JP2004060026A - Grain oriented silicon steel sheet having excellent high frequency magnetic property, rollability and workability and method for producing the same - Google Patents

Grain oriented silicon steel sheet having excellent high frequency magnetic property, rollability and workability and method for producing the same Download PDF

Info

Publication number
JP2004060026A
JP2004060026A JP2002223210A JP2002223210A JP2004060026A JP 2004060026 A JP2004060026 A JP 2004060026A JP 2002223210 A JP2002223210 A JP 2002223210A JP 2002223210 A JP2002223210 A JP 2002223210A JP 2004060026 A JP2004060026 A JP 2004060026A
Authority
JP
Japan
Prior art keywords
mass
less
steel sheet
rolling
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002223210A
Other languages
Japanese (ja)
Other versions
JP4265166B2 (en
Inventor
Masaaki Kono
河野 雅昭
Masaki Kono
河野 正樹
Kenichi Sadahiro
定広 健一
Atsuto Honda
本田 厚人
Yasuyuki Hayakawa
早川 康之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002223210A priority Critical patent/JP4265166B2/en
Publication of JP2004060026A publication Critical patent/JP2004060026A/en
Application granted granted Critical
Publication of JP4265166B2 publication Critical patent/JP4265166B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grain oriented silicon steel sheet in which properties more suitable for an iron core used for high frequency applications such as a driving motor fed to a hybrid electric automobile, an electric automobile or the like, a micro gas turbine generator and a reactor is improved, particularly, core loss in the frequency domain of 1 to 10 kHz is further improved while maintaining its satisfactory rollability and workability. <P>SOLUTION: The steel sheet has a componential composition consisting of, by mass, 1.5 to 20% Cr and 2.5 to 10% Si, wherein the content of acid soluble Al is reduced to, by mass, ≤0.03%, Mn to ≤1.0%, S to ≤50 ppm, Se to ≤50 ppm, O to ≤100 ppm, and C and N to ≤100 ppm in total, and the balance Fe with inevitable impurities. When the deviation angle between the [001] axis of the crystal grains and the rolling direction is defined as α (inside the rolling face) and β(inside the face vertical to rolling), the area ratio of the crystal grains satisfying α≤15° is ≥70%, and the area ratio of the crystal grains satisfying β≤10° is ≥80%, and also, the mean crystal grain size is controlled to ≥1.0 mm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、主として1kHz 〜20kHz といった高周波域での鉄損特性が重視されるモータや発電機などの、高速回転機の鉄心材料や高周波リアクトル用材料に適する、優れた高周波磁気特性、圧延性および加工性を兼ね備えた方向性電磁鋼板に関するものである。
【0002】
【従来の技術】
近年、エネルギーの多様化や、その安定供給の観点から分散型電源が注目されており、マイクロガスタービンで高速発電機を回転させるシステムなどが、実用化の段階にある。また、地球温暖化や省エネルギーといった環境対応も求められており、自動車分野では、エンジンとモータを併用したハイブリッド電気自動車(HEV )、電動モータのみで駆動する電気自動車(EV)および燃料電池車(FCEV)などの開発も進められている。これらの回転機の駆動周波数は年々増加傾向にあり、基本周波数で数百〜数kHz 、加えて高調波成分が重畳するため1kHz 〜10kHz 近くの周波数域での鉄損特性がモータ効率化のために重要になってきている。
【0003】
さらに、電気機器に関しても、高効率化、省電力化のために、インバーター方式を採用する製品が増えてきており、その周波数も高効率化のために高周波域へと年々移ってきている。従来、インバーター化そして高周波化に伴い、力率の改善を目的としてリアクトルが使用されているが、更に電源汚染を防ぐために、インバーター機器に対して高周波リアクトルの使用が増加している。これら高周波リアクトルについても、1kHz 以上更には10kHz 以上の周波数域で使用されているのが現状である。
【0004】
従来、これらの鉄心素材としては、板厚0.35mmのSiを含有する無方向性電磁鋼板が多く用いられており、この電磁鋼板の高周波域での鉄損を改善するために、種々の努力が払われてきた。
すなわち、高周波鉄損を改善するためには渦電流損の増加を抑制することが効果的であり、そのための手段として、電磁鋼板の板厚を低減することが有効である。例えば、特開平8−60252 号公報には、Siを0.5 〜4%、Alを1%以下含んだ板厚0.10〜0.25mmの薄物無方向性電磁鋼板が開示されており、マイクロモータなどの用途では、このような板厚が0.20mm程度の無方向性電磁鋼板の需要が増加している。さらに、磁気特性の優れた素材が必要となる用途に対しては、板厚を0.15mmとさらに薄くした素材の適用も検討されている。しかしながら、電磁鋼板の板厚が薄くなると、コア加工工程においてプレス打ち抜き工数、コア積層工数の増加などにより作業性が低下するとともに、「かしめ」による固定が困難となり、またプレス金型のクリアランス設定条件が厳しくなるなど、加工面での問題が生じるため、可能な限り板厚の厚い素材を用いて製造したいという要望が大きくなっている。
【0005】
また、高周波鉄損を改善するためには、鋼の固有抵抗を高めることも有効である。固有抵抗を高めるためには、SiやAlの含有量を増す手法が、一般に採用されていた。しかし、Si、Alの含有量を増すと脆化して著しく加工性が劣化し、特にSiが 3.5%以上、もしくはSiとAlとの合計で4 %以上を含有する鋼は、通常の圧延法で製造することが困難であった。
【0006】
この製造性を改善する技術として、特開昭61−166923 号公報には、高珪素鋼板に関して低温強圧下の熱間圧延による方法が、開示されている。しかしながら、この技術は、合金としての脆性を見かけ上改善すべく圧延組織の微妙な調整を必要とするものであり、製造過程で厳密な制御を行わなければならないことから、工業的に安定して生産するのは困難であった。
【0007】
一方、特開昭62−227078 号公報では、焼鈍雰囲気制御でのSiの拡散浸透処理により高Si鋼を得る方法が開示されている。この方法では、通板条件を制御することにより任意のSi濃度の鋼板を得ることが出来るが、特殊な拡散浸透法を用いるため、工業的に製造を行う場合にはコスト面で極めて不利である。さらに、いずれの技術も、高Si、Al鋼が本質的に具備する脆性を改善するものではないため、製造された製品は極めて脆く、プレス打ち抜き加工時に割れが多発したり、リアクトルコア等への巻き加工が困難であるなど、加工上の問題を有していた。
【0008】
一方、出願人は、上記の点に鑑み、高Si鋼の脆性そのものを改善することで鋼板製造ならびに鉄心コア加工性の改善をはかり、加えて高い固有抵抗により高周波鉄損を低減させる鋼組成について鋭意検討を行い、これを特開平11−343544号公報において提案した。すなわち、この技術は、高Si鋼もしくは高Si,Al鋼にCrを共存させることが脆性改善に非常に有効であることを見出し、さらに優れた高周波特性を有する無方向性電磁鋼板の提供を可能にしたものである。すなわち、従来、Si鋼やSi−Al鋼においては、単にCrを添加しただけでは添加量が増すほど靭性が劣化すると考えられていたが、Siが3%以上の高Si鋼であっても、CおよびNの含有量を十分に低減した上でCrを含有させることにより、むしろ高い靭性が得られることを見出したのである。また、磁気特性については、CrはSiやAlと同様に固有抵抗を増加させる効果を有する元素であり、添加により高周波鉄損を低減させることができるが、CrとともにSiやAlを複合して添加させると、固有抵抗の増加に相乗的な効果があることも見出した。すなわち、Si、Alをそれぞれ単独で添加した鋼あるいはSi−Al鋼にCrを添加したときに、同量のCrを単独で添加する場合より飛躍的に高い抵抗増加効果が得られたのである。
【0009】
この技術により、従来では圧延困難であったSi含有量が 3.5%を超える鋼についても、通常の圧延により製造することが可能となり、さらにプレス打ち抜きやリアクトルコアヘの巻き加工にも十分に適用可能な優れた加工性を有する高周波材料およびその製造方法を提供することが可能となった。
【0010】
【発明が解決しようとする課題】
この発明は、上記の新規技術をベースにして、その良好な圧延性並びに加工性を維持しつつ、上記したEVやHEV 等に供する駆動モータ、マイクロガスタービン発電機およびリアクトルなどの高周波用途で使用される、鉄心コアにより適した特性、特に1kHz 〜10kHz といった周波数領域での鉄損を更に改善した、方向性電磁鋼板について、その有利な製造方法に併せて提供することを目的とする。
【0011】
【課題を解決するための手段】
発明者らは、鋼板の集合組織を制御し、磁化容易軸である〈110 〉軸が圧延方向と平行であるゴス方位(110)[001]集合組織を、二次再結晶により鋼板に発達させる手法をCr−Si鋼に適用させるべく検討を行った。
【0012】
さて、ゴス方位を集積させた方向性電磁鋼板は既に広く使用されているが、これはSi等の固有抵抗増加元素を3mass%程度しか含有しておらず、また二次再結晶粒径が通常の場合3mm〜30mm程度の平均粒径に達するため、この発明で所期する高周波域での鉄損は必ずしも満足できるものではない。そこで、方向性電磁鋼板にCrを含有させれば脆化させずに固有抵抗をより増加させることができ、Si量を 3.5mass%以上で含有させても圧延して製造することが可能となる。このようにして固有抵抗を高めた鋼板において、その集合組織を磁気特性に有利なゴス方位へと安定的に集積させることができれば、上記用途に適した高周波磁気特性と、圧延性(鋼板製造性)および(コアの)加工性とを両立した鋼板を得ることができるのである。
【0013】
しかしながら、高Cr含有鋼のゴス方位二次再結晶出現条件を詳細に検討したところ、従来の方向性電磁鋼板と同様な製造方法では、二次再結晶が不安定となり所望の磁気特性が得られないことが明らかとなった。
そこで、高Cr含有鋼におけるゴス方位二次再結晶出現のための適切な条件について鋭意検討したところ、鋼の成分組成、さらには製造条件を適正化することにより、Crを含有する鋼においても安定的にゴス方位二次再結晶粒が得られることを見出し、この発明を完成するに到った。
【0014】
すなわち、この発明の要旨構成は、次の通りである。
(1)Cr:1.5 mass%以上20mass%以下およびSi:2.5 mass%以上10mass%以下を含有し、酸可溶性Al:0.03mass%以下、Mn:1.0 mass%以下、S:50massppm 以下、Se:50massppm 以下、O:100massppm以下およびC及びNを合計で100massppm以下に低減し、残部Feおよび不可避的不純物の成分組成を有し、結晶粒の[001] 軸と圧延方向とのずれ角をα(圧延面内)およびβ(圧延垂直面内)と定義したとき、α≦15°である結晶粒の面積率が70%以上およびβ≦10°である結晶粒の面積率が80%以上であり、かつ平均結晶粒径が1.0 mm以上であることを特徴とする高周波磁気特性、圧延性および加工性に優れる方向性電磁鋼板。
【0015】
(2)上記(1)において、さらにSbおよびSnのいずれか1種または2種を合計で 0.005mass%以上 0.2mass%以下含有する成分組成を有することを特徴とする高周波磁気特性、圧延性および加工性に優れる方向性電磁鋼板。
【0016】
(3)Cr:1.5 mass%以上20mass%以下およびSi:2.5 mass%以上10mass%以下を含有し、酸可溶性Al:0.03mass%以下、Mn:1.0 mass%以下、S:50massppm 以下、Se:50massppm 以下、O:100massppm以下およびC及びNを合計で100massppm以下に低減し、残部Feおよび不可避的不純物からなる、鋼素材を熱間圧延後、1回または中間焼鈍を含む2回以上の冷間圧延を施し、次いで一次再結晶焼鈍を兼ねる二次再結晶焼鈍、さらに絶縁コーティングを施す、一連の工程によって方向性電磁鋼板を製造するに当たり、最終冷延工程での圧下率を40〜80%、二次再結晶焼鈍温度を 900℃〜1175℃とすることを特徴とする高周波磁気特性、圧延性および加工性に優れる方向性電磁鋼板の製造方法。
【0017】
(4)上記(3)において、冷間圧延後に、一次再結晶焼鈍および焼鈍分離剤の塗布を行い、その後二次再結晶焼鈍を施してから、絶縁コーティングを施すことを特徴とする高周波磁気特性、圧延性および加工性に優れる方向性電磁鋼板の製造方法の製造方法。
【0018】
なお、この発明に従う方向性電磁鋼板のように、ゴス方位の集積した組織で異方性を有するものは、従来、回転機への適用には不向きであるとされてきた。しかしながら、近年、回転機の設計において、固定子をいくつかのパーツに分けて打ち抜く分割コアが採用され始めてきていて、この手法によれば運転中に磁束が集中するティース部分の方向を、磁化容易な<100> 軸を有する材料の圧延方向に揃えるといった、設計が可能となっていることから、この発明に従う方向性電磁鋼板の回転機への適用は可能である。また、リアクトルに関しても巻きコアの巻き方向、積みコアの切り出し方向を考慮した製造が可能であり、この発明の鋼板は、このような使用に特に適している。
【0019】
【発明の実施の形態】
以下、この発明の基礎となった実験結果について説明する。
すなわち、C:0.0038mass%、Si:4.3 mass%、Cr:5.5 mass%、Mn:0.075massmass %、Al:0.036 mass%、N:0.0052mass%、Se:0.018 mass%を含有する鋼スラブを、 2.0mm厚に熱間圧延後、1000℃で60秒の熱延板焼鈍を施したのち、冷間圧延により 1.5mmの板厚とし、中間焼鈍として1050℃で60秒の焼鈍を施した。その後、850 ℃で2分間の一次再結晶焼鈍を施し、MgO を主成分とする焼純分離剤を塗布して1200℃で最終仕上焼鈍を施した。
【0020】
かくして得られた鋼板を観察したところ、二次再結晶が全く起こっておらず磁気特性も満足のいくものではなかった。この理由は明確ではないが、一次再結晶後の鋼板を調査した結果、鋼板内にCrSeが不均一かつ粗大に形成されており、またCrSeとAIN とが複合した粗大析出物も観察されたことから、Crの含有により、形成されるインヒビターの種類・分布が大きく変化してインヒビターが劣化したことにより、二次再結晶が困難になったものと考えられる。
【0021】
さらに、詳細な検討を加えたところ、インヒビター形成成分であるAl、Se、Sを低減した上で、製造条件を適正に規定することにより、Crを含有する鋼においてもインヒビターを用いることなしに、二次再結晶を起こさせることに成功した。そのための条件について、以下に詳しく説明する。
【0022】
Cr:1.5 mass%以上20mass%以下
Crは、Siとの相乗効果によって電気抵抗を大幅に向上させて高周波域での鉄損を低減する、この発明において重要な合金成分である。さらに、3.5 mass%を超えるSiを含有させた場合は、Cr添加により圧延加工可能な靭性を得ることができる。この観点からは、Crを2mass%以上含有させることが好ましい。なお、Si量が3.5 mass%よりも少ないときには、Cr量を更に減じても加工性を確保することが可能である。また、Crには鋼板の耐食性を向上する効果もあるため、自動車用モータなど腐食環境に晒される可能性がある用途には有利である。一方、20mass%を超えると、靭性向上の効果が飽和するとともに、コスト上昇を招くため、Crの含有量は 1.5mass%以上20mass%以下、好ましくは2mass%以上10mass%以下、より好ましくは3mass%以上7mass%以下とする。Crが有する上記の高周波磁気特性向上、耐食性向上の効果をより一層望む場合には、Cr量を 5.5mass%を超える量で含有させることが、さらに望ましい。
【0023】
Si:2.5 mass%以上10mass%以下
Siは、単独でも鋼の固有抵抗を上昇させるが、更にCrとの相乗効果によって固有抵抗を大幅に上昇させ、特に1kHz 以上の周波数域での鉄損を低減するのに有効な成分である。Si量が 2.5mass%未満では、Crの併用により高い固有抵抗が得られるものの、磁束密度が劣化するという問題がある。一方、10mass%を超えると、Crを含有させても圧延加工可能な靭性を確保できないため、Siの含有量の範囲は、2.5 mass%以上10mass%以下、好ましくは2.5 mass%以上7mass%以下、より好ましくは3.5 mass%以上5mass%以下と規定する。
【0024】
酸可溶性Al:0.03mass%以下
Alは、一般的に電気抵抗を高める効果があり、鉄損の低減に有効であるが、この発明では、安定的にゴス方位の二次再結晶組織を得るためには、酸可溶性Alの量を0.03mass%以下に制限する必要があり、好ましくは0.01mass%以下である。この理由については明確ではないが、0.03mass%を超えて酸可溶性Alが存在すると、形成されたAlN が二次再結晶焼鈍過程でインヒビターとして不安定的に作用するため、集合組織による粒成長抑制力効果の微妙なバランスが崩れゴス方位が必ずしも優先成長しなくなるためと考えられる。
【0025】
Mn:1.0 mass%以下
Mnは、SiやAlと同様、合金の固有抵抗を高める効果がある。また、脱酸剤として作用するほか、Cとの相互作用により熱延板の靭性を改善する効果も有するため、添加することは可能である。しかしながら、Mn添加の際に一般的に用いられるフェロマンガンには、Cが不純物として含まれ多量のMn添加は鋼中Cの増加を招く。また、Mnの固有抵抗増加は同一添加量でSiの半分程度の効果にとどまることも鑑み、その上限は1mass%とする。なお、下限は特に設けないが、Mnは原材料の鉱石中にも存在するため、銑鉄の段階で0.05mass%程度含まれることが多い。
【0026】
S:50massppm 以下
Se:50massppm 以下
O:100massppm以下
これら元素はいずれも析出物となりうるため、2 次再結晶挙動に影響を及ぼす。特に、この発明はクロムを主成分として含有しているため、S 、Seの含有量が多いとCrS 、CrSeが形成される。これら硫化物は、粗大に不均一に析出するので二次再結晶を阻害するため有害であり、特にS、Seをそれぞれ50massppm 以下に低減する必要がある。好ましくはそれぞれ20massppm 以下とする。この発明の条件において、安定してゴス方位二次再結晶粒を得るためには上記範囲に制限する必要がある。
【0027】
C及びNを合計で100massppm以下
C及びNは、Fe−Cr−Si系合金の靭性を劣化させるためにできる限り低減することが好ましく、その許容量はこの発明のCr、Si量の場合には、高靭性を確保するために合計で100massppm以下に抑える必要がある。すなわち、先に述べたとおり、この発明では、C+Nの含有量を100massppm以下に低減した上で、一定量以上のCrを含有させることにより、たとえSiを多量に(3.5 mass%を超える量)で含有させる場合であっても、優れた高い靭性が得られ製造時及び製品加工時の加工性が改善されるとともに、高周波磁気特性が格段に向上するのである。C+Nの含有量は、好ましくは80massppm 以下、より好ましくは50massppm 以下である。なお、C又はNの各々は、Cが50massppm 以下、Nが50massppm 以下が良く、より好ましくはCが20massppm 以下、Nが30massppm 以下が良い。
【0028】
さらに、必要に応じて、SbおよびSnのいずれか1種または2種を合計で 0.005mass%以上 0.2mass%以下
SbおよびSnは、焼鈍中の表層酸化、窒化を抑制する効果があるため、コイルでの長時間加熱が必要な二次再結晶焼鈍工程において、板面間の接着を防止する効果があり、添加によりコイル焼鈍前の焼鈍分離剤塗布工程を省略することが出来るため、SbおよびSnのいずれか1種または2種を合計で 0.2mass%以下の範囲で添加してもよい。この効果は少なくとも1種を0.005 mass%以上添加させることによって得られる。一方、0.2 mass%以上で添加しても、その効果は飽和する上、結晶粒界の強度を弱めて脆化をもたらす弊害が生じるため、上限を 0.2mass%とする。
【0029】
なお、磁気特性、耐食性、加工性などをさらに向上することを目的として、上記の成分に、従来知られている合金成分を追加添加することは、この発明の効果を損なうものではない。それらの成分の代表例を以下に列記する。
すなわち、0.1 mass%以下のPは鋼の固有抵抗、さらに磁気特性を改善する効果があるが、0.1 mass%をこえると鋼が脆化する。5mass%以下のNiおよび1mass%以下のCuは、それぞれ耐食性を改善するとともに延性−脆性遷移温度を下げて鋼板製造性を改善する。5mass%以下のMoおよびWは、それぞれ耐食性を改善する。5mass%以下のCoは、磁束密度を向上させ、ひいては鉄損改善に効果がある。
【0030】
さらに、この発明の方向性電磁鋼板は、二次再結晶により発達させた結晶組織を有し、結晶粒の[001] 軸と圧延方向とのずれ角をα(圧延面内)およびβ(圧延垂直面内)と定義したとき、α≦15°である結晶粒の面積率が70%以上およびβ≦10°である結晶粒の面積率が80%以上であり、かつ平均結晶粒径が1.0 mm以上であることが必要である。
【0031】
ここで、結晶粒の[001] 軸と圧延方向とのずれ角について説明する。すなわち、図1に示すように、圧延方向(RD)に対して結晶粒のRD方向に近い[001] 軸(OA)の圧延面への投影ベクトル(OB)と圧延方向とのなす角∠BOR をαとし、一方上記[001] 軸を圧延面に投影した、その垂直面内における[001] 軸と投影軸とのなす角∠AOB をβと定義した。bcc 構造の鉄において、[001] 軸方向が最も磁化容易方向であることが知られており、各結晶粒の[001] 軸が揃っているほど、その方向へ磁化される場合の磁気特性は優れたものになる。
【0032】
そして、α≦15°である結晶粒の面積率が70%以上およびβ≦10°である結晶粒の面積率が80%以上を同時に満足しない場合は、二次再結晶粒の集積が不十分になり、良好な磁気特性を得られない。とりわけ、α≦15°である結晶粒の面積率が80%以上およびβ≦10°である結晶粒の面積率が90%以上であることが、好ましい。
さらに、結晶粒の平均結晶粒が1.0 mmに満たない場合は、二次再結晶が不十分であり、(110)[001]への集積が不足する。
【0033】
次に、この発明の方向性電磁鋼板の製造方法について説明する。
上述した成分組成範囲になる溶鋼を、連続鋳造又は造塊−分塊圧延によりスラブとする。また、薄スラブ連続鋳造法を用いて、板厚の薄いスラブを直接製造することもできる。得られたスラブは、一旦冷却されたのち、再加熱保持後に熱間圧延に供するか、またはエネルギー効率や生産性の点から、連続鋳造時の顕熱を活用するために、鋳造後のスラブを直接熱間圧延(CC−DR 法)したり、鋳造直後の熱片スラブを短時間の再加熱後に熱間圧延(HCR 法)することができる。
【0034】
熱間圧延は、極力薄く圧延することによって、次工程の冷間圧延ないしは温間圧延における加工性、すなわち圧延性を良好にすることが好ましい。これは、この発明に従うFe−Cr−Si系合金組成の場合には、熱延板の表面部分の方が中心部分よりも加工性が優れているとの知見に基づくものである。そのための熱延板の厚みは3mm以下、好ましくは 2.5mm以下、より好ましくは 1.8mm以下とする。
【0035】
熱間圧延後は、必要に応じて熱延板焼鈍を行うことが出来る。熱延板焼鈍により圧延素材を軟化できるため、引き続いて行う冷間圧延や温間圧延の作業性を改善することができる。この熱延板焼鈍条件は、例えば、温度750 〜1050℃、時間1秒〜2時間で行う。焼鈍温度が必要以上に高い場合や焼鈍時間が長い場合は、コスト上昇の要因となるだけでなく、焼鈍効果が飽和して製造性の改善が見込めなくなったり、場合によっては結晶粒が成長しすぎて次工程のコイル解体や冷延時に耳割れや板破断の起点となったりする。従って、これらの作用効果を考慮して、焼鈍を省略することも出来るし、上記の範囲内で適宜実施することが出来る。
【0036】
引き続き、酸洗もしくはショットブラスト等により、熱延スケールを除去した後に、冷間圧延や温間圧延を行う。上記の発明範囲の成分、そして製造方法によって高Si含有鋼であっても熱延板の靭性が改善されているため、更に温間や冷間で圧延して所定の厚みの薄板とすることができる。以上のような冷間圧延や温間圧延は、1 回の圧延又は中間焼鈍を含む2回以上の圧延により行う。この圧延での圧下率ならびに中間焼鈍を行うことは、圧延材の集合組織の改善を通じて後工程での二次再結晶の発現、並びにゴス方位の集積による磁気特性の向上を所期する上で重要である。特に、中間焼鈍は、圧延による材料の加工硬化を緩和して圧延の作業性を改善する面でも有利である。中間焼鈍を行う場合、その条件は600〜1000℃で時間10秒〜10分の範囲とする。焼鈍温度が低い場合や焼鈍時間が短い場合は、鉄損特性の向上効果が小さいこと、焼鈍温度が高い場合や焼鈍時間が長い場合は、焼鈍効果が蝕和して鉄損特性の一層の改善が見込めないこと及びコスト上昇の要因となることから、これらの作用効果を考慮して上記の範囲内に定めれば良い。
【0037】
また、最終冷間圧延の圧下率を40〜80%、望ましくは50〜80%にすることが、良好な二次再結晶方位を得るために重要である。これは、圧下率が40%未満では、ゴス方位を二次再結晶させるための、好ましい一次再結晶組織の形成({111})が不十分であり、一方80%をこえると、一次再結晶時に粒界からの{111 }結晶粒の生成が主体となり、良好な二次再結晶粒の核となる、ゴス粒の形成が不足するためと考えられる。
なお、冷間圧延及び温間圧延は、コストの面からできるだけ低い温度とすることが好ましく、温間圧延を行う場合は、300 ℃程度以下の温度とすることが望ましい。
【0038】
ここで、最終圧延板の板厚は特に限定しないが、高周波磁気特性の改善のためには板厚が薄い方が望ましく、この発明においても磁気特性の面からは出来るだけ薄くすることが望ましい。市販されている従来の無方向性電磁鋼板、方向性電磁鋼板と同一の板厚で比較した場合には、この発明の鋼板は1kHz 以上の高周波域で優れた低鉄損特性を示す。
【0039】
通常、方向性電磁鋼板の製造において、圧延の後に、多量に含有するCを除去するため、および次再結晶組織を調整するために、脱炭・一次再結晶焼鈍が行われるが、この発明に従う鋼成分は十分に低Cの組成であって脱炭は不要であるから、通常の脱炭・1 次再結晶焼鈍を省略し、二次再結晶焼鈍工程の前段で一次再結晶させることも可能である。
【0040】
次いで、二次再結晶のための長時間焼鈍において鋼板間の固着を防止する目的で焼鈍分離剤を塗布する。鉄損を重視してフォルステライト被膜を形成させる場合には、MgO を主体とする焼鈍分離剤を適用して、最終仕上焼鈍を施すことにより二次再結晶組織を発達させるとともにフォルステライト被膜を形成させる。打抜き加工性を重視して、フォルステライト被膜を必要としない場合には、フォルステライトを形成するMgO は使用せずシリカ、アルミナ等を用いる。また、塗布を行う際も水分を持ち込まず酸化物生成を抑制する目的で、静電塗布を行うことなどが有効である。さらに、耐熱無機材料シート(シリカ、アルミナ、マイカ)を用いてもよい。なお、Sb,Snを所定量含有するものについては、焼鈍中の酸化窒化が抑制されて鋼板間の固着が生じないため、焼鈍分離剤の塗布を省略することも可能である。
【0041】
二次再結晶焼鈍は、二次再結晶開始温度より 20〜80℃高い温度で保持することが望ましく、その下限は900 ℃程度である。保持温度までの加熱速度は、磁気特性に大きな影響を与えないので任意の条件でよい。二次再結晶完了後は組織安定化と純化とのために、還元雰囲気中でさらに昇温してもよい。ただし、1175℃をこえる高温とすると、コイルの変形などの問題を生じ易くなるため、上限温度を1175℃とする。
【0042】
その後、必要に応じて分離剤除去、フラットニング、絶縁コーティング塗布焼き付けして製品に供される。これらの条件、絶縁被膜の被成条件に関しては、通常の方向性あるいは無方向性電磁鋼板で常用される方法と同様にすればよい。
【0043】
【実施例】
表1に示す成分組成の鋼を小型真空電気炉を用いて溶製したのち、板厚 1.5mmに熱間圧延した。その後、表2に示す種々の条件に従って、最終板厚0.20mmの鋼板を作製した。ここで、熱延板焼鈍、冷延板の中間焼鈍および一次再結晶焼鈍はいずれも窒素80 vol%+水素20 vol%の混合雰囲気中にて、表2に示す所定温度で10秒均熱する条件とし、二次再結晶のための最終仕上げ焼鈍は窒素50 vol%+水素50 vol%の混合雰囲気中で800 ℃以上を20℃/h の昇温速度で加熱し、所定温度で50h 保持する条件とした。
【0044】
ここで、各試料の鋼板製造性を、冷間圧延時の板割れ発生の有無で評価した。次に、得られた鋼板の磁気特性は、板の圧延方向に平行にエプスタイン試験片を切り出し、W10/1k (励磁磁束密度 1.0T、周波数10kHz における鉄損)およびW1/10k (励磁磁束密度 0.1T、周波数10kHz における鉄損)で評価した。さらに,鋼板の加工性の評価指標として、打ち抜き性については100 パンチの打ち抜き試験(15×10mmの角形打ち抜き片)で発生した欠けなどの不良率を用い、また巻きコアヘの加工性については20mmRの密着曲げ試験の結果を用いた。その結果を表3に示す。
また、比較のため、従来の無方向性電磁鋼板(Si量 3.1mass%)、方向性電磁鋼板(Si量 3.1mass%)、そして浸珪法により作製した 6.5mass%Si鋼板の結果についても、表4に示す。
【0045】
【表1】

Figure 2004060026
【0046】
【表2】
Figure 2004060026
【0047】
【表3】
Figure 2004060026
【0048】
【表4】
Figure 2004060026
【0049】
表3から、この発明の組成範囲にある鋼A,BおよびGを用い、この発明の製造条件範囲に従ったNo.2,3,4,7,8,9,10,17は、いずれも二次再結晶組織を発現し、表4に示す従来鋼と比較しても優れた高周波鉄損特性を示していることがわかる。その一例として、No.3の二次再結晶粒のマクロエッチング組織を図2に示すと共に、その組織の(100) 極点図を図3に示すように、この発明に従って得られる鋼板は、良好な二次再結晶を発現し、かつその方位は(110)[001](ゴス方位)に集積していることがわかる。一方、製造条件のうち、最終圧延での合計圧下率がこの発明の範囲を外れるNo.1および5と、二次再結晶焼鈍条件がこの発明範囲より低いNo.6とは、二次再結晶が起こらず、1kHz での鉄損に劣るものであった。
【0050】
一方、鋼組成のうち、C+Nがこの発明の範囲を外れる鋼Cは、圧延中にエッジ部より板割れを生じたため、以後の試験は行わなかった。また、Alが発明範囲を外れる鋼Dでは、鋼A,Bにおいて良好な二次再結晶が得られた条件で通板しても、二次再結晶が起こらなかった。
【0051】
以上の結果から、この発明によってゴス方位に集積した二次再結晶組織を有する電気抵抗の高いSi−Cr鋼は、1kHz および10kHz のいずれの周波数でも従来鋼より優れた磁気特性を示すことが明らかである。加えて、鋼板の圧延性にも優れ浸珪法などの高価な製造方法を用いずとも生産できる、利点がある。さらに、プレス打ち抜き試験、20mm密着曲げ試験においても不良発生は見られなかった。従って、モータなどのプレス打ち抜きによる積層コアやリアクトルなどの巻きコアヘの適用も容易である。
【0052】
【発明の効果】
以上のように、この発明によれば、特に1kHz 〜10kHz といった高周波域で優れた低鉄損特性を示し、さらに優れた鋼板製造性およびコア加工性を有する方向性電磁鋼板を、提供することが可能となる。この発明の電磁鋼板は、主として1kHz 〜20kHz といった、高周波域での鉄損特性が重視されるモータや発電機など高速回転機や高周波リアクトルの鉄心材料に好適である。
【図面の簡単な説明】
【図1】結晶粒の[001] 軸と圧延方向とのずれ角についての説明図である。
【図2】二次再結晶粒のマクロエッチング組織を示す顕微鏡写真である。
【図3】二次再結晶した試料の(100) 極点図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides excellent high-frequency magnetic properties, rollability and rollability, which are suitable for core materials and high-frequency reactor materials for high-speed rotating machines, such as motors and generators, in which iron loss characteristics in a high-frequency range such as 1 kHz to 20 kHz are important. The present invention relates to a grain-oriented electrical steel sheet having workability.
[0002]
[Prior art]
In recent years, distributed power sources have attracted attention from the viewpoint of diversification of energy and stable supply thereof, and a system for rotating a high-speed generator by a micro gas turbine is in the stage of practical use. There is also a demand for environmental measures such as global warming and energy saving. In the automotive field, hybrid electric vehicles (HEV) using both engines and motors, electric vehicles (EV) driven only by electric motors, and fuel cell vehicles (FCEV) ) Are also being developed. The driving frequency of these rotating machines is increasing year by year, and several hundreds to several kHz at the fundamental frequency, and in addition, since harmonic components are superimposed, iron loss characteristics in a frequency range of about 1 kHz to 10 kHz increase motor efficiency. Is becoming more important.
[0003]
Further, with respect to electric equipment, products employing an inverter system have been increasing for higher efficiency and power saving, and the frequency thereof has been shifting to a high frequency range every year for higher efficiency. Conventionally, a reactor has been used for the purpose of improving a power factor with the use of an inverter and a higher frequency. However, in order to further prevent power supply pollution, the use of a high-frequency reactor for an inverter device is increasing. At present, these high-frequency reactors are also used in a frequency range of 1 kHz or more and further 10 kHz or more.
[0004]
Conventionally, as these iron core materials, non-oriented electrical steel sheets containing Si having a thickness of 0.35 mm have been widely used, and various efforts have been made to improve the iron loss of the electrical steel sheets in a high frequency range. Has been paid.
That is, in order to improve high-frequency iron loss, it is effective to suppress an increase in eddy current loss, and as a means therefor, it is effective to reduce the thickness of the electromagnetic steel sheet. For example, Japanese Unexamined Patent Publication No. Hei 8-60252 discloses a thin non-oriented electrical steel sheet having a thickness of 0.10 to 0.25 mm containing 0.5 to 4% of Si and 1% or less of Al. For applications such as micromotors, the demand for such non-oriented electrical steel sheets having a thickness of about 0.20 mm is increasing. Further, for applications that require a material having excellent magnetic properties, application of a material whose plate thickness is further reduced to 0.15 mm is also being studied. However, when the thickness of the magnetic steel sheet becomes thinner, workability decreases due to an increase in the number of press punching steps and core laminating steps in the core processing step, and it becomes difficult to fix by "caulking", and the clearance setting conditions of the press die are set. Therefore, there is a problem in terms of processing, such as severeness, so that there is an increasing demand for manufacturing using a material as thick as possible.
[0005]
In order to improve high-frequency iron loss, it is also effective to increase the specific resistance of steel. In order to increase the specific resistance, a method of increasing the content of Si or Al has been generally adopted. However, when the contents of Si and Al are increased, the workability is remarkably deteriorated due to embrittlement. In particular, steel containing 3.5% or more of Si, or 4% or more of Si and Al in total, is subjected to ordinary rolling. It was difficult to manufacture by the method.
[0006]
As a technique for improving the manufacturability, Japanese Patent Application Laid-Open No. 61-166923 discloses a method of hot rolling a high silicon steel sheet under low temperature and high pressure. However, this technique requires fine adjustment of the rolling structure in order to apparently improve the brittleness of the alloy, and strict control must be performed in the manufacturing process. It was difficult to produce.
[0007]
On the other hand, Japanese Patent Application Laid-Open No. 62-227078 discloses a method for obtaining a high Si steel by diffusion and infiltration treatment of Si under the control of an annealing atmosphere. In this method, a steel sheet having an arbitrary Si concentration can be obtained by controlling the sheet passing conditions. However, since a special diffusion infiltration method is used, it is extremely disadvantageous in terms of cost in the case of industrial production. . Furthermore, none of the techniques improve the brittleness inherent in high Si and Al steels, so the manufactured product is extremely brittle, frequently cracks during press punching, There were problems in processing, such as difficulty in winding.
[0008]
On the other hand, in view of the above points, the applicant has attempted to improve the brittleness of high-Si steel to improve steel plate production and core core workability by improving the brittleness itself. After intensive studies, this was proposed in Japanese Patent Application Laid-Open No. 11-343544. That is, this technology has found that coexistence of Cr with high Si steel or high Si, Al steel is very effective in improving brittleness, and it is possible to provide a non-oriented electrical steel sheet having excellent high frequency characteristics. It was made. That is, conventionally, in Si steels and Si-Al steels, it has been thought that the toughness deteriorates as the added amount increases only by simply adding Cr. However, even in a high Si steel containing 3% or more of Si, It has been found that by adding Cr after sufficiently reducing the contents of C and N, rather high toughness can be obtained. Regarding the magnetic properties, Cr is an element having the effect of increasing the specific resistance similarly to Si and Al, and can reduce high-frequency iron loss by being added. It has also been found that this has a synergistic effect on the increase in the specific resistance. That is, when Cr was added to steel to which Si and Al were independently added or to Si-Al steel, a drastically higher resistance increasing effect was obtained than when the same amount of Cr was added alone.
[0009]
With this technology, it is possible to manufacture steel that has a Si content exceeding 3.5%, which has been difficult to roll in the past, by normal rolling, and it is also sufficient for press punching and winding of a reactor. It has become possible to provide an applicable high-frequency material having excellent workability and a method for manufacturing the same.
[0010]
[Problems to be solved by the invention]
The present invention is based on the above-mentioned novel technology and is used in high-frequency applications such as drive motors, micro gas turbine generators and reactors for use in EVs and HEVs while maintaining good rollability and workability. It is an object of the present invention to provide a grain-oriented electrical steel sheet further improved in characteristics more suitable for an iron core, particularly iron loss in a frequency range of 1 kHz to 10 kHz, together with an advantageous manufacturing method thereof.
[0011]
[Means for Solving the Problems]
The inventors control the texture of the steel sheet and develop a Goss orientation (110) [001] texture in which the <110> axis, which is the axis of easy magnetization, is parallel to the rolling direction, into the steel sheet by secondary recrystallization. We studied to apply the method to Cr-Si steel.
[0012]
By the way, grain-oriented electrical steel sheets with integrated Goss orientation are already widely used, but they contain only about 3 mass% of a specific resistance increasing element such as Si. In this case, since the average particle size of about 3 mm to 30 mm is reached, the iron loss in a high frequency range expected in the present invention is not always satisfactory. Therefore, if Cr is contained in the grain-oriented electrical steel sheet, the specific resistance can be further increased without embrittlement, and even if the Si content is contained at 3.5 mass% or more, it can be rolled and manufactured. Become. In a steel sheet having an increased specific resistance in this way, if its texture can be stably integrated in a Goss orientation favorable to magnetic properties, high-frequency magnetic properties suitable for the above-mentioned applications and rollability (steel sheet productivity) ) And (core) workability can be obtained.
[0013]
However, when the Goss orientation secondary recrystallization appearance conditions of the high Cr content steel were examined in detail, the secondary recrystallization became unstable and the desired magnetic properties were obtained by the same manufacturing method as the conventional grain-oriented electrical steel sheet. It became clear that there was none.
Therefore, we conducted intensive studies on the appropriate conditions for the appearance of secondary recrystallization of Goss orientation in high Cr content steels, and by optimizing the steel composition and the manufacturing conditions, it was possible to stabilize even Cr-containing steels. The inventors have found that secondary recrystallized Goss grains can be obtained, and have completed the present invention.
[0014]
That is, the gist configuration of the present invention is as follows.
(1) Cr: 1.5 mass% to 20 mass% and Si: 2.5 mass% to 10 mass%, acid-soluble Al: 0.03 mass% or less, Mn: 1.0 mass% or less, S : 50 mass ppm or less, Se: 50 mass ppm or less, O: 100 mass ppm or less, and the total of C and N is reduced to 100 mass ppm or less, and has a component composition of the balance Fe and unavoidable impurities, and the [001] axis of the crystal grains and the rolling direction. Are defined as α (in the rolling plane) and β (in the vertical plane of rolling), the area ratio of crystal grains satisfying α ≦ 15 ° is 70% or more and the area rate of crystal grains satisfying β ≦ 10 ° Directional steel excellent in high-frequency magnetic properties, rollability and workability, characterized in that the average grain size is 80% or more and the average crystal grain size is 1.0 mm or more. Board.
[0015]
(2) The high-frequency magnetic characteristic according to (1) above, further comprising a component composition containing one or two of Sb and Sn in a total amount of 0.005 mass% or more and 0.2 mass% or less. Grain-oriented electrical steel sheet with excellent workability and workability.
[0016]
(3) Cr: 1.5 mass% or more and 20 mass% or less and Si: 2.5 mass% or more and 10 mass% or less, acid-soluble Al: 0.03 mass% or less, Mn: 1.0 mass% or less, S : 50 mass ppm or less, Se: 50 mass ppm or less, O: 100 mass ppm or less, C and N are reduced to a total of 100 mass ppm or less, and the steel material comprising the balance of Fe and unavoidable impurities is hot-rolled, and includes one or intermediate annealing. Cold rolling two or more times, then secondary recrystallization annealing also serving as primary recrystallization annealing, and further applying insulation coating. In manufacturing a grain-oriented electrical steel sheet by a series of processes, the rolling reduction in the final cold rolling process , And a secondary recrystallization annealing temperature of 900 ° C to 1175 ° C. Sex, method of manufacturing the oriented electrical steel sheet excellent in rolling resistance and workability.
[0017]
(4) In the above (3), after cold rolling, primary recrystallization annealing and application of an annealing separating agent are performed, then secondary recrystallization annealing is performed, and then an insulating coating is applied. A method for producing a grain-oriented electrical steel sheet having excellent rollability and workability.
[0018]
Note that, as in the grain-oriented electrical steel sheet according to the present invention, those having an anisotropic structure in which Goss orientations are accumulated have been conventionally unsuitable for application to a rotating machine. However, in recent years, in the design of a rotating machine, a split core that divides a stator into several parts and starts punching has been adopted, and according to this method, the direction of teeth where magnetic flux is concentrated during operation is magnetized. Since it is possible to design such that the material having the easy <100> axis can be aligned with the rolling direction, it is possible to apply the grain-oriented electrical steel sheet according to the present invention to a rotating machine. In addition, the reactor can be manufactured in consideration of the winding direction of the wound core and the cutting direction of the stacked core, and the steel sheet of the present invention is particularly suitable for such use.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the experimental results on which the present invention is based will be described.
That is, C: 0.0038 mass%, Si: 4.3 mass%, Cr: 5.5 mass%, Mn: 0.075 massmass%, Al: 0.036 mass%, N: 0.0052 mass%, Se: 0 A steel slab containing .018 mass% is hot-rolled to a thickness of 2.0 mm, then annealed at 1000 ° C. for 60 seconds, then cold-rolled to a thickness of 1.5 mm, and subjected to intermediate annealing. At 1050 ° C. for 60 seconds. Thereafter, primary recrystallization annealing was performed at 850 ° C. for 2 minutes, a pure separating agent containing MgO 2 as a main component was applied, and final finishing annealing was performed at 1200 ° C.
[0020]
Observation of the steel sheet thus obtained revealed that no secondary recrystallization had occurred and the magnetic properties were not satisfactory. The reason for this is not clear, but as a result of examining the steel sheet after the primary recrystallization, it was found that CrSe was formed unevenly and coarsely in the steel sheet, and coarse precipitates in which CrSe and AIN were combined were also observed. Therefore, it is considered that the secondary recrystallization became difficult due to the deterioration of the inhibitor due to the change in the type and distribution of the formed inhibitor due to the inclusion of Cr.
[0021]
In addition, after detailed investigation, Al, Se, and S, which are inhibitor-forming components, were reduced, and the production conditions were appropriately defined. Successful secondary recrystallization. The conditions for that will be described in detail below.
[0022]
Cr: 1.5 mass% or more and 20 mass% or less
Cr is an important alloy component in the present invention, which greatly improves electric resistance by a synergistic effect with Si and reduces iron loss in a high frequency range. Furthermore, when more than 3.5 mass% of Si is contained, toughness that can be rolled can be obtained by adding Cr. From this viewpoint, it is preferable to contain Cr in an amount of 2 mass% or more. When the amount of Si is less than 3.5 mass%, workability can be ensured even if the amount of Cr is further reduced. Further, since Cr also has an effect of improving the corrosion resistance of the steel sheet, it is advantageous for applications that may be exposed to a corrosive environment such as motors for automobiles. On the other hand, if it exceeds 20 mass%, the effect of improving the toughness is saturated and the cost is increased. Therefore, the content of Cr is 1.5 mass% or more and 20 mass% or less, preferably 2 mass% or more and 10 mass% or less, more preferably 3 mass% or less. % To 7 mass% or less. When it is desired to further improve the high-frequency magnetic properties and the corrosion resistance of Cr, it is more desirable to include Cr in an amount exceeding 5.5 mass%.
[0023]
Si: 2.5 mass% or more and 10 mass% or less
Although Si alone increases the specific resistance of steel, it further increases the specific resistance significantly by a synergistic effect with Cr, and is an effective component particularly for reducing iron loss in a frequency range of 1 kHz or more. When the amount of Si is less than 2.5 mass%, a high specific resistance can be obtained by using Cr in combination, but there is a problem that the magnetic flux density is deteriorated. On the other hand, if it exceeds 10 mass%, the toughness that can be rolled cannot be ensured even if Cr is contained, so the content range of Si is 2.5 mass% or more and 10 mass% or less, preferably 2.5 mass% or more. 7 mass% or less, more preferably 3.5 mass% or more and 5 mass% or less.
[0024]
Acid soluble Al: 0.03 mass% or less
Al has an effect of generally increasing electric resistance and is effective in reducing iron loss. In the present invention, however, in order to stably obtain a secondary recrystallized structure having a Goss orientation, the amount of acid-soluble Al is limited. Must be limited to 0.03 mass% or less, and preferably 0.01 mass% or less. The reason for this is not clear, but if the acid-soluble Al exceeds 0.03 mass%, the formed AlN 2 acts as an inhibitor in the course of the secondary recrystallization annealing, so that the grain growth due to the texture. It is considered that the delicate balance of the suppressing effect is lost and the Goss orientation does not always grow preferentially.
[0025]
Mn: 1.0 mass% or less
Mn, like Si and Al, has the effect of increasing the specific resistance of the alloy. In addition to acting as a deoxidizing agent, it also has an effect of improving the toughness of the hot-rolled sheet by interaction with C, so that it can be added. However, ferromanganese generally used at the time of Mn addition contains C as an impurity, and a large amount of Mn addition causes an increase in C in steel. Considering that the increase in the specific resistance of Mn is only about half the effect of Si with the same amount of addition, the upper limit is set to 1 mass%. Although there is no particular lower limit, Mn is also present in the ore as a raw material, so that it is often contained at about 0.05 mass% in the stage of pig iron.
[0026]
S: 50 mass ppm or less
Se: 50 mass ppm or less
O: 100 mass ppm or less
Since any of these elements can be a precipitate, it affects the secondary recrystallization behavior. In particular, since the present invention contains chromium as a main component, when the content of S and Se is large, CrS and CrSe are formed. These sulfides are harmful because they precipitate coarsely and unevenly and hinder secondary recrystallization. In particular, it is necessary to reduce S and Se to 50 mass ppm or less, respectively. Preferably, each is 20 mass ppm or less. Under the conditions of the present invention, it is necessary to limit to the above range in order to stably obtain the secondary recrystallized Goss grains.
[0027]
100 mass ppm or less of C and N in total
C and N are preferably reduced as much as possible in order to deteriorate the toughness of the Fe—Cr—Si alloy, and the allowable amounts thereof are as follows. It is necessary to suppress the total to 100 mass ppm or less. That is, as described above, in the present invention, the content of C + N is reduced to 100 mass ppm or less, and then a certain amount or more of Cr is contained, so that a large amount of Si (an amount exceeding 3.5 mass%) is obtained. ), Excellent high toughness is obtained, workability during production and processing of products is improved, and high-frequency magnetic properties are remarkably improved. The content of C + N is preferably 80 mass ppm or less, more preferably 50 mass ppm or less. In addition, each of C and N is preferably such that C is 50 mass ppm or less and N is 50 mass ppm or less, and more preferably C is 20 mass ppm or less and N is 30 mass ppm or less.
[0028]
Further, if necessary, one or two of Sb and Sn are used in a total amount of 0.005% by mass or more and 0.2% by mass or less.
Since Sb and Sn have the effect of suppressing surface layer oxidation and nitriding during annealing, they have the effect of preventing adhesion between the sheet surfaces in the secondary recrystallization annealing step requiring long-time heating in the coil. Therefore, the step of applying an annealing separator before coil annealing can be omitted, so that one or two of Sb and Sn may be added in a total range of 0.2 mass% or less. This effect can be obtained by adding at least one of them in an amount of 0.005 mass% or more. On the other hand, even if it is added in an amount of 0.2 mass% or more, the effect is saturated, and there is an adverse effect of weakening the strength of the crystal grain boundaries and causing embrittlement.
[0029]
The addition of a conventionally known alloy component to the above components for the purpose of further improving magnetic properties, corrosion resistance, workability, and the like does not impair the effects of the present invention. Representative examples of these components are listed below.
That is, P of 0.1 mass% or less has an effect of improving the specific resistance and magnetic properties of the steel, but if it exceeds 0.1 mass%, the steel becomes brittle. Ni of 5 mass% or less and Cu of 1 mass% or less improve the corrosion resistance and lower the ductile-brittle transition temperature, respectively, to improve the steel sheet productivity. Mo and W of 5 mass% or less improve corrosion resistance, respectively. Co of 5 mass% or less improves the magnetic flux density and is effective in improving iron loss.
[0030]
Furthermore, the grain-oriented electrical steel sheet of the present invention has a crystal structure developed by secondary recrystallization, and the shift angles between the [001] axis of the crystal grains and the rolling direction are α (in the rolling plane) and β (rolling plane). When defined as (in a vertical plane), the area ratio of crystal grains satisfying α ≦ 15 ° is 70% or more, the area ratio of crystal grains satisfying β ≦ 10 ° is 80% or more, and the average crystal grain size is 1 0.0 mm or more.
[0031]
Here, the deviation angle between the [001] axis of the crystal grains and the rolling direction will be described. That is, as shown in FIG. 1, the angle ∠BOR between the rolling direction and the projection vector (OB) of the [001] axis (OA) on the rolling surface, which is closer to the RD direction of the crystal grains with respect to the rolling direction (RD), Is defined as α, and the angle ∠AOB between the [001] axis and the projection axis in the vertical plane where the [001] axis is projected onto the rolling surface is defined as β. It is known that the [001] axis direction is the most easily magnetizable direction in iron having a bcc structure, and the more the [001] axes of the crystal grains are aligned, the better the magnetic properties when magnetized in that direction. It will be excellent.
[0032]
If the area ratio of the crystal grains satisfying α ≦ 15 ° does not simultaneously satisfy 70% or more and the area ratio of the crystal grains satisfying β ≦ 10 ° does not satisfy 80% or more, the accumulation of the secondary recrystallized grains is insufficient. And good magnetic properties cannot be obtained. In particular, it is preferable that the area ratio of crystal grains satisfying α ≦ 15 ° is 80% or more and the area ratio of crystal grains satisfying β ≦ 10 ° is 90% or more.
Further, when the average crystal grain size is less than 1.0 mm, secondary recrystallization is insufficient, and accumulation on (110) [001] is insufficient.
[0033]
Next, a method for manufacturing a grain-oriented electrical steel sheet according to the present invention will be described.
The molten steel having the above-described composition range is formed into a slab by continuous casting or ingot-bulking rolling. Further, a thin slab can be directly manufactured by using a thin slab continuous casting method. The obtained slab, once cooled, is subjected to hot rolling after reheating and holding, or from the viewpoint of energy efficiency and productivity, the slab after casting is used in order to utilize sensible heat during continuous casting. Direct hot rolling (CC-DR method) or hot rolling (HCR method) after reheating the hot piece slab immediately after casting for a short time can be performed.
[0034]
In the hot rolling, it is preferable to improve the workability, that is, the rollability, in the next step of cold rolling or warm rolling by rolling as thinly as possible. This is based on the finding that in the case of the Fe—Cr—Si alloy composition according to the present invention, the workability of the surface portion of the hot rolled sheet is better than that of the central portion. The thickness of the hot-rolled sheet for this purpose is 3 mm or less, preferably 2.5 mm or less, and more preferably 1.8 mm or less.
[0035]
After the hot rolling, hot-rolled sheet annealing can be performed as necessary. Since the rolled material can be softened by the hot-rolled sheet annealing, the workability of the subsequent cold rolling or warm rolling can be improved. The hot rolled sheet annealing conditions are, for example, a temperature of 750 to 1050 ° C. and a time of 1 second to 2 hours. If the annealing temperature is unnecessarily high or the annealing time is long, this not only causes an increase in cost, but also saturates the annealing effect, making it impossible to improve productivity, and in some cases, causes excessive growth of crystal grains. This may be a starting point for edge cracking or plate breakage during coil disassembly or cold rolling in the next step. Therefore, in consideration of these effects, the annealing can be omitted or can be appropriately performed within the above range.
[0036]
Subsequently, after hot-rolled scale is removed by pickling or shot blasting, cold rolling or warm rolling is performed. Since the toughness of the hot-rolled sheet has been improved even with the high Si content steel by the components in the above-described invention range and the production method, it may be further rolled hot or cold to form a thin sheet having a predetermined thickness. it can. The above-described cold rolling or warm rolling is performed by one rolling or two or more rollings including intermediate annealing. Performing the rolling reduction and the intermediate annealing in this rolling is important for achieving secondary recrystallization in the subsequent process through the improvement of the texture of the rolled material and the improvement of the magnetic properties by accumulating the Goss orientation. It is. In particular, the intermediate annealing is advantageous in terms of improving workability of rolling by relaxing work hardening of the material by rolling. When the intermediate annealing is performed, the conditions are 600 to 1000 ° C. for a time of 10 seconds to 10 minutes. When the annealing temperature is low or the annealing time is short, the effect of improving the iron loss characteristics is small, and when the annealing temperature is high or the annealing time is long, the annealing effect is corroded and the iron loss characteristics are further improved. Is not expected and causes a rise in cost. Therefore, it is only necessary to set the value within the above range in consideration of these effects.
[0037]
Further, it is important that the rolling reduction in the final cold rolling is 40 to 80%, preferably 50 to 80%, in order to obtain a good secondary recrystallization orientation. If the rolling reduction is less than 40%, the formation of the preferred primary recrystallized structure ({111}) for secondary recrystallization of the Goss orientation is insufficient, while if it exceeds 80%, the primary recrystallization is insufficient. It is considered that the formation of {111} crystal grains from the grain boundaries sometimes occurs mainly, and the formation of Goss grains, which serve as nuclei of good secondary recrystallized grains, is insufficient.
It is preferable that the cold rolling and the warm rolling be performed at a temperature as low as possible from the viewpoint of cost. In the case of performing the warm rolling, it is preferable that the temperature be approximately 300 ° C. or less.
[0038]
Here, the thickness of the final rolled sheet is not particularly limited, but it is desirable that the thickness is small in order to improve high-frequency magnetic characteristics. In the present invention, it is desirable that the thickness be as small as possible from the viewpoint of magnetic characteristics. When compared with commercially available conventional non-oriented electrical steel sheets and grain-oriented electrical steel sheets at the same thickness, the steel sheet of the present invention exhibits excellent low iron loss characteristics in a high frequency range of 1 kHz or more.
[0039]
Usually, in the production of grain-oriented electrical steel sheets, after rolling, decarburization / primary recrystallization annealing is performed in order to remove a large amount of C and adjust the next recrystallization structure. Since the steel component has a sufficiently low C composition and does not require decarburization, ordinary decarburization and primary recrystallization annealing can be omitted, and primary recrystallization can be performed before the secondary recrystallization annealing process. It is.
[0040]
Next, an annealing separator is applied for the purpose of preventing sticking between the steel sheets during long-time annealing for secondary recrystallization. When a forsterite film is formed with an emphasis on iron loss, an annealing separator mainly composed of MgO 2 is applied, and a final finish annealing is performed to develop a secondary recrystallized structure and form a forsterite film. Let it. When emphasis is placed on the punching workability and a forsterite film is not required, silica, alumina or the like is used instead of MgO for forming forsterite. It is also effective to perform electrostatic coating for the purpose of suppressing oxide formation without bringing in moisture when performing coating. Further, a heat-resistant inorganic material sheet (silica, alumina, mica) may be used. For those containing a predetermined amount of Sb and Sn, the application of the annealing separating agent can be omitted because oxynitridation during annealing is suppressed and sticking between steel sheets does not occur.
[0041]
The secondary recrystallization annealing is desirably maintained at a temperature 20 to 80 ° C. higher than the secondary recrystallization starting temperature, and the lower limit is about 900 ° C. The heating rate up to the holding temperature does not significantly affect the magnetic properties, and may be any condition. After the completion of the secondary recrystallization, the temperature may be further increased in a reducing atmosphere for stabilizing the structure and purifying. However, if the temperature is higher than 1175 ° C., problems such as coil deformation are likely to occur, so the upper limit temperature is set to 1175 ° C.
[0042]
After that, if necessary, a separating agent is removed, flattened, and an insulating coating is applied and baked to provide the product. These conditions and the conditions for forming the insulating coating may be the same as those commonly used for ordinary grain-oriented or non-oriented electrical steel sheets.
[0043]
【Example】
Steel having the composition shown in Table 1 was melted using a small vacuum electric furnace, and then hot-rolled to a thickness of 1.5 mm. Thereafter, a steel sheet having a final sheet thickness of 0.20 mm was manufactured according to various conditions shown in Table 2. Here, the hot rolled sheet annealing, the intermediate annealing of the cold rolled sheet, and the primary recrystallization annealing are all soaked at a predetermined temperature shown in Table 2 for 10 seconds in a mixed atmosphere of nitrogen 80 vol% + hydrogen 20 vol%. Under the conditions, the final finish annealing for the secondary recrystallization is performed by heating at 800 ° C. or more at a heating rate of 20 ° C./h in a mixed atmosphere of nitrogen 50 vol% + hydrogen 50 vol% and maintaining the temperature at a predetermined temperature for 50 h. Conditions.
[0044]
Here, the manufacturability of the steel sheet of each sample was evaluated based on whether or not a sheet crack occurred during cold rolling. Next, the magnetic properties of the obtained steel sheet were determined by cutting out an Epstein test piece in parallel with the rolling direction of the sheet. 10 / 1k (Iron loss at an exciting magnetic flux density of 1.0 T and a frequency of 10 kHz) and W 1 / 10k (Iron loss at an excitation magnetic flux density of 0.1 T and a frequency of 10 kHz) was evaluated. Further, as an evaluation index of the workability of the steel sheet, a defect rate such as chipping generated in a punching test of 100 punches (a square punched piece of 15 × 10 mm) was used for the punchability, and a workability of 20 mmR was used for the workability of the wound core. The result of the contact bending test was used. Table 3 shows the results.
Also, for comparison, the results of a conventional non-oriented electrical steel sheet (Si content 3.1 mass%), a grain-oriented electrical steel sheet (Si content 3.1 mass%), and a 6.5 mass% Si steel sheet produced by a siliconizing method Are also shown in Table 4.
[0045]
[Table 1]
Figure 2004060026
[0046]
[Table 2]
Figure 2004060026
[0047]
[Table 3]
Figure 2004060026
[0048]
[Table 4]
Figure 2004060026
[0049]
From Table 3, it is found that the steels A, B and G having the composition range of the present invention were used, and the steel Nos. 2,3,4,7,8,9,10,17 all exhibit secondary recrystallized structure and show superior high-frequency iron loss characteristics compared to the conventional steels shown in Table 4. I understand. As an example, No. The macro-etched structure of the secondary recrystallized grain of No. 3 is shown in FIG. 2, and the (100) pole figure of the structure is shown in FIG. 3, and the steel sheet obtained according to the present invention exhibits good secondary recrystallization. In addition, it can be seen that the direction is accumulated at (110) [001] (Goss direction). On the other hand, among the manufacturing conditions, the total rolling reduction in the final rolling was out of the range of the present invention. Nos. 1 and 5 and No. 2 where the secondary recrystallization annealing conditions were lower than the range of the present invention. In No. 6, secondary recrystallization did not occur and core loss at 1 kHz was inferior.
[0050]
On the other hand, among the steel compositions, the steel C whose C + N was out of the range of the present invention was not subjected to the subsequent test because a plate crack occurred from the edge portion during rolling. In the case of steel D in which Al is out of the range of the invention, secondary recrystallization did not occur even when the steel A and B were passed under conditions where good secondary recrystallization was obtained.
[0051]
From the above results, it is apparent that the Si-Cr steel having a secondary recrystallized structure with a high resilience and having a secondary recrystallized structure in the Goss orientation according to the present invention exhibits magnetic properties superior to those of the conventional steel at any of the frequencies of 1 kHz and 10 kHz. It is. In addition, there is an advantage that the steel sheet is excellent in rollability and can be produced without using an expensive manufacturing method such as a siliconizing method. Further, no failure was found in the press punching test and the 20 mm close contact bending test. Therefore, application to a wound