JP2970436B2 - Manufacturing method of full process non-oriented electrical steel sheet - Google Patents

Manufacturing method of full process non-oriented electrical steel sheet

Info

Publication number
JP2970436B2
JP2970436B2 JP6277309A JP27730994A JP2970436B2 JP 2970436 B2 JP2970436 B2 JP 2970436B2 JP 6277309 A JP6277309 A JP 6277309A JP 27730994 A JP27730994 A JP 27730994A JP 2970436 B2 JP2970436 B2 JP 2970436B2
Authority
JP
Japan
Prior art keywords
magnetic properties
steel sheet
test
width
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6277309A
Other languages
Japanese (ja)
Other versions
JPH08138924A (en
Inventor
裕義 屋鋪
智機 深川
光代 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6277309A priority Critical patent/JP2970436B2/en
Publication of JPH08138924A publication Critical patent/JPH08138924A/en
Application granted granted Critical
Publication of JP2970436B2 publication Critical patent/JP2970436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、打抜き加工による磁気
特性劣化が少なく、鉄心に成形した後の磁気特性が良好
な、フルプロセス無方向性電磁鋼板の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a non-oriented electrical steel sheet having a small magnetic property due to punching and having good magnetic properties after being formed into an iron core.

【0002】[0002]

【従来の技術】無方向性電磁鋼板は、ユーザーでの使用
方法によりフルプロセス材とセミプロセス材の2種類に
分けることができる。セミプロセス材は、ユーザーにて
打抜き加工により鉄心の形状にした後、歪取り焼鈍を施
し、積層して電気機器に組込まれる。このため、使用前
に燒鈍されることを前提に電磁鋼板が製造される場合が
多い。焼鈍すると打抜き端面の歪が除去され、結晶粒の
粗大化も進む。一般に、鋼板に加えられた加工歪は、わ
ずかであっても大きく磁気特性を劣化させ、また結晶粒
はある程度までは大きい方が磁気特性がよい。したがっ
て、最終形状に加工した後、焼鈍することは磁気特性を
大きく改善できるが、ユーザーでの熱処理費用と工数が
増えるという難点がある。
2. Description of the Related Art Non-oriented electrical steel sheets can be classified into two types, full-process materials and semi-process materials, according to the method of use by users. The semi-process material is formed into a core shape by a punching process by a user, then subjected to strain relief annealing, laminated, and incorporated into an electric device. For this reason, magnetic steel sheets are often manufactured on the assumption that they are annealed before use. When annealing is performed, the distortion of the punched end face is removed, and the crystal grains become coarser. In general, even if the strain applied to a steel sheet is slight, the magnetic properties are greatly deteriorated, and the larger the crystal grains are, the better the magnetic properties are. Therefore, annealing after processing to the final shape can greatly improve the magnetic properties, but has the disadvantage of increasing the heat treatment cost and man-hours for the user.

【0003】これに対してフルプロセス材は、打抜き加
工のまま積層して鉄心とし、電気機器に組込まれること
を想定して製造される電磁鋼板である。使用者は歪取り
焼鈍という余計な工程を省略できるが、打抜き歪による
磁気特性劣化は避けることができない。そこで、打抜き
の歪による性能劣化分をカバーするため、過剰に良好な
磁気特性を示す、高価な高級グレード材を使用すること
もある。
On the other hand, a full process material is an electromagnetic steel sheet manufactured on the assumption that it is laminated as it is punched to form an iron core and is incorporated into an electric device. Although the user can omit the extra step of strain relief annealing, magnetic property deterioration due to punching strain cannot be avoided. Therefore, in order to cover the performance degradation due to the punching distortion, an expensive high-grade material showing excessively good magnetic properties may be used.

【0004】鉄心形状を鋼板から打抜いた時、切断端面
近傍に発生した鋼板の加工歪は、特異な形状や工具の設
定が不備な場合を除き、切断端面に沿ってほぼ一定と推
定される。そうすると、打抜いた鉄心形状の面積に対
し、切断端面の累計長さの長いものほど、鉄心全体に対
する歪の量が大きくなる。
[0004] When the iron core shape is punched from a steel sheet, the processing strain of the steel sheet generated near the cut end face is estimated to be substantially constant along the cut end face, unless a special shape or tool setting is inadequate. . Then, with respect to the area of the punched iron core shape, the longer the cumulative length of the cut end face, the greater the amount of distortion with respect to the entire iron core.

【0005】例えば、電磁鋼板の磁気特性はJIS-C-2550
に示される幅30mm、長さ 280〜 320mmの短冊状試験片を
使ったエプスタイン試験により評価される。しかし中小
型モータの固定子鉄心の歯の部分は、 3〜10mm程度の極
めて狭幅となる場合がある。
[0005] For example, the magnetic properties of an electrical steel sheet are described in JIS-C-2550.
Is evaluated by an Epstein test using a strip-shaped test piece having a width of 30 mm and a length of 280 to 320 mm. However, the teeth of the stator core of a small-to-medium-sized motor may have a very narrow width of about 3 to 10 mm.

【0006】幅の狭い鉄心形状の場合、鉄心全体に占め
る打抜き端面の部分の割合は、エプスタイン試験片に比
べはるかに大きくなる。このため、鉄心形状によっては
エプスタイン試験値で期待した磁気特性が、実際の機器
では得られていないこともあり得る。
In the case of a narrow iron core shape, the ratio of the punched end face portion to the entire iron core is much larger than that of the Epstein test piece. For this reason, depending on the shape of the iron core, the magnetic properties expected from the Epstein test values may not be obtained in actual equipment.

【0007】打抜き端面、すなわち剪断面における鋼板
の歪発生は、打抜きに用いるポンチおよびダイスの工具
形状、クリアランス、あるいはその手入れ状況に大きく
影響される。一方、鋼板としては適度の硬さや、剪断抵
抗など鋼板固有の特性が歪の発生量に影響すると考えら
れる。しかしながら、それらの特性と鋼板母材の磁気特
性との関係はかならずしも明確でない。
[0007] The occurrence of distortion of the steel sheet at the punched end face, that is, the shear plane, is greatly affected by the tool shape and clearance of punches and dies used for punching, or the condition of care. On the other hand, it is considered that properties inherent to the steel sheet, such as moderate hardness and shear resistance, affect the amount of strain. However, the relationship between these properties and the magnetic properties of the steel sheet base material is not always clear.

【0008】もし、磁気特性を劣化することなく、打抜
き端面の歪発生を低減できる電磁鋼板が製造できれば、
適用するフルプロセス材のグレードを下げることがで
き、磁気特性確保のため、やむを得ずセミプロセス材を
用いて歪み取り焼鈍を行なっている用途に、置き換える
ことが可能になる。
If it is possible to manufacture an electromagnetic steel sheet capable of reducing the occurrence of distortion at the punched end face without deteriorating the magnetic properties,
The grade of the full-process material to be applied can be reduced, and it is possible to replace the use of a semi-process material for unavoidable strain relief annealing in order to secure magnetic properties.

【0009】[0009]

【発明が解決しようとする課題】本発明は、打抜きによ
る磁気特性の劣化が小さく、歪取り焼鈍を施さなくても
実際の鉄心の磁気特性が良好な、フルプロセス無方向性
電磁鋼板を製造する方法を提供しようとするものであ
る。
SUMMARY OF THE INVENTION The present invention is to produce a full-process non-oriented electrical steel sheet in which the magnetic properties due to punching are small and the actual magnetic properties of the iron core are good without performing strain relief annealing. It seeks to provide a way.

【0010】[0010]

【課題を解決するための手段】打抜き端面付近の塑性変
形による歪を低減するには、ある程度の硬さが必要であ
り、さらには剪断抵抗を減少させる必要があるが、通常
の手法としては加工歪を加えたり、介在物を増すことが
考えられる。ところがこれらの方法は鋼板そのものの磁
気特性を大きく劣化させてしまう。
In order to reduce distortion due to plastic deformation near the punched end face, it is necessary to have a certain degree of hardness and further to reduce the shear resistance. It is conceivable to add distortion or increase inclusions. However, these methods greatly degrade the magnetic properties of the steel sheet itself.

【0011】本発明者らは、まず打抜き歪によって磁気
特性が劣化する現象を定量化する方法として、JIS-C-25
50のエプスタイン試験枠による測定法の応用を考えた。
エプスタイン枠に用いる試験片は、通常幅30mm、長さ 2
80mmのものである。そこで、評価しようとする鋼板か
ら、この幅30mmの試験片と、同じ長さで幅を 5mmとした
試験片との2種類の試験片を打抜きにより採取し、 5mm
幅の場合には6枚を平面に並べ一組として30mm幅の試験
片に組上げる。これら2種類の試験片により磁気特性測
定し、結果を比較することにより、打抜き歪による磁気
特性の劣化量の大小を評価することにした。30mm幅の試
験片に対し 5mm幅の試験片は打抜きの歪が多く導入され
ており、もし、磁気特性劣化の程度が小さければ、打抜
きによる磁気特性劣化が起こりにくい材料のはずであ
る。
As a method for quantifying the phenomenon that the magnetic characteristics are deteriorated due to the punching distortion, the present inventors have proposed JIS-C-25
The application of the measurement method with 50 Epstein test frames was considered.
The test piece used for the Epstein frame is usually 30 mm wide and 2 mm long.
It is 80mm. Therefore, two types of test pieces, a test piece with a width of 30 mm and a test piece with the same length and a width of 5 mm, were sampled from the steel sheet to be evaluated by punching.
In the case of the width, six sheets are arranged in a plane and assembled as a set into a 30 mm wide test piece. The magnetic properties were measured using these two types of test pieces, and the results were compared to evaluate the magnitude of the deterioration of the magnetic properties due to the punching strain. As compared to a 30 mm wide test piece, a 5 mm wide test piece has a large amount of punch distortion, and if the degree of magnetic property deterioration is small, it should be a material that hardly causes magnetic property deterioration due to punching.

【0012】このような評価方法を用い、いくつかの鋼
板について測定をおこなった結果、通常の30mm幅の試験
片では、ほぼ同じレベルの磁気特性であるにもかかわら
ず、5mm幅にすると、鋼板によって劣化の程度が大きく
異ることを見出した。そこでさらに多くの鋼板に対して
実験や試作を行ない、測定データを集積し、解析した結
果、鋼板の成分としてSi、MnおよびS量を特定範囲
に制御し、冷間圧延後の仕上げ焼鈍を高温の連続焼鈍と
することにより、磁気特性が良好で、打抜きによる磁気
特性の劣化のすくない無方向性電磁鋼板が得られるとの
知見を得るに至った。
As a result of measuring several steel sheets by using such an evaluation method, it has been found that a normal 30 mm wide test piece has almost the same level of magnetic properties but has a 5 mm width. It has been found that the degree of deterioration varies greatly depending on the type of the battery. Therefore, experiments and trial production were conducted on more steel sheets, measurement data were collected and analyzed. As a result, the amounts of Si, Mn and S as steel sheet components were controlled within a specific range, and finish annealing after cold rolling was performed at a high temperature. It has been found that non-oriented electrical steel sheets having good magnetic properties and less deterioration of magnetic properties due to punching can be obtained by continuous annealing.

【0013】本発明は、このような知見に基づいて完成
されたものである。その要旨は、 (1)『C: 0.010%以下、Si: 1.0超〜 2.0%、M
n:0.25〜1.00%、P:0.1%以下、S: 0.015〜 0.03
5%、Al:0.15〜0.50%で、残部は実質的にFeおよ
び不可避的不純物からなる鋼のスラブを熱間圧延後、冷
間圧延し、 800℃以上のフェライト域で連続焼鈍するこ
とを特徴とする磁気特性の優れたフルプロセス無方向性
電磁鋼板の製造方法』にある。この製造方法において
(2)熱間圧延後、冷間圧延の前に、熱延板の焼鈍をお
こなうこととすれば、磁気特性の向上が可能である。さ
らに、上記(1)または(2)の製造法においては
(3)熱間圧延前のスラブ加熱温度を、1050〜1180℃と
することが望ましく、より一層の安定した磁気特性向上
が得られる。
The present invention has been completed based on such findings. The summary is as follows: (1) "C: 0.010% or less, Si: more than 1.0 to 2.0%, M
n: 0.25 to 1.00%, P: 0.1% or less, S: 0.015 to 0.03
5%, Al: 0.15 ~ 0.50%, the rest is a steel slab consisting essentially of Fe and unavoidable impurities, hot rolled, cold rolled and continuously annealed in the ferrite region above 800 ° C Method for producing full-process non-oriented electrical steel sheet having excellent magnetic properties. In this manufacturing method, (2) if the hot rolled sheet is annealed after hot rolling and before cold rolling, the magnetic properties can be improved. Further, in the above method (1) or (2), (3) the slab heating temperature before hot rolling is desirably set to 1050 to 1180 ° C., so that a more stable improvement in magnetic properties can be obtained.

【0014】[0014]

【作用】以下に本発明方法を具体的に説明し、製造条件
を前記のように限定した理由をその作用と共に記述す
る。
The method of the present invention will be specifically described below, and the reason for limiting the manufacturing conditions as described above will be described together with the operation.

【0015】A)素材鋼片の成分 (1) C Cの含有は鉄損に悪影響をおよぼすので少なければ少な
いほどよい。製品中に残存したCは炭化物を形成し、こ
れが磁壁移動の障害物となり鉄損が増加する。
A) Components of raw steel slab (1) C The content of C adversely affects iron loss, so the smaller the better, the better. C remaining in the product forms carbides, which become obstacles for domain wall movement and increase iron loss.

【0016】したがって含有量は 0.010%以下とする必
要がある。望ましいのは 0.005%以下である。
Therefore, the content needs to be 0.010% or less. Desirable is 0.005% or less.

【0017】(2) Si Siは磁気特性に大きな影響を与える元素であり、含有
量が増加するほど鋼板の電気抵抗が上昇して渦電流損が
低下し、結果として鉄損が減少する。その上、鋼板の硬
さを高くする効果がある。 1.0%以下では所望の鉄損を
確保することが困難であり、また、打抜き歪による磁気
特性の劣化も 1.0%以下では大きくなる傾向がある。し
かし、 2.0%を超える含有量では飽和磁束密度の低下が
大きくなり、本発明の主要な用途である中小型モータ用
鉄心には向かない。したがって、Si含有量は 1.0超〜
2.0%の範囲とする。
(2) Si Si is an element that has a great influence on magnetic properties. As the content increases, the electrical resistance of the steel sheet increases, the eddy current loss decreases, and as a result, the iron loss decreases. In addition, it has the effect of increasing the hardness of the steel sheet. If it is 1.0% or less, it is difficult to secure a desired iron loss, and the deterioration of magnetic properties due to punching distortion tends to be large if it is 1.0% or less. However, when the content exceeds 2.0%, the saturation magnetic flux density is greatly reduced, and is not suitable for a core for a small and medium-sized motor, which is a main application of the present invention. Therefore, the Si content is more than 1.0
The range is 2.0%.

