JPH08138924A - Manufacturer of fully-processed non-directional electromagnetic steel plate - Google Patents

Manufacturer of fully-processed non-directional electromagnetic steel plate

Info

Publication number
JPH08138924A
JPH08138924A JP6277309A JP27730994A JPH08138924A JP H08138924 A JPH08138924 A JP H08138924A JP 6277309 A JP6277309 A JP 6277309A JP 27730994 A JP27730994 A JP 27730994A JP H08138924 A JPH08138924 A JP H08138924A
Authority
JP
Japan
Prior art keywords
magnetic properties
rolled
hot
width
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6277309A
Other languages
Japanese (ja)
Other versions
JP2970436B2 (en
Inventor
Hiroyoshi Yashiki
裕義 屋鋪
Tomoki Fukagawa
智機 深川
Mitsuyo Doi
光代 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6277309A priority Critical patent/JP2970436B2/en
Publication of JPH08138924A publication Critical patent/JPH08138924A/en
Application granted granted Critical
Publication of JP2970436B2 publication Critical patent/JP2970436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: To provide a method of manufacturing a fully-processed non-directional electromagnetic steel plate which is hardly deteriorated in magnetic properties due to blanking and kept excellent in magnetic properties after it is formed into an iron core. CONSTITUTION: A steel slab composed of below 0.010% of C, 1.0 to 2.0% of Si, 0.25 to 1.00% of Mn, below 0.1% of P, 0.015 to 0.035% of S, 0.15 to 0.50% of Al, and residual % of substantially Fe and inevitable impurities is formed into a fully-processed non-directional electromagnetic steel plate by a method in which it is hot-rolled, then cold-rolled, and continuously annealed at a temperature of above 800 deg.C in a ferrite phase. Or, the hot-rolled steel plate may be annealed before it is cold-rolled, or the steel slab may be heated at temperatures of 1050 to 1180 deg.C. By this setup, a stress relief annealing process can be dispensed with when a non-directional electromagnetic steel plate is blanked out for use.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、打抜き加工による磁気
特性劣化が少なく、鉄心に成形した後の磁気特性が良好
な、フルプロセス無方向性電磁鋼板の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a full-process non-oriented electrical steel sheet which has little deterioration in magnetic characteristics due to punching and has good magnetic characteristics after being formed into an iron core.

【0002】[0002]

【従来の技術】無方向性電磁鋼板は、ユーザーでの使用
方法によりフルプロセス材とセミプロセス材の2種類に
分けることができる。セミプロセス材は、ユーザーにて
打抜き加工により鉄心の形状にした後、歪取り焼鈍を施
し、積層して電気機器に組込まれる。このため、使用前
に燒鈍されることを前提に電磁鋼板が製造される場合が
多い。焼鈍すると打抜き端面の歪が除去され、結晶粒の
粗大化も進む。一般に、鋼板に加えられた加工歪は、わ
ずかであっても大きく磁気特性を劣化させ、また結晶粒
はある程度までは大きい方が磁気特性がよい。したがっ
て、最終形状に加工した後、焼鈍することは磁気特性を
大きく改善できるが、ユーザーでの熱処理費用と工数が
増えるという難点がある。
2. Description of the Related Art Non-oriented electrical steel sheets can be classified into two types, full-process materials and semi-process materials, depending on how they are used by users. The semi-processed material is punched by a user to form an iron core, then subjected to strain relief annealing, laminated, and incorporated into an electric device. Therefore, electromagnetic steel sheets are often manufactured on the assumption that they are annealed before use. When annealed, the strain on the punched end face is removed, and the crystal grains become coarser. In general, even a small amount of processing strain applied to a steel sheet significantly deteriorates the magnetic characteristics, and the larger the crystal grains are, the better the magnetic characteristics. Therefore, although annealing after processing into the final shape can greatly improve the magnetic properties, there is a drawback in that the heat treatment cost and the number of steps for the user increase.

【0003】これに対してフルプロセス材は、打抜き加
工のまま積層して鉄心とし、電気機器に組込まれること
を想定して製造される電磁鋼板である。使用者は歪取り
焼鈍という余計な工程を省略できるが、打抜き歪による
磁気特性劣化は避けることができない。そこで、打抜き
の歪による性能劣化分をカバーするため、過剰に良好な
磁気特性を示す、高価な高級グレード材を使用すること
もある。
On the other hand, the full-process material is an electromagnetic steel sheet manufactured by assuming that it will be laminated as it is into a core to be an iron core and incorporated into electric equipment. The user can omit the extra step of strain relief annealing, but the magnetic characteristic deterioration due to punching strain cannot be avoided. Therefore, in order to cover the performance deterioration due to punching distortion, an expensive high-grade material that exhibits excessively good magnetic characteristics may be used.

【0004】鉄心形状を鋼板から打抜いた時、切断端面
近傍に発生した鋼板の加工歪は、特異な形状や工具の設
定が不備な場合を除き、切断端面に沿ってほぼ一定と推
定される。そうすると、打抜いた鉄心形状の面積に対
し、切断端面の累計長さの長いものほど、鉄心全体に対
する歪の量が大きくなる。
When an iron core shape is punched out from a steel sheet, the processing strain of the steel sheet that occurs near the cutting edge surface is estimated to be substantially constant along the cutting edge surface, unless a peculiar shape or tool setting is inadequate. . Then, the larger the cumulative length of the cut end face with respect to the area of the punched iron core shape, the larger the amount of strain with respect to the entire iron core.

【0005】例えば、電磁鋼板の磁気特性はJIS-C-2550
に示される幅30mm、長さ 280〜 320mmの短冊状試験片を
使ったエプスタイン試験により評価される。しかし中小
型モータの固定子鉄心の歯の部分は、 3〜10mm程度の極
めて狭幅となる場合がある。
For example, the magnetic properties of electromagnetic steel sheets are JIS-C-2550.
It is evaluated by the Epstein test using a strip test piece with a width of 30 mm and a length of 280 to 320 mm as shown in. However, the teeth of the stator core of small and medium-sized motors may have a very narrow width of 3 to 10 mm.

【0006】幅の狭い鉄心形状の場合、鉄心全体に占め
る打抜き端面の部分の割合は、エプスタイン試験片に比
べはるかに大きくなる。このため、鉄心形状によっては
エプスタイン試験値で期待した磁気特性が、実際の機器
では得られていないこともあり得る。
In the case of an iron core having a narrow width, the ratio of the punched end face portion to the whole iron core is much larger than that of the Epstein test piece. Therefore, depending on the shape of the iron core, the magnetic characteristics expected by the Epstein test value may not be obtained by an actual device.

【0007】打抜き端面、すなわち剪断面における鋼板
の歪発生は、打抜きに用いるポンチおよびダイスの工具
形状、クリアランス、あるいはその手入れ状況に大きく
影響される。一方、鋼板としては適度の硬さや、剪断抵
抗など鋼板固有の特性が歪の発生量に影響すると考えら
れる。しかしながら、それらの特性と鋼板母材の磁気特
性との関係はかならずしも明確でない。
The occurrence of distortion of the steel plate at the punched end face, that is, the sheared surface, is greatly affected by the tool shape of the punch and die used for punching, the clearance, or the maintenance situation. On the other hand, it is considered that, as a steel sheet, proper hardness and characteristics peculiar to the steel sheet such as shear resistance influence the amount of strain generation. However, the relationship between those characteristics and the magnetic characteristics of the steel sheet base material is not always clear.

【0008】もし、磁気特性を劣化することなく、打抜
き端面の歪発生を低減できる電磁鋼板が製造できれば、
適用するフルプロセス材のグレードを下げることがで
き、磁気特性確保のため、やむを得ずセミプロセス材を
用いて歪み取り焼鈍を行なっている用途に、置き換える
ことが可能になる。
If it is possible to manufacture an electromagnetic steel sheet capable of reducing the occurrence of strain on the punched end face without deteriorating the magnetic properties,
It is possible to reduce the grade of the full process material to be applied, and in order to secure magnetic properties, it becomes unavoidable to replace it with the application in which strain relief annealing is performed using a semi-processed material.

【0009】[0009]

【発明が解決しようとする課題】本発明は、打抜きによ
る磁気特性の劣化が小さく、歪取り焼鈍を施さなくても
実際の鉄心の磁気特性が良好な、フルプロセス無方向性
電磁鋼板を製造する方法を提供しようとするものであ
る。
DISCLOSURE OF THE INVENTION The present invention produces a full-process non-oriented electrical steel sheet in which the deterioration of the magnetic properties due to punching is small and the actual magnetic properties of the iron core are good even without strain relief annealing. It is intended to provide a method.

【0010】[0010]

【課題を解決するための手段】打抜き端面付近の塑性変
形による歪を低減するには、ある程度の硬さが必要であ
り、さらには剪断抵抗を減少させる必要があるが、通常
の手法としては加工歪を加えたり、介在物を増すことが
考えられる。ところがこれらの方法は鋼板そのものの磁
気特性を大きく劣化させてしまう。
[Means for Solving the Problems] In order to reduce the strain due to plastic deformation near the punched end face, it is necessary to have a certain degree of hardness, and further it is necessary to reduce the shear resistance. It is possible to add strain and increase inclusions. However, these methods greatly deteriorate the magnetic properties of the steel sheet itself.

【0011】本発明者らは、まず打抜き歪によって磁気
特性が劣化する現象を定量化する方法として、JIS-C-25
50のエプスタイン試験枠による測定法の応用を考えた。
エプスタイン枠に用いる試験片は、通常幅30mm、長さ 2
80mmのものである。そこで、評価しようとする鋼板か
ら、この幅30mmの試験片と、同じ長さで幅を 5mmとした
試験片との2種類の試験片を打抜きにより採取し、 5mm
幅の場合には6枚を平面に並べ一組として30mm幅の試験
片に組上げる。これら2種類の試験片により磁気特性測
定し、結果を比較することにより、打抜き歪による磁気
特性の劣化量の大小を評価することにした。30mm幅の試
験片に対し 5mm幅の試験片は打抜きの歪が多く導入され
ており、もし、磁気特性劣化の程度が小さければ、打抜
きによる磁気特性劣化が起こりにくい材料のはずであ
る。
The inventors of the present invention firstly used JIS-C-25 as a method for quantifying a phenomenon in which magnetic characteristics are deteriorated by punching strain.
We considered the application of the measurement method with 50 Epstein test frames.
The test piece used for the Epstein frame is usually 30 mm wide and 2
It is 80 mm. Therefore, from the steel sheet to be evaluated, two types of test pieces, a test piece with a width of 30 mm and a test piece with the same length and a width of 5 mm, were punched out and
In the case of width, 6 pieces are arranged on a plane and assembled as a set into a 30 mm wide test piece. The magnetic properties were measured using these two types of test pieces, and the results were compared to evaluate the magnitude of the deterioration amount of the magnetic properties due to punching strain. The test piece with a width of 5 mm has a large amount of punching distortion introduced into the test piece with a width of 30 mm, and if the degree of deterioration in magnetic characteristics is small, it should be a material that does not easily deteriorate in magnetic characteristics due to punching.

【0012】このような評価方法を用い、いくつかの鋼
板について測定をおこなった結果、通常の30mm幅の試験
片では、ほぼ同じレベルの磁気特性であるにもかかわら
ず、5mm幅にすると、鋼板によって劣化の程度が大きく
異ることを見出した。そこでさらに多くの鋼板に対して
実験や試作を行ない、測定データを集積し、解析した結
果、鋼板の成分としてSi、MnおよびS量を特定範囲
に制御し、冷間圧延後の仕上げ焼鈍を高温の連続焼鈍と
することにより、磁気特性が良好で、打抜きによる磁気
特性の劣化のすくない無方向性電磁鋼板が得られるとの
知見を得るに至った。
As a result of conducting measurements on several steel sheets using such an evaluation method, when a normal test piece of 30 mm width has substantially the same level of magnetic characteristics, when it is set to 5 mm width, It was found that the degree of deterioration varied greatly depending on the type. Therefore, as a result of conducting experiments and trial production on a larger number of steel sheets, accumulating and analyzing the measurement data, the amounts of Si, Mn and S as the components of the steel sheets were controlled within a specific range, and the finish annealing after cold rolling was performed at a high temperature. It has been found that a non-oriented electrical steel sheet having good magnetic properties and having little deterioration in magnetic properties due to punching can be obtained by continuous annealing of No. 3).

【0013】本発明は、このような知見に基づいて完成
されたものである。その要旨は、 (1)『C: 0.010%以下、Si: 1.0超〜 2.0%、M
n:0.25〜1.00%、P:0.1%以下、S: 0.015〜 0.03
5%、Al:0.15〜0.50%で、残部は実質的にFeおよ
び不可避的不純物からなる鋼のスラブを熱間圧延後、冷
間圧延し、 800℃以上のフェライト域で連続焼鈍するこ
とを特徴とする磁気特性の優れたフルプロセス無方向性
電磁鋼板の製造方法』にある。この製造方法において
(2)熱間圧延後、冷間圧延の前に、熱延板の焼鈍をお
こなうこととすれば、磁気特性の向上が可能である。さ
らに、上記(1)または(2)の製造法においては
(3)熱間圧延前のスラブ加熱温度を、1050〜1180℃と
することが望ましく、より一層の安定した磁気特性向上
が得られる。
The present invention has been completed based on these findings. The main points are (1) “C: 0.010% or less, Si: more than 1.0 to 2.0%, M
n: 0.25 to 1.00%, P: 0.1% or less, S: 0.015 to 0.03
5%, Al: 0.15 to 0.50%, the balance is steel slab consisting essentially of Fe and unavoidable impurities, hot-rolled, cold-rolled, and continuously annealed in the ferrite region of 800 ° C or higher. The method of manufacturing a full-process non-oriented electrical steel sheet with excellent magnetic properties ”. In this manufacturing method, if the hot rolled sheet is annealed after (2) hot rolling and before cold rolling, the magnetic properties can be improved. Further, in the production method of (1) or (2), (3) it is desirable that the slab heating temperature before hot rolling is set to 1050 to 1180 ° C., and a more stable improvement in magnetic characteristics can be obtained.

【0014】[0014]

【作用】以下に本発明方法を具体的に説明し、製造条件
を前記のように限定した理由をその作用と共に記述す
る。
The method of the present invention will be specifically described below, and the reason why the manufacturing conditions are limited as described above will be described together with the operation thereof.

【0015】A)素材鋼片の成分 (1) C Cの含有は鉄損に悪影響をおよぼすので少なければ少な
いほどよい。製品中に残存したCは炭化物を形成し、こ
れが磁壁移動の障害物となり鉄損が増加する。
A) Component of raw steel billet (1) C C content adversely affects iron loss, so the smaller the content, the better. The C remaining in the product forms a carbide, which acts as an obstacle to the domain wall movement and increases iron loss.

【0016】したがって含有量は 0.010%以下とする必
要がある。望ましいのは 0.005%以下である。
Therefore, the content needs to be 0.010% or less. 0.005% or less is desirable.

【0017】(2) Si Siは磁気特性に大きな影響を与える元素であり、含有
量が増加するほど鋼板の電気抵抗が上昇して渦電流損が
低下し、結果として鉄損が減少する。その上、鋼板の硬
さを高くする効果がある。 1.0%以下では所望の鉄損を
確保することが困難であり、また、打抜き歪による磁気
特性の劣化も 1.0%以下では大きくなる傾向がある。し
かし、 2.0%を超える含有量では飽和磁束密度の低下が
大きくなり、本発明の主要な用途である中小型モータ用
鉄心には向かない。したがって、Si含有量は 1.0超〜
2.0%の範囲とする。
(2) Si Si is an element having a great influence on the magnetic properties, and as the content increases, the electrical resistance of the steel sheet increases and the eddy current loss decreases, resulting in a decrease in iron loss. In addition, it has the effect of increasing the hardness of the steel sheet. If it is 1.0% or less, it is difficult to secure a desired iron loss, and the deterioration of magnetic properties due to punching strain tends to be large if it is 1.0% or less. However, when the content exceeds 2.0%, the saturation magnetic flux density is greatly reduced, and it is not suitable for the iron cores for small and medium-sized motors, which are the main applications of the present invention. Therefore, the Si content exceeds 1.0
The range is 2.0%.

【0018】(3) Mn 電磁鋼板に対し、Mnそのものの含有は電気抵抗を増す
程度の影響しかない。
(3) Mn With respect to the magnetic steel sheet, the inclusion of Mn itself has only the effect of increasing the electric resistance.

【0019】しかし、鋼中のSと結合してMnSを形成
し、MnS析出物の大きさや分布はMn含有量により変
化する。この析出物の状態が金属組織を大きく変え、磁
気特性に重要な影響を与える。
However, MnS is formed by combining with S in steel, and the size and distribution of MnS precipitates change depending on the Mn content. The state of these precipitates significantly changes the metal structure and has an important influence on the magnetic properties.

【0020】また、大きなMnS析出物が適量形成され
ると、打抜き歪による磁気特性の劣化が小さくなる。こ
れは、大きなMnS析出物の適量存在が剪断抵抗を減少
させ塑性変形領域を少なくして、磁気特性劣化を小さく
するためと考えられる。
Further, when a large amount of large MnS precipitates are formed, the deterioration of magnetic properties due to punching strain is reduced. This is considered to be because the presence of an appropriate amount of large MnS precipitates reduces the shear resistance, reduces the plastic deformation region, and reduces the deterioration of magnetic properties.

【0021】Mnの含有量が0.25%未満では、MnS析
出物が粗大化せず、微細に分散する傾向がある。この場
合は、打抜き歪による磁気特性劣化を小さくできないば
かりではなく、冷間圧延後の連続焼鈍での結晶粒成長が
抑制され、良好な磁気特性が得られない。しかし、1%
をこえて添加してもこのMnの効果は飽和するので、M
n含有量を0.25〜1.00%と定めた。
If the Mn content is less than 0.25%, the MnS precipitates do not coarsen and tend to be finely dispersed. In this case, not only the deterioration of magnetic properties due to punching strain cannot be reduced, but also the growth of crystal grains in continuous annealing after cold rolling is suppressed, and good magnetic properties cannot be obtained. However, 1%
Since the effect of Mn will be saturated even if added over M, M
The n content was set to 0.25 to 1.00%.

【0022】(4) P Pは鋼板の硬さを高くし、電気抵抗を増すので、必要に
応じ添加する。硬さ確保のため含有させる場合は0.02%
以上が望ましい。しかし、 0.1%を超える添加は鋼板を
脆化し、冷間圧延や打抜き時に割れが生じる場合がある
ので 0.1%以下とする。
(4) P P increases the hardness of the steel sheet and increases the electrical resistance, so it is added if necessary. 0.02% when included to secure hardness
The above is desirable. However, the addition of more than 0.1% embrittles the steel sheet and may cause cracking during cold rolling or punching, so the content is made 0.1% or less.

【0023】(5) S Sは通常MnS析出物になっており、量が増すと磁気特
性を大幅に劣化させるが、同じS含有量でも析出物を大
きくすることにより、磁気特性劣化を低減できる。この
大きな析出物を適量形成させれば、打抜き歪による磁気
特性の劣化を小さくできる。この効果はSが多いほど大
きくなるが、含有量が 0.015%未満では不十分である。
これはMnSの鋼中における体積分率が少なすぎるため
である。
(5) S S is usually a MnS precipitate, and magnetic properties deteriorate significantly when the amount increases, but deterioration of magnetic properties can be reduced by increasing the precipitate even with the same S content. . By forming an appropriate amount of this large precipitate, it is possible to reduce the deterioration of magnetic properties due to punching strain. This effect increases as the amount of S increases, but if the content is less than 0.015%, it is insufficient.
This is because the volume fraction of MnS in steel is too small.

【0024】しかしS量が 0.035%を超えると、打抜き
による磁気特性の劣化は小さいが、鋼板製品としての磁
気特性が悪化する。そこでS含有量を 0.015〜 0.035%
と定めた。
However, if the amount of S exceeds 0.035%, the deterioration of the magnetic properties due to punching is small, but the magnetic properties of the steel sheet product deteriorate. Therefore, the S content is 0.015 to 0.035%
I decided.

【0025】(6) Al Alの添加はSiと同様に電気抵抗を上昇して渦電流損
を低下させ、結果として鉄損を低減する効果がある。一
方、Nと結合してAlNを形成し、これが冷間圧延後の
連続焼鈍時の粒成長を阻害したり、鉄損を劣化させる。
しかし、0.15%以上含有させるとAlNが粗大化して、
粒成長の阻害や磁気特性劣化の作用が抑制される。ただ
し、0.50%をこえるAlを添加してもそれ以上の粒成長
の改善は得られず、飽和磁束密度の低下が大きくなる。
したがって、Al含有量は0.15〜0.50%とする。
(6) Al The addition of Al has the effect of increasing the electrical resistance and reducing the eddy current loss as in the case of Si, and consequently reducing the iron loss. On the other hand, it combines with N to form AlN, which hinders grain growth during continuous annealing after cold rolling and deteriorates iron loss.
However, AlN becomes coarse when 0.15% or more is contained,
The effects of grain growth inhibition and magnetic property deterioration are suppressed. However, even if Al exceeding 0.50% is added, further improvement in grain growth cannot be obtained, and the saturation magnetic flux density is greatly reduced.
Therefore, the Al content is 0.15 to 0.50%.

【0026】B)製造条件 (7) 熱間圧延条件 前記組成の熱間圧延に供するスラブは、転炉、電気炉等
で溶製し、必要があれば真空脱ガス等の処理を施した溶
鋼を、連続鋳造したもの、あるいはインゴットにして分
塊圧延したもののいずれでもよい。スラブの加熱は通常
の条件でも狙いとする特性は得られるが、1050〜1180℃
の比較的低温加熱にする事により更に良好な鉄損値が得
られる。1180℃以下の低温加熱は、微細なMnS析出物
の発生を抑制する作用があり、粒成長を促進して鉄損値
が改善される。しかし、1050℃未満の低温加熱では熱間
圧延が困難となる。
B) Manufacturing Conditions (7) Hot Rolling Conditions The slab to be subjected to hot rolling having the above composition is melted in a converter, an electric furnace or the like, and if necessary, a molten steel subjected to a treatment such as vacuum degassing. May be continuously cast or slab-rolled into ingots. Heating the slab gives the desired characteristics even under normal conditions, but it is 1050-1180 ° C.
A better iron loss value can be obtained by heating at a relatively low temperature. The low-temperature heating at 1180 ° C. or lower has an action of suppressing the generation of fine MnS precipitates, promotes grain growth, and improves the iron loss value. However, hot rolling becomes difficult at low temperature heating below 1050 ° C.

【0027】なお、他の熱間圧延条件については特に規
制はしないが、望ましいのは、仕上温度 750〜 950℃、
巻取り温度 500〜 800℃である。
There are no particular restrictions on other hot rolling conditions, but a finishing temperature of 750 to 950 ° C.,
The winding temperature is 500-800 ℃.

【0028】(8) 冷間圧延 熱間圧延後、所定の製品板厚まで冷間圧延する。冷間圧
延条件は特に規定しないが、圧下率は60〜90%が一般的
である。
(8) Cold rolling After hot rolling, cold rolling is performed to a predetermined product plate thickness. Cold rolling conditions are not particularly specified, but the rolling reduction is generally 60 to 90%.

【0029】(9) 連続焼鈍 冷間圧延後、加工歪の除去、再結晶および粒成長のため
連続焼鈍する。S含有量の多い場合、良好な鉄損値を得
るためには、高温焼鈍で結晶粒径を粗大化する必要があ
り、 800℃以上とする。ただし、オーステナイトが生成
するようなおよそ1000℃以上の高温では磁気特性が劣化
する。したがって、 800℃以上のフェライト域とした。
なお、焼鈍後には絶縁のためのコーティングを施すのが
一般的である。
(9) Continuous annealing After cold rolling, continuous annealing is performed for removing work strain, recrystallization and grain growth. When the S content is high, in order to obtain a good iron loss value, it is necessary to coarsen the crystal grain size by high temperature annealing, and the temperature is set to 800 ° C or higher. However, the magnetic properties deteriorate at a high temperature of about 1000 ° C. or higher at which austenite is generated. Therefore, the ferrite region is set to 800 ° C or higher.
After the annealing, it is common to apply a coating for insulation.

【0030】(10) 熱延板焼鈍 熱間圧延後冷間圧延の前に焼鈍(いわゆる熱延板焼鈍)
をおこなってもよい。
(10) Annealing of hot rolled sheet Annealed after hot rolling and before cold rolling (so-called hot rolled sheet annealing)
May be performed.

【0031】この熱延板焼鈍をおこなうことにより、熱
延板の再結晶と粒成長が促進され、冷間圧延後の焼鈍で
良好な磁気特性を得るのに有効である。熱延板焼鈍を連
続焼鈍法でおこなう場合は 750〜1000℃で10秒から 5分
の均熱、箱焼鈍法で行う場合は650〜 950℃で30分〜24
時間の均熱とするのが望ましい。
By carrying out this hot-rolled sheet annealing, recrystallization and grain growth of the hot-rolled sheet are promoted, and it is effective in obtaining good magnetic properties in the annealing after cold rolling. If the hot-rolled sheet is annealed by the continuous annealing method, it is soaked at 750 to 1000 ° C for 10 seconds to 5 minutes, and if it is performed by the box annealing method, it is 650 to 950 ° C for 30 minutes to 24 minutes.
It is desirable to make the temperature uniform.

【0032】[0032]

【実施例】転炉で溶製し、真空処理で成分調整した後、
連続鋳造して得た表1に示すような組成の鋼スラブを、
表1に示す温度でスラブ加熱後、熱間圧延により 2.3mm
厚に仕上げた。次に熱延板はそのまま、あるいは表1に
示す均熱条件の熱延板焼鈍を行った後、0.50mm厚に冷間
圧延し、さらに表1に示す均熱条件の連続焼鈍をおこな
い、コーティングを施して製品とした。
Example: After melting in a converter and adjusting the components by vacuum treatment,
A steel slab having the composition shown in Table 1 obtained by continuous casting was
2.3mm by hot rolling after heating the slab at the temperature shown in Table 1.
Finished thick. Next, the hot-rolled sheet is left as it is, or after the hot-rolled sheet is annealed under the soaking conditions shown in Table 1, cold-rolled to a thickness of 0.50 mm, and further subjected to continuous annealing under the soaking conditions shown in Table 1 for coating. The product was applied.

【0033】[0033]

【表1】 [Table 1]

【0034】製品から、打抜きにより 5mm幅または30mm
幅で 280mm長さの2種類の試験片を採取し、 5mm幅の場
合には6枚を一組として30mm幅の試験片に組上げ、JIS-
C-2550のエプスタイン枠による試験により、打抜き幅の
異る2種類の試験片の磁気特性を測定した。磁気測定結
果を表2に示す。なお、磁気特性としては、鉄損が低い
ほど優れており、磁束密度は高いほど良好である。
5 mm width or 30 mm from the product by punching
Width of 280 mm and two types of test pieces are collected, and in the case of 5 mm width, 6 pieces are assembled into a 30 mm width test piece.
A C-2550 Epstein frame test was performed to measure the magnetic properties of two types of test pieces having different punch widths. The magnetic measurement results are shown in Table 2. The magnetic properties are better as the iron loss is lower, and the magnetic flux density is higher as the magnetic properties are higher.

【0035】[0035]

【表2】 [Table 2]

【0036】試験番号1〜4は、S量のみ種々に変化さ
せたもので、他の成分は全てほぼ同一である。S量が本
発明範囲から低目に外れた試験番号1は、30mm幅の試験
片の磁気特性値は良好であるが、 5mm幅の試験片では、
鉄損W15/50 と磁束密度B3は30mm幅のものに比べ大幅
に劣化している。一般に鉄損と低磁場の磁束密度B3
塑性変形による歪の影響を受けやすく、これらの磁気特
性の劣化の大きい試験番号1は、打抜き歪の影響を大き
く受けたものと考えられる。なお、高磁場の磁束密度B
50は歪の影響を受けにくいといわれており、30mm幅と 5
mm幅とではほとんど差がない。
In Test Nos. 1 to 4, only the S content was variously changed, and all other components were almost the same. In the test number 1 in which the S content is out of the range of the present invention, the magnetic property value of the test piece of 30 mm width is good, but in the test piece of 5 mm width,
The iron loss W 15/50 and the magnetic flux density B 3 are significantly deteriorated as compared with those of 30 mm width. In general, iron loss and magnetic flux density B 3 in a low magnetic field are easily affected by strain due to plastic deformation, and it is considered that Test No. 1 in which these magnetic properties are greatly deteriorated is greatly affected by punching strain. The magnetic flux density B of the high magnetic field
It is said that 50 is not easily affected by distortion, with a 30 mm width and 5
There is almost no difference from the mm width.

【0037】一方、S量が本発明範囲から高目に外れた
試験番号4は、3mm 幅試験片に対する 5mm幅試験片の磁
気特性劣化量は大きくないが、30mm幅試験片の磁気特性
のレベル自体が劣っている。これらに対して、本発明範
囲の試験番号2、3は、30mm幅の場合の磁気特性が良好
で、しかも 5mm幅になっても劣化量は試験番号1に比べ
大幅に小さくなっている。
On the other hand, in the test number 4 in which the S content is out of the range of the present invention, the magnetic property deterioration amount of the 5 mm width test piece is not large compared to the 3 mm width test piece, but the magnetic property level of the 30 mm width test piece is high. Itself is inferior. On the other hand, in Test Nos. 2 and 3 within the scope of the present invention, the magnetic properties in the case of the width of 30 mm are good, and the deterioration amount is much smaller than that of Test No. 1 even when the width is 5 mm.

【0038】試験番号5は本発明の試験番号2、3とS
i量以外はほぼ同一であるが、Si量が本発明範囲から
低目に外れており、30mm幅の場合の鉄損が悪く、 5mm幅
になった場合の鉄損劣化も試験番号2、3に比べ大きく
なっている。
Test number 5 is test numbers 2 and 3 and S of the present invention.
Although it is almost the same except for the amount of i, the amount of Si deviates from the range of the present invention to a low level, the iron loss in the case of 30 mm width is poor, and the iron loss deterioration in the case of 5 mm width is also test numbers 2, 3 It is bigger than.

【0039】試験番号6〜11は同一組成でスラブ加熱
温度、熱延板焼鈍および最終の連続焼鈍条件を変えたも
のである。試験番号6〜8は、同一の低温スラブ加熱温
度で熱延板焼鈍が省略されたもので、最終の連続焼鈍温
度が本発明範囲から低く外れた試験番号8の場合、 5mm
幅にしたときの劣化は同程度でも、30mm幅での磁気特性
レベルが劣っている。試験番号9は本発明範囲ではある
が、スラブ加熱温度が高いこと以外は同じ条件の試験番
号6に比し磁気特性がやや劣る。これはスラブ加熱温度
の低い方が磁気特性がよいことを示している。
Test Nos. 6 to 11 have the same composition but different slab heating temperatures, hot-rolled sheet annealing and final continuous annealing conditions. Test numbers 6 to 8 are those in which hot-rolled sheet annealing was omitted at the same low temperature slab heating temperature, and in the case of test number 8 in which the final continuous annealing temperature was out of the range of the present invention, it was 5 mm.
Even if the deterioration in width is about the same, the magnetic property level in the width of 30 mm is inferior. Although the test number 9 is within the range of the present invention, the magnetic properties are slightly inferior to those of the test number 6 under the same conditions except that the slab heating temperature is high. This indicates that the lower the slab heating temperature, the better the magnetic characteristics.

【0040】試験番号10は、試験番号9の製造方法に
熱延板焼鈍を付与したもので、磁気特性の向上が明らか
である。試験番号11は熱延板焼鈍をおこなってはいる
が、試験番号8と同様、最終の連続焼鈍温度が本発明範
囲から低く外れており、30mm幅での磁気特性が悪い。
Test No. 10 is obtained by adding hot-rolled sheet annealing to the manufacturing method of Test No. 9, and it is clear that the magnetic properties are improved. Although the test number 11 is performing hot-rolled sheet annealing, like the test number 8, the final continuous annealing temperature is out of the range of the present invention to be low, and the magnetic property in the width of 30 mm is poor.

【0041】試験番号12は、13とほぼ同一成分でM
n量だけが本発明範囲から低目に外れている。この試験
番号12の場合、本発明範囲の13に比べ、30mm幅の場
合の磁気特性レベルが大幅に劣っており、 5mm幅になる
と更に磁気特性の差が大きくなっている。
Test No. 12 has almost the same composition as 13 and M
Only the n amount falls outside the scope of the present invention. In the case of this test number 12, the magnetic characteristic level in the case of the width of 30 mm is significantly inferior to that of 13 in the range of the present invention, and the difference of the magnetic characteristics becomes larger at the width of 5 mm.

【0042】試験番号14は、試験番号13と同一組成
で、最終の連続焼鈍のみが本発明範囲から低目に外れた
ものである。30mm幅の場合に対する 5mm幅の磁気特性の
劣化は、試験番号13と同程度であるが、30mm幅の磁気
特性レベルが大幅に劣っている。
Test No. 14 has the same composition as Test No. 13, but only the final continuous annealing falls outside the scope of the present invention. The deterioration of the magnetic properties of the 5 mm width with respect to the case of the 30 mm width is about the same as the test number 13, but the magnetic property level of the 30 mm width is significantly inferior.

【0043】試験番号15、16は本発明範囲にあり良
好な磁気特性が得られているが、スラブ加熱温度の低い
試験番号16の方がさらに良好な結果を示す。
Test Nos. 15 and 16 are within the scope of the present invention, and good magnetic properties are obtained. However, Test No. 16 having a lower slab heating temperature shows better results.

【0044】[0044]

【発明の効果】以上に説明したように、本発明方法によ
れば、打抜きによる磁気特性の劣化が小さく、歪取り焼
鈍を施さなくても得られた鉄心の磁気特性が良好な、フ
ルプロセス無方向性電磁鋼板が製造できる。
As described above, according to the method of the present invention, there is little deterioration of the magnetic properties due to punching, and the magnetic properties of the iron core obtained without strain relief annealing are good, and there is no full process process. A grain-oriented electrical steel sheet can be manufactured.

【0045】[0045]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C: 0.010%以下、Si: 1.0
超〜 2.0%、Mn:0.25〜1.00%、P: 0.1%以下、
S: 0.015〜 0.035%、Al:0.15〜0.50%で、残部は
実質的にFeおよび不可避的不純物からなる鋼のスラブ
を、熱間圧延した後、冷間圧延し、 800℃以上のフェラ
イト域で連続焼鈍することを特徴とする、磁気特性の優
れたフルプロセス無方向性電磁鋼板の製造方法。
1. By weight%, C: 0.010% or less, Si: 1.0
Super ~ 2.0%, Mn: 0.25 ~ 1.00%, P: 0.1% or less,
S: 0.015 to 0.035%, Al: 0.15 to 0.50%, the balance being a steel slab consisting essentially of Fe and unavoidable impurities, hot-rolled, then cold-rolled in a ferrite region of 800 ° C or higher. A method for producing a full-process non-oriented electrical steel sheet with excellent magnetic properties, characterized by continuous annealing.
【請求項2】請求項1に記載の製造方法において、熱間
圧延後、冷間圧延の前に、熱延板の焼鈍をおこなうこと
を特徴とする、フルプロセス無方向性電磁鋼板の製造方
法。
2. The method for producing a full-process non-oriented electrical steel sheet according to claim 1, wherein the hot-rolled sheet is annealed after the hot rolling and before the cold rolling. .
【請求項3】熱間圧延前のスラブ加熱温度を、1050〜11
80℃とすることを特徴とする、請求項1または2に記載
のフルプロセス無方向性電磁鋼板の製造方法。
3. The slab heating temperature before hot rolling is set to 1050 to 11
It is 80 degreeC, The manufacturing method of the full process non-oriented electrical steel sheet of Claim 1 or 2 characterized by the above-mentioned.
JP6277309A 1994-11-11 1994-11-11 Manufacturing method of full process non-oriented electrical steel sheet Expired - Fee Related JP2970436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6277309A JP2970436B2 (en) 1994-11-11 1994-11-11 Manufacturing method of full process non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6277309A JP2970436B2 (en) 1994-11-11 1994-11-11 Manufacturing method of full process non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH08138924A true JPH08138924A (en) 1996-05-31
JP2970436B2 JP2970436B2 (en) 1999-11-02

Family

ID=17581749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6277309A Expired - Fee Related JP2970436B2 (en) 1994-11-11 1994-11-11 Manufacturing method of full process non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP2970436B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013858A1 (en) * 2009-07-31 2011-02-03 Jfeスチール株式会社 Grain-oriented magnetic steel sheet

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5533958B2 (en) 2012-08-21 2014-06-25 Jfeスチール株式会社 Non-oriented electrical steel sheet with low iron loss degradation by punching
JP6057082B2 (en) 2013-03-13 2017-01-11 Jfeスチール株式会社 Non-oriented electrical steel sheet with excellent magnetic properties
JP6738047B2 (en) 2017-05-31 2020-08-12 Jfeスチール株式会社 Non-oriented electrical steel sheet and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013858A1 (en) * 2009-07-31 2011-02-03 Jfeスチール株式会社 Grain-oriented magnetic steel sheet
JP2011047045A (en) * 2009-07-31 2011-03-10 Jfe Steel Corp Grain-oriented magnetic steel sheet

Also Published As

Publication number Publication date
JP2970436B2 (en) 1999-11-02

Similar Documents

Publication Publication Date Title
EP2960345B1 (en) Production method for semi-processed non-oriented electromagnetic steel sheet exhibiting superior magnetic properties
JP6844125B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2008127612A (en) Non-oriented electromagnetic steel sheet for divided core
KR20190093615A (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR20180011809A (en) Method for manufacturing non-oriented electromagnetic steel sheet with excellent magnetic properties
EP0334224A2 (en) Ultra-rapid annealing of nonoriented electrical steel
JP2008127659A (en) Non-oriented electromagnetic steel sheet with less anisotropy
JP2018178198A (en) Nonoriented electromagnetic steel sheet and manufacturing method therefor
JP2008031498A (en) Grain-oriented electrical steel sheet and its production method
JP3855554B2 (en) Method for producing non-oriented electrical steel sheet
JP4258918B2 (en) Method for producing non-oriented electrical steel sheet
JP2018178196A (en) Nonoriented electromagnetic steel sheet and manufacturing method therefor
JP4337159B2 (en) Manufacturing method of silicon steel sheet and hot rolled steel strip material for silicon steel sheet
JP2970436B2 (en) Manufacturing method of full process non-oriented electrical steel sheet
JP3931842B2 (en) Method for producing non-oriented electrical steel sheet
JP4240736B2 (en) Non-oriented electrical steel sheet with low iron loss and high magnetic flux density and method for producing the same
JP6146582B2 (en) Method for producing non-oriented electrical steel sheet
JP3483265B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH086135B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JP4013262B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2008127608A (en) Non-oriented electromagnetic steel sheet for divided core
JP2003105508A (en) Nonoriented silicon steel sheet having excellent workability, and production method therefor
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH08246052A (en) Production of nonoriented silicon steel sheet
JP3379053B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 14

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees