JPH0888114A - Manufacture of nonoriented flat rolled magnetic steel sheet - Google Patents

Manufacture of nonoriented flat rolled magnetic steel sheet

Info

Publication number
JPH0888114A
JPH0888114A JP6223408A JP22340894A JPH0888114A JP H0888114 A JPH0888114 A JP H0888114A JP 6223408 A JP6223408 A JP 6223408A JP 22340894 A JP22340894 A JP 22340894A JP H0888114 A JPH0888114 A JP H0888114A
Authority
JP
Japan
Prior art keywords
steel sheet
rolling
cold rolling
hot
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6223408A
Other languages
Japanese (ja)
Other versions
JP2970423B2 (en
Inventor
Mitsuyo Doi
光代 土居
Hiroyoshi Yashiki
裕義 屋鋪
Tomoki Fukagawa
智機 深川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6223408A priority Critical patent/JP2970423B2/en
Publication of JPH0888114A publication Critical patent/JPH0888114A/en
Application granted granted Critical
Publication of JP2970423B2 publication Critical patent/JP2970423B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide a method of manufacturing a nonoriented flat rolled magnetic steel sheet whose iron loss is low especially in a high-frequency use and whose workability is good. CONSTITUTION: A slab as steel in which C in 0.010% or lower, Si in 2.0 to 3.25%, Mn in 0.1 to 2.5%, P in 0.02% or lower, N in 0.006% or lower, Al in 1.5 to 2.5% and B in 0 to 0.0050% are contained, in which Si (in %)+Al(in %)>=4.5 and Si (in %)+0.5A (in %)<4.0 are satisfied and whose remaining part is composed of Fe and of unavoidable impurities is hot-rolled. After that, in the method of manufacturing a nonoriented flat rolled magnetic steel sheet, a hot-rolled plate is annealed, a cold-rolling operation at a rolling rate of 40 to 80%, an intermediate annealing operation at 650 to 1000 deg.C and a cold-rolling operation at a rolling rate of 40 to 80% are performed, and, after that, a finish annealing operation is performed so as to lower an iron loss. Without using a special production installation, it is possible to manufacture the nonoriented flat rolled magnetic steel sheet whose cold workability and stamping workability are excellent and whose iron loss in a high-frequency region is low.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気機器の鉄心として
広く用いられる鉄損の低い無方向性電磁鋼板の製造方法
であって、とりわけ高周波条件下で使用される電気機器
の鉄心に適した無方向性電磁鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-oriented electrical steel sheet having a low iron loss, which is widely used as an iron core for electric equipment, and is particularly suitable for an iron core for electric equipment used under high frequency conditions. The present invention relates to a method for manufacturing a non-oriented electrical steel sheet.

【0002】[0002]

【従来の技術】電気機器を取り巻く環境として、機器の
効率化小型軽量化が叫ばれて久しく、より効率のよいイ
ンバータ制御も普及し始めている。周波数を高くするこ
とにより効率が向上し、小型化が可能になることから、
現在商用周波数で使用されている電気機器において、今
後高い周波数を適用するものが増加すると予想される。
2. Description of the Related Art As an environment surrounding electrical equipment, it has been long since the demand for efficient, compact and lightweight equipment, and more efficient inverter control has begun to spread. By increasing the frequency, the efficiency is improved and the size can be reduced.
Among electric devices currently used at commercial frequencies, it is expected that the number of applications of high frequencies will increase in the future.

【0003】そのため高周波条件下でのエネルギー損失
の低い電気機器が求められており、その鉄心に用いられ
る電磁鋼板も高周波域での鉄損の低いものが要望されて
いる。
Therefore, electrical equipment with low energy loss under high frequency conditions is required, and electromagnetic steel sheets used for the iron core are also required to have low iron loss in the high frequency range.

【0004】電磁鋼板の鉄損は、周波数が高くなるにつ
れて増大する。これは、鉄損がヒシテリシス損と渦電流
損の和から構成されており、いずれも適用周波数に依存
して増大することによる。特に渦電流損は周波数の二乗
に比例して増大するため、高周波域では鉄損の大半は渦
電流損となる。つまり、渦電流損を抑制することが、高
周波鉄損を抑制することにつながる。
Iron loss of electromagnetic steel sheets increases as the frequency increases. This is because the iron loss is composed of the sum of the hysteresis loss and the eddy current loss, and both increase depending on the applied frequency. In particular, since the eddy current loss increases in proportion to the square of the frequency, most of the iron loss in the high frequency region is the eddy current loss. That is, suppressing eddy current loss leads to suppressing high frequency iron loss.

【0005】従来より、この渦電流損を低減させる方法
として、鋼板の電気抵抗を上昇させることや板厚の薄肉
化が行われてきた。電気抵抗を高める目的でのSiの添
加は他のどの元素よりも有効であるが、Siを 4%以上
添加すると、硬くなるばかりでなく極めて脆くなる。こ
のため通常の工業的プロセスにおける鋼板の冷間圧延方
法では割れが発生しやすく、それに加えて薄い板厚が必
要となればますます製造が困難になる。
Conventionally, as a method for reducing this eddy current loss, the electrical resistance of the steel sheet has been increased and the thickness of the steel sheet has been reduced. Addition of Si for the purpose of increasing electric resistance is more effective than any other element, but if Si is added in an amount of 4% or more, not only becomes hard but also becomes extremely brittle. Therefore, the cold rolling method of the steel sheet in the usual industrial process is apt to cause cracks, and in addition, it becomes more difficult to manufacture if the thin sheet thickness is required.

【0006】鋼中にSiを約 6.5%添加すると、磁歪は
殆どゼロになり、透磁率は極大を示し、ヒシテリシス損
が著しく低くなることは以前より知られており、それに
加えてSiが多量に添加されるので、電気抵抗が増し、
Fe−Si系においては最良の磁気特性を持つ材料にな
る。このような高Si含有鋼板の製造方法に溶湯超急冷
法や滲珪法が開発されているが、特殊な製造設備が必要
になる。
It has been known for a long time that when Si is added to steel in an amount of about 6.5%, the magnetostriction becomes almost zero, the magnetic permeability exhibits a maximum, and the hysteresis loss is remarkably reduced. In addition, a large amount of Si is added. Since it is added, the electrical resistance increases,
In the Fe-Si system, the material has the best magnetic characteristics. Although a molten metal ultra-quenching method and a siliconizing method have been developed as a method for manufacturing such a high Si content steel sheet, special manufacturing equipment is required.

【0007】このような加工性のよくない高Si鋼板
を、圧延にて製造する方法が特開昭 62-103321号公報に
示されており、熱間圧延の低温域で高圧下を加えて結晶
粒を微細化し、冷間圧延時の割れを抑制しようとしてい
る。しかし、製品鋼板にて良好な磁気特性を発揮させる
には充分に焼鈍して結晶粒を大きくしなければならず、
そうなると加工が困難な極めて脆い製品になり、これを
加工するとすれば特殊な工具や設備が必要になる。
A method for producing such a high Si steel sheet having poor workability by rolling is disclosed in Japanese Patent Application Laid-Open No. 62-103321, in which a crystal is formed by applying high pressure in the low temperature range of hot rolling. We are trying to reduce the grain size and suppress cracking during cold rolling. However, in order to exhibit good magnetic properties in the product steel sheet, it must be annealed sufficiently to increase the crystal grain,
If this happens, it becomes an extremely brittle product that is difficult to process, and if this is to be processed, special tools and equipment are required.