【0018】(3) Mn 電磁鋼板に対し、Mnそのものの含有は電気抵抗を増す
程度の影響しかない。
(3) Mn The content of Mn in the magnetic steel sheet only has an effect of increasing the electric resistance.

【0019】しかし、鋼中のSと結合してMnSを形成
し、MnS析出物の大きさや分布はMn含有量により変
化する。この析出物の状態が金属組織を大きく変え、磁
気特性に重要な影響を与える。
However, it combines with S in steel to form MnS, and the size and distribution of MnS precipitates change depending on the Mn content. The state of the precipitate greatly changes the metal structure and has an important effect on the magnetic properties.

【0020】また、大きなMnS析出物が適量形成され
ると、打抜き歪による磁気特性の劣化が小さくなる。こ
れは、大きなMnS析出物の適量存在が剪断抵抗を減少
させ塑性変形領域を少なくして、磁気特性劣化を小さく
するためと考えられる。
Further, when an appropriate amount of large MnS precipitates is formed, deterioration of magnetic properties due to punching distortion is reduced. This is probably because the presence of an appropriate amount of the large MnS precipitate reduces the shear resistance, reduces the plastic deformation region, and reduces the deterioration of the magnetic properties.

【0021】Mnの含有量が0.25%未満では、MnS析
出物が粗大化せず、微細に分散する傾向がある。この場
合は、打抜き歪による磁気特性劣化を小さくできないば
かりではなく、冷間圧延後の連続焼鈍での結晶粒成長が
抑制され、良好な磁気特性が得られない。しかし、1%
をこえて添加してもこのMnの効果は飽和するので、M
n含有量を0.25〜1.00%と定めた。
If the Mn content is less than 0.25%, the MnS precipitate does not become coarse and tends to be finely dispersed. In this case, not only deterioration of magnetic properties due to punching strain cannot be reduced, but also crystal grain growth in continuous annealing after cold rolling is suppressed, and good magnetic properties cannot be obtained. However, 1%
, The effect of Mn saturates, so that M
The n content was determined to be 0.25 to 1.00%.

【0022】(4) P Pは鋼板の硬さを高くし、電気抵抗を増すので、必要に
応じ添加する。硬さ確保のため含有させる場合は0.02%
以上が望ましい。しかし、 0.1%を超える添加は鋼板を
脆化し、冷間圧延や打抜き時に割れが生じる場合がある
ので 0.1%以下とする。
(4) PP increases the hardness of the steel sheet and increases the electric resistance, and is added as necessary. 0.02% when included to ensure hardness
The above is desirable. However, the addition exceeding 0.1% embrittles the steel sheet and may cause cracking during cold rolling or punching, so the content is set to 0.1% or less.

【0023】(5) S Sは通常MnS析出物になっており、量が増すと磁気特
性を大幅に劣化させるが、同じS含有量でも析出物を大
きくすることにより、磁気特性劣化を低減できる。この
大きな析出物を適量形成させれば、打抜き歪による磁気
特性の劣化を小さくできる。この効果はSが多いほど大
きくなるが、含有量が 0.015%未満では不十分である。
これはMnSの鋼中における体積分率が少なすぎるため
である。
(5) S S is usually a MnS precipitate, and when its amount is increased, the magnetic properties are significantly deteriorated. However, even if the S content is the same, the precipitates are made large, so that the magnetic properties can be reduced. . By forming an appropriate amount of this large precipitate, deterioration of magnetic properties due to punching distortion can be reduced. This effect increases as the amount of S increases, but the content of less than 0.015% is insufficient.
This is because the volume fraction of MnS in the steel is too small.

【0024】しかしS量が 0.035%を超えると、打抜き
による磁気特性の劣化は小さいが、鋼板製品としての磁
気特性が悪化する。そこでS含有量を 0.015〜 0.035%
と定めた。
However, when the S content exceeds 0.035%, the magnetic properties of the steel sheet product are deteriorated, although the magnetic properties are not deteriorated by punching. Therefore, the S content is reduced from 0.015 to 0.035%
It was decided.

【0025】(6) Al Alの添加はSiと同様に電気抵抗を上昇して渦電流損
を低下させ、結果として鉄損を低減する効果がある。一
方、Nと結合してAlNを形成し、これが冷間圧延後の
連続焼鈍時の粒成長を阻害したり、鉄損を劣化させる。
しかし、0.15%以上含有させるとAlNが粗大化して、
粒成長の阻害や磁気特性劣化の作用が抑制される。ただ
し、0.50%をこえるAlを添加してもそれ以上の粒成長
の改善は得られず、飽和磁束密度の低下が大きくなる。
したがって、Al含有量は0.15〜0.50%とする。
(6) Al Addition of Al has the effect of increasing the electrical resistance and reducing the eddy current loss similarly to Si, and consequently reducing the iron loss. On the other hand, it combines with N to form AlN, which hinders grain growth during continuous annealing after cold rolling and deteriorates iron loss.
However, if the content is 0.15% or more, AlN coarsens,
The effect of inhibiting grain growth and deteriorating magnetic properties is suppressed. However, even if Al is added in excess of 0.50%, no further improvement in grain growth can be obtained, and the saturation magnetic flux density is greatly reduced.
Therefore, the Al content is set to 0.15 to 0.50%.

【0026】B)製造条件 (7) 熱間圧延条件 前記組成の熱間圧延に供するスラブは、転炉、電気炉等
で溶製し、必要があれば真空脱ガス等の処理を施した溶
鋼を、連続鋳造したもの、あるいはインゴットにして分
塊圧延したもののいずれでもよい。スラブの加熱は通常
の条件でも狙いとする特性は得られるが、1050〜1180℃
の比較的低温加熱にする事により更に良好な鉄損値が得
られる。1180℃以下の低温加熱は、微細なMnS析出物
の発生を抑制する作用があり、粒成長を促進して鉄損値
が改善される。しかし、1050℃未満の低温加熱では熱間
圧延が困難となる。
B) Manufacturing Conditions (7) Hot Rolling Conditions The slab to be subjected to hot rolling of the above composition is melted in a converter, an electric furnace or the like and, if necessary, subjected to a treatment such as vacuum degassing. May be either continuously cast or slab rolled into an ingot. Heating of the slab can achieve the desired characteristics under normal conditions, but 1050-1180 ° C
By heating at a relatively low temperature, a better iron loss value can be obtained. Low-temperature heating at 1180 ° C. or lower has an effect of suppressing the generation of fine MnS precipitates, promotes grain growth, and improves the iron loss value. However, low-temperature heating of less than 1050 ° C. makes hot rolling difficult.

【0027】なお、他の熱間圧延条件については特に規
制はしないが、望ましいのは、仕上温度 750〜 950℃、
巻取り温度 500〜 800℃である。
There are no particular restrictions on other hot rolling conditions, but it is preferable that the finishing temperature be 750 to 950 ° C.
The winding temperature is 500 to 800 ° C.

【0028】(8) 冷間圧延 熱間圧延後、所定の製品板厚まで冷間圧延する。冷間圧
延条件は特に規定しないが、圧下率は60〜90%が一般的
である。
(8) Cold rolling After hot rolling, cold rolling is performed to a predetermined product thickness. The cold rolling conditions are not particularly specified, but the rolling reduction is generally 60 to 90%.

【0029】(9) 連続焼鈍 冷間圧延後、加工歪の除去、再結晶および粒成長のため
連続焼鈍する。S含有量の多い場合、良好な鉄損値を得
るためには、高温焼鈍で結晶粒径を粗大化する必要があ
り、 800℃以上とする。ただし、オーステナイトが生成
するようなおよそ1000℃以上の高温では磁気特性が劣化
する。したがって、 800℃以上のフェライト域とした。
なお、焼鈍後には絶縁のためのコーティングを施すのが
一般的である。
(9) Continuous annealing After cold rolling, continuous annealing is performed to remove work strain, recrystallize, and grow grains. When the S content is large, in order to obtain a good iron loss value, it is necessary to coarsen the crystal grain size by high-temperature annealing. However, at a high temperature of about 1000 ° C. or more at which austenite is generated, the magnetic properties deteriorate. Therefore, the ferrite region is set to 800 ° C. or higher.
In addition, it is common to apply a coating for insulation after annealing.

【0030】(10) 熱延板焼鈍 熱間圧延後冷間圧延の前に焼鈍(いわゆる熱延板焼鈍)
をおこなってもよい。
(10) Annealing of hot rolled sheet Annealing after hot rolling and before cold rolling (so-called hot rolled sheet annealing)
May be performed.

【0031】この熱延板焼鈍をおこなうことにより、熱
延板の再結晶と粒成長が促進され、冷間圧延後の焼鈍で
良好な磁気特性を得るのに有効である。熱延板焼鈍を連
続焼鈍法でおこなう場合は 750〜1000℃で10秒から 5分
の均熱、箱焼鈍法で行う場合は650〜 950℃で30分〜24
時間の均熱とするのが望ましい。
By performing the hot-rolled sheet annealing, recrystallization and grain growth of the hot-rolled sheet are promoted, and it is effective to obtain good magnetic properties by annealing after cold rolling. When performing hot-rolled sheet annealing by the continuous annealing method, soak at 750 to 1000 ° C for 10 seconds to 5 minutes, and when performing the box annealing method, at 650 to 950 ° C for 30 minutes to 24 hours.
It is desirable to have a soaking time.

【0032】[0032]

【実施例】転炉で溶製し、真空処理で成分調整した後、
連続鋳造して得た表1に示すような組成の鋼スラブを、
表1に示す温度でスラブ加熱後、熱間圧延により 2.3mm
厚に仕上げた。次に熱延板はそのまま、あるいは表1に
示す均熱条件の熱延板焼鈍を行った後、0.50mm厚に冷間
圧延し、さらに表1に示す均熱条件の連続焼鈍をおこな
い、コーティングを施して製品とした。
[Example] After melting in a converter and adjusting the components by vacuum processing,
A steel slab having the composition shown in Table 1 obtained by continuous casting was
After heating the slab at the temperature shown in Table 1, hot-rolling 2.3mm
Finished thick. Next, the hot-rolled sheet is left as it is or after being subjected to hot-rolled sheet annealing under the soaking conditions shown in Table 1, cold-rolled to a thickness of 0.50 mm, and further subjected to continuous annealing under the soaking conditions shown in Table 1, To give the product.

【0033】[0033]

【表1】 [Table 1]

【0034】製品から、打抜きにより 5mm幅または30mm
幅で 280mm長さの2種類の試験片を採取し、 5mm幅の場
合には6枚を一組として30mm幅の試験片に組上げ、JIS-
C-2550のエプスタイン枠による試験により、打抜き幅の
異る2種類の試験片の磁気特性を測定した。磁気測定結
果を表2に示す。なお、磁気特性としては、鉄損が低い
ほど優れており、磁束密度は高いほど良好である。
From the product, 5mm width or 30mm by punching
Two types of test specimens with a width of 280mm are collected. In the case of 5mm width, six specimens are assembled into a 30mm width test specimen.
The magnetic properties of two types of test pieces having different punching widths were measured by a test using an Epstein frame of C-2550. Table 2 shows the results of the magnetic measurement. In addition, as the magnetic properties, the lower the iron loss, the better, and the higher the magnetic flux density, the better.

【0035】[0035]

【表2】 [Table 2]

【0036】試験番号1〜4は、S量のみ種々に変化さ
せたもので、他の成分は全てほぼ同一である。S量が本
発明範囲から低目に外れた試験番号1は、30mm幅の試験
片の磁気特性値は良好であるが、 5mm幅の試験片では、
鉄損W15/50 と磁束密度B3は30mm幅のものに比べ大幅
に劣化している。一般に鉄損と低磁場の磁束密度B3
塑性変形による歪の影響を受けやすく、これらの磁気特
性の劣化の大きい試験番号1は、打抜き歪の影響を大き
く受けたものと考えられる。なお、高磁場の磁束密度B
50は歪の影響を受けにくいといわれており、30mm幅と 5
mm幅とではほとんど差がない。
Test Nos. 1 to 4 differed only in the amount of S, and all other components were almost the same. In Test No. 1 in which the amount of S deviated from the range of the present invention, the magnetic property value of the test piece having a width of 30 mm was good.
The iron loss W 15/50 and the magnetic flux density B 3 are significantly deteriorated as compared with those having a width of 30 mm. Typically iron loss and low magnetic field flux density B 3 of susceptible to distortion due to plastic deformation, greater Test No. 1 of degradation of these magnetic characteristics are considered to have significantly affected the punching distortion. The magnetic flux density B of the high magnetic field
50 is said to be less susceptible to distortion, with a 30mm width and 5
There is almost no difference with mm width.

【0037】一方、S量が本発明範囲から高目に外れた
試験番号4は、3mm 幅試験片に対する 5mm幅試験片の磁
気特性劣化量は大きくないが、30mm幅試験片の磁気特性
のレベル自体が劣っている。これらに対して、本発明範
囲の試験番号2、3は、30mm幅の場合の磁気特性が良好
で、しかも 5mm幅になっても劣化量は試験番号1に比べ
大幅に小さくなっている。
On the other hand, in Test No. 4 in which the S content deviated from the range of the present invention, the deterioration of the magnetic properties of the 5 mm width test piece was not large compared to the 3 mm width test piece, but the level of the magnetic properties of the 30 mm width test piece was small. In itself is inferior. On the other hand, Test Nos. 2 and 3 in the range of the present invention have good magnetic properties when the width is 30 mm, and the deterioration amount is much smaller than Test No. 1 even when the width is 5 mm.

【0038】試験番号5は本発明の試験番号2、3とS
i量以外はほぼ同一であるが、Si量が本発明範囲から
低目に外れており、30mm幅の場合の鉄損が悪く、 5mm幅
になった場合の鉄損劣化も試験番号2、3に比べ大きく
なっている。
Test number 5 is the same as test numbers 2 and 3 of the present invention and S
Except for the amount of i, the amounts were almost the same, but the amount of Si was slightly lower than the range of the present invention, and the iron loss was poor when the width was 30 mm. It is larger than.

【0039】試験番号6〜11は同一組成でスラブ加熱
温度、熱延板焼鈍および最終の連続焼鈍条件を変えたも
のである。試験番号6〜8は、同一の低温スラブ加熱温
度で熱延板焼鈍が省略されたもので、最終の連続焼鈍温
度が本発明範囲から低く外れた試験番号8の場合、 5mm
幅にしたときの劣化は同程度でも、30mm幅での磁気特性
レベルが劣っている。試験番号9は本発明範囲ではある
が、スラブ加熱温度が高いこと以外は同じ条件の試験番
号6に比し磁気特性がやや劣る。これはスラブ加熱温度
の低い方が磁気特性がよいことを示している。
Test Nos. 6 to 11 are the same compositions but with different slab heating temperatures, hot rolled sheet annealing and final continuous annealing conditions. Test Nos. 6 to 8 were those in which hot-rolled sheet annealing was omitted at the same low-temperature slab heating temperature. In the case of Test No. 8 in which the final continuous annealing temperature was lower than the range of the present invention, 5 mm
Despite the same degree of degradation when the width is set, the magnetic characteristic level at a width of 30 mm is inferior. Test No. 9 is within the scope of the present invention, but the magnetic properties are slightly inferior to Test No. 6 under the same conditions except that the slab heating temperature is high. This indicates that the lower the slab heating temperature, the better the magnetic properties.

【0040】試験番号10は、試験番号9の製造方法に
熱延板焼鈍を付与したもので、磁気特性の向上が明らか
である。試験番号11は熱延板焼鈍をおこなってはいる
が、試験番号8と同様、最終の連続焼鈍温度が本発明範
囲から低く外れており、30mm幅での磁気特性が悪い。
Test No. 10 is obtained by adding hot-rolled sheet annealing to the production method of Test No. 9, and the improvement in magnetic properties is apparent. In Test No. 11, the hot-rolled sheet was annealed, but as in Test No. 8, the final continuous annealing temperature was out of the range of the present invention, and the magnetic properties at a width of 30 mm were poor.

【0041】試験番号12は、13とほぼ同一成分でM
n量だけが本発明範囲から低目に外れている。この試験
番号12の場合、本発明範囲の13に比べ、30mm幅の場
合の磁気特性レベルが大幅に劣っており、 5mm幅になる
と更に磁気特性の差が大きくなっている。
Test No. 12 has almost the same components as 13 and M
Only the n amount falls outside the range of the present invention. In the case of Test No. 12, the magnetic characteristic level in the case of a 30 mm width was significantly inferior to that of 13 in the range of the present invention, and the difference in magnetic characteristics was further increased in the case of a 5 mm width.

【0042】試験番号14は、試験番号13と同一組成
で、最終の連続焼鈍のみが本発明範囲から低目に外れた
ものである。30mm幅の場合に対する 5mm幅の磁気特性の
劣化は、試験番号13と同程度であるが、30mm幅の磁気
特性レベルが大幅に劣っている。
Test No. 14 has the same composition as Test No. 13, and only the final continuous annealing deviates from the range of the present invention. The deterioration of the magnetic characteristics of the 5 mm width with respect to the case of the 30 mm width is almost the same as that of the test number 13, but the magnetic characteristic level of the 30 mm width is significantly inferior.

【0043】試験番号15、16は本発明範囲にあり良
好な磁気特性が得られているが、スラブ加熱温度の低い
試験番号16の方がさらに良好な結果を示す。
Test Nos. 15 and 16 fall within the range of the present invention and good magnetic properties are obtained, but Test No. 16 having a lower slab heating temperature shows better results.

【0044】[0044]

【発明の効果】以上に説明したように、本発明方法によ
れば、打抜きによる磁気特性の劣化が小さく、歪取り焼
鈍を施さなくても得られた鉄心の磁気特性が良好な、フ
ルプロセス無方向性電磁鋼板が製造できる。
As described above, according to the method of the present invention, the deterioration of the magnetic characteristics due to the punching is small, and the magnetic characteristics of the iron core obtained without performing the strain relief annealing are excellent. A grain-oriented electrical steel sheet can be manufactured.

【0045】[0045]

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01F 1/16 C21D 8/12 C22C 38/00 303 C22C 38/06 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01F 1/16 C21D 8/12 C22C 38/00 303 C22C 38/06

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、C: 0.010%以下、Si: 1.0
超〜 2.0%、Mn:0.25〜1.00%、P: 0.1%以下、
S: 0.015〜 0.035%、Al:0.15〜0.50%で、残部は
実質的にFeおよび不可避的不純物からなる鋼のスラブ
を、熱間圧延した後、冷間圧延し、 800℃以上のフェラ
イト域で連続焼鈍することを特徴とする、磁気特性の優
れたフルプロセス無方向性電磁鋼板の製造方法。
(1) In weight%, C: 0.010% or less, Si: 1.0
Ultra-2.0%, Mn: 0.25-1.00%, P: 0.1% or less,
S: 0.015 to 0.035%, Al: 0.15 to 0.50%, the remainder being a steel slab consisting essentially of Fe and unavoidable impurities, hot rolled, then cold rolled, and in a ferrite region above 800 ° C A method for producing a full-process non-oriented electrical steel sheet having excellent magnetic properties, characterized by continuous annealing.
【請求項2】請求項1に記載の製造方法において、熱間
圧延後、冷間圧延の前に、熱延板の焼鈍をおこなうこと
を特徴とする、フルプロセス無方向性電磁鋼板の製造方
法。
2. The method for producing a full-process non-oriented electrical steel sheet according to claim 1, wherein the hot-rolled sheet is annealed after hot rolling and before cold rolling. .
【請求項3】熱間圧延前のスラブ加熱温度を、1050〜11
80℃とすることを特徴とする、請求項1または2に記載
のフルプロセス無方向性電磁鋼板の製造方法。
3. The slab heating temperature before hot rolling is 1050-11
The method for producing a full-process non-oriented electrical steel sheet according to claim 1 or 2, wherein the temperature is 80 ° C.
JP6277309A 1994-11-11 1994-11-11 Manufacturing method of full process non-oriented electrical steel sheet Expired - Fee Related JP2970436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6277309A JP2970436B2 (en) 1994-11-11 1994-11-11 Manufacturing method of full process non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6277309A JP2970436B2 (en) 1994-11-11 1994-11-11 Manufacturing method of full process non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH08138924A JPH08138924A (en) 1996-05-31
JP2970436B2 true JP2970436B2 (en) 1999-11-02

Family

ID=17581749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6277309A Expired - Fee Related JP2970436B2 (en) 1994-11-11 1994-11-11 Manufacturing method of full process non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP2970436B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030512A1 (en) 2012-08-21 2014-02-27 Jfeスチール株式会社 Non-oriented magnetic steel sheet that exhibits minimal degradation in iron-loss characteristics from a punching process
US10102951B2 (en) 2013-03-13 2018-10-16 Jfe Steel Corporation Non-oriented electrical steel sheet having excellent magnetic properties
US11404189B2 (en) 2017-05-31 2022-08-02 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120131982A1 (en) * 2009-07-31 2012-05-31 Jfe Steel Corporation Grain oriented electrical steel sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030512A1 (en) 2012-08-21 2014-02-27 Jfeスチール株式会社 Non-oriented magnetic steel sheet that exhibits minimal degradation in iron-loss characteristics from a punching process
KR20150023770A (en) 2012-08-21 2015-03-05 제이에프이 스틸 가부시키가이샤 Non-oriented magnetic steel sheet that exhibits minimal degradation in iron-loss characteristics from a punching process
US9767946B2 (en) 2012-08-21 2017-09-19 Jfe Steel Corporation Non-oriented electrical steel sheet being less in deterioration of iron loss property by punching
US10102951B2 (en) 2013-03-13 2018-10-16 Jfe Steel Corporation Non-oriented electrical steel sheet having excellent magnetic properties
US11404189B2 (en) 2017-05-31 2022-08-02 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
JPH08138924A (en) 1996-05-31

Similar Documents

Publication Publication Date Title
KR101737871B1 (en) Method for producing grain-oriented electrical steel sheet
EP2960345B1 (en) Production method for semi-processed non-oriented electromagnetic steel sheet exhibiting superior magnetic properties
JP4126479B2 (en) Method for producing non-oriented electrical steel sheet
JP2008127612A (en) Non-oriented electromagnetic steel sheet for divided core
JPH0469223B2 (en)
JP2970423B2 (en) Manufacturing method of non-oriented electrical steel sheet
JPH03219020A (en) Production of nonoriented silicon steel sheet
JP2970436B2 (en) Manufacturing method of full process non-oriented electrical steel sheet
JP4337159B2 (en) Manufacturing method of silicon steel sheet and hot rolled steel strip material for silicon steel sheet
JP3931842B2 (en) Method for producing non-oriented electrical steel sheet
JPH055126A (en) Production of nonoriented silicon steel sheet
JP3483265B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP6146582B2 (en) Method for producing non-oriented electrical steel sheet
JP3379055B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH1161257A (en) Production of non-oriented silicon steel sheet having low iron loss and low magnetic anisotropy
JP2003105508A (en) Nonoriented silicon steel sheet having excellent workability, and production method therefor
JP4013262B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH0814015B2 (en) Non-oriented electrical steel sheet having excellent magnetic properties and surface properties and method for producing the same
JP3178270B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP3937685B2 (en) Electrical steel sheet with excellent high-frequency magnetic properties and method for producing the same
JP4292805B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties
JP2501219B2 (en) Non-oriented electrical steel sheet manufacturing method
JPH08246052A (en) Production of nonoriented silicon steel sheet
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 14

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees