JP4292805B2 - Method for producing non-oriented electrical steel sheet with excellent magnetic properties - Google Patents

Method for producing non-oriented electrical steel sheet with excellent magnetic properties Download PDF

Info

Publication number
JP4292805B2
JP4292805B2 JP2003009290A JP2003009290A JP4292805B2 JP 4292805 B2 JP4292805 B2 JP 4292805B2 JP 2003009290 A JP2003009290 A JP 2003009290A JP 2003009290 A JP2003009290 A JP 2003009290A JP 4292805 B2 JP4292805 B2 JP 4292805B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
cold rolling
magnetic properties
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003009290A
Other languages
Japanese (ja)
Other versions
JP2004218036A (en
Inventor
善彦 尾田
英之 木村
芳一 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003009290A priority Critical patent/JP4292805B2/en
Publication of JP2004218036A publication Critical patent/JP2004218036A/en
Application granted granted Critical
Publication of JP4292805B2 publication Critical patent/JP4292805B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、モータや発電機の鉄心材料等に使用される電磁鋼板の製造方法に関する。
【0002】
【従来の技術】
近年、省エネルギーニーズの高まりから、モータの高効率化の要望が高まっている。モータ高効率化を達成するためには、コア材として使用される電磁鋼板の高性能化が必須であり、このため磁束密度が高く鉄損の低い電磁鋼板が強く要望されている。電磁鋼板の磁束密度を高めるためには冷間圧延前の結晶粒径を粗大化させることが効果的であり、熱延鋼板にスキンパスを付与し、焼鈍を行なう技術(例えば特許文献1)や、熱間圧延後高温巻取りを行ない、鋼帯の保有する熱で自己焼鈍を行なう技術(例えば特許文献2)が開示されている。さらには、冷間圧延前に二次再結晶を生じさせることにより結晶粒を粗大にし、磁気特性を向上させる技術(例えば特許文献3)が開示されている。
【0003】
【特許文献1】
特公昭45−22211号公報
【0004】
【特許文献2】
特公昭57−43132号公報
【0005】
【特許文献3】
特開平3−211258号公報
【0006】
【発明が解決しようとする課題】
しかし、いずれの技術も、圧延方向の磁気特性は向上するものの、磁気特性の異方性が大きくなり、モータ用途には適さないという問題があった。
【0007】
本発明はこのような事情に鑑みなされたものであり、磁束密度が高く鉄損が低い、磁気特性に優れた無方向性電磁鋼板の製造方法を提供するものである。
【0008】
【課題を解決するための手段】
本発明者らが上記課題の解決に関し鋭意検討したところ、SnもしくはSbを単独もしくは複合で0.01〜0.05%添加し、冷間圧延前粒径を300〜2000μmとすることにより異方性が低減され、優れた磁気特性が得られることを見出した。
【0009】
本発明はかかる知見に基づきなされたもので、以下のような構成を有する。
【0010】
質量%で、C:0.005%以下、Si:1.5%以下、Al:0.1〜1.0%もしくは0.004%以下、P:0.2%以下、Mn:0.05〜1.0%、S: 0.01%以下、N:0.005%以下、Ti+V+Zr=0.001〜0.01%、SnもしくはSbをそれぞれ単独もしくは複合で0.01〜0.05%含み、残部Fe及び不可避的不純物からなる鋼を熱間圧延、熱延板焼鈍、冷間圧延、仕上げ焼鈍と順次行うにあたり、冷間圧延前の結晶粒径を300〜2000μmとすることを特徴とする無方向性電磁鋼板の製造方法。
【0011】
【発明の実施の形態】
本発明を実験結果に基づいて詳細に説明する。
【0012】
最初に、磁気特性に及ぼす冷間圧延前粒径の影響を調査するため、C:0.0025%、Si:0.25%、Mn:0.30%、P:0.10%、S:0.004%、tr.Al、N:0.0021%、V:0.002%とした鋼を実験室にて溶解し、熱延後、酸洗を行った。引き続きこの熱延板に75%H2−25%N2雰囲気で850℃×2min〜20hrの熱延板焼鈍を施し、その後、板厚0.50mmまで冷間圧延し、10%H2−90%N2雰囲気で800℃×1min間の仕上焼鈍を行った。図1に、このようにして得られたサンプルの冷間圧延前粒径と磁束密度B50、B50の異方性(BL−BC)/BLの関係を示す。ここで磁気特性の測定は25cmエプスタイン法にて行った。
【0013】
図1より、冷間圧延前粒径が300μm以上となった場合に磁気特性が大幅に向上しており、500μm超の領域でより一層優れた磁束密度が得られている。結晶粒径が2000μmを超えた場合でも優れた磁気特性が得られるが、冷間圧延時に板破断が生じやすくなるため、冷間圧延前粒径の上限は2000μmとする。以上より、冷間圧延前粒径は300〜2000μmとする。
【0014】
しかし、結晶粒が300μm以上となった場合には、優れた磁束密度が得られていると同時に、異方性も増大していることがわかる。そこで、異方性低減を目的として各種元素の影響について調査した。その結果、見出した元素がSnである。以下、実験結果に基づいてSnの効果を説明する。
【0015】
異方性に及ぼすSnの効果を調査するため、C:0.0026%、Si:0.25%、Mn:0.25%、P:0.020%、tr.Al、S:0.003%、N:0.0020%、V:0.003%とし、Sn量をtr.〜600ppmの範囲で変化させた鋼をラボ溶解し、熱延後、酸洗を行った。引き続きこの熱延板に75%H2−25%N2雰囲気で860℃×20hrの熱延板焼鈍を施し、その後、板厚0.50mmまで冷間圧延し、10%H2−90%N2雰囲気で800℃×1min間の仕上焼鈍を行った。図2に、このようにして得られたサンプルのSn量とB50の異方性(BL−BC)/BLの関係を示す。ここで、磁気特性の測定は25cmエプスタイン法にて行った。
【0016】
図2より、Sn量が100ppm以上の領域で異方性が低下することがわかる。ここで、Sn添加により異方性が低下した理由は明確ではないが、粒界偏析したSnが再結晶集合組織を変化させたためと考えられる。しかし、Snをさらに添加し、Sn>500ppmとなった場合には、粒成長性が低下し鉄損が増大する。以上より、Snは100〜500ppmとする。
【0017】
以上の異方性低減効果はSnと同様な粒界偏析型元素であるSbを100ppm以上添加した場合にも認められ、500ppm超えの添加で鉄損が増大した。以上よりSbもSn同様、100ppm以上とし、鉄損の観点から上限を500ppmとする。
【0018】
さらに、SbとSnを複合添加した場合にも、Sb+Snで100ppm以上添加した場合に上記と同様に異方性が低下し、Sb+Snで500ppm超えで添加した場合に鉄損増大が認められた。このことよりSbとSnを複合添加した場合にはSb+Snで100ppm以上とし、鉄損の観点より、500ppm以下とする。
【0019】
次に、その他の成分の限定理由について説明する。
【0020】
Siは鋼板の固有抵抗を上げるために有効な元素であるが、1.5%を超えると磁束密度が低下するため上限を1.5%とした。
【0021】
AlはSiと同様、固有抵抗を上げるために有効な元素であるが、1.0%を超えると磁束密度が低下するため上限を1.0%とした。また、0.004%超え〜0.1%未満の場合にはAlNが微細化し粒成長性が低下するためAlを添加する場合には下限を0.1%とした。また、Alを添加しない場合には0.004%以下とする。
【0022】
Cは磁気時効の問題があるため0.005%以下とした。
【0023】
Mnは熱間圧延時の赤熱脆性を防止するために、0.05%以上必要であるが、1.0%以上になると磁束密度を低下させるため0.05〜1.0%とした。
【0024】
Pは鋼板の打ち抜き性を改善するために必要な元素であるが、0.2%を超えて添加すると鋼板が脆化するため0.2%以下とした。
【0025】
V、Ti、Zrは各々、熱延板焼鈍時に二次再結晶を生じさせ、粗大な冷間圧延前粒径を得るために必要な元素であるため、単独もしくは複合でV+Ti+Zrで0.001%以上とする。一方、V+Ti+Zrが0.01%を超えた場合には粒成長性が低下し鉄損が増大するため上限は0.01%とする。
【0026】
次に本発明の磁気特性に優れた無方向性電磁鋼板の製造方法について説明する。
【0027】
本発明の無方向性電磁鋼板は、成分および冷間圧延前粒径が所定の範囲内となるように製造される。すなわち、本発明の鋼板を得るには、例えば、転炉で吹練した溶鋼を脱ガス処理し所定の成分に調整し、引き続き鋳造、熱間圧延を行う。この時、熱間圧延時の仕上焼鈍温度、巻取り温度は特に規定する必要はなく、通常でかまわない。次いで、熱間圧延後、熱延板焼鈍を行う。ここで、冷間圧延前粒径の調整はこの熱延板焼鈍により行なうことができる。次いで一回の冷間圧延、もしくは中間焼鈍をはさんだ2回以上の冷間圧延により所定の板厚とした後に、最終焼鈍を行う。
【0028】
【実施例】
表1に示す鋼を用い、転炉で吹練した後に脱ガス処理を行うことにより所定の成分に調整し、次いで、鋳造し、スラブを1200℃で1hr加熱した後、板厚2.0mmまで熱間圧延を行った。熱延仕上げ温度は800℃、巻取り温度は700℃とした。次いで、表1に示す条件の熱延板焼鈍を施した。その後、板厚0.5mmまで冷間圧延を行い、850℃×1min間で仕上焼鈍を行った。
【0029】
上記により得られた鋼板について、磁気特性を行った。なお、ここで、磁気測定は25cmエプスタイン試験片を用いて行った。各鋼板の磁気特性を表1に併せて示す。
【0030】
【表1】

Figure 0004292805
【0031】
表1より、鋼板成分および冷間圧延前粒径を本発明の範囲に制御した本発明鋼では、異方性が低減され、仕上焼鈍後の磁気特性が優れていることがわかる。特に結晶粒径500μm超の領域で優れた特性が得られている。
【0032】
一方、比較鋼では、鉄損、磁束密度、異方性のいずれか一つ以上が劣っている。
【0033】
【発明の効果】
以上述べたように、本発明によれば、鉄損が低く磁束密度の高い鋼板を得ることが出来、本発明の鋼板を使用することにより例えば高効率誘導モータの高効率化が達成できる。さらに本発明の鋼板は、誘導モータ以外のモータの効率向上にも効果的である。
【図面の簡単な説明】
【図1】冷間圧延前粒径と磁束密度、異方性との関係を示す図。
【図2】Sn量と異方性との関係を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing an electromagnetic steel sheet used for a core material of a motor or a generator.
[0002]
[Prior art]
In recent years, demand for higher motor efficiency has been increasing due to increasing energy saving needs. In order to achieve high motor efficiency, it is essential to improve the performance of the electrical steel sheet used as the core material. For this reason, there is a strong demand for an electrical steel sheet having a high magnetic flux density and a low iron loss. In order to increase the magnetic flux density of the electrical steel sheet, it is effective to coarsen the crystal grain size before cold rolling, a technique for imparting a skin pass to the hot-rolled steel sheet and performing annealing (for example, Patent Document 1), A technique (for example, Patent Document 2) that performs high-temperature winding after hot rolling and performs self-annealing with the heat of the steel strip is disclosed. Furthermore, a technique (for example, Patent Document 3) is disclosed in which secondary recrystallization is generated before cold rolling to make crystal grains coarse and improve magnetic characteristics.
[0003]
[Patent Document 1]
Japanese Patent Publication No. 45-22211 [0004]
[Patent Document 2]
Japanese Patent Publication No.57-43132
[Patent Document 3]
Japanese Patent Laid-Open No. 3-21258
[Problems to be solved by the invention]
However, although all the techniques improve the magnetic properties in the rolling direction, there is a problem that the anisotropy of the magnetic properties increases and is not suitable for motor applications.
[0007]
This invention is made | formed in view of such a situation, and provides the manufacturing method of the non-oriented electrical steel sheet excellent in the magnetic characteristic with a high magnetic flux density and a low iron loss.
[0008]
[Means for Solving the Problems]
When the present inventors diligently studied to solve the above problems, Sn or Sb was added alone or in combination to add 0.01 to 0.05%, and the grain size before cold rolling was changed to 300 to 2000 μm. It has been found that the magnetic properties are reduced and excellent magnetic properties can be obtained.
[0009]
The present invention has been made based on such knowledge, and has the following configuration.
[0010]
In mass%, C: 0.005% or less, Si: 1.5% or less, Al: 0.1 to 1.0% or 0.004% or less, P: 0.2% or less, Mn: 0.05 -1.0%, S: 0.01% or less, N: 0.005% or less, Ti + V + Zr = 0.001-0.01%, Sn or Sb, each alone or in combination, 0.01-0.05% In addition, in order to sequentially perform hot rolling, hot-rolled sheet annealing, cold rolling, and finish annealing on steel consisting of the remaining Fe and inevitable impurities , the crystal grain size before cold rolling is 300 to 2000 μm, method for producing a non-oriented electrical steel sheet you.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail based on experimental results.
[0012]
First, in order to investigate the influence of the grain size before cold rolling on the magnetic properties, C: 0.0025%, Si: 0.25%, Mn: 0.30%, P: 0.10%, S: 0.004%, tr. Steel with Al, N: 0.0021%, V: 0.002% was melted in a laboratory, and after hot rolling, pickling was performed. Subsequently, this hot-rolled sheet was subjected to hot-rolled sheet annealing at 850 ° C. for 2 minutes to 20 hours in a 75% H 2 -25% N 2 atmosphere, and then cold-rolled to a sheet thickness of 0.50 mm, and 10% H 2 -90. Finish annealing was performed at 800 ° C. for 1 min in a% N 2 atmosphere. FIG. 1 shows the relationship between the grain size before cold rolling and the anisotropy (B L −B C ) / B L of the magnetic flux densities B50 and B50 of the sample thus obtained. Here, the measurement of magnetic properties was performed by the 25 cm Epstein method.
[0013]
From FIG. 1, when the grain size before cold rolling becomes 300 μm or more, the magnetic characteristics are greatly improved, and a further excellent magnetic flux density is obtained in a region exceeding 500 μm. Although excellent magnetic properties can be obtained even when the crystal grain size exceeds 2000 μm, the upper limit of the grain size before cold rolling is set to 2000 μm because it tends to cause plate breakage during cold rolling. From the above, the grain size before cold rolling is set to 300 to 2000 μm.
[0014]
However, it can be seen that when the crystal grains are 300 μm or more, an excellent magnetic flux density is obtained and the anisotropy is also increased. Therefore, the effect of various elements was investigated for the purpose of reducing anisotropy. As a result, the found element is Sn. Hereinafter, the effect of Sn will be described based on experimental results.
[0015]
In order to investigate the effect of Sn on anisotropy, C: 0.0026%, Si: 0.25%, Mn: 0.25%, P: 0.020%, tr. Al, S: 0.003%, N: 0.0020%, V: 0.003%, and the Sn amount is tr. The steel changed in a range of ˜600 ppm was melted in the laboratory, and pickled after hot rolling. Subsequently, this hot-rolled sheet was subjected to hot-rolled sheet annealing at 860 ° C. × 20 hr in an atmosphere of 75% H 2 -25% N 2 , and then cold-rolled to a sheet thickness of 0.50 mm, and 10% H 2 -90% N Finish annealing was performed in 2 atmospheres at 800 ° C. for 1 min. FIG. 2 shows the relationship between the Sn amount of the sample thus obtained and the anisotropy (B L −B C ) / B L of B50. Here, the measurement of magnetic characteristics was performed by the 25 cm Epstein method.
[0016]
FIG. 2 shows that anisotropy decreases in the region where the Sn content is 100 ppm or more. Here, the reason why the anisotropy is decreased by the addition of Sn is not clear, but it is considered that Sn segregated at the grain boundary changed the recrystallization texture. However, when Sn is further added and Sn> 500 ppm, the grain growth property decreases and the iron loss increases. From the above, Sn is set to 100 to 500 ppm.
[0017]
The above effect of reducing anisotropy was also observed when Sb, which is a grain boundary segregation element similar to Sn, was added in an amount of 100 ppm or more. From the above, Sb is set to 100 ppm or more like Sn, and the upper limit is set to 500 ppm from the viewpoint of iron loss.
[0018]
Furthermore, even when Sb and Sn are added in combination, anisotropy decreases in the same manner as above when Sb + Sn is added at 100 ppm or more, and an increase in iron loss is observed when Sb + Sn is added above 500 ppm. It was. From this, when Sb and Sn are added in combination, Sb + Sn is set to 100 ppm or more, and from the viewpoint of iron loss, it is set to 500 ppm or less.
[0019]
Next, the reasons for limiting other components will be described.
[0020]
Si is an effective element for increasing the specific resistance of the steel sheet, but when it exceeds 1.5%, the magnetic flux density decreases, so the upper limit was made 1.5%.
[0021]
Al, like Si, is an effective element for increasing the specific resistance. However, if it exceeds 1.0%, the magnetic flux density decreases, so the upper limit was made 1.0%. Further, when it exceeds 0.004% to less than 0.1%, AlN becomes finer and grain growth property is lowered. Therefore, when Al is added, the lower limit is set to 0.1%. Further, when Al is not added, the content is made 0.004% or less.
[0022]
C has a problem of magnetic aging, so it is made 0.005% or less.
[0023]
Mn is required to be 0.05% or more in order to prevent red hot brittleness during hot rolling, but 0.05% to 1.0% in order to reduce the magnetic flux density when 1.0% or more.
[0024]
P is an element necessary for improving the punchability of the steel sheet, but if added over 0.2%, the steel sheet becomes brittle, so it was made 0.2% or less.
[0025]
V, Ti, and Zr are elements necessary for producing secondary recrystallization during hot-rolled sheet annealing and obtaining a coarse grain size before cold rolling. 0.001% or more. On the other hand, when V + Ti + Zr exceeds 0.01%, the grain growth property decreases and the iron loss increases, so the upper limit is made 0.01%.
[0026]
Next, the manufacturing method of the non-oriented electrical steel sheet excellent in the magnetic characteristics of this invention is demonstrated.
[0027]
The non-oriented electrical steel sheet of the present invention is manufactured such that the components and the grain size before cold rolling are within a predetermined range. That is, in order to obtain the steel plate of the present invention, for example, the molten steel blown in a converter is degassed and adjusted to a predetermined component, and then casting and hot rolling are performed. At this time, the finish annealing temperature and the coiling temperature at the time of hot rolling do not need to be particularly defined, and may be normal. Subsequently, after hot rolling, hot-rolled sheet annealing is performed. Here, the grain size before cold rolling can be adjusted by this hot-rolled sheet annealing. Next, after a predetermined sheet thickness is obtained by one cold rolling or two or more cold rollings with intermediate annealing, final annealing is performed.
[0028]
【Example】
Using the steel shown in Table 1, after defoaming in a converter, it is adjusted to the prescribed components, then cast, and the slab is heated at 1200 ° C. for 1 hr, and then the thickness is 2.0 mm. Hot rolling was performed. The hot rolling finishing temperature was 800 ° C. and the winding temperature was 700 ° C. Subsequently, the hot-rolled sheet annealing of the conditions shown in Table 1 was performed. Then, cold rolling was performed to a plate thickness of 0.5 mm, and finish annealing was performed at 850 ° C. × 1 min.
[0029]
The steel sheet obtained as described above was subjected to magnetic properties. Here, the magnetic measurement was performed using a 25 cm Epstein test piece. The magnetic properties of each steel sheet are also shown in Table 1.
[0030]
[Table 1]
Figure 0004292805
[0031]
From Table 1, it can be seen that the steel of the present invention in which the steel plate components and the grain size before cold rolling are controlled within the range of the present invention has reduced anisotropy and excellent magnetic properties after finish annealing. In particular, excellent characteristics are obtained in a region where the crystal grain size exceeds 500 μm.
[0032]
On the other hand, the comparative steel is inferior in any one or more of iron loss, magnetic flux density, and anisotropy.
[0033]
【The invention's effect】
As described above, according to the present invention, a steel plate having a low iron loss and a high magnetic flux density can be obtained. By using the steel plate of the present invention, for example, high efficiency of a high efficiency induction motor can be achieved. Furthermore, the steel plate of the present invention is also effective in improving the efficiency of motors other than induction motors.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between grain size before cold rolling, magnetic flux density, and anisotropy.
FIG. 2 is a graph showing the relationship between Sn content and anisotropy.

Claims (1)

質量%で、C:0.005%以下、Si:1.5%以下、Al:0.1〜1.0%もしくは0.004%以下、P:0.2%以下、Mn:0.05〜1.0%、S: 0.01%以下、N:0.005%以下、Ti+V+Zr=0.001〜0.01%、SnもしくはSbをそれぞれ単独もしくは複合で0.01〜0.05%含み、残部Fe及び不可避的不純物からなる鋼を熱間圧延、熱延板焼鈍、冷間圧延、仕上げ焼鈍と順次行うにあたり、冷間圧延前の結晶粒径を300〜2000μmとすることを特徴とする無方向性電磁鋼板の製造方法。In mass%, C: 0.005% or less, Si: 1.5% or less, Al: 0.1 to 1.0% or 0.004% or less, P: 0.2% or less, Mn: 0.05 -1.0%, S: 0.01% or less, N: 0.005% or less, Ti + V + Zr = 0.001-0.01%, Sn or Sb, each alone or in combination, 0.01-0.05% In addition, in order to sequentially perform hot rolling, hot-rolled sheet annealing, cold rolling, and finish annealing on steel consisting of the remaining Fe and inevitable impurities , the crystal grain size before cold rolling is 300 to 2000 μm, method for producing a non-oriented electrical steel sheet you.
JP2003009290A 2003-01-17 2003-01-17 Method for producing non-oriented electrical steel sheet with excellent magnetic properties Expired - Lifetime JP4292805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003009290A JP4292805B2 (en) 2003-01-17 2003-01-17 Method for producing non-oriented electrical steel sheet with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003009290A JP4292805B2 (en) 2003-01-17 2003-01-17 Method for producing non-oriented electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JP2004218036A JP2004218036A (en) 2004-08-05
JP4292805B2 true JP4292805B2 (en) 2009-07-08

Family

ID=32898833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003009290A Expired - Lifetime JP4292805B2 (en) 2003-01-17 2003-01-17 Method for producing non-oriented electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP4292805B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6319574B2 (en) * 2014-08-14 2018-05-09 Jfeスチール株式会社 Non-oriented electrical steel sheet with excellent magnetic properties
JP6194866B2 (en) * 2014-08-27 2017-09-13 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
KR101650406B1 (en) 2014-12-24 2016-08-23 주식회사 포스코 Non-oriented electrical steel sheets and method for manufacturing the same

Also Published As

Publication number Publication date
JP2004218036A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
KR101591222B1 (en) Method of producing non-oriented electrical steel sheet
EP2960345B1 (en) Production method for semi-processed non-oriented electromagnetic steel sheet exhibiting superior magnetic properties
JP5854182B2 (en) Method for producing non-oriented electrical steel sheet
JP5825494B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR20150001467A (en) Oriented electrical steel sheet and method of manufacturing the same
JP2001316729A (en) Method for manufacturing nonoriented silicon steel sheet having low core loss and high magnetic flux density
JP2000129409A (en) Nonoriented silicon steel sheet excellent in actual machine characteristic of rotary machine and its production
KR100345706B1 (en) Non oriented electrical steel sheet having superior magnetic properties and manufacturing process thereof
JP2000129410A (en) Nonoriented silicon steel sheet high in magnetic flux density
JP4207231B2 (en) Method for producing non-oriented electrical steel sheet
JPH0888114A (en) Manufacture of nonoriented flat rolled magnetic steel sheet
JP2003171718A (en) Manufacturing method of magnetic steel sheet of excellent mean magnetic characteristic in rolled surface
JP4292805B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties
JP4599843B2 (en) Method for producing non-oriented electrical steel sheet
JP4568999B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPH055126A (en) Production of nonoriented silicon steel sheet
JP3483265B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP2970436B2 (en) Manufacturing method of full process non-oriented electrical steel sheet
JP2760208B2 (en) Method for producing silicon steel sheet having high magnetic flux density
JP2004104929A (en) Magnetic steel plate for rotary equipment having split core form
JPH09228005A (en) Non-oriented silicon steel sheet of high magnetic flux density and low core loss excellent in heat conductivity, and its manufacture
JP2515146B2 (en) Non-oriented electrical steel sheet manufacturing method
JP4325235B2 (en) Core material for rotating machine
JP4277529B2 (en) Method for producing grain-oriented electrical steel sheet having no undercoat
JP3885480B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5