【0008】電気抵抗を増すには、Si添加とほぼ同等
の効果のあるAlを多量に添加する方法が考えられる。
電磁鋼板に対するのAlの添加は、方向性電磁鋼板では
各結晶粒子が 110 <001>方位に優先配向した金属組織
( 110 <001>集合組織)であるのに対し、Alを多く添
加すると、 100 <001>集合組織が得られやすいというこ
とで以前から検討されてきた。 100 <001>集合組織が増
した鋼板は板の面方向の磁気特性が向上し、しかも特定
の方向に偏らないことから、モータ等に使用される無方
向性電磁鋼板には理想的と言われるものであるが、現実
には製造コストと特性向上のバランスからその実用化に
は至っていない。
In order to increase the electric resistance, a method of adding a large amount of Al, which has almost the same effect as adding Si, can be considered.
In the grain-oriented electrical steel sheet, the addition of Al to the electrical steel sheet has a metal structure (110 <001> texture) in which each crystal grain is preferentially oriented in the 110 <001> orientation. It has been studied for a long time because it is easy to obtain <001> texture. 100 <001> A steel sheet with an increased texture improves the magnetic properties in the plane direction of the sheet, and is not biased in a specific direction, so it is said to be ideal for non-oriented electrical steel sheets used for motors, etc. However, in reality, it has not been put to practical use because of the balance between the manufacturing cost and the improvement in characteristics.

【0009】Si添加に加えて、電気抵抗を増したり、
磁壁の移動を阻害して磁化特性を悪くする微細なAlN
の析出を阻止する目的で、1%以下のAlの添加は、無
方向性電磁鋼板においてはよく行なわれる。このSi添
加鋼に、さらに積極的にAlを添加することを提案する
ものとして特開平 3-24251号公報がある。これにはSi
を 3.3%以下で、Alが 1.5〜 8%の無方向性電磁鋼板
が提示されており、Siの比率を下げてAlの比率を高
くすると、加工性が改善され磁気特性が向上し、特に 1
00 <001>集合組織が発達しやすいとしている。この公報
は先行引例としてフランス国特許出願第 2,316,338号の
Si: 2.5〜 3.5%にAl: 0.3〜 1.5%を添加した場
合を紹介し、このSi量ではAlが 1.5%を超えると合
金が極端に脆化すると指摘している。
In addition to adding Si, increase the electric resistance,
Fine AlN that obstructs the movement of the domain wall and deteriorates the magnetization characteristics
In order to prevent the precipitation of Al, 1% or less of Al is often added to non-oriented electrical steel sheets. Japanese Patent Application Laid-Open No. 3-24251 proposes that Al is more positively added to this Si-added steel. Si for this
A non-oriented electrical steel sheet with an Al content of 1.5% to 8% at 3.3% or less is proposed. If the Si content is lowered and the Al content is increased, the workability is improved and the magnetic properties are improved.
00 <001> The organization is said to be easy to develop. This publication introduces, as a precedent reference, the case where Al: 0.3-1.5% is added to Si: 2.5-3.5% of French patent application No. 2,316,338. With this Si content, when Al exceeds 1.5%, the alloy becomes extremely extreme. It points out that it becomes brittle.

【0010】このようにSi添加量を増せば、電気抵抗
が増して特に高周波領域の使用に適した性能の得られる
ことはわかっていても、材料の加工性が大幅に劣化する
と言う問題があり、その対策にSi量を増さずAlを添
加することが考えられる。しかしながら、充分に電気抵
抗を増した上で加工性を確保するには限界がある。
Although it is known that an increase in the amount of Si added increases the electrical resistance and obtains the performance particularly suitable for use in the high frequency region, the workability of the material is significantly deteriorated. As a countermeasure, it is possible to add Al without increasing the amount of Si. However, there is a limit to ensuring workability while sufficiently increasing the electric resistance.

【0011】[0011]

【発明が解決しようとする課題】本発明はこのような問
題を解消することを課題としてなされたものであり、現
状の設備で実現可能な条件で鋼板を製造することがで
き、製品鋼板の打ち抜き加工が容易で、磁気特性に優れ
た、とりわけ高周波域において鉄損の低い、無方向性電
磁鋼板の製造方法を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and it is possible to manufacture steel sheets under the conditions that can be realized with the current equipment, and to punch product steel sheets. It is intended to provide a method for manufacturing a non-oriented electrical steel sheet which is easy to process and has excellent magnetic properties, and particularly has a low iron loss in a high frequency range.

【0012】[0012]

【課題を解決するための手段】本発明者らは、特に高周
波域にて優れた磁気特性を有し、かつ製造時の冷間圧延
性や、鋼板製品の打ち抜き性の良好な無方向性電磁鋼板
の製造方法について、数多くの実験を積み重ねて詳細に
検討した結果、下記のような幾つかの新しい知見を得
た。
DISCLOSURE OF THE INVENTION The inventors of the present invention have found that non-directional electromagnetic waves having excellent magnetic properties, particularly in the high frequency range, and having good cold rollability during manufacturing and punching properties of steel sheet products. As a result of extensively studying a number of experiments on the method for manufacturing a steel sheet, the following new findings were obtained.

【0013】(a) 高周波鉄損の低減のため渦電流損を抑
制する目的で、Siの添加に加えて、それと同等の電気
抵抗増加効果のあるAlの添加を検討の結果、適切な量
のAlを複合添加することにより高周波域において良好
な磁気特性が得られることがわかった。
(A) In order to suppress eddy current loss to reduce high-frequency iron loss, as a result of studying addition of Si, which has an effect of increasing electric resistance equivalent to that of Si, in addition to Si, an appropriate amount was found. It was found that by adding Al in combination, good magnetic characteristics can be obtained in the high frequency range.

【0014】(b) 同等の磁気特性を得るのに、Si単独
で添加量を増すよりもAlを複合添加する方が加工性が
良好であった。しかし、Alも添加量が増せば加工性は
劣化し改善効果に限界がある。この加工性と磁気特性に
およぼす複合添加の効果を種々調査の結果、磁気特性が
向上し、かつ加工性が良好である複合添加の範囲がある
ことが明らかになった。
(B) In order to obtain equivalent magnetic properties, the workability was better when Al was added in combination rather than when Si was added alone. However, if the addition amount of Al also increases, the workability deteriorates and the improvement effect is limited. As a result of various investigations on the effect of the composite addition on the workability and magnetic properties, it has been revealed that there is a range of the composite addition having improved magnetic properties and good workability.

【0015】(C) このSiとAlの複合添加に加えてさ
らにMnを添加すると、冷間圧延時や打ち抜き時の耐割
れ性は改善され、その添加量を増していけば加工性を損
なうことなく高周波での磁気特性が向上することがわか
った。
(C) If Mn is added in addition to the composite addition of Si and Al, the crack resistance during cold rolling and punching is improved, and if the addition amount is increased, the workability is impaired. It was found that the magnetic characteristics at high frequencies were improved.

