自動車、燃料電池自動車に搭載される駆動モータや、二輪車および家庭用コージェネレーションシステムに搭載される小型発電機など、高いエネルギー効率と小型・高出力化を同時に要求される電気機器の鉄心の素材に好適な無方向性電磁鋼板およびその製造方法に関する。   The present invention relates to a non-oriented electrical steel sheet and a method for producing the same. More specifically, the present invention provides high energy efficiency, small size, and high output, such as a drive motor mounted on a hybrid vehicle, an electric vehicle, and a fuel cell vehicle, and a small generator mounted on a motorcycle and a home cogeneration system. The present invention relates to a non-oriented electrical steel sheet suitable for a material for an iron core of an electrical device and a method for manufacturing the same.

近年の地球環境問題の高まりから、電気機器においては小型、高出力、高エネルギー効率が要求され、鉄心材料である無方向性電磁鋼板には低鉄損と高磁束密度の高位両立が強く求められている。   Due to the recent increase in global environmental problems, electrical equipment is required to be small, high power, and high energy efficiency, and non-oriented electrical steel sheets, which are core materials, are strongly required to have both low iron loss and high magnetic flux density. ing.

従来、鉄損低減手段としてはSiやAlの含有量の増加、高純度化、板厚の薄肉化が採用されてきた。鉄損低減手段の中でも、高周波域での鉄損を最も効果的に低減する手段は板厚の薄肉化であり、ハイブリッド自動車や電気自動車の駆動モータに代表される低鉄損への要求の強い用途には、板厚が0.30mm以下の薄肉の無方向性電磁鋼板が使用されている。   Conventionally, as a means for reducing iron loss, increasing the content of Si or Al, increasing the purity, and reducing the thickness of the plate have been employed. Among the iron loss reduction means, the most effective way to reduce the iron loss in the high frequency range is to reduce the thickness of the plate, and there is a strong demand for low iron loss typified by drive motors for hybrid vehicles and electric vehicles. For applications, thin non-oriented electrical steel sheets with a thickness of 0.30 mm or less are used.

また、高磁束密度化手段としては再結晶集合組織制御が採用されてきた。再結晶集合組織制御の基本は、板面内に磁化容易軸を含まない{111}面を減じ、板面内に磁化容易軸を含む{110}面や{100}面を増加させることであり、板面内に二方向の磁化容易軸を有する{100}<001>方位や磁化容易軸が板面内で一方向に揃った{110}<001>方位の集積度増加については、いわゆる二方向性電磁鋼板や一方向性電磁鋼板の分野のみならず、無方向性電磁鋼板の分野においても盛んに検討がなされている。   Further, recrystallization texture control has been adopted as means for increasing the magnetic flux density. The basis of recrystallization texture control is to reduce the {111} plane that does not include the easy axis in the plate surface and increase the {110} plane and {100} plane that include the easy axis in the plate surface. Regarding the increase in the degree of integration of the {100} <001> orientation having two easy magnetization axes in the plate surface and the {110} <001> orientation in which the easy magnetization axes are aligned in one direction within the plate surface, two methods are used. Active investigations have been made not only in the field of grain-oriented electrical steel sheets and unidirectional electrical steel sheets, but also in the field of non-oriented electrical steel sheets.

例えば、無方向性電磁鋼板において{100}<001>方位や{110}<001>方位の集積度を増加させる技術としては、次のような手法が提案されている。
特許文献1および特許文献2には特殊な熱間圧延条件により集積させた{510}<001>方位を活用して{100}<001>方位を発達させる方法が、特許文献3には熱間圧延にて{100}<001>方位に集積させる方法が、それぞれ提案されている。特許文献4にはAl:0.02質量%以下で{100}<001>方位に集積した鋼板が提案されている。また、特許文献5には、Siを低減しAlを多量に含有する鋼に対して熱延板焼鈍を施して冷間圧延前の結晶粒径を300μm以上とし、圧下率85%以上95%以下で冷間圧延を実施する一回冷延プロセスにより{100}<001>方位を発達させる技術が提案されている。
また、特許文献6には、仕上焼鈍後にスキンパス圧延し、続いて歪取焼鈍を施すことにより{110}<001>方位を発達させる技術が提案されている。
For example, as a technique for increasing the degree of integration of {100} <001> orientation and {110} <001> orientation in a non-oriented electrical steel sheet, the following method has been proposed.
Patent Document 1 and Patent Document 2 describe a method of developing {100} <001> orientation by utilizing {510} <001> orientation accumulated under special hot rolling conditions, and Patent Document 3 describes hot processing. A method of accumulating in the {100} <001> orientation by rolling has been proposed. Patent Document 4 proposes a steel plate in which Al: 0.02% by mass or less and accumulated in the {100} <001> orientation. Patent Document 5 discloses that a steel containing a large amount of Al with reduced Si is subjected to hot-rolled sheet annealing so that the crystal grain size before cold rolling is 300 μm or more, and the rolling reduction is 85% or more and 95% or less. A technique for developing the {100} <001> orientation by a single cold rolling process in which cold rolling is performed has been proposed.
Patent Document 6 proposes a technique for developing the {110} <001> orientation by performing skin pass rolling after finish annealing and subsequently performing strain relief annealing.

特開2000−160248号公報JP 2000-160248 A 特開2000−160249号公報JP 2000-160249 A 特開平10−226854号公報Japanese Patent Laid-Open No. 10-226854 特開2001−181803号公報JP 2001-181803 A 特開2004−332042号公報JP 2004-332042 A 特開2006−265720号公報JP 2006-265720 A

上述したように、無方向性電磁鋼板の再結晶集合組織制御については従来から様々な検討がなされてきた。しかしながら、上述した薄肉の無方向性電磁鋼板は、再結晶集合組織変化に起因して本質的に磁束密度が低下し易いため、従来技術による薄肉の無方向性電磁鋼板では、再結晶集合組織制御が不十分となり、低鉄損と高磁束密度とを高い次元で両立させるという要請に十分に応えてはいなかった。また、上述の先行技術文献に記載された無方向性電磁鋼板は実用的とは言い難いものであった。   As described above, various studies have been made on the recrystallization texture control of non-oriented electrical steel sheets. However, since the thin non-oriented electrical steel sheet described above is inherently susceptible to a decrease in magnetic flux density due to the recrystallization texture change, the conventional thin-walled non-oriented electrical steel sheet has a recrystallized texture control. Has been insufficient, and has not fully met the demand to achieve both a low iron loss and a high magnetic flux density at a high level. Moreover, the non-oriented electrical steel sheet described in the above-mentioned prior art document is hardly practical.

すなわち、特許文献1〜特許文献3に記載された無方向性電磁鋼板は、その実施例に記載されるとおり、熱間圧延での仕上げ厚を0.8mmとするものであり、設備負荷が多大であるばかりか生産性が著しく低下する。このため、実操業に適用するのは容易ではない。   That is, the non-oriented electrical steel sheet described in Patent Documents 1 to 3 has a hot-rolling finish thickness of 0.8 mm as described in the examples, and has a large equipment load. In addition, productivity is significantly reduced. For this reason, it is not easy to apply to actual operation.

特許文献4に記載された無方向性電磁鋼板は、一方向性電磁鋼板と同様に二次再結晶焼鈍によって得られる鋼板であり、通常の無方向性電磁鋼板と比較して大幅な製造コスト増加は否めない。   The non-oriented electrical steel sheet described in Patent Document 4 is a steel sheet obtained by secondary recrystallization annealing in the same manner as the unidirectional electrical steel sheet, and a significant increase in production cost compared to a normal non-oriented electrical steel sheet. I cannot deny.

特許文献5に記載された無方向性電磁鋼板は、Siを低減しAlを多量に含有するため、磁歪増加や電気抵抗不足に起因した高周波域での鉄損増加が懸念される。さらに、冷間圧延前の結晶粒径を300μm以上の粗大粒とする技術であるため、鉄損低減を目的としてSi含有量を増加させた鋼への適用は冷間圧延時の割れ発生の観点から極めて困難であり、低鉄損と高磁束密度を高位両立させるためには改善の余地がある。   Since the non-oriented electrical steel sheet described in Patent Document 5 reduces Si and contains a large amount of Al, there is a concern about an increase in iron loss in a high frequency region due to an increase in magnetostriction or insufficient electrical resistance. Furthermore, since it is a technology to make the grain size before cold rolling a coarse grain of 300 μm or more, the application to steel with increased Si content for the purpose of reducing iron loss is a viewpoint of the occurrence of cracks during cold rolling Therefore, there is room for improvement in order to achieve both low iron loss and high magnetic flux density.

特許文献6に記載された無方向性電磁鋼板は、焼鈍工程追加に伴う製造コストの上昇および寸法精度の劣化を理由にハイブリッド自動車や電気自動車の駆動モータの鉄心について歪取焼鈍が実施されていないという現状に鑑みると、モータの実用特性改善に寄与するためには検討の余地がある。   The non-oriented electrical steel sheet described in Patent Document 6 is not subjected to strain relief annealing on the core of a drive motor of a hybrid vehicle or an electric vehicle because of an increase in manufacturing cost associated with the addition of an annealing step and deterioration of dimensional accuracy. In view of the current situation, there is room for study in order to contribute to improving the practical characteristics of the motor.

また、{100}<001>方位のみに強く配向した二方向性電磁鋼板は未だ実用化されておらず、{110}<001>方位のみに強く配向した一方向性電磁鋼板は無方向性電磁鋼板との素材コスト差の観点から駆動モータや小型発電機の鉄心に使用された例はない。   Further, a bi-directional electrical steel sheet strongly oriented only in the {100} <001> orientation has not yet been put into practical use, and a unidirectional electrical steel sheet strongly oriented only in the {110} <001> orientation is not a non-directional electromagnetic steel. There is no example used for the iron core of a drive motor or a small generator from the viewpoint of material cost difference with a steel plate.

本発明は、上記実情に鑑みてなされたものであり、その課題は本質的に磁束密度が低下し易い薄肉の無方向性電磁鋼板において、過度の生産性低下や設備負荷を伴うことなく{100}<001>方位を発達させ、高磁束密度と低鉄損を高位両立した無方向性電磁鋼板およびその製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and the problem is that the thin-walled non-oriented electrical steel sheet, in which the magnetic flux density is inherently lowered, is not accompanied by excessive productivity reduction or equipment load {100 } An object is to provide a non-oriented electrical steel sheet that develops a <001> orientation and has both high magnetic flux density and low iron loss, and a method for manufacturing the same.

本発明者らは、薄肉の無方向性電磁鋼板の磁束密度を高める方法について鋭意研究を行った。その結果、適量のPとSとを含有させるとともに、箱焼鈍型の熱延板焼鈍と連続焼鈍型の中間焼鈍を挟む二回の冷間圧延とを組合せ、かつ、二回目の冷間圧延前の平均結晶粒径と二回目の冷間圧延の圧下率とを適正範囲に制御することにより、薄肉の無方向性電磁鋼板においても{100}<001>方位が適度に発達し、低鉄損と高磁束密度が両立されることを見出した。このような新知見に基づく本発明の要旨は以下の通りである。   The inventors of the present invention have conducted intensive research on a method for increasing the magnetic flux density of a thin non-oriented electrical steel sheet. As a result, while containing an appropriate amount of P and S, the combination of the box annealing type hot rolled sheet annealing and the two cold rolling sandwiching the continuous annealing type intermediate annealing, and before the second cold rolling In the thin non-oriented electrical steel sheet, the {100} <001> orientation is moderately developed and the low iron loss is controlled by controlling the average crystal grain size and the rolling reduction ratio of the second cold rolling within an appropriate range. And high magnetic flux density. The gist of the present invention based on such new findings is as follows.

すなわち、本発明は、質量%で、Si:1.5%以上3.5%以下、sol.Al:0.1%以上2.5%以下およびMn:0.08%以上2.5%以下を下記式(1)を満足する範囲で含有し、さらに、P:0.06%以上0.20%以下、S:0.0020%超0.006%以下、C:0.005%以下およびN:0.005%以下を含有し、残部がFeおよび不純物からなる化学組成を有し、平均結晶粒径が60μm以上150μm以下である鋼組織を有し、板厚中央部において({100}<001>方位の集積度)>({110}<001>方位の集積度)の関係を満足する集合組織を有し、板厚が0.30mm以下であることを特徴とする無方向性電磁鋼板を提供する。
Si+2×sol.Al−Mn≧2.0 (1)
(ここで、Si、sol.AlおよびMnは、各元素の含有量(単位:質量%)を示す。)
That is, the present invention relates to mass%, Si: 1.5% to 3.5%, sol. Al: 0.1% or more and 2.5% or less and Mn: 0.08% or more and 2.5% or less are contained within the range satisfying the following formula (1), and P: 0.06% or more and 0.00. 20% or less, S: more than 0.0020% and 0.006% or less, C: 0.005% or less and N: 0.005% or less, with the balance being a chemical composition consisting of Fe and impurities, average It has a steel structure with a grain size of 60 μm or more and 150 μm or less, and satisfies the relationship of ({100} <001> orientation accumulation degree)> ({110} <001> orientation accumulation degree) at the center of the plate thickness. There is provided a non-oriented electrical steel sheet having a texture that has a thickness of 0.30 mm or less.
Si + 2 × sol. Al-Mn ≧ 2.0 (1)
(Here, Si, sol.Al, and Mn indicate the content (unit: mass%) of each element.)

また本発明は、下記工程(A)〜(E)を有することを特徴とする無方向性電磁鋼板の製造方法を提供する。
(A)上述の化学組成を有する熱延鋼板に、750℃以上950℃以下の温度域に30分間以上48時間以下保持する熱延板焼鈍を施す熱延板焼鈍工程
(B)上記熱延板焼鈍工程により得られた熱延鋼板に、冷間圧延を施す第1冷間圧延工程
(C)上記第1冷間圧延工程により得られた冷延鋼板に、950℃以上1100℃以下の温度域に10秒間以上5分間以下保持する中間焼鈍を施して平均結晶粒径を80μm以上200μm以下とする中間焼鈍工程
(D)上記中間焼鈍工程により得られた中間焼鈍鋼板に、55%以上75%以下の圧下率の冷間圧延を施して0.30mm以下の板厚とする第2冷間圧延工程
(E)上記第2冷間圧延工程により得られた冷延鋼板に、仕上焼鈍を施して平均結晶粒径を60μm以上150μm以下とする仕上焼鈍工程
Moreover, this invention provides the manufacturing method of the non-oriented electrical steel sheet characterized by having the following process (A)-(E).
(A) A hot-rolled sheet annealing step for subjecting a hot-rolled steel sheet having the above-described chemical composition to a hot-rolled sheet annealing that is held in a temperature range of 750 ° C. to 950 ° C. for 30 minutes to 48 hours (B) The first cold rolling step (C) for cold rolling the hot rolled steel sheet obtained by the annealing process. The temperature range of 950 ° C. to 1100 ° C. for the cold rolled steel sheet obtained by the first cold rolling step. Intermediate annealing step (D) in which intermediate annealing is performed for 10 seconds to 5 minutes to obtain an average grain size of 80 μm to 200 μm, and the intermediate annealing steel sheet obtained by the intermediate annealing step is 55% to 75% The second cold rolling step (E) in which a cold rolling with a reduction ratio of 0.30 mm or less is performed to obtain a sheet thickness of 0.30 mm or less. The cold rolled steel plate obtained by the second cold rolling step is subjected to finish annealing and averaged. Finishing with a grain size of 60 μm to 150 μm Blunt process

本発明においては、圧延方向と圧延直角方向の双方で低鉄損と高磁束密度を高位両立した薄肉の無方向性電磁鋼板を得ることができるという効果を奏する。また、本発明により得られる無方向性電磁鋼板は、電気機器の小型、高出力、高エネルギー効率化に極めて効果的であり、その工業的価値は極めて高い。   In the present invention, it is possible to obtain a thin non-oriented electrical steel sheet that achieves both high iron loss and high magnetic flux density in both the rolling direction and the direction perpendicular to the rolling direction. Moreover, the non-oriented electrical steel sheet obtained by the present invention is extremely effective in reducing the size, high output, and energy efficiency of electrical equipment, and its industrial value is extremely high.

連続焼鈍型の熱延板焼鈍と連続焼鈍型の中間焼鈍を挟む二回の冷間圧延または一回の冷間圧延とを組合せた場合における、圧延方向の磁束密度に及ぼす最終の冷間圧延前の平均結晶粒径と最終の冷間圧延の圧下率との関係を示すグラフである。Before the final cold rolling effect on the magnetic flux density in the rolling direction in the combination of two cold rollings or one cold rolling sandwiching the continuous annealing type hot-rolled sheet annealing and the continuous annealing type intermediate annealing. It is a graph which shows the relationship between the average crystal grain diameter of and the rolling reduction of the last cold rolling. 連続焼鈍型の熱延板焼鈍と箱焼鈍型の中間焼鈍を挟む二回の冷間圧延または一回の冷間圧延とを組合せた場合における、圧延方向の磁束密度に及ぼす最終の冷間圧延前の平均結晶粒径と最終の冷間圧延の圧下率との関係を示すグラフである。Before the final cold rolling effect on the magnetic flux density in the rolling direction in the case of a combination of two cold rollings or a single cold rolling with a continuous annealing type hot rolled sheet annealing and a box annealing type intermediate annealing. It is a graph which shows the relationship between the average crystal grain diameter of and the rolling reduction of the last cold rolling. 箱焼鈍型の熱延板焼鈍と連続焼鈍型の中間焼鈍を挟む二回の冷間圧延または一回の冷間圧延とを組合せた場合における、圧延方向の磁束密度に及ぼす最終の冷間圧延前の平均結晶粒径と最終の冷間圧延の圧下率との関係を示すグラフである。Before the final cold rolling effect on the magnetic flux density in the rolling direction when combined with two cold rollings or one cold rolling sandwiching the box annealing type hot-rolled sheet annealing and the continuous annealing type intermediate annealing It is a graph which shows the relationship between the average crystal grain diameter of and the rolling reduction of the last cold rolling. 箱焼鈍型の熱延板焼鈍と箱焼鈍型の中間焼鈍を挟む二回の冷間圧延または一回の冷間圧延とを組合せた場合における、圧延方向の磁束密度に及ぼす最終の冷間圧延前の平均結晶粒径と最終の冷間圧延の圧下率との関係を示すグラフである。Before the final cold rolling effect on the magnetic flux density in the rolling direction when combined with two cold rollings or one cold rolling sandwiching the box annealing type hot rolled sheet annealing and the box annealing type intermediate annealing It is a graph which shows the relationship between the average crystal grain diameter of and the rolling reduction of the last cold rolling. 連続焼鈍型の熱延板焼鈍と連続焼鈍型の中間焼鈍を挟む二回の冷間圧延または一回の冷間圧延とを組合せた場合における、圧延直角方向の磁束密度に及ぼす最終の冷間圧延前の平均結晶粒径と最終の冷間圧延の圧下率との関係を示すグラフである。The final cold rolling effect on the magnetic flux density in the direction perpendicular to the rolling direction when combined with two cold rollings or one cold rolling sandwiching the continuous annealing type hot-rolled sheet annealing and the continuous annealing type intermediate annealing. It is a graph which shows the relationship between the previous average grain size and the rolling reduction of the last cold rolling. 連続焼鈍型の熱延板焼鈍と箱焼鈍型の中間焼鈍を挟む二回の冷間圧延または一回の冷間圧延とを組合せた場合における、圧延直角方向の磁束密度に及ぼす最終の冷間圧延前の平均結晶粒径と最終の冷間圧延の圧下率との関係を示すグラフである。The final cold rolling effect on the magnetic flux density in the direction perpendicular to the rolling direction when combined with two cold rollings or one cold rolling sandwiching the continuous annealing type hot rolled sheet annealing and the box annealing type intermediate annealing. It is a graph which shows the relationship between the previous average grain size and the rolling reduction of the last cold rolling. 箱焼鈍型の熱延板焼鈍と連続焼鈍型の中間焼鈍を挟む二回の冷間圧延または一回の冷間圧延とを組合せた場合における、圧延直角方向の磁束密度に及ぼす最終の冷間圧延前の平均結晶粒径と最終の冷間圧延の圧下率との関係を示すグラフである。Final cold rolling effect on the magnetic flux density in the direction perpendicular to the rolling direction when combined with two cold rollings or one cold rolling sandwiching the box annealing type hot rolled sheet annealing and the continuous annealing type intermediate annealing. It is a graph which shows the relationship between the previous average grain size and the rolling reduction of the last cold rolling. 箱焼鈍型の熱延板焼鈍と箱焼鈍型の中間焼鈍を挟む二回の冷間圧延または一回の冷間圧延とを組合せた場合における、圧延直角方向の磁束密度に及ぼす最終の冷間圧延前の平均結晶粒径と最終の冷間圧延の圧下率との関係を示すグラフである。The final cold rolling effect on the magnetic flux density in the direction perpendicular to the rolling direction when combined with two cold rollings or one cold rolling sandwiching the box annealing type hot rolled sheet annealing and the box annealing type intermediate annealing. It is a graph which shows the relationship between the previous average grain size and the rolling reduction of the last cold rolling. 連続焼鈍型の熱延板焼鈍と連続焼鈍型の中間焼鈍を挟む二回の冷間圧延とを組合せた場合における仕上焼鈍後の再結晶集合組織を示す図である(φ=45°断面。二回目の冷間圧延前の平均結晶粒径:120μm、二回目の冷間圧延の圧下率:61.4%)。It is a figure which shows the recrystallized texture after finishing annealing in the case of combining the continuous annealing type hot-rolled sheet annealing and two cold rollings sandwiching the continuous annealing type intermediate annealing (φ 2 = 45 ° cross section). (Average grain size before the second cold rolling: 120 μm, reduction ratio of the second cold rolling: 61.4%). 連続焼鈍型の熱延板焼鈍と箱焼鈍型の中間焼鈍を挟む二回の冷間圧延とを組合せた場合における仕上焼鈍後の再結晶集合組織を示す図である(φ=45°断面。二回目の冷間圧延前の平均結晶粒径:180μm、二回目の冷間圧延の圧下率:61.4%)。It is a figure which shows the recrystallized texture after finishing annealing in the case of combining the cold rolling of 2 times which sandwiches the continuous annealing type hot rolled sheet annealing and the box annealing type intermediate annealing (φ 2 = 45 ° cross section). Average grain size before the second cold rolling: 180 μm, reduction ratio of the second cold rolling: 61.4%). 箱焼鈍型の熱延板焼鈍と連続焼鈍型の中間焼鈍を挟む二回の冷間圧延とを組合せた場合における仕上焼鈍後の再結晶集合組織を示す図である(φ=45°断面。二回目の冷間圧延前の平均結晶粒径:122μm、二回目の冷間圧延の圧下率:61.4%)。It is a figure which shows the recrystallized texture after finishing annealing in the case of combining the cold rolling of the box annealing type hot rolled sheet annealing and the two cold rollings sandwiching the continuous annealing type intermediate annealing (φ 2 = 45 ° cross section). (Average grain size before the second cold rolling: 122 μm, reduction ratio of the second cold rolling: 61.4%). 箱焼鈍型の熱延板焼鈍と箱焼鈍型の中間焼鈍を挟む二回の冷間圧延とを組合せた場合における仕上焼鈍後の再結晶集合組織を示す図である(φ=45°断面。二回目の冷間圧延前の平均結晶粒径:160μm、二回目の冷間圧延の圧下率:61.4%)。It is a figure which shows the recrystallized texture after finishing annealing in the case of combining the box annealing type hot-rolled sheet annealing and the two cold rolling sandwiching the box annealing type intermediate annealing (φ 2 = 45 ° cross section). (Average grain size before the second cold rolling: 160 μm, reduction ratio of the second cold rolling: 61.4%). 一回の冷間圧延の場合における仕上焼鈍後の再結晶集合組織を示す図である(φ=45°断面。冷間圧延前の平均結晶粒径:177μm、冷間圧延の圧下率:86.5%)。It is a figure which shows the recrystallized texture after the finish annealing in the case of one cold rolling ((phi) 2 = 45 degree cross section. Average crystal grain diameter before cold rolling: 177 micrometers, reduction ratio of cold rolling: 86 .5%). 圧延方向の磁束密度と二回目の冷間圧延前の平均結晶粒径との関係を示すグラフである。It is a graph which shows the relationship between the magnetic flux density of a rolling direction, and the average crystal grain diameter before the second cold rolling. 圧延直角方向の磁束密度と二回目の冷間圧延前の平均結晶粒径との関係を示すグラフである。It is a graph which shows the relationship between the magnetic flux density of a rolling orthogonal direction, and the average crystal grain diameter before the second cold rolling.

本発明者らは、薄肉の無方向性電磁鋼板の磁束密度を高める方法について鋭意研究を行った結果、適量のPとSとを含有させるとともに、箱焼鈍型の熱延板焼鈍と連続焼鈍型の中間焼鈍を挟む二回の冷間圧延とを組合せ、かつ、二回目の冷間圧延前の平均結晶粒径と二回目の冷間圧延の圧下率とを適正範囲に制御することにより、薄肉の無方向性電磁鋼板においても{100}<001>方位が適度に発達し、低鉄損と高磁束密度が両立されることを見出した。以下、実験結果に基づいてその詳細を説明する。   As a result of intensive studies on a method for increasing the magnetic flux density of a thin non-oriented electrical steel sheet, the present inventors have included an appropriate amount of P and S, and at the same time, box annealing type hot rolled sheet annealing and continuous annealing type. In combination with two cold rollings sandwiching the intermediate annealing, and by controlling the average grain size before the second cold rolling and the rolling reduction ratio of the second cold rolling to an appropriate range, In the non-oriented electrical steel sheet, the {100} <001> orientation was moderately developed, and it was found that both low iron loss and high magnetic flux density were achieved. Hereinafter, the details will be described based on the experimental results.

(第1の実験)
C:0.002%、Si:2.0%、Mn:0.2%、sol.Al:0.3%、P:0.1%、S:0.0026%、N:0.0018%の化学組成を有する板厚2.0mmの熱延鋼板に、800℃もしくは950℃で10時間保持する箱焼鈍型の熱延板焼鈍、または、950℃もしくは1050℃で2分間保持する連続焼鈍型の熱延板焼鈍を施し、0.5mm〜1.0mmの中間板厚まで冷間圧延した。その後、800℃もしくは950℃で10時間保持する箱焼鈍型の中間焼鈍、または、950℃もしくは1050℃で30秒間保持する連続焼鈍型の中間焼鈍を施し、二回目の冷間圧延によって0.27mmの板厚に仕上げ(二回目の冷間圧延の圧下率:46.0%〜73.0%)、1050℃で1秒間保持する仕上焼鈍(再結晶焼鈍)を施した。
(First experiment)
C: 0.002%, Si: 2.0%, Mn: 0.2%, sol. A hot rolled steel sheet having a thickness of 2.0 mm having a chemical composition of Al: 0.3%, P: 0.1%, S: 0.0026%, and N: 0.0018% is applied at 800 ° C. or 950 ° C. Cold-rolled to an intermediate plate thickness of 0.5 mm to 1.0 mm by applying box-annealing type hot-rolled sheet annealing for a long time or continuous annealing type hot-rolled sheet annealing for 2 minutes at 950 ° C. or 1050 ° C. did. Then, intermediate annealing of box annealing type held at 800 ° C. or 950 ° C. for 10 hours or continuous annealing type holding at 950 ° C. or 1050 ° C. for 30 seconds is performed, and 0.27 mm is obtained by the second cold rolling. The plate was finished (second cold rolling reduction: 46.0% to 73.0%) and subjected to finish annealing (recrystallization annealing) held at 1050 ° C. for 1 second.

また、比較のため、各種の熱延板焼鈍後に一回の冷間圧延によって0.27mmに仕上げ(圧下率:86.5%)、同様に1050℃で1秒間保持する仕上焼鈍(再結晶焼鈍)を施した。   For comparison, after finishing various hot-rolled sheet annealing, it is finished to 0.27 mm by one cold rolling (rolling rate: 86.5%), and similarly, finish annealing (recrystallization annealing) held at 1050 ° C. for 1 second. ).

得られた鋼板から55mm角の単板試験片を打抜き、磁化力5000A/mにおける圧延方向および圧延直角方向の磁束密度B50を測定するとともに、板厚中央部の再結晶集合組織を調査した。図1〜図4に圧延方向の磁束密度に及ぼす最終の冷間圧延前の平均結晶粒径と最終の冷間圧延の圧下率との関係を、図5〜図8に圧延直角方向の磁束密度に及ぼす最終の冷間圧延前の平均結晶粒径と最終の冷間圧延の圧下率との関係を、図9〜図13に再結晶集合組織(結晶粒方位分布関数(ODF)による解析、φ=45°断面)を、それぞれ示す。
なお、「最終の冷間圧延」および図1〜図8の軸における「最終冷延」とは、中間焼鈍を挟む二回の冷間圧延を施した場合には二回目の冷間圧延を意味し、中間焼鈍を挟まない一回の冷間圧延を施した場合には当該冷間圧延を意味する。
図1〜図8における○内および□内の数値は磁束密度B50(T)を表わす。
A 55 mm square single-piece test piece was punched from the obtained steel sheet, and the magnetic flux density B 50 in the rolling direction and the perpendicular direction of rolling at a magnetizing force of 5000 A / m was measured, and the recrystallized texture at the center of the plate thickness was investigated. FIGS. 1 to 4 show the relationship between the average crystal grain size before the final cold rolling and the rolling reduction ratio of the final cold rolling on the magnetic flux density in the rolling direction, and FIGS. The relationship between the average crystal grain size before the final cold rolling and the rolling reduction ratio of the final cold rolling on the recrystallization texture (analysis by grain orientation distribution function (ODF), FIG. 2 = 45 ° cross section).
In addition, “final cold rolling” and “final cold rolling” in the axes of FIGS. 1 to 8 mean the second cold rolling when the cold rolling is performed twice with intermediate annealing. And when the cold rolling of 1 time which does not pinch | interpose intermediate | middle annealing is given, the said cold rolling is meant.
The numerical values in the circles and squares in FIGS. 1 to 8 represent the magnetic flux density B 50 (T).

図1〜図4に示すように、熱延板焼鈍と中間焼鈍を挟む二回の冷間圧延とを組合せた場合において、二回目の冷間圧延前の平均結晶粒径と二回目の冷間圧延の圧下率とを適正範囲に制御することにより、圧延方向の磁束密度は、熱延板焼鈍により冷間圧延前の粒径を粗大化して一回の冷間圧延を施した場合に比して大幅に向上する。   As shown in FIG. 1 to FIG. 4, in the case of combining hot-rolled sheet annealing and two cold rolling sandwiching the intermediate annealing, the average crystal grain size before the second cold rolling and the second cold rolling By controlling the rolling reduction ratio to an appropriate range, the magnetic flux density in the rolling direction is larger than that obtained when a single cold rolling is performed by increasing the grain size before cold rolling by hot-rolled sheet annealing. Greatly improved.

そして、図5〜図8に示すように、熱延板焼鈍と中間焼鈍を挟む二回の冷間圧延とを組合せた場合のうち、箱焼鈍型の熱延板焼鈍と連続焼鈍型の中間焼鈍を挟む二回の冷間圧延とを組合せた場合(図7)には、二回目の冷間圧延前の平均結晶粒径と二回目の冷間圧延の圧下率を適正範囲に制御することにより、圧延方向のみならず圧延直角方向の磁束密度も高い水準とすることができ、熱延板焼鈍により冷間圧延前の粒径を粗大化して一回の冷間圧延を施した場合と同等以上になることが判る。一方、その他の組合せ(図5、図6、図8)では、各条件を制御したとしても圧延直角方向の磁束密度を、熱延板焼鈍により冷間圧延前の粒径を粗大化して一回の冷間圧延を施した場合と同等以上にすることはできない。   And as shown in FIGS. 5-8, out of the case where hot rolling sheet annealing and two cold rolling which interposes intermediate annealing are combined, box annealing type hot rolling sheet annealing and continuous annealing type intermediate annealing When the two cold rollings are combined (FIG. 7), the average crystal grain size before the second cold rolling and the rolling reduction of the second cold rolling are controlled within an appropriate range. , The magnetic flux density not only in the rolling direction but also in the direction perpendicular to the rolling direction can be set to a high level, and is equal to or higher than that obtained when a single cold rolling is performed by increasing the grain size before cold rolling by hot-rolled sheet annealing It turns out that it becomes. On the other hand, in other combinations (FIGS. 5, 6, and 8), even if each condition is controlled, the magnetic flux density in the direction perpendicular to the rolling direction is increased once by increasing the grain size before cold rolling by hot-rolled sheet annealing. It is not possible to make it equal to or higher than when cold rolling is performed.

図9〜図12に示すように、熱延板焼鈍と中間焼鈍を挟む二回の冷間圧延とを組合せた場合のうち、箱焼鈍型の熱延板焼鈍と連続焼鈍型の中間焼鈍を挟む二回の冷間圧延とを組合せた場合において、二回目の冷間圧延前の平均結晶粒径と二回目の冷間圧延の圧下率とを適正化した場合(図11)には、{100}<001>方位が主方位になっていることが判る。一方、その他の組合せ(図9、図10、図12)では、{100}<001>方位よりもむしろ{110}<001>方位近傍に集積している。これらの再結晶集合組織は圧延方向および圧延直角方向の磁束密度変化と対応しており、圧延方向と圧延直角方向の双方に高い磁束密度を得るためには、箱焼鈍型の熱延板焼鈍と連続焼鈍型の中間焼鈍を挟む二回の冷間圧延とを組合せ、かつ、二回目の冷間圧延前の平均結晶粒径と二回目の冷間圧延の圧下率とを適正範囲に制御することにより、{100}<001>方位を発達させることが重要であると判明したのである。
なお、図13には一回の冷間圧延によって0.27mmに仕上げた場合の再結晶集合組織を示すが、同図から明らかなように、熱延板焼鈍により冷間圧延前の粒径を粗大化して一回の冷間圧延を施した場合には、{111}方位が減少するのみであり、{100}<001>方位という所望の再結晶集合組織は得られない。
As shown in FIGS. 9 to 12, among a combination of hot rolling sheet annealing and two cold rolling sandwiching intermediate annealing, box annealing type hot rolled sheet annealing and continuous annealing type intermediate annealing are sandwiched. In the case of combining two cold rollings, when the average crystal grain size before the second cold rolling and the reduction ratio of the second cold rolling are optimized (FIG. 11), {100 } It can be seen that the <001> orientation is the main orientation. On the other hand, in the other combinations (FIGS. 9, 10, and 12), they are accumulated in the vicinity of the {110} <001> direction rather than the {100} <001> direction. These recrystallization textures correspond to changes in the magnetic flux density in the rolling direction and the direction perpendicular to the rolling direction. To obtain a high magnetic flux density in both the rolling direction and the direction perpendicular to the rolling direction, Combined with two cold rollings that sandwich the intermediate annealing of the continuous annealing type, and controls the average crystal grain size before the second cold rolling and the reduction ratio of the second cold rolling to an appropriate range Thus, it has been found important to develop the {100} <001> orientation.
FIG. 13 shows the recrystallized texture in the case of finishing to 0.27 mm by one cold rolling. As is clear from the figure, the grain size before cold rolling is reduced by hot-rolled sheet annealing. When coarsened and subjected to a single cold rolling, the {111} orientation only decreases, and the desired recrystallized texture of {100} <001> orientation cannot be obtained.

(第2の実験)
次に、Pの影響と二回目の冷間圧延前の平均結晶粒径の影響とを把握するため、C:0.002%、Si:2.0%、Mn:0.2%、sol.Al:0.3%、P:0.1%、S:0.0026%、N:0.0018%の化学組成を有する板厚2.0mmの熱延鋼板と、C:0.002%、Si:2.0%、Mn:0.2%、sol.Al:0.3%、P:0.01%、S:0.0038%、N:0.0019%の化学組成を有する板厚2.0mmの熱延鋼板とに対し、均熱温度:800℃、均熱時間:10時間の箱焼鈍型の熱延板焼鈍を施し、0.5mmの中間板厚まで冷間圧延した。その後、850℃〜1050℃で20秒間保持する連続焼鈍型の中間焼鈍を施して二回目の冷間圧延前の平均結晶粒径を変化させ、二回目の冷間圧延によって0.20mmに仕上げた(二回目の冷間圧延の圧下率:60.0%)。続いて、1050℃で1秒間保持する仕上焼鈍(再結晶焼鈍)を施した。
(Second experiment)
Next, in order to grasp the influence of P and the influence of the average crystal grain size before the second cold rolling, C: 0.002%, Si: 2.0%, Mn: 0.2%, sol. A hot-rolled steel sheet having a thickness of 2.0 mm having a chemical composition of Al: 0.3%, P: 0.1%, S: 0.0026%, N: 0.0018%, C: 0.002%, Si: 2.0%, Mn: 0.2%, sol. For a hot rolled steel sheet having a thickness of 2.0 mm having a chemical composition of Al: 0.3%, P: 0.01%, S: 0.0038%, N: 0.0019%, soaking temperature: 800 C., soaking time: Box-annealing type hot-rolled sheet annealing for 10 hours was performed and cold rolled to an intermediate sheet thickness of 0.5 mm. Thereafter, continuous annealing type intermediate annealing held at 850 ° C. to 1050 ° C. for 20 seconds was performed to change the average crystal grain size before the second cold rolling and finished to 0.20 mm by the second cold rolling. (The reduction ratio of the second cold rolling: 60.0%). Then, the finish annealing (recrystallization annealing) hold | maintained at 1050 degreeC for 1 second was given.

得られた鋼板から55mm角の単板試験片を打抜き、磁化力5000A/mにおける圧延方向および圧延直角方向の磁束密度B50を測定した。図14に圧延方向の磁束密度と二回目の冷間圧延前の平均結晶粒径との関係を、図15に圧延直角方向の磁束密度と二回目の冷間圧延前の平均結晶粒径との関係を、それぞれ示す。 A 55 mm square single-piece test piece was punched from the obtained steel sheet, and the magnetic flux density B 50 in the rolling direction and the perpendicular direction of rolling at a magnetizing force of 5000 A / m was measured. FIG. 14 shows the relationship between the magnetic flux density in the rolling direction and the average crystal grain size before the second cold rolling, and FIG. 15 shows the relationship between the magnetic flux density in the direction perpendicular to the rolling and the average crystal grain size before the second cold rolling. Each relationship is shown.

P含有量の低い鋼板では、二回目の冷間圧延前の平均結晶粒径が80μm以上の領域で、冷間圧延前の粒径粗大化にともなう磁束密度増加は緩やかとなる。特に、圧延直角方向では、二回目の冷間圧延前の平均結晶粒径が粗大化しても磁束密度はほぼ一定となる。これに対してP含有量の高い鋼板では、圧延方向および圧延直角方向の双方とも二回目の冷間圧延前の粒径粗大化にともない磁束密度は増加する。
すなわち、箱焼鈍型の熱延板焼鈍と連続焼鈍型の中間焼鈍を挟む二回の冷間圧延とを組合せた場合において、二回目の冷間圧延前の平均結晶粒径と二回目の冷間圧延の圧下率とを適正範囲に制御することによって得られる高磁束密度化効果は、適正量のPを含有させることにより顕著となり、特に二回目の冷間圧延前の平均結晶粒径が80μm以上の領域で一層顕著となることが明らかとなったのである。
このように、圧延方向および圧延直角方向の双方に高い磁束密度を達成し、低鉄損と高磁束密度を高位両立した薄肉の無方向性電磁鋼板とするには、適正量のPを含有させることが極めて重要であると判明した。
In a steel sheet having a low P content, the increase in magnetic flux density accompanying the increase in grain size before cold rolling is moderate in the region where the average crystal grain size before the second cold rolling is 80 μm or more. In particular, in the direction perpendicular to the rolling, the magnetic flux density is substantially constant even if the average crystal grain size before the second cold rolling becomes coarse. On the other hand, in a steel sheet having a high P content, the magnetic flux density increases as the grain size increases before the second cold rolling in both the rolling direction and the direction perpendicular to the rolling.
That is, in the case of a combination of box annealing type hot rolled sheet annealing and two cold rolling sandwiching continuous annealing type intermediate annealing, the average grain size before the second cold rolling and the second cold rolling The effect of increasing the magnetic flux density obtained by controlling the rolling reduction ratio in an appropriate range becomes significant when an appropriate amount of P is contained, and the average crystal grain size before the second cold rolling is 80 μm or more. It became clear that it became even more remarkable in this area.
Thus, in order to achieve a high magnetic flux density in both the rolling direction and the direction perpendicular to the rolling direction, and to obtain a thin-walled non-oriented electrical steel sheet that achieves both low iron loss and high magnetic flux density, an appropriate amount of P is contained. It turned out to be extremely important.

ここで、二回目の冷間圧延前の平均結晶粒径が細粒(80μm未満)である場合にP含有量の差によって磁束密度に差が生じる理由は、粒界偏析傾向の強いPによる粒界近傍からの{111}方位の再結晶抑制で説明できる。一方、二回目の冷間圧延前の平均結晶粒径が80μm以上である場合にP含有量の差によって磁束密度に差が生じることについて、二回目の冷間圧延前の平均結晶粒径が80μm以上に粗大化した場合のPの効果、とりわけ{100}<001>方位の発達によって圧延方向と圧延直角方向の双方に高磁束密度化するという顕著な効果は本実験によって初めて明らかにされたものであり、{111}方位のみに着目した検討では得られなかった知見である。   Here, when the average crystal grain size before the second cold rolling is fine (less than 80 μm), the difference in the magnetic flux density due to the difference in the P content is due to the P due to the strong grain boundary segregation tendency. This can be explained by suppression of recrystallization in the {111} orientation from the vicinity of the boundary. On the other hand, when the average crystal grain size before the second cold rolling is 80 μm or more, the difference in the magnetic flux density is caused by the difference in the P content. The average crystal grain size before the second cold rolling is 80 μm. The effect of P in the case of coarsening as described above, in particular, the remarkable effect of increasing the magnetic flux density in both the rolling direction and the direction perpendicular to the rolling by the development of the {100} <001> orientation, was first clarified by this experiment. This is a finding that could not be obtained by examination focusing only on the {111} orientation.

これらの結果は以下のように考えられる。すなわち、同一の冷間圧延の圧下率であっても、熱延板焼鈍および中間焼鈍を箱焼鈍型とするか連続焼鈍型とするかによって、二回目の冷間圧延前の集合組織(すなわち、中間焼鈍後の再結晶集合組織)は変化する。したがって、箱焼鈍型の熱延板焼鈍と連続焼鈍型の中間焼鈍とを選択することにより、二回目の冷間圧延前の集合組織が{100}<001>方位と{110}<001>方位の発達に有利な方位へと制御されたと考えられる。このとき、二回目の冷間圧延前の平均結晶粒径が細粒であった場合や二回目の冷間圧延の圧下率が高い場合には、仕上焼鈍において粒界近傍から{111}方位が発達してしまう。そのため、焼鈍タイプの選択と同時に、二回目の冷間圧延前の平均結晶粒径と二回目の冷間圧延の圧下率を総合的に制御することが必須となる。本発明者らの検討によれば、適正量のPを含有する鋼板では再結晶初期に{110}<001>方位の発達が抑制されるとの知見を得ており、この効果によって仕上焼鈍時に{100}<001>方位と{110}<001>方位の集積度変化が生じたものと考えられる。すなわち、P含有量の適正化によって{110}<001>方位の発達が抑制され、{100}<001>方位が発達したのである。通常、冷間圧延前の平均結晶粒径が粗大な場合には、剪断帯から{110}<001>方位が発達し易くなり、圧延直角方向の磁束密度改善には不利となる。しかしながら、図14および図15に示されるように、適正量のPを含有する鋼板では、冷間圧延前の平均結晶粒径が粗大化しても、圧延方向と圧延直角方向の双方の磁束密度が増加する。この実験結果は、圧延直角方向の磁束密度改善には不利な{110}<001>方位の発達がPによって抑制され、圧延直角方向の磁束密度改善に有利な{100}<001>方位が発達するという考えを支持するものである。   These results are considered as follows. That is, even if it is the same cold rolling reduction, depending on whether the hot-rolled sheet annealing and the intermediate annealing are the box annealing type or the continuous annealing type, the texture before the second cold rolling (that is, The recrystallization texture after intermediate annealing changes. Therefore, by selecting the box annealing type hot-rolled sheet annealing and the continuous annealing type intermediate annealing, the texture before the second cold rolling becomes {100} <001> orientation and {110} <001> orientation. It is thought that it was controlled to the direction advantageous for the development of the. At this time, when the average crystal grain size before the second cold rolling is fine or when the reduction ratio of the second cold rolling is high, the {111} orientation from the vicinity of the grain boundary in the finish annealing is It will develop. Therefore, simultaneously with the selection of the annealing type, it is essential to comprehensively control the average crystal grain size before the second cold rolling and the reduction ratio of the second cold rolling. According to the study by the present inventors, in steel sheets containing an appropriate amount of P, it has been found that the development of {110} <001> orientation is suppressed at the initial stage of recrystallization, and this effect is effective during finish annealing. It is thought that the integration degree change of {100} <001> orientation and {110} <001> orientation has occurred. That is, the development of the {110} <001> orientation was suppressed and the {100} <001> orientation was developed by optimizing the P content. Usually, when the average crystal grain size before cold rolling is coarse, the {110} <001> orientation is likely to develop from the shear band, which is disadvantageous for improving the magnetic flux density in the direction perpendicular to the rolling. However, as shown in FIG. 14 and FIG. 15, in the steel sheet containing an appropriate amount of P, the magnetic flux density in both the rolling direction and the direction perpendicular to the rolling direction is increased even if the average crystal grain size before cold rolling becomes coarse. To increase. This experimental result shows that the development of the {110} <001> orientation, which is disadvantageous for improving the magnetic flux density in the direction perpendicular to the rolling, is suppressed by P, and the {100} <001> orientation advantageous for improving the magnetic flux density in the direction perpendicular to the rolling is developed. It supports the idea of doing.

本発明者らはさらに検討を進め、上記Pによる高磁束密度化の効果を安定して得るには、S含有量を適正化する必要があることを見出した。すなわち、S含有量を過度に低減すると上記Pによる高磁束密度化の効果が不安定となり、所望の磁気特性が得られない場合が生じるのである。Sは、一般に不純物として含有され、鋼中に硫化物を形成して磁気特性を劣化させることから、極力低減させることが指向されることが多いのであるが、上記Pによる高磁束密度化の効果を得るには適正量のSを含有させることが必要なのである。
ここで、S含有量を過度に低減するとPによる高磁束密度化の効果が不安定になる理由は明確でないが、S含有量を低減することによって粒成長性が著しく改善されると、仕上焼鈍時に{100}<001>方位以外の方位も発達し易くなることが影響しているものと考えられる。
The present inventors have further studied and found that it is necessary to optimize the S content in order to stably obtain the effect of increasing the magnetic flux density by the P. That is, if the S content is excessively reduced, the effect of increasing the magnetic flux density due to P becomes unstable, and desired magnetic characteristics may not be obtained. S is generally contained as an impurity and forms sulfides in the steel to deteriorate the magnetic properties. Therefore, it is often directed to reduce S as much as possible. It is necessary to contain an appropriate amount of S in order to obtain
Here, if the S content is excessively reduced, the reason why the effect of increasing the magnetic flux density due to P becomes unstable is not clear, but if grain growth is significantly improved by reducing the S content, finish annealing It is thought that sometimes it is influenced that the orientation other than the {100} <001> orientation is easily developed.

以下、このような新知見に基づく本発明の無方向性電磁鋼板およびその製造方法について詳細に説明する。   Hereinafter, the non-oriented electrical steel sheet of the present invention based on such new knowledge and the manufacturing method thereof will be described in detail.

A.無方向性電磁鋼板
本発明の無方向性電磁鋼板は、質量%で、Si:1.5%以上3.5%以下、sol.Al:0.1%以上2.5%以下およびMn:0.08%以上2.5%以下を上記式(1)を満足する範囲で含有し、さらに、P:0.06%以上0.20%以下、S:0.0020%超0.006%以下、C:0.005%以下およびN:0.005%以下を含有し、残部がFeおよび不純物からなる化学組成を有し、平均結晶粒径が60μm以上150μm以下である鋼組織を有し、板厚中央部において({100}<001>方位の集積度)>({110}<001>方位の集積度)の関係を満足する集合組織を有し、板厚が0.30mm以下であることを特徴とするものである。
A. Non-oriented electrical steel sheet The non-oriented electrical steel sheet of the present invention is mass%, Si: 1.5% to 3.5%, sol. Al: 0.1% or more and 2.5% or less and Mn: 0.08% or more and 2.5% or less are contained within a range satisfying the above formula (1), and P: 0.06% or more and 0.00. 20% or less, S: more than 0.0020% and 0.006% or less, C: 0.005% or less and N: 0.005% or less, with the balance being a chemical composition consisting of Fe and impurities, average It has a steel structure with a grain size of 60 μm or more and 150 μm or less, and satisfies the relationship of ({100} <001> orientation accumulation degree)> ({110} <001> orientation accumulation degree) at the center of the plate thickness. And having a thickness of 0.30 mm or less.

以下、本発明の無方向性電磁鋼板における各構成について詳細に説明する。   Hereafter, each structure in the non-oriented electrical steel sheet of this invention is demonstrated in detail.

1.化学組成
(1)Si、Al、Mn
Si、AlおよびMnは、電気抵抗を増加させる作用を有しているので、鉄損低減のために含有させる。しかしながら、過剰に含有させると磁束密度の低下が著しくなる。さらに、Siは過剰に含有させると冷間圧延時に破断するおそれがある。また、Mnは過剰に含有させるとオーステナイト変態を生じて磁気特性の確保が困難になる。それぞれの元素の上限はこれらの観点から定め、Si含有量は3.5%以下、sol.Al含有量は2.5%以下、Mn含有量は2.5%以下とする。
Si含有量の下限は、電気抵抗を増加させて所望の鉄損レベルを確保する観点から1.5%以上とする。sol.Al含有量は、0.1%未満では微細な窒化物により鉄損が増加するとともに、中間焼鈍時の粒成長が阻害されて二回目の冷間圧延前において適正な平均結晶粒径を確保することができずに、仕上焼鈍後において磁束密度が低下する場合がある。したがって、sol.Al含有量は0.1%以上とする。Mn含有量は、0.08%未満では硫化物が微細化することにより鉄損が増加するとともに、中間焼鈍時の粒成長が阻害されて二回目の冷間圧延前において適正な平均結晶粒径を確保することができずに磁束密度が低下する場合がある。したがって、Mn含有量は0.08%以上とする。
1. Chemical composition (1) Si, Al, Mn
Si, Al, and Mn have the effect of increasing the electrical resistance, so they are included for reducing iron loss. However, when it is excessively contained, the magnetic flux density is remarkably lowered. Furthermore, if Si is excessively contained, there is a risk of fracture during cold rolling. Further, if Mn is contained excessively, austenite transformation occurs and it becomes difficult to ensure magnetic properties. The upper limit of each element is determined from these viewpoints, the Si content is 3.5% or less, sol. The Al content is 2.5% or less, and the Mn content is 2.5% or less.
The lower limit of the Si content is 1.5% or more from the viewpoint of increasing the electric resistance and securing a desired iron loss level. sol. If the Al content is less than 0.1%, iron loss increases due to fine nitrides, and grain growth during intermediate annealing is inhibited, and an appropriate average crystal grain size is ensured before the second cold rolling. In some cases, the magnetic flux density may decrease after finish annealing. Therefore, sol. The Al content is 0.1% or more. If the Mn content is less than 0.08%, the iron loss increases due to the refinement of the sulfide, and the grain growth during the intermediate annealing is inhibited, so that an appropriate average crystal grain size is obtained before the second cold rolling. May not be ensured, and the magnetic flux density may decrease. Therefore, the Mn content is 0.08% or more.

ここで、フェライト−オーステナイト変態を有する鋼の場合、仕上焼鈍をフェライト域焼鈍とするために焼鈍温度が制約され、その結果、所望の鉄損レベルを確保することが困難となる。他方、変態を有しない鋼とするには、Siやsol.Al含有量を高める必要が生じ、上述のとおり磁束密度が低下する。本発明は、後者のように、本質的に磁束密度が低下しやすいフェライト−オーステナイト変態を有しない鋼の磁束密度を増加させることを目的としている。そこで、フェライト−オーステナイト変態に対する指標としてSi+2×sol.Al−Mnを採用し、変態を有しない鋼とするために、下記式(1)を満足させることとする。
Si+2×sol.Al−Mn≧2.0 (1)
ここで、Si、sol.AlおよびMnは、各元素の含有量(単位:質量%)を示す。
Here, in the case of steel having a ferrite-austenite transformation, the annealing temperature is restricted in order to make the finish annealing a ferrite region annealing, and as a result, it becomes difficult to ensure a desired iron loss level. On the other hand, Si and sol. It is necessary to increase the Al content, and the magnetic flux density is reduced as described above. The purpose of the present invention is to increase the magnetic flux density of a steel that does not have a ferrite-austenite transformation that is inherently susceptible to lowering of the magnetic flux density, as in the latter case. Therefore, as an index for the ferrite-austenite transformation, Si + 2 × sol. In order to adopt Al-Mn and to have a steel without transformation, the following formula (1) is satisfied.
Si + 2 × sol. Al-Mn ≧ 2.0 (1)
Here, Si, sol. Al and Mn indicate the content (unit: mass%) of each element.

(2)P
Pは、箱焼鈍型の熱延板焼鈍と連続焼鈍型の中間焼鈍を挟む二回の冷間圧延とを組合せた場合において、二回目の冷間圧延前の平均結晶粒径と二回目の冷間圧延の圧下率とを適正範囲に制御することにより{100}<001>方位を発達させる本発明において極めて重要な元素である。したがって、明確な高磁束密度効果を得る観点から、P含有量は0.06%以上とする。好ましくは0.07%以上である。一方、P含有量が0.20%超では、冷間圧延時に破断を生じる可能性がある。したがって、P含有量は0.20%以下とする。
(2) P
P is the average grain size before the second cold rolling and the second cold rolling in the case where the box annealing type hot rolled sheet annealing and the two cold rollings sandwiching the continuous annealing type intermediate annealing are combined. It is an extremely important element in the present invention in which the {100} <001> orientation is developed by controlling the rolling reduction of the hot rolling within an appropriate range. Therefore, from the viewpoint of obtaining a clear high magnetic flux density effect, the P content is set to 0.06% or more. Preferably it is 0.07% or more. On the other hand, if the P content exceeds 0.20%, breakage may occur during cold rolling. Therefore, the P content is 0.20% or less.

(3)S
Sは、0.006%を超えて含有するとMnSなどの硫化物が多数析出し、鉄損が著しく増加する。また、中間焼鈍時の粒成長も阻害されるため、二回目の冷間圧延前において適正な平均結晶粒径を確保することができずに磁束密度が低下する場合がある。一方、S含有量が過度に低いと、Pによる高磁束密度効果が不安定となる。これらより、S含有量は0.0020%超0.006%以下とする。
(3) S
When S exceeds 0.006%, a large amount of sulfides such as MnS are precipitated, and the iron loss is remarkably increased. In addition, since grain growth during intermediate annealing is inhibited, an appropriate average crystal grain size may not be ensured before the second cold rolling, and the magnetic flux density may decrease. On the other hand, if the S content is excessively low, the high magnetic flux density effect due to P becomes unstable. Accordingly, the S content is more than 0.0020% and not more than 0.006%.

(4)C
Cは、不純物として含有され、含有量が0.005%を超えると微細な炭化物が析出して鉄損の増加が著しくなる。したがって、C含有量は0.005%以下とする。
(4) C
C is contained as an impurity, and when the content exceeds 0.005%, fine carbides are precipitated and the iron loss is remarkably increased. Therefore, the C content is 0.005% or less.

(5)N
Nは、不純物として含有され、含有量が0.005%を超えると窒化物の増加により鉄損の増加が著しくなる。また、中間焼鈍時の粒成長も阻害されるため、二回目の冷間圧延前において適正な平均結晶粒径を確保することができず、仕上焼鈍後の磁束密度が低下する場合がある。したがって、N含有量は0.005%以下とする。
(5) N
N is contained as an impurity, and when the content exceeds 0.005%, an increase in iron loss becomes significant due to an increase in nitride. In addition, since grain growth during intermediate annealing is inhibited, an appropriate average crystal grain size cannot be ensured before the second cold rolling, and the magnetic flux density after finish annealing may be reduced. Therefore, the N content is 0.005% or less.

(6)残部
残部はFeおよび不純物である。不純物のうち粒成長性に悪影響を及ぼすTi、V、Nb、Zrは極力低減することが望ましく、それぞれ0.008%以下とすることが好ましい。
(6) Remainder The remainder is Fe and impurities. Of impurities, Ti, V, Nb, and Zr, which adversely affect grain growth, are desirably reduced as much as possible, preferably 0.008% or less.

2.鋼組織
製品での結晶粒が過度に粗大化すると高周波鉄損が増大するとともに、板厚を貫通した結晶粒の増加により所望の再結晶集合組織への制御が不安定となる。一方、製品での結晶粒が細粒化すると周波数の低い領域にて鉄損への悪影響が顕著になる。そのため平均結晶粒径は60μm以上150μm以下とする。
平均結晶粒径は光学顕微鏡による組織観察結果をもとに求めればよく、圧延方向の板厚方向断面を例えば100倍の倍率など板厚に応じて適宜選択した倍率にて観察し、切断法によって求めればよい。
2. Steel structure When crystal grains in the product become excessively coarse, high-frequency iron loss increases, and control of the desired recrystallized texture becomes unstable due to an increase in crystal grains penetrating the plate thickness. On the other hand, when the crystal grains in the product become finer, the adverse effect on iron loss becomes significant in the low frequency region. Therefore, the average crystal grain size is 60 μm or more and 150 μm or less.
The average crystal grain size may be obtained based on the result of observation of the structure by an optical microscope, and the cross section in the thickness direction in the rolling direction is observed at a magnification appropriately selected according to the thickness, such as a magnification of 100 times. Find it.

3.集合組織
{110}<001>方位の発達を抑制し、{100}<001>方位を発達させることにより、圧延方向と圧延直角方向の磁気特性を向上させる観点から、板厚中央部において({100}<001>方位の集積度)>({110}<001>方位の集積度)の関係を満足する集合組織を有するものとする。
ここで、「方位の集積度」とはランダム強度に対する比(ランダム比)を意味しており、集合組織を表示する際に通常用いられる指標である。本発明では、X線回折により測定した{110}、{200}、{211}の不完全極点図を用いて級数展開法により算出した結晶粒方位分布関数(ODF)にて、φ=45°断面で評価する。また、本発明は板厚0.30mm以下、平均結晶粒径60μm〜150μmの薄肉の無方向性電磁鋼板を前提としているため、再結晶集合組織は板厚中央部で評価すればよく、板厚中央部へは化学研磨にて鋼板の片面のみを減肉すればよい。
3. From the viewpoint of improving the magnetic properties in the rolling direction and the direction perpendicular to the rolling direction by suppressing the development of the texture {110} <001> orientation and developing the {100} <001> orientation, ({ 100} <001> orientation accumulation degree)> ({110} <001> orientation accumulation degree) It is assumed that the texture satisfies the relationship.
Here, the “degree of orientation accumulation” means a ratio to a random intensity (random ratio), and is an index usually used when displaying a texture. In the present invention, φ 2 = 45 in a grain orientation distribution function (ODF) calculated by a series expansion method using incomplete pole figures of {110}, {200}, {211} measured by X-ray diffraction. ° Evaluate in cross section. Moreover, since the present invention is premised on a thin non-oriented electrical steel sheet having a plate thickness of 0.30 mm or less and an average crystal grain size of 60 μm to 150 μm, the recrystallized texture may be evaluated at the center of the plate thickness. It is only necessary to reduce the thickness of only one side of the steel plate to the center by chemical polishing.

4.板厚
本発明は、本質的に磁束密度の低下し易い薄肉の無方向性電磁鋼板を再結晶集合組織制御によって高磁束密度化し、以て低鉄損と高磁束密度の高位両立を達成することを前提としている。そのため板厚は0.30mm以下とする。高周波鉄損をさらに低減する観点からは0.27mm以下とすることが好ましく、0.25mm以下とすることがさらに好ましい。板厚の下限は特に規定しないが、過度の薄肉化は平坦度劣化による極端な占積率低下や鉄心の生産性低下を招く場合があるので、0.15mm以上とすることが好ましい。
4). Thickness of the present invention is to achieve a high magnetic flux density by recrystallizing texture control of a thin non-oriented electrical steel sheet that is inherently susceptible to a decrease in magnetic flux density, thereby achieving both high iron loss and high magnetic flux density. Is assumed. Therefore, the plate thickness is set to 0.30 mm or less. From the viewpoint of further reducing the high-frequency iron loss, it is preferably 0.27 mm or less, and more preferably 0.25 mm or less. The lower limit of the plate thickness is not particularly defined, but excessive thinning may cause an extreme decrease in space factor due to deterioration in flatness and a decrease in productivity of the iron core, and therefore it is preferably 0.15 mm or more.

(製造方法)
本発明の無方向性電磁鋼板は、後述する無方向性電磁鋼板の製造方法により製造することが好適である。
(Production method)
The non-oriented electrical steel sheet of the present invention is preferably manufactured by a method for manufacturing a non-oriented electrical steel sheet described later.

B.無方向性電磁鋼板の製造方法
本発明の無方向性電磁鋼板の製造方法は、下記工程(A)〜(E)を有することを特徴とする。
(A)上述の化学組成を有する熱延鋼板に、750℃以上950℃以下の温度域に30分間以上48時間以下保持する熱延板焼鈍を施す熱延板焼鈍工程
(B)上記熱延板焼鈍工程により得られた熱延鋼板に、冷間圧延を施す第1冷間圧延工程
(C)上記第1冷間圧延工程により得られた冷延鋼板に、950℃以上1100℃以下の温度域に10秒間以上5分間以下保持する中間焼鈍を施して平均結晶粒径を80μm以上200μm以下とする中間焼鈍工程
(D)上記中間焼鈍工程により得られた中間焼鈍鋼板に、55%以上75%以下の圧下率の冷間圧延を施して0.30mm以下の板厚とする第2冷間圧延工程
(E)上記第2冷間圧延工程により得られた冷延鋼板に、仕上焼鈍を施して平均結晶粒径を60μm以上150μm以下とする仕上焼鈍工程
B. Manufacturing method of non-oriented electrical steel sheet The manufacturing method of the non-oriented electrical steel sheet of the present invention includes the following steps (A) to (E).
(A) A hot-rolled sheet annealing step for subjecting a hot-rolled steel sheet having the above-described chemical composition to a hot-rolled sheet annealing that is held in a temperature range of 750 ° C. to 950 ° C. for 30 minutes to 48 hours (B) The first cold rolling step (C) for cold rolling the hot rolled steel sheet obtained by the annealing process. The temperature range of 950 ° C. to 1100 ° C. for the cold rolled steel sheet obtained by the first cold rolling step. Intermediate annealing step (D) in which intermediate annealing is performed for 10 seconds to 5 minutes to obtain an average grain size of 80 μm to 200 μm, and the intermediate annealing steel sheet obtained by the intermediate annealing step is 55% to 75% The second cold rolling step (E) in which a cold rolling with a reduction ratio of 0.30 mm or less is performed to obtain a sheet thickness of 0.30 mm or less. The cold rolled steel plate obtained by the second cold rolling step is subjected to finish annealing and averaged. Finishing with a grain size of 60 μm to 150 μm Blunt process

以下、本発明に係る無方向性電磁鋼板の製造方法における各工程について説明する。   Hereinafter, each process in the manufacturing method of the non-oriented electrical steel sheet according to the present invention will be described.

1.熱延板焼鈍工程
熱延板焼鈍工程においては、上述の化学組成を有する熱延鋼板に、750℃以上950℃以下の温度域に30分間以上48時間以下保持する熱延板焼鈍を施す。
本発明の無方向性電磁鋼板の製造方法は、箱焼鈍型の熱延板焼鈍と連続焼鈍型の中間焼鈍を挟む二回の冷間圧延とを組合せるとともに、二回目の冷間圧延前の平均結晶粒径と二回目の冷間圧延の圧下率とを適正範囲に制御することにより、{100}<001>方位の発達を促すことを骨子としている。このため、熱延板焼鈍は箱焼鈍とし、750℃以上950℃以下の温度域に30分間以上48時間以下保持するものとする。
熱延板焼鈍における焼鈍温度(以下、「熱延板焼鈍温度」ともいう。)が750℃未満であったり、熱延板焼鈍における焼鈍時間(以下、「熱延板焼鈍時間」ともいう。)が30分間未満であったりすると、{100}<001>方位の発達を促すことができない場合がある。また、熱延板焼鈍温度が950℃を超えると設備への負荷が大きくなり、熱延板焼鈍時間が48時間を超えると生産性の劣化を招く。熱延板焼鈍温度は、750℃以上850℃以下とすることが好ましい。
熱延板焼鈍の他の条件は特に限定されるものではない。
1. Hot-rolled sheet annealing process In the hot-rolled sheet annealing process, the hot-rolled steel sheet having the above-described chemical composition is subjected to hot-rolled sheet annealing that is maintained in a temperature range of 750 ° C to 950 ° C for 30 minutes to 48 hours.
The method for producing a non-oriented electrical steel sheet according to the present invention combines a box annealing type hot-rolled sheet annealing and two cold rolling sandwiching a continuous annealing type intermediate annealing, and before the second cold rolling. The main point is to promote the development of the {100} <001> orientation by controlling the average crystal grain size and the reduction ratio of the second cold rolling within an appropriate range. For this reason, hot-rolled sheet annealing shall be box annealing, and it shall hold | maintain in the temperature range of 750 degreeC or more and 950 degrees C or less for 30 minutes or more and 48 hours or less.
An annealing temperature in hot-rolled sheet annealing (hereinafter also referred to as “hot-rolled sheet annealing temperature”) is less than 750 ° C., or an annealing time in hot-rolled sheet annealing (hereinafter also referred to as “hot-rolled sheet annealing time”). May be less than 30 minutes, it may not be possible to promote the development of the {100} <001> orientation. Further, when the hot-rolled sheet annealing temperature exceeds 950 ° C., the load on the equipment increases, and when the hot-rolled sheet annealing time exceeds 48 hours, the productivity is deteriorated. The hot-rolled sheet annealing temperature is preferably 750 ° C. or higher and 850 ° C. or lower.
Other conditions for hot-rolled sheet annealing are not particularly limited.

2.第1冷間圧延工程
第1冷間圧延工程においては、上記熱延板焼鈍工程により得られた熱延鋼板に、冷間圧延を施す。
熱延板焼鈍後は一回目の冷間圧延にて中間板厚まで仕上げる。中間板厚は、二回目の冷間圧延にて製品板厚まで仕上げる際に後述の適正圧下率を確保する観点から決定すればよく、0.3mm以上1.2mm以下とすることが好ましい。中間板厚が厚い場合、熱容量増加に起因して後述の中間焼鈍後において適正な平均結晶粒径(二回目の冷間圧延前の平均結晶粒径)を確保することが困難となる場合があることから、中間板厚は0.3mm以上0.7mm以下とすることがさらに好ましい。
2. 1st cold rolling process In a 1st cold rolling process, it cold-rolls to the hot-rolled steel plate obtained by the said hot-rolled sheet annealing process.
After hot-rolled sheet annealing, finish to intermediate sheet thickness by the first cold rolling. The intermediate plate thickness may be determined from the viewpoint of securing an appropriate reduction rate described later when finishing to the product plate thickness by the second cold rolling, and is preferably 0.3 mm or more and 1.2 mm or less. When the intermediate plate thickness is thick, it may be difficult to ensure an appropriate average crystal grain size (average crystal grain size before the second cold rolling) after the intermediate annealing described later due to an increase in heat capacity. Therefore, the intermediate plate thickness is more preferably set to 0.3 mm or more and 0.7 mm or less.

冷間圧延時の鋼板温度、圧延ロール径など、冷間圧延の他の条件は特に限定されるものではなく、熱延鋼板の化学組成、目的とする鋼板の板厚などにより適宜選択するものとする。
熱延鋼板は、通常、熱間圧延の際に鋼板表面に生成したスケールを酸洗により除去してから冷間圧延に供される。熱延板焼鈍前あるいは熱延板焼鈍後のいずれかにおいて酸洗すればよい。
Other conditions for cold rolling, such as the temperature of the steel sheet during cold rolling and the diameter of the rolling roll, are not particularly limited, and are appropriately selected depending on the chemical composition of the hot rolled steel sheet, the thickness of the target steel sheet, etc. To do.
A hot-rolled steel sheet is usually subjected to cold rolling after removing the scale formed on the surface of the steel sheet during hot rolling by pickling. What is necessary is just to pickling before hot-rolled sheet annealing or after hot-rolled sheet annealing.

3.中間焼鈍工程
中間焼鈍工程においては、上記第1冷間圧延工程により得られた冷延鋼板に、950℃以上1100℃以下の温度域に10秒間以上5分間以下保持する中間焼鈍を施して平均結晶粒径を80μm以上200μm以下とする。
上述した理由により、中間焼鈍は連続焼鈍とし、950℃以上1100℃以下の温度域に10秒間以上5分間以下保持することにより行う。中間焼鈍における焼鈍温度(以下「中間焼鈍温度」ともいう。)が950℃未満であったり、中間焼鈍における焼鈍時間(以下「中間焼鈍時間」ともいう。)が10秒間未満であったりすると、平均結晶粒径を80μmとすることが困難な場合がある。また、中間焼鈍温度が1100℃を超えると設備への負荷が大きくなり、中間焼鈍時間が5分間を超えると生産性の劣化を招く。中間焼鈍温度は、950℃以上1050℃以下とすることが好ましい。
中間焼鈍により二回目の冷間圧延前の平均結晶粒径を80μm以上200μm以下とする。二回目の冷間圧延前の平均結晶粒径が80μm未満では、仕上焼鈍において{111}方位が発達し易く、所望の集合組織が得られない。また、二回目の冷間圧延前の平均結晶粒径が200μm超では、二回目の冷間圧延時に割れが発生する場合がある。なお、平均結晶粒径は上述の方法で求めればよい。
中間焼鈍の他の条件は特に限定されるものではない。
3. Intermediate annealing step In the intermediate annealing step, the cold-rolled steel sheet obtained by the first cold rolling step is subjected to an intermediate annealing that is held in a temperature range of 950 ° C to 1100 ° C for 10 seconds to 5 minutes, and the average crystal The particle size is 80 μm or more and 200 μm or less.
For the reasons described above, the intermediate annealing is performed by continuous annealing and holding in a temperature range of 950 ° C. to 1100 ° C. for 10 seconds to 5 minutes. If the annealing temperature in the intermediate annealing (hereinafter also referred to as “intermediate annealing temperature”) is less than 950 ° C., or the annealing time in the intermediate annealing (hereinafter also referred to as “intermediate annealing time”) is less than 10 seconds, the average It may be difficult to make the crystal grain size 80 μm. Further, when the intermediate annealing temperature exceeds 1100 ° C., the load on the equipment increases, and when the intermediate annealing time exceeds 5 minutes, productivity is deteriorated. The intermediate annealing temperature is preferably 950 ° C. or higher and 1050 ° C. or lower.
The average crystal grain size before the second cold rolling is set to 80 μm or more and 200 μm or less by intermediate annealing. If the average grain size before the second cold rolling is less than 80 μm, the {111} orientation is likely to develop during finish annealing, and a desired texture cannot be obtained. Further, if the average crystal grain size before the second cold rolling exceeds 200 μm, cracks may occur during the second cold rolling. In addition, what is necessary is just to obtain | require an average crystal grain diameter by the above-mentioned method.
Other conditions for the intermediate annealing are not particularly limited.

4.第2冷間圧延工程
第2冷間圧延工程においては、上記中間焼鈍工程により得られた中間焼鈍鋼板に、55%以上75%以下の圧下率の冷間圧延を施して0.30mm以下の板厚とする。
二回目の冷間圧延における圧下率は、仕上焼鈍後において所望の再結晶集合組織を確保する観点から55%以上75%以下とする。好ましくは55%以上70%以下である。
また、上述の「A.無方向性電磁鋼板」の項に記載した理由により、二回目の冷間圧延後の板厚は0.30mm以下とする。
冷間圧延時の鋼板温度、圧延ロール径など、冷間圧延の他の条件は特に限定されるものではなく、鋼板の化学組成、目的とする鋼板の板厚などにより適宜選択するものとする。
4). Second cold rolling step In the second cold rolling step, the intermediate annealed steel plate obtained by the intermediate annealing step is subjected to cold rolling at a rolling reduction of 55% or more and 75% or less to obtain a plate of 0.30 mm or less. Thickness.
The reduction ratio in the second cold rolling is 55% or more and 75% or less from the viewpoint of securing a desired recrystallization texture after finish annealing. Preferably they are 55% or more and 70% or less.
Further, for the reason described in the above-mentioned section “A. Non-oriented electrical steel sheet”, the sheet thickness after the second cold rolling is 0.30 mm or less.
Other conditions for cold rolling, such as the temperature of the steel sheet during cold rolling and the diameter of the rolling roll, are not particularly limited, and are appropriately selected depending on the chemical composition of the steel sheet, the thickness of the target steel sheet, and the like.

5.仕上焼鈍工程
仕上焼鈍工程においては、上記第2冷間圧延工程により得られた冷延鋼板に、仕上焼鈍を施して平均結晶粒径を60μm以上150μm以下とする。
上述の「A.無方向性電磁鋼板」の項に記載した理由により、仕上焼鈍後の平均結晶粒径を60μm以上150μm以下とする。
仕上焼鈍は900℃以上1150℃以下の温度域に1秒間以上120秒間以下保持することにより行うことが好ましい。仕上焼鈍における焼鈍温度(以下、「仕上焼鈍温度」ともいう。)が900℃未満であったり、仕上焼鈍における焼鈍時間(以下、「仕上焼鈍時間」ともいう。)が1秒間未満であったりすると、平均結晶粒径を60μm以上とすることが困難な場合があるからである。また、仕上焼鈍温度が1150℃を超えると設備への負荷が大きくなり、仕上焼鈍時間が120秒間を超えると生産性の劣化を招くからである。仕上焼鈍温度は、950℃以上1100℃以下とすることがさらに好ましい。
仕上焼鈍の他の条件は特に限定されるものではない。
5. Finish annealing step In the finish annealing step, the cold rolled steel sheet obtained by the second cold rolling step is subjected to finish annealing so that the average crystal grain size is 60 μm or more and 150 μm or less.
For the reason described in the section “A. Non-oriented electrical steel sheet”, the average crystal grain size after finish annealing is set to 60 μm or more and 150 μm or less.
The finish annealing is preferably performed by holding in a temperature range of 900 ° C. to 1150 ° C. for 1 second to 120 seconds. When the annealing temperature in finish annealing (hereinafter also referred to as “finish annealing temperature”) is less than 900 ° C., or the annealing time in finish annealing (hereinafter also referred to as “finish annealing time”) is less than 1 second. This is because it may be difficult to make the average crystal grain size 60 μm or more. Further, when the finish annealing temperature exceeds 1150 ° C., the load on the equipment increases, and when the finish annealing time exceeds 120 seconds, the productivity is deteriorated. The finish annealing temperature is more preferably 950 ° C. or higher and 1100 ° C. or lower.
Other conditions for finish annealing are not particularly limited.

6.その他の工程
(コーティング工程)
上記仕上焼鈍工程後に、無方向性電磁鋼板には必要に応じて絶縁コーティングを施してもよい。絶縁コーティングの種類は特に限定されるものではなく、有機成分のみ、無機成分のみあるいは有機無機複合物からなる絶縁被膜を施せばよい。無機成分としては重クロム酸−ホウ酸系、リン酸系、シリカ系などが使用でき、有機成分としては一般的なアクリル系、アクリルスチレン系、アクリルシリコン系、シリコン系、ポリエステル系、エポキシ系、フッ素系の樹脂が使用できる。塗装性を考慮するとエマルジョンタイプの樹脂がよい。また、加熱・加圧することにより接着能を発揮する絶縁コーティングを施してもよい。接着能を有するコーティングとしては、アクリル系、フエノール系、エポキシ系、メラミン系などがよい。
6). Other processes (coating process)
After the finish annealing step, the non-oriented electrical steel sheet may be provided with an insulating coating as necessary. The type of the insulating coating is not particularly limited, and an insulating coating made of only an organic component, only an inorganic component, or an organic-inorganic composite may be applied. Dichromic acid-boric acid-based, phosphoric acid-based, silica-based, etc. can be used as inorganic components, and organic components such as general acrylic-based, acrylic styrene-based, acrylic silicon-based, silicon-based, polyester-based, epoxy-based, Fluorine resin can be used. In consideration of paintability, an emulsion type resin is preferable. Moreover, you may give the insulating coating which exhibits adhesiveness by heating and pressurizing. As the coating having adhesiveness, acrylic, phenol, epoxy, melamine, and the like are preferable.

(熱間圧延工程)
上記第1冷間圧延工程に供する熱延鋼板は、上述の化学組成を有する鋼塊または鋼片(以下、「スラブ」ともいう。)に熱間圧延を施すことにより得ることができる。
上述の化学組成を有する鋼スラブは、上述した化学組成を有する鋼を連続鋳造法あるいは鋼塊を分塊圧延するなど一般的な方法により製造され、加熱炉に装入して熱間圧延に供される。この際、スラブ加熱温度が高い場合には加熱炉に装入しないで熱間圧延を行ってもよい。スラブ加熱温度は特に制限されるものではないが、コストおよび熱間圧延性の観点から1000℃以上1300℃以下とすることが好ましい。熱間圧延の各種条件は特に限定されるものではないが、仕上温度は700℃以上950℃以下、巻取温度は750℃以下が好ましい。熱間圧延の仕上げ厚は生産性の観点から1.6mm以上2.8mm以下が好ましい。仕上げ厚が1.6mm未満では熱間圧延および酸洗の能率が著しく劣化するが、本発明ではそのような薄肉への熱間圧延は施さずともよい。
(Hot rolling process)
The hot-rolled steel sheet used in the first cold rolling step can be obtained by subjecting a steel ingot or steel slab (hereinafter also referred to as “slab”) having the above-described chemical composition to hot rolling.
Steel slabs having the chemical composition described above are manufactured by a general method such as continuous casting of steel having the chemical composition described above or by ingot rolling of a steel ingot, and the steel slab is charged into a heating furnace for hot rolling. Is done. At this time, when the slab heating temperature is high, hot rolling may be performed without charging the furnace. The slab heating temperature is not particularly limited, but is preferably 1000 ° C. or higher and 1300 ° C. or lower from the viewpoint of cost and hot rolling properties. Various conditions for hot rolling are not particularly limited, but the finishing temperature is preferably 700 ° C. or higher and 950 ° C. or lower, and the winding temperature is preferably 750 ° C. or lower. The finish thickness of hot rolling is preferably 1.6 mm or more and 2.8 mm or less from the viewpoint of productivity. When the finished thickness is less than 1.6 mm, the efficiency of hot rolling and pickling is significantly deteriorated. However, in the present invention, such hot rolling to a thin wall may not be performed.

本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

以下、実施例および比較例を例示して、本発明を具体的に説明する。
[実施例1]
下記表1に示す化学成分の鋼を溶製し、2.1mmの仕上げ厚に熱間圧延後、均熱温度:800℃、均熱時間:12時間の箱焼鈍型の熱延板焼鈍を施し、0.70mmの中間板厚まで冷間圧延した。その後、1000℃で20秒間保持する連続焼鈍型の中間焼鈍を施し、二回目の冷間圧延にて板厚:0.27mmに仕上げ(圧下率:61.4%)、1000℃で10秒間保持する仕上焼鈍を施した。
Hereinafter, the present invention will be described specifically by way of examples and comparative examples.
[Example 1]
Steel of chemical composition shown in Table 1 below is melted, hot rolled to a finish thickness of 2.1 mm, and then subjected to box annealing type hot-rolled sheet annealing with a soaking temperature of 800 ° C. and a soaking time of 12 hours. And cold rolled to an intermediate thickness of 0.70 mm. Then, the intermediate annealing of the continuous annealing type hold | maintained at 1000 degreeC for 20 second is given, and it finishes to plate thickness: 0.27mm by the second cold rolling (rolling rate: 61.4%), and hold | maintains at 1000 degreeC for 10 second Finish annealing was performed.

得られた無方向性電磁鋼板について、圧延方向(L方向)および圧延直角方向(C方向)の磁束密度B50と鉄損W10/400(400Hzにて1.0Tに磁化した場合の鉄損)を測定するとともに、再結晶集合組織と平均結晶粒径を調査した。再結晶集合組織は、化学研磨にて板厚中央部まで減肉した後にX線回折にて{110}、{200}、{211}の不完全極点図を測定し、得られた極点図を用いて級数展開法により算出した結晶粒方位分布関数(ODF)のφ=45°断面で評価した。結果を表1に示す。 About the obtained non-oriented electrical steel sheet, magnetic flux density B 50 in the rolling direction (L direction) and perpendicular direction (C direction) and iron loss W 10/400 (iron loss when magnetized to 1.0 T at 400 Hz) ) And the recrystallization texture and the average crystal grain size were investigated. The recrystallized texture was measured by measuring the incomplete pole figures of {110}, {200}, {211} by X-ray diffraction after thinning to the center of the plate thickness by chemical polishing. The crystal grain orientation distribution function (ODF) calculated by the series expansion method was used and evaluated with a φ 2 = 45 ° cross section. The results are shown in Table 1.

No.a1−1は、Si含有量が本発明で限定する下限値を外れているばかりか上記式(1)を満たさずフェライト−オーステナイト変態を有しているために製品の組織も微細になり、磁束密度、鉄損とも劣っていた。No.a1−2は、Si含有量が本発明で限定する上限値を外れているため冷間圧延時に破断した。No.a1−3は、Mn含有量が本発明で限定する下限値を外れているため粒成長性が劣化し、磁束密度、鉄損とも劣っていた。No.a1−4は、Mn含有量が本発明で限定する上限値を外れているばかりか上記式(1)を満たさずフェライト−オーステナイト変態を有しているために磁束密度、鉄損とも劣っていた。No.a1−5はsol.Al含有量が本発明で限定する下限値を外れているばかりか上記式(1)を満たさずフェライト−オーステナイト変態を有しているため、磁束密度、鉄損とも劣っていた。No.a1−6は、sol.Al含有量が本発明で限定する上限値を外れているため磁束密度が低かった。No.a1−7は、S含有量が本発明で限定する上限値を外れているため粒成長性が劣化し、磁束密度、鉄損とも劣っていた。No.a1−8は、N含有量が本発明で限定する上限値を外れているため粒成長性が劣化し、磁束密度、鉄損とも劣っていた。No.a1−9は、P含有量が本発明で限定する上限値を外れているため冷間圧延時に破断した。No.a1−10〜21は、P含有量が本発明で限定する下限値を外れているため磁束密度が劣っていた。No.a1−22は、S含有量が本発明で限定する下限値を外れているため、圧延直角方向の磁束密度が劣っていた。また、製品段階での平均結晶粒径が粗大であるため鉄損が増大した。
これに対して、No.b1−1〜12は、本発明で限定する条件を満足しており、高い磁束密度と低鉄損を両立した無方向性電磁鋼板が得られた。No.a1−10〜21とNo.b1−1〜12の比較により、P含有量の適正化により高磁束密度化する効果は無方向性電磁鋼板の基本成分であるSi、sol.Al、Mn含有量によらず発揮されることがわかった。
No. a1-1 not only satisfies the above-mentioned formula (1) but also has a ferrite-austenite transformation because the Si content deviates from the lower limit defined in the present invention. Both density and iron loss were inferior. No. a1-2 fractured during cold rolling because the Si content deviated from the upper limit defined in the present invention. No. In a1-3, the Mn content deviated from the lower limit value defined in the present invention, so the grain growth property was deteriorated and the magnetic flux density and the iron loss were inferior. No. a1-4 is inferior in both the magnetic flux density and the iron loss because the Mn content does not satisfy the upper limit value defined in the present invention and does not satisfy the above formula (1) and has a ferrite-austenite transformation. . No. a1-5 is sol. Since the Al content not only deviated from the lower limit value limited in the present invention but also satisfied the above formula (1) and had a ferrite-austenite transformation, both the magnetic flux density and the iron loss were inferior. No. a1-6 is sol. The magnetic flux density was low because the Al content was outside the upper limit defined by the present invention. No. In a1-7, since the S content is outside the upper limit value limited in the present invention, the grain growth property is deteriorated, and both the magnetic flux density and the iron loss are inferior. No. In a1-8, since the N content deviates from the upper limit value limited in the present invention, the grain growth property was deteriorated, and both the magnetic flux density and the iron loss were inferior. No. a1-9 broke during cold rolling because the P content deviated from the upper limit defined in the present invention. No. a1-10 to 21 were inferior in magnetic flux density because the P content deviated from the lower limit defined in the present invention. No. a1-22 was inferior in magnetic flux density in the direction perpendicular to the rolling direction because the S content was outside the lower limit defined by the present invention. Moreover, since the average crystal grain size at the product stage was coarse, the iron loss increased.
In contrast, no. b1-1 to 12 satisfied the conditions defined in the present invention, and a non-oriented electrical steel sheet having both high magnetic flux density and low iron loss was obtained. No. a1-10-21 and no. b1-1 to 12 show that the effect of increasing the magnetic flux density by optimizing the P content is Si, sol. It was found that it was exhibited regardless of the Al and Mn contents.

[実施例2]
C:0.002%、Si:2.5%、Mn:0.2%、sol.Al:1.0%、P:0.08%、S:0.0024%、N:0.002%を含有する鋼を熱間圧延により2.0mmに仕上げ、No.2−1〜25、26、29は800℃で10時間保持する箱焼鈍型の熱延板焼鈍を、No.2−27、28、30は1000℃で2分間保持する連続焼鈍型の熱延板焼鈍を施した。その後、No.2−1〜25は種々の中間板厚まで冷間圧延した後、850℃〜1050℃で20秒間保持する連続焼鈍型の中間焼鈍を施し、二回目の冷間圧延によって0.20mmに仕上げた。No.2−26〜28は0.50mmの中間板厚まで冷間圧延した後、No.2−26、27は箱焼鈍型の、No.2−28は連続焼鈍型の中間焼鈍をそれぞれ施し、二回目の冷間圧延によって0.20mmに仕上げた。No.2−29、30は、熱延板焼鈍後に一回の冷間圧延で0.20mmに仕上げた。これらの鋼板に対し1050℃で5秒間保持する仕上焼鈍を施した。
[Example 2]
C: 0.002%, Si: 2.5%, Mn: 0.2%, sol. A steel containing Al: 1.0%, P: 0.08%, S: 0.0024%, N: 0.002% is finished to 2.0 mm by hot rolling. Nos. 2-1 to 25, 26, and 29 are box annealing type hot-rolled sheet annealing that is held at 800 ° C. for 10 hours. Nos. 2-27, 28 and 30 were subjected to continuous annealing type hot-rolled sheet annealing which was held at 1000 ° C. for 2 minutes. Then, no. 2-1 to 25 were cold-rolled to various intermediate plate thicknesses, then subjected to continuous annealing type intermediate annealing held at 850 ° C. to 1050 ° C. for 20 seconds, and finished to 0.20 mm by the second cold rolling. . No. Nos. 2-26 to 28 were cold-rolled to an intermediate plate thickness of 0.50 mm, Nos. 2-26 and 27 are box-annealing type Nos. No. 2-28 was subjected to continuous annealing type intermediate annealing and finished to 0.20 mm by the second cold rolling. No. Nos. 2-29 and 30 were finished to 0.20 mm by one cold rolling after hot-rolled sheet annealing. These steel plates were subjected to finish annealing that was held at 1050 ° C. for 5 seconds.

得られた無方向性電磁鋼板について、磁気特性、再結晶集合組織、平均結晶粒径を調査した。再結晶集合組織の調査方法は実施例1と同様である。結果を表2に示す。
なお、表2における「最終冷延」とは、中間焼鈍を挟む二回の冷間圧延を施した場合には二回目の冷間圧延を意味し、中間焼鈍を挟まない一回の冷間圧延を施した場合には当該冷間圧延を意味する。
The obtained non-oriented electrical steel sheet was examined for magnetic properties, recrystallization texture, and average crystal grain size. The method for investigating the recrystallized texture is the same as in Example 1. The results are shown in Table 2.
In addition, the “final cold rolling” in Table 2 means the second cold rolling when the cold rolling is performed twice with the intermediate annealing, and the cold rolling is performed once without the intermediate annealing. When it is given, it means the cold rolling.

箱焼鈍型の熱延板焼鈍と箱焼鈍型の中間焼鈍との組合せ(No.2−26)、連続焼鈍型の熱延板焼鈍と箱焼鈍型の中間焼鈍との組合せ(No.2−27)、連続焼鈍型の熱延板焼鈍と連続焼鈍型の中間焼鈍との組合せ(No.2−28)では、二回目の冷間圧延前の平均結晶粒径と二回目の冷間圧延の圧下率とを本発明の適正範囲に制御しても圧延直角方向の磁束密度改善効果は得られなかった。また、一回の冷間圧延を行ったもの(No.2−29、30)では、十分な鉄損、磁束密度は得られなかった。
これに対して、箱焼鈍型の熱延板焼鈍と連続焼鈍型の中間焼鈍との組合せ(No.2−1〜25)の中で、二回目の冷間圧延前の平均結晶粒径と二回目の冷間圧延の圧下率を本発明の適正範囲とした場合(No.2−9、10、14、15、19、20)には、圧延方向と圧延直角方向の双方に高い磁束密度が得られ、両方向で低鉄損と高磁束密度を高位両立した無方向性電磁鋼板を得られた。
Combination of box annealing type hot rolled sheet annealing and box annealing type intermediate annealing (No. 2-26), combination of continuous annealing type hot rolled sheet annealing and box annealing type intermediate annealing (No. 2-27) ) In combination of continuous annealing type hot rolled sheet annealing and continuous annealing type intermediate annealing (No. 2-28), average grain size before second cold rolling and reduction of second cold rolling Even if the rate was controlled within the appropriate range of the present invention, the effect of improving the magnetic flux density in the direction perpendicular to the rolling could not be obtained. Moreover, sufficient iron loss and magnetic flux density were not obtained in the case of one cold rolling (No. 2-29, 30).
On the other hand, in the combination (No. 2-1 to 25) of the box annealing type hot rolled sheet annealing and the continuous annealing type intermediate annealing, the average grain size before the second cold rolling and two When the reduction ratio of the second cold rolling is within the proper range of the present invention (No. 2-9, 10, 14, 15, 19, 20), a high magnetic flux density is present in both the rolling direction and the direction perpendicular to the rolling direction. As a result, a non-oriented electrical steel sheet having both low iron loss and high magnetic flux density in both directions was obtained.

Claims (1)

質量%で、Si:1.5%以上3.5%以下、sol.Al:0.1%以上2.5%以下およびMn:0.08%以上2.5%以下を下記式(1)を満足する範囲で含有し、さらに、P:0.06%以上0.20%以下、S:0.0020%超0.006%以下、C:0.005%以下およびN:0.005%以下を含有し、残部がFeおよび不純物からなる化学組成を有し、
平均結晶粒径が60μm以上150μm以下である鋼組織を有し、
板厚中央部において({100}<001>方位の集積度)>({110}<001>方位の集積度)の関係を満足する集合組織を有し、
板厚が0.30mm以下であることを特徴とする無方向性電磁鋼板。
Si+2×sol.Al−Mn≧2.0 (1)
(ここで、Si、sol.AlおよびMnは、各元素の含有量(単位:質量%)を示す。
% By mass, Si: 1.5% to 3.5%, sol. Al: 0.1% or more and 2.5% or less and Mn: 0.08% or more and 2.5% or less are contained within the range satisfying the following formula (1), and P: 0.06% or more and 0.00. 20% or less, S: more than 0.0020% and 0.006% or less, C: 0.005% or less and N: 0.005% or less, with the balance being Fe and impurities,
Having a steel structure having an average grain size of 60 μm or more and 150 μm or less,
Having a texture satisfying a relationship of ({100} <001> orientation accumulation degree)> ({110} <001> orientation accumulation degree) in the central portion of the plate thickness;
A non-oriented electrical steel sheet having a thickness of 0.30 mm or less.
Si + 2 × sol. Al-Mn ≧ 2.0 (1)
(Here, Si, sol.Al, and Mn indicate the content of each element (unit: mass%).
JP2010178255A 2010-08-09 2010-08-09 Non-oriented electrical steel sheet and manufacturing method thereof Active JP5601078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010178255A JP5601078B2 (en) 2010-08-09 2010-08-09 Non-oriented electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010178255A JP5601078B2 (en) 2010-08-09 2010-08-09 Non-oriented electrical steel sheet and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013231105A Division JP5716811B2 (en) 2013-11-07 2013-11-07 Method for producing non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2012036454A JP2012036454A (en) 2012-02-23
JP5601078B2 true JP5601078B2 (en) 2014-10-08

Family

ID=45848749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010178255A Active JP5601078B2 (en) 2010-08-09 2010-08-09 Non-oriented electrical steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5601078B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101203791B1 (en) 2012-03-27 2012-11-21 허남회 Manufacturing method of 100 ovw non-oriented electrical steel sheet with excellent magnetic properties
JP6057082B2 (en) 2013-03-13 2017-01-11 Jfeスチール株式会社 Non-oriented electrical steel sheet with excellent magnetic properties
JP5790953B2 (en) 2013-08-20 2015-10-07 Jfeスチール株式会社 Non-oriented electrical steel sheet and its hot-rolled steel sheet
JP5995002B2 (en) * 2013-08-20 2016-09-21 Jfeスチール株式会社 High magnetic flux density non-oriented electrical steel sheet and motor
BR112016029465B1 (en) * 2014-06-26 2021-03-23 Nippon Steel Corporation ELECTRIC STEEL SHEET
JP6048699B2 (en) 2015-02-18 2016-12-21 Jfeスチール株式会社 Non-oriented electrical steel sheet, manufacturing method thereof and motor core
JP6658338B2 (en) * 2016-06-28 2020-03-04 日本製鉄株式会社 Electrical steel sheet excellent in space factor and method of manufacturing the same
KR102108231B1 (en) 2017-12-26 2020-05-07 주식회사 포스코 Non-oriented electrical steel sheet and manufacturing method of the same
JP7315811B2 (en) * 2018-09-06 2023-07-27 日本製鉄株式会社 Method for manufacturing non-oriented electrical steel sheet
EP3867414A1 (en) * 2018-10-15 2021-08-25 ThyssenKrupp Steel Europe AG Method for producing an no electric strip of intermediate thickness
KR102178341B1 (en) * 2018-11-30 2020-11-12 주식회사 포스코 Non-oriented electrical steel sheet having superior magneticproperties and method for manufacturing the same
BR112022012555A2 (en) 2020-02-20 2022-09-06 Nippon Steel Corp STEEL SHEET FOR A NON-ORIENTED ELECTRIC STEEL SHEET
JPWO2021205880A1 (en) * 2020-04-10 2021-10-14
KR102283225B1 (en) * 2021-05-03 2021-07-29 주식회사 썸백 (001) textured electrical steels and method for manufacturing the same
WO2023090138A1 (en) * 2021-11-17 2023-05-25 Jfeスチール株式会社 Non-oriented electrical steel sheet and method for producing same, and method for producing motor cores

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3815336B2 (en) * 2002-01-23 2006-08-30 住友金属工業株式会社 Non-oriented electrical steel sheet
JP2005200756A (en) * 2004-01-19 2005-07-28 Sumitomo Metal Ind Ltd Method for producing non-oriented silicon steel sheet
KR101010627B1 (en) * 2008-05-23 2011-01-24 주식회사 포스코 Non oriented electrical steel

Also Published As

Publication number Publication date
JP2012036454A (en) 2012-02-23

Similar Documents

Publication Publication Date Title
JP5601078B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6651759B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6226072B2 (en) Electrical steel sheet
JP5716811B2 (en) Method for producing non-oriented electrical steel sheet
JP6451832B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5716315B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6880920B2 (en) Non-oriented electrical steel sheet and its manufacturing method, and motor core and its manufacturing method
JP6828292B2 (en) Non-oriented electrical steel sheet and its manufacturing method
KR20010007290A (en) Non-oriented electrical steel sheet and method for producing the same
JP7328491B2 (en) Non-oriented electrical steel sheet
JP4019608B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR20220142512A (en) Non-oriented electrical steel sheet, core, cold-rolled steel sheet, non-oriented electrical steel sheet manufacturing method and cold-rolled steel sheet manufacturing method
KR20200116990A (en) Non-oriented electrical steel sheet
JP2019183185A (en) Nonoriented electromagnetic steel sheet
JP6476979B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6954464B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP5447167B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP7372521B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP2012036459A (en) Non-oriented magnetic steel sheet and production method therefor
JP6604120B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5824965B2 (en) Method for producing non-oriented electrical steel sheet
JP6848597B2 (en) Non-oriented electrical steel sheet and its manufacturing method, and motor core and its manufacturing method
JP6977436B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP6638359B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5712862B2 (en) Method for producing non-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120625

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140804

R151 Written notification of patent or utility model registration

Ref document number: 5601078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350