【0016】(d) Si、AlおよびMnを複合添加した
素材による鋼板の製造方法として、熱間圧延後、冷間圧
延→中間焼鈍→冷間圧延→最終焼鈍と言う工程を取るこ
とが磁気特性に好ましい集合組織を得るのに最適であっ
た。
(D) As a method of manufacturing a steel sheet using a material to which Si, Al and Mn are added in combination, the steps of hot rolling, cold rolling → intermediate annealing → cold rolling → final annealing may be performed. It was optimal for obtaining a favorable texture.

【0017】(e) さらに上記 (d)に加えて熱間圧延後の
冷間圧延の前に熱延板焼鈍を入れた工程にすることによ
って、磁気特性はさらに向上し、製品の鋼板にてリジン
グが問題になる場合はその抑制にも有効であることがわ
かった。
(E) Further, in addition to the above (d), the magnetic property is further improved by a process in which hot-rolled sheet annealing is performed before cold rolling after hot rolling. It was found that it is also effective in suppressing ridging when it becomes a problem.

【0018】このような知見に基づき、(1)重量%
で、C: 0.010%以下、Si: 2.0〜3.25%、Mn:
0.1〜 2.5%、P:0.02%以下、S: 0.006%以下、
N: 0.006%以下、Al: 1.5〜 2.5%およびB: 0〜
0.0050%を含有し、かつ Si(%)+Al(%)≧
4.5およびSi(%)+ 0.5Al(%)< 4.0を満足
し、残部はFeおよび不可避的不純物からなる鋼のスラ
ブを、熱間圧延後、圧延率40〜80%の冷間圧延を行な
い、ついで 650〜1000℃にて中間焼鈍して、さらに圧延
率40〜80%の冷間圧延後、仕上焼鈍を行う鉄損の低い無
方向性電磁鋼板の製造方法、および(2)上記(1)に
記載の組成の鋼のスラブを熱間圧延後、その熱延鋼板を
650〜1000℃にて焼鈍し、圧延率40〜80%の冷間圧延を
行ない、ついで 650〜1000℃にて中間焼鈍して、さらに
圧延率40〜80%の冷間圧延後、仕上焼鈍を行う鉄損の低
い無方向性電磁鋼板の製造方法、の発明を完成した。
Based on these findings, (1)% by weight
C: 0.010% or less, Si: 2.0 to 3.25%, Mn:
0.1 to 2.5%, P: 0.02% or less, S: 0.006% or less,
N: 0.006% or less, Al: 1.5 to 2.5% and B: 0 to
Contains 0.0050% and Si (%) + Al (%) ≧
A steel slab satisfying 4.5 and Si (%) + 0.5 Al (%) <4.0 with the balance being Fe and inevitable impurities is hot-rolled and then cold-rolled at a rolling rate of 40 to 80%, Then, an intermediate annealing is performed at 650 to 1000 ° C., and after cold rolling with a rolling rate of 40 to 80%, finish annealing is performed, and a method for producing a non-oriented electrical steel sheet with low iron loss, and (2) above (1) After hot rolling a steel slab having the composition described in 1.
Annealing is performed at 650 to 1000 ° C, cold rolling is performed at a rolling rate of 40 to 80%, then intermediate annealing is performed at 650 to 1000 ° C, and further finish annealing is performed after cold rolling at a rolling rate of 40 to 80%. The invention of a method for producing a non-oriented electrical steel sheet having a low iron loss is completed.

【0019】[0019]

【作用】以下本発明の方法の構成要件ごとに作用効果お
よび限定理由を説明する。
The operation and effect and the reason for limitation will be described below for each constituent element of the method of the present invention.

【0020】(1)素材スラブまたは製品鋼板の化学組
成 (1) C量 Cの存在は磁気特性を大幅に劣化し、容認できる範囲と
して 0.010%以下とするが、さらに低減できれば磁気特
性は向上するので、望ましくは 0.005%以下である。
(1) Chemical composition of raw material slab or product steel sheet (1) C content The presence of C significantly deteriorates the magnetic properties, and the allowable range is 0.010% or less, but if it can be further reduced, the magnetic properties will improve. Therefore, it is preferably 0.005% or less.

【0021】(2) Si量 Siは、磁気特性に大きな影響を与える元素であり、含
有量が増加するほど鋼板の鉄損が減少する。これは電気
抵抗が上昇して渦電流損が低下することが主要な理由で
ある。しかし、Si含有量が3.25%を超えると冷間圧延
が困難になるとともに、打ち抜き性も悪くなる。一方、
2.0%未満の含有量では鉄損の低減が不十分である。し
たがって、Si含有量の範囲を 2.0〜3.25%とする。
(2) Si content Si is an element that greatly affects the magnetic properties, and the iron loss of the steel sheet decreases as the content increases. This is mainly because the electrical resistance increases and the eddy current loss decreases. However, if the Si content exceeds 3.25%, cold rolling becomes difficult and the punchability also deteriorates. on the other hand,
If the content is less than 2.0%, the reduction of iron loss is insufficient. Therefore, the Si content range is 2.0 to 3.25%.

【0022】(3) Mn量 不可避的不純物元素の一つであるSの影響を低減するた
めに、最低限 0.1%の添加が必要である。そしてある程
度のMnの添加は、冷間圧延時のコイルエッジ部の割れ
低減に効果がある。これは、Mnの固溶により熱間圧延
時における結晶粒径の粗大化が抑制され、冷間の延性が
改善されたと考えられる。さらに添加量を増せば冷間加
工性を損なうことなく磁気特性が向上する。ただし過剰
の添加は材質が硬くなりすぎるので、 2.5%をこえるの
は好ましくない。
(3) Mn content In order to reduce the influence of S, which is one of the unavoidable impurity elements, it is necessary to add at least 0.1%. The addition of Mn to some extent is effective in reducing cracks in the coil edge portion during cold rolling. This is considered to be because the solid solution of Mn suppressed coarsening of the crystal grain size during hot rolling, and improved the ductility during cold rolling. Further, if the addition amount is increased, the magnetic properties are improved without impairing the cold workability. However, excessive addition makes the material too hard, so it is not preferable to exceed 2.5%.

【0023】このような理由からMnの添加範囲を 0.2
〜 2.5%とするが、特に高周波における磁気特性を配慮
するなら、 0.6〜 2.5%とする方が好ましい。
For this reason, the addition range of Mn should be 0.2
Although it is set to ~ 2.5%, it is preferable to set it to 0.6 to 2.5% especially when the magnetic characteristics at high frequencies are taken into consideration.

【0024】(4) S量 Sは鋼中でMnと結合してMnS析出物となり、磁気特
性や延性を劣化させるので少ないほどよい。本発明の効
果を発揮させる限度として 0.006%以下とするが、望ま
しくは 0.003%以下である。
(4) S content S is preferable because it is combined with Mn in steel to form MnS precipitates and deteriorates magnetic properties and ductility. The limit for exerting the effect of the present invention is 0.006% or less, preferably 0.003% or less.

【0025】(5) Al量 Alは、Siとほぼ同等の電気抵抗の上昇効果を有す
る。そこで、加工性を害しない上限程度までSi量を含
有させたところへAlを添加し、磁気特性向上と加工性
劣化を調査した結果、単に電気抵抗が増加した以上に高
周波磁気特性の改善効果があること、および、Si量だ
けで同程度に電気抵抗を増した場合よりも加工性が良好
であることがわかった。Alの最適添加量はSi量によ
り異なり、1.5%以下では充分な磁気特性は得られな
い。一方、Alの多量添加は磁歪を増大させる傾向にあ
り、特に、 2.5%を超えると顕著に増大する。磁歪は騒
音の原因であると言われており、そのうえ、磁歪の増大
はヒシテリシス損を増加を招くことにもなる。このよう
な理由から、Alの添加の範囲は 1.5〜 2.5%とする。
(5) Amount of Al Al has an effect of increasing electric resistance which is almost equal to that of Si. Therefore, as a result of investigating the improvement of the magnetic characteristics and the deterioration of the workability by adding Al to the place where the Si content is contained up to the upper limit which does not impair the workability, the effect of improving the high frequency magnetic characteristics is more than the increase in the electric resistance. It was found that the workability was better than that in the case where the electrical resistance was increased to the same extent only by the amount of Si. The optimum amount of Al added depends on the amount of Si, and if it is 1.5% or less, sufficient magnetic properties cannot be obtained. On the other hand, addition of a large amount of Al tends to increase the magnetostriction, and in particular, when it exceeds 2.5%, it remarkably increases. Magnetostriction is said to be a cause of noise, and moreover, an increase in magnetostriction also causes an increase in hysteresis loss. For this reason, the range of addition of Al is 1.5 to 2.5%.

【0026】(6) N量 NはAlと結合して微細なAlN析出物となり磁気特性
を阻害する。したがって低ければ低いほど好ましい。
0.006%は許容上限値である。
(6) N content N combines with Al to form fine AlN precipitates, which impairs magnetic properties. Therefore, the lower the better.
0.006% is the upper limit of tolerance.

【0027】(7) B量 Bは添加しなくてもよいが、添加すれば加工時の割れ、
特に急激に応力の加わる加工の際の割れ防止に有効であ
る。添加する場合:0.0003%以上が好ましく、0.0020%
以上では効果が飽和し、0.0050%以上では逆に脆化す
る。
(7) Amount of B It is not necessary to add B, but if it is added, cracks during processing,
In particular, it is effective in preventing cracks during processing where stress is rapidly applied. When added: 0.0003% or more is preferable, 0.0020%
If the content is above, the effect is saturated, and if it is more than 0.0050%, it becomes brittle.

【0028】(8) SiとAlの複合効果 上記の様に、SiとAlの複合添加にMnを加えること
によって磁気特性と加工性が改善され、その添加量範囲
内にてさらに充分な磁気特性を確保するためには、Si
量とAl量が Si(%)+Al(%)≧ 4.5 であることが必要である。しかしながら、冷間圧延時の
割れあるいは製品鋼板の打ち抜き加工時の割れなど冷間
加工性の低下の点からは、SiとAlの含有量増大に限
界があり、充分な加工性を維持するには、 Si(%)+ 0.5Al(%)< 4.0 でなければならない。
(8) Combined effect of Si and Al As described above, by adding Mn to the combined addition of Si and Al, the magnetic characteristics and workability are improved, and more sufficient magnetic characteristics are obtained within the range of the addition amount. To secure the
The amount and the amount of Al must be Si (%) + Al (%) ≧ 4.5. However, from the viewpoint of deterioration of cold workability such as cracks during cold rolling or cracks during punching of product steel sheet, there is a limit to the increase in Si and Al contents, and it is necessary to maintain sufficient workability. , Si (%) + 0.5Al (%) <4.0.

【0029】(9) 不可避的不純物元素 上記の元素以外の不可避的不純物元素はいずれも磁気特
性を劣化させるので、少なければ少ないほど望ましい
が、特に磁気特性や加工性ににおよぼす影響の大きい元
素、例えばO、Ti、Nb、V等は充分な注意が必要で
ある。
(9) Inevitable Impurity Elements Any unavoidable impurity elements other than the above-mentioned elements deteriorate the magnetic characteristics, so the smaller the amount, the more preferable. However, the elements that have a great influence particularly on the magnetic characteristics and workability, For example, O, Ti, Nb, V, etc. require careful attention.

【0030】(2)製造条件 (a) 熱間圧延 熱間圧延に供するスラブは連続鋳造スラブまたは分塊圧
延スラブの何れを用いてもよく、連続鋳造で得たスラブ
を直送圧延してもよいし一旦冷却されたスラブを再加熱
してもよい。また熱間圧延条件については特に限定しな
いが、磁気特性からはスラブ加熱温度は1200℃以下、仕
上温度は 750〜 850℃が望ましい。
(2) Manufacturing conditions (a) Hot rolling The slab used for hot rolling may be either a continuously cast slab or a slab of slabs, and the slab obtained by continuous casting may be directly rolled. Then, the slab once cooled may be reheated. Although the hot rolling conditions are not particularly limited, it is desirable that the slab heating temperature is 1200 ° C or lower and the finishing temperature is 750 to 850 ° C in view of magnetic characteristics.

【0031】巻取り温度は特に規制しないが、高温ほど
磁気特性は向上する傾向がある。しかし、巻取り温度を
高温にすると表面の酸化層が増大しその除去が困難にな
ってくる。ただし、請求項2に示した熱延板で焼鈍を行
なう方法においては低温で巻取るべきで、望ましくは 6
00℃以下とする。
Although the winding temperature is not particularly limited, the magnetic characteristics tend to improve as the temperature increases. However, when the winding temperature is increased, the oxide layer on the surface increases and it becomes difficult to remove it. However, in the method of annealing a hot rolled sheet according to claim 2, it should be wound at a low temperature, preferably 6
It shall be below 00 ℃.

【0032】(b) 冷間圧延 優れた磁気特性を得るため、熱延鋼板を冷間圧延した
後、焼鈍して充分再結晶させ、さらに冷間圧延を行ない
最終製品の板厚に仕上げる。始めの冷間圧延を一次冷
圧、中間の燒鈍後の冷間圧延を二次冷圧と言う。中間の
焼鈍を挟んで2回冷間圧延することによって、最終製品
の磁気特性が向上するが、これは、1回の高圧下率の冷
圧で最終製品の板厚にするよりも、 110 <001>方位や 1
00 <001>方位等の磁気特性に好ましい集合組織が発達し
やすいためである。
(B) Cold Rolling In order to obtain excellent magnetic properties, the hot rolled steel sheet is cold rolled, then annealed to be sufficiently recrystallized, and further cold rolled to finish the thickness of the final product. The first cold rolling is called primary cold rolling, and the cold rolling after the intermediate annealing is called secondary cold rolling. By cold rolling twice with an intermediate anneal, the magnetic properties of the final product are improved, but this is 110% less than the plate thickness of the final product by one cold pressing at high pressure. 001> bearing and 1
This is because a texture that is favorable for magnetic properties such as the <001> orientation easily develops.

【0033】冷間圧延の圧下率は一次冷圧、二次冷圧と
も40〜80%とするが、この圧下率の範囲を外れると充分
な磁気特性が得られない。
The reduction ratio of cold rolling is set to 40 to 80% for both the primary cold pressure and the secondary cold pressure. However, if the reduction ratio is out of this range, sufficient magnetic properties cannot be obtained.

【0034】冷間圧延は室温でもよいが、割れ防止の観
点から鋼板を 350℃以下に加熱して実施してもよい。 3
50℃を超えると圧延時の鋼板の形状制御が困難になると
ともに、圧延油も特殊な性状のものを用いる必要があ
る。
The cold rolling may be carried out at room temperature, but may be carried out by heating the steel sheet to 350 ° C. or lower from the viewpoint of preventing cracking. 3
If the temperature exceeds 50 ° C, it becomes difficult to control the shape of the steel sheet during rolling, and it is necessary to use rolling oil with special properties.

【0035】(c) 中間焼鈍 中間焼鈍により、材料を再結晶させ軟化させることで、
二次冷延において冷延割れを防止することができ、かつ
磁気的に好ましい集合組織を発達させることができる。
焼鈍の方法は、箱焼鈍、連続焼鈍のいずれの方式でもよ
く、その温度に到達するなら均熱時間には特に制約はな
い。
(C) Intermediate Annealing By intermediate annealing, the material is recrystallized and softened,
Cold rolling cracks can be prevented in the secondary cold rolling, and a magnetically favorable texture can be developed.
The method of annealing may be either box annealing or continuous annealing, and there is no particular limitation on the soaking time as long as the temperature is reached.

【0036】焼鈍温度が 650℃未満では、再結晶が十分
に進行せず、焼鈍の効果が得られない。一方、焼鈍温度
が1000℃を超えると、結晶粒が粗大化し過ぎて冷間圧延
時に割れが生じやすくなる。したがって、中間焼鈍温度
は、 650〜1000℃とした。箱焼鈍の場合には 650〜 900
℃が、連続焼鈍の場合には 750〜1000℃がそれぞれ望ま
しい。
When the annealing temperature is lower than 650 ° C., recrystallization does not proceed sufficiently and the effect of annealing cannot be obtained. On the other hand, if the annealing temperature exceeds 1000 ° C., the crystal grains become too coarse and cracks are likely to occur during cold rolling. Therefore, the intermediate annealing temperature was set to 650 to 1000 ° C. 650 to 900 for box annealing
In the case of continuous annealing, 750 to 1000 ° C is desirable.

【0037】(d) 仕上焼鈍 二次冷圧で所定の板厚に仕上げた後、製品としての電磁
鋼板を得るための仕上焼鈍を行なう。再結晶が充分行な
われ適度に結晶粒が成長するのであれば、その条件は特
には限定しないが、焼鈍温度として望ましくは 700℃〜
1250℃である。
(D) Finish annealing After finishing to a predetermined plate thickness by secondary cold pressure, finish annealing is performed to obtain a magnetic steel sheet as a product. The conditions are not particularly limited as long as the recrystallization is sufficiently performed and the crystal grains are appropriately grown, but the annealing temperature is preferably 700 ° C to
It is 1250 ° C.

【0038】また必要に応じ表面に、絶縁、防錆、また
は打ち抜き加工性向上を目的に、薄い被膜を塗布し焼き
付けてもよい。
If necessary, a thin film may be applied and baked on the surface for the purpose of insulation, rust prevention, or improvement of punching workability.

【0039】(e) 熱延板焼鈍 上述の製造工程において、熱間圧延後の冷間圧延の前
に、熱延板焼鈍を実施すると、磁気特性をさらに向上さ
せることができる。これは、磁気的に好ましい集合組織
が発達しやすくなるためと考えられる。また、熱延板焼
鈍を施すことで、表面に発生する凹凸状の欠陥であるリ
ジングを軽減することができる。リジングは、最終製品
の積層鉄心の占積率を低下させその磁気特性を悪くする
うえに、鋼板製品としての外観上も好ましくない。
(E) Annealing of Hot-rolled Sheet In the above-mentioned manufacturing process, if the hot-rolled sheet is annealed before the cold rolling after the hot rolling, the magnetic characteristics can be further improved. It is considered that this is because a magnetically favorable texture easily develops. Further, by performing the hot-rolled sheet annealing, it is possible to reduce ridging, which is an uneven defect generated on the surface. Ridging lowers the space factor of the laminated core of the final product and deteriorates its magnetic properties, and is not preferable in terms of appearance as a steel sheet product.

【0040】このような効果を得るための熱延板焼鈍温
度は 650℃〜1000℃で、保持時間は材料がこの温度に到
達するなら特に制約はない。焼鈍温度が 650℃未満では
再結晶が不十分で磁気特性が改善されず、1000℃を超え
ると、結晶粒が粗大化し過ぎて機械的特性は劣化し、割
れやリジングの抑制に対して効果がなくなる。これらの
効果を充分発揮させるためには 700〜 900℃が望まし
い。
The hot-rolled sheet annealing temperature for obtaining such effects is 650 ° C. to 1000 ° C., and the holding time is not particularly limited as long as the material reaches this temperature. If the annealing temperature is less than 650 ° C, recrystallization is insufficient and the magnetic properties are not improved, and if it exceeds 1000 ° C, the crystal grains become too coarse and the mechanical properties deteriorate, which is effective in suppressing cracking and ridging. Disappear. In order to fully exhibit these effects, 700 to 900 ° C is desirable.

【0041】[0041]

【実施例】【Example】

〔実施例1〕表1に示す組成の供試鋼を、高周波加熱真
空溶解炉で溶製し、それらの鋼片を1150℃に加熱後、仕
上げ温度 800℃の熱間圧延により厚さ 2.3mmの熱延板を
作製した。これを一次冷間圧延として圧下率65%で0.80
mm厚まで圧延した後、 750℃で 1時間以上均熱の箱焼鈍
による中間焼鈍を行ない、圧下率56%の二次冷間圧延に
て0.35mm厚にした。冷間圧延で割れが発生した試験片
は、 300℃の温間圧延にて所定の板厚まで圧延を実施し
た。
[Example 1] Sample steels having the compositions shown in Table 1 were melted in a high frequency heating vacuum melting furnace, and the steel pieces were heated to 1150 ° C and then hot rolled at a finishing temperature of 800 ° C to obtain a thickness of 2.3 mm. The hot-rolled sheet of was produced. This is the primary cold rolling and 0.80 at a reduction rate of 65%.
After rolling to a thickness of mm, intermediate annealing was performed by box annealing at 750 ° C for 1 hour or more, and secondary cold rolling with a reduction rate of 56% was performed to a thickness of 0.35 mm. The test piece in which cracking occurred in cold rolling was hot-rolled at 300 ° C to a predetermined plate thickness.

【0042】圧延後の鋼板は、1000℃で1分間均熱の焼
鈍を行なった後、室温にて打抜き加工により圧延方向お
よび圧延直角方向を長手方向とした、幅30mm、長さ 280
mmのエプスタイン磁気特性測定試験片を作製した。打抜
き時に割れが発生した試験片については、放電加工によ
り試験片を作製した。
The rolled steel sheet was annealed at 1000 ° C. for 1 minute, and then punched at room temperature to make the rolling direction and the direction perpendicular to the rolling longitudinal direction, width 30 mm, length 280.
An Epstein magnetic property measurement test piece of mm was prepared. As for the test piece in which cracking occurred during punching, a test piece was prepared by electrical discharge machining.

【0043】これらの試験片を用いて、 800℃で2時間
の歪取り焼鈍を実施した後、磁気特性を測定した。通
常、無方向性電磁鋼板は50〜60ヘルツの商用周波数にて
鉄損の測定が行なわれるが、高周波での性能を知るた
め、 400ヘルツでの鉄損を測定した。これらの一連の試
験結果も表1に示す。なお、磁気特性としては、鉄損が
低く、磁束密度の高い方が優れていて、鉄損W10/400
(周波数 400Hzで 1.0テスラ(T) まで磁化した時の鉄
損)が16.0以下、磁束密度B8 (800A/mの磁場で磁化し
た時の磁束密度)が1.40以上を目標とする。
Using these test pieces, after performing stress relief annealing at 800 ° C. for 2 hours, magnetic properties were measured. In general, non-oriented electrical steel sheets are measured for iron loss at a commercial frequency of 50 to 60 hertz, but in order to know the performance at high frequencies, iron loss at 400 hertz was measured. The results of these series of tests are also shown in Table 1. As for the magnetic characteristics, the lower the iron loss and the higher the magnetic flux density is, the better the iron loss is W10 / 400.
(Iron loss when magnetized to 1.0 Tesla (T) at a frequency of 400 Hz) is 16.0 or less, and magnetic flux density B8 (magnetic flux density when magnetized in a magnetic field of 800 A / m) is 1.40 or more.

【0044】本発明で定める条件を全て満たした鋼種A
〜Eは、良好な磁気特性を示すとともに、室温における
冷間圧延や打抜き加工時において割れの発生はなく、良
好な加工性を有していた。
Steel type A satisfying all the conditions defined in the present invention
In addition to exhibiting good magnetic properties, Nos. To E had good workability without cracking during cold rolling or punching at room temperature.

【0045】鋼種K〜NはSi(%)+Al(%)が
4.5を下まわっており、それらから製造された鋼板の磁
気特性は鉄損が大きく所要の性能が得られていなかっ
た。
For steel types K to N, Si (%) + Al (%) is
The value was below 4.5, and the magnetic properties of the steel sheets produced from them had large iron loss and the required performance was not obtained.

【0046】また、Si(%)+ 0.5Al(%)が4.0
を超える鋼種F〜JおよびPから製造された鋼板は、鉄
損が低く磁気特性は良好ではあるが、冷間圧延にて割れ
が発生し、さらに打抜き加工時に、エッジ部より微細な
割れが発生した。
Further, Si (%) + 0.5Al (%) is 4.0
Steel sheets manufactured from steel types F to J and P exceeding 5% have low iron loss and good magnetic properties, but cracks occur in cold rolling, and fine cracks occur from the edge portion during punching. did.

【0047】本発明で定める量より高い量を有する鋼種
OおよびPは、磁歪が大きく実用的ではない。
Steel types O and P having an amount higher than that specified in the present invention have large magnetostriction and are not practical.

【0048】このように、鋼種A〜Eは、特性、製造お
よび加工性のいずれにおいても極めて優れた材料であ
る。
As described above, the steel types A to E are extremely excellent materials in terms of characteristics, manufacturing and workability.

【0049】[0049]

【表1】 [Table 1]

【0050】〔実施例2〕Mn量の影響を知るため、表
2に示すように、実施例1で用いた鋼種CおよびDに対
してSiおよびAl量は同等とし、Mn量を変えた鋼C1
〜C3およびD1〜D4を高周波加熱真空溶解炉で溶製し、実
施例1と同じ工程、同じ条件で板厚0.35mmの試験片を作
製し、同様な方法で磁気特性を調査した。これらの試験
結果を表2に示す。
[Example 2] In order to know the influence of the amount of Mn, as shown in Table 2, steels C and D used in Example 1 were made to have the same amounts of Si and Al, but different amounts of Mn. C1
.About.C3 and D1 to D4 were melted in a high frequency heating vacuum melting furnace, a test piece having a plate thickness of 0.35 mm was prepared under the same process and conditions as in Example 1, and magnetic properties were investigated by the same method. The results of these tests are shown in Table 2.

【0051】Mn量増加と共に鉄損は低減していくが、
多くなり過ぎると硬くなり、冷間圧延の圧下が困難にな
る。Mn量が本発明の範囲を超える鋼種C3およびD4は、
室温における一次、二次冷間圧延で減厚できなかった。
Iron loss decreases as the amount of Mn increases,
If too much, it becomes hard and it becomes difficult to carry out cold rolling reduction. Steel types C3 and D4 in which the amount of Mn exceeds the range of the present invention are
The thickness could not be reduced by the primary and secondary cold rolling at room temperature.

【0052】[0052]

【表2】 [Table 2]

【0053】〔実施例3〕実施例1および実施例2にて
用いた鋼種CおよびC1により、実施例1と同様の方法で
板厚 2.3mmの熱延板に仕上げた後、表3に示すように、
一次冷間圧延、中間焼鈍および二次冷間圧延を行ない、
0.35mm厚の鋼板に仕上げた。一次、二次冷間圧延はいず
れも室温とし、中間焼鈍は 850℃で1時間の均熱とし
た。二次冷間圧延の後、実施例1と同様の方法で試験片
を作製し、磁気測定を実施した。
[Example 3] Using the steel types C and C1 used in Examples 1 and 2, a hot rolled sheet having a plate thickness of 2.3 mm was finished in the same manner as in Example 1, and then shown in Table 3. like,
Primary cold rolling, intermediate annealing and secondary cold rolling,
Finished to a 0.35 mm thick steel plate. Both the primary and secondary cold rolling were performed at room temperature, and the intermediate annealing was performed at 850 ° C for 1 hour. After the secondary cold rolling, test pieces were prepared in the same manner as in Example 1 and magnetic measurements were performed.

【0054】一次あるいは二次の冷間圧延において、本
発明の範囲外の圧下率で製造された鋼板はいずれも目標
とする磁気特性(鉄損W15/400≦16.0、かつ磁束密度B
8 ≧1.40)に到達しなかった。また、中間焼鈍なしに一
回の冷間圧延で目標の板厚に仕上げようとした条件7で
は、冷間圧延時に割れが発生した。
In the primary or secondary cold rolling, the steel sheets manufactured with the rolling reduction outside the range of the present invention have target magnetic properties (iron loss W15 / 400 ≦ 16.0 and magnetic flux density B).
8 ≧ 1.40) was not reached. Further, under the condition 7 in which it was attempted to finish the target plate thickness by one cold rolling without intermediate annealing, cracking occurred during cold rolling.

【0055】[0055]

【表3】 [Table 3]

【0056】〔実施例4〕実施例1および実施例2にて
用いた鋼種CおよびC1により、実施例1と同様の方法で
板厚 2.3mmの熱延板に仕上げた後、一次冷間圧延の圧下
率を65%とし、中間焼鈍の温度を変え、さらに板厚0.35
mmに仕上げるため圧下率56%の二次冷間圧延行なった。
中間焼鈍は1分間均熱の連続焼鈍とした。中間焼鈍温度
が1030℃と高い場合、二次冷間圧延で割れが発生した。
これは焼鈍温度が高すぎ、結晶粒が粗大化して脆くなっ
たためと思われた。二次冷間圧延後、1000℃で1分間均
熱の焼鈍を行なって、実施例1と同様にして磁気特性を
調査した。
Example 4 Using the steel types C and C1 used in Examples 1 and 2, a hot rolled sheet having a plate thickness of 2.3 mm was finished in the same manner as in Example 1, and then primary cold rolling was performed. The reduction rate of 65% was changed to 65%, the temperature of intermediate annealing was changed, and
Secondary cold rolling with a reduction rate of 56% was performed to finish to mm.
The intermediate annealing was a continuous annealing for 1 minute soaking. When the intermediate annealing temperature was as high as 1030 ℃, cracking occurred in the secondary cold rolling.
This was probably because the annealing temperature was too high and the crystal grains became coarse and brittle. After the secondary cold rolling, soaking was performed for 1 minute at 1000 ° C., and the magnetic characteristics were investigated in the same manner as in Example 1.

【0057】これらの結果をまとめて表4に示す。中間
焼鈍の温度が低すぎる場合、充分な磁気特性が得られな
かった。
The results are summarized in Table 4. When the temperature of the intermediate annealing was too low, sufficient magnetic properties could not be obtained.

【0058】[0058]

【表4】 [Table 4]

【0059】〔実施例5〕実施例1および実施例2にて
用いた鋼種CおよびC1により、実施例1と同様の方法で
板厚 2.3mmの熱延板に仕上げた後、表5に示す条件の熱
延板焼鈍を実施した。次いで、実施例1と同様の工程お
よび条件で一次冷延、中間焼鈍、二次冷延を経た後、10
00℃で1分間均熱の焼鈍を行なって試験片を作製し、磁
気測定とJISC2550に規定された占積率試験を行なった。
[Embodiment 5] Using the steel types C and C1 used in Embodiments 1 and 2, a hot-rolled sheet having a thickness of 2.3 mm was finished in the same manner as in Embodiment 1, and then shown in Table 5. Annealing of the hot rolled sheet was carried out under the conditions. Then, after undergoing primary cold rolling, intermediate annealing, and secondary cold rolling in the same steps and conditions as in Example 1, 10
Annealing was performed at 00 ° C. for 1 minute to prepare a test piece, and the magnetic field measurement and the space factor test specified in JIS C2550 were performed.

【0060】表5に示す条件11は、熱延板焼鈍を行なっ
ていない本発明例で、比較として示す。条件12は、熱延
板焼鈍温度を行なっているが温度が不十分でその効果は
現われていない。これら2つの条件は、本発明の請求項
2には該当せず、熱延板焼鈍の効果は得られていない
が、請求項1に含まれるもので、磁気特性としては充分
な値が得られている。
Condition 11 shown in Table 5 is an example of the present invention in which hot-rolled sheet annealing is not performed, and is shown as a comparison. In condition 12, the hot-rolled sheet annealing temperature is used, but the effect is not exhibited because the temperature is insufficient. These two conditions do not correspond to claim 2 of the present invention, and the effect of hot-rolled sheet annealing is not obtained, but they are included in claim 1, and a sufficient value is obtained as magnetic characteristics. ing.

【0061】本発明の請求項2に相当する条件の熱延板
焼鈍を行なった条件13では、磁気特性の向上ばかりでな
く、占積率も向上した。ただし、焼鈍温度の高すぎる条
件14では、脆くなって、冷間圧延時に割れが発生した。
Under the condition 13 in which the hot-rolled sheet was annealed under the conditions corresponding to claim 2 of the present invention, not only the magnetic properties were improved, but also the space factor was improved. However, under condition 14 where the annealing temperature was too high, it became brittle and cracked during cold rolling.

【0062】[0062]

【表5】 [Table 5]

【0063】[0063]

【発明の効果】本発明の方法によれば、冷間加工性を劣
化させることなく電磁鋼板の磁気特性の向上、特に高周
波領域における鉄損を低くすることができる。このた
め、このような低損失の無方向性電磁鋼板を特殊な設備
を用いることなく製造すること、および製品鋼板の所要
形状へ加工することが可能となる。
According to the method of the present invention, it is possible to improve the magnetic properties of the electrical steel sheet, particularly to reduce the iron loss in the high frequency region without deteriorating the cold workability. Therefore, it becomes possible to manufacture such a low-loss non-oriented electrical steel sheet without using special equipment and to process the product steel sheet into a required shape.

【0064】[0064]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C: 0.010%以下、Si: 2.0
〜3.25%、Mn: 0.1〜 2.5%、P:0.02%以下、S:
0.006%以下、N: 0.006%以下、Al: 1.5〜 2.5%
およびB: 0〜0.0050%を含有し、かつSi(%)+A
l(%)≧ 4.5およびSi(%)+ 0.5Al(%)<
4.0を満足し、残部はFeおよび不可避的不純物からな
る鋼のスラブを、熱間圧延後、圧延率40〜80%の冷間圧
延を行ない、ついで 650〜1000℃にて中間焼鈍して、さ
らに圧延率40〜80%の冷間圧延後、仕上焼鈍を行う鉄損
の低い無方向性電磁鋼板の製造方法。
1. By weight%, C: 0.010% or less, Si: 2.0
~ 3.25%, Mn: 0.1-2.5%, P: 0.02% or less, S:
0.006% or less, N: 0.006% or less, Al: 1.5 to 2.5%
And B: contains 0 to 0.0050% and Si (%) + A
l (%) ≧ 4.5 and Si (%) + 0.5Al (%) <
A slab of steel satisfying 4.0 and balance of Fe and unavoidable impurities is hot-rolled, cold-rolled at a rolling rate of 40 to 80%, then annealed at 650 to 1000 ° C., and A method for producing a non-oriented electrical steel sheet with low iron loss, which comprises performing finish annealing after cold rolling with a rolling rate of 40 to 80%.
【請求項2】重量%で、C: 0.010%以下、Si: 2.0
〜3.25%、Mn: 0.1〜 2.5%、P:0.02%以下、S:
0.006%以下、N: 0.006%以下、Al: 1.5〜 2.5%
およびB: 0〜0.0050%を含有し、かつSi(%)+A
l(%)≧ 4.5およびSi(%)+ 0.5Al(%)<
4.0を満足し、残部はFeおよび不可避的不純物からな
る鋼のスラブを、熱間圧延後、その熱延鋼板を 650〜10
00℃にて焼鈍し、圧延率40〜80%の冷間圧延を行ない、
ついで 650〜1000℃にて中間焼鈍して、さらに圧延率40
〜80%の冷間圧延後、仕上焼鈍を行う鉄損の低い無方向
性電磁鋼板の製造方法。
2. By weight%, C: 0.010% or less, Si: 2.0
~ 3.25%, Mn: 0.1-2.5%, P: 0.02% or less, S:
0.006% or less, N: 0.006% or less, Al: 1.5 to 2.5%
And B: contains 0 to 0.0050% and Si (%) + A
l (%) ≧ 4.5 and Si (%) + 0.5Al (%) <
4.0, with the balance being Fe and unavoidable impurities, the steel slab was hot-rolled,
Annealed at 00 ℃, cold rolled at a rolling rate of 40-80%,
Then, intermediate annealing was performed at 650 to 1000 ℃, and the rolling rate was 40%.
A method for manufacturing a non-oriented electrical steel sheet with low iron loss, which is obtained by performing finish annealing after cold rolling to -80%.
JP6223408A 1994-09-19 1994-09-19 Manufacturing method of non-oriented electrical steel sheet Expired - Fee Related JP2970423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6223408A JP2970423B2 (en) 1994-09-19 1994-09-19 Manufacturing method of non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6223408A JP2970423B2 (en) 1994-09-19 1994-09-19 Manufacturing method of non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH0888114A true JPH0888114A (en) 1996-04-02
JP2970423B2 JP2970423B2 (en) 1999-11-02

Family

ID=16797681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6223408A Expired - Fee Related JP2970423B2 (en) 1994-09-19 1994-09-19 Manufacturing method of non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP2970423B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100277416B1 (en) * 1996-11-15 2001-01-15 토마스 더블유. 버크맨 Metallized Membrane Capacitors and Manufacturing Method Thereof
JP2007247047A (en) * 2006-03-20 2007-09-27 Nippon Steel Corp Non-oriented electromagnetic steel sheet
JP2008231504A (en) * 2007-03-20 2008-10-02 Jfe Steel Kk Non-oriented electromagnetic steel sheet
JP2011236486A (en) * 2010-05-13 2011-11-24 Sumitomo Metal Ind Ltd Non-grain-oriented electrical steel sheet, and method of producing the same
WO2012017933A1 (en) * 2010-08-04 2012-02-09 新日本製鐵株式会社 Process for producing non-oriented electromagnetic steel sheet
JP2012036459A (en) * 2010-08-09 2012-02-23 Sumitomo Metal Ind Ltd Non-oriented magnetic steel sheet and production method therefor
JP2013515170A (en) * 2009-12-28 2013-05-02 ポスコ Non-oriented electrical steel sheet excellent in magnetism and method for producing the same
US10643771B2 (en) 2013-12-23 2020-05-05 Posco Non-oriented electrical steel sheet and manufacturing method therefor
WO2023008513A1 (en) * 2021-07-30 2023-02-02 日本製鉄株式会社 Non-oriented electrical steel sheet, iron core, iron core manufacturing method, and motor manufacturing method
US11749429B2 (en) 2021-07-30 2023-09-05 Nippon Steel Corporation Non oriented electrical steel sheet, iron core, manufacturing method of iron core, motor, and manufacturing method of motor
US11859265B2 (en) 2021-07-30 2024-01-02 Nippon Steel Corporation Non oriented electrical steel sheet, iron core, manufacturing method of iron core, motor, and manufacturing method of motor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100277416B1 (en) * 1996-11-15 2001-01-15 토마스 더블유. 버크맨 Metallized Membrane Capacitors and Manufacturing Method Thereof
JP2007247047A (en) * 2006-03-20 2007-09-27 Nippon Steel Corp Non-oriented electromagnetic steel sheet
JP4658840B2 (en) * 2006-03-20 2011-03-23 新日本製鐵株式会社 Method for producing non-oriented electrical steel sheet
JP2008231504A (en) * 2007-03-20 2008-10-02 Jfe Steel Kk Non-oriented electromagnetic steel sheet
JP2013515170A (en) * 2009-12-28 2013-05-02 ポスコ Non-oriented electrical steel sheet excellent in magnetism and method for producing the same
JP2011236486A (en) * 2010-05-13 2011-11-24 Sumitomo Metal Ind Ltd Non-grain-oriented electrical steel sheet, and method of producing the same
CN103052722A (en) * 2010-08-04 2013-04-17 新日铁住金株式会社 Process for producing non-oriented electromagnetic steel sheet
WO2012017933A1 (en) * 2010-08-04 2012-02-09 新日本製鐵株式会社 Process for producing non-oriented electromagnetic steel sheet
JP5437476B2 (en) * 2010-08-04 2014-03-12 新日鐵住金株式会社 Method for producing non-oriented electrical steel sheet
EP2602335A4 (en) * 2010-08-04 2016-11-30 Nippon Steel & Sumitomo Metal Corp Process for producing non-oriented electromagnetic steel sheet
US9579701B2 (en) 2010-08-04 2017-02-28 Nippon Steel & Sumitomo Metal Corporation Manufacturing method of non-oriented electrical steel sheet
JP2012036459A (en) * 2010-08-09 2012-02-23 Sumitomo Metal Ind Ltd Non-oriented magnetic steel sheet and production method therefor
US10643771B2 (en) 2013-12-23 2020-05-05 Posco Non-oriented electrical steel sheet and manufacturing method therefor
WO2023008513A1 (en) * 2021-07-30 2023-02-02 日本製鉄株式会社 Non-oriented electrical steel sheet, iron core, iron core manufacturing method, and motor manufacturing method
JP7243938B1 (en) * 2021-07-30 2023-03-22 日本製鉄株式会社 Non-oriented electrical steel sheet, iron core, iron core manufacturing method, motor, and motor manufacturing method
US11749429B2 (en) 2021-07-30 2023-09-05 Nippon Steel Corporation Non oriented electrical steel sheet, iron core, manufacturing method of iron core, motor, and manufacturing method of motor
US11814710B2 (en) 2021-07-30 2023-11-14 Nippon Steel Corporation Non oriented electrical steel sheet, iron core, manufacturing method of iron core, motor, and manufacturing method of motor
US11859265B2 (en) 2021-07-30 2024-01-02 Nippon Steel Corporation Non oriented electrical steel sheet, iron core, manufacturing method of iron core, motor, and manufacturing method of motor

Also Published As

Publication number Publication date
JP2970423B2 (en) 1999-11-02

Similar Documents

Publication Publication Date Title
JP2700505B2 (en) Non-oriented electrical steel sheet having excellent magnetic properties and method for producing the same
EP3533890B1 (en) Non-oriented electrical steel sheet and method for producing same
JP7153076B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5655295B2 (en) Low carbon steel sheet and method for producing the same
EP3572545A1 (en) Non-oriented electromagnetic steel sheet and production method therefor
JP7174053B2 (en) Bidirectional electrical steel sheet and manufacturing method thereof
TWI692534B (en) Multilayer electromagnetic steel plate
JPS59197520A (en) Manufacture of single-oriented electromagnetic steel sheet having low iron loss
EP3358027A1 (en) Non-oriented electromagnetic steel sheet and manufacturing method of same
JP2970423B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP2004197217A (en) Nonoriented electrical steel sheet excellent in circumferential magnetic property, and production method therefor
JP2004060026A (en) Grain oriented silicon steel sheet having excellent high frequency magnetic property, rollability and workability and method for producing the same
JP2000129410A (en) Nonoriented silicon steel sheet high in magnetic flux density
JP2639227B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP4192399B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP7445656B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP4568999B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP3178270B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP2874564B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JP2022509676A (en) Non-oriented electrical steel sheet and its manufacturing method
JP6943544B2 (en) Inverter power supply Reactor Electromagnetic steel sheet for iron core and its manufacturing method
JP2560579B2 (en) Method for manufacturing high silicon steel sheet having high magnetic permeability
JP4292805B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties
JP3434936B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
KR102483634B1 (en) Non-oriented electrical steel sheet and method of manufactruing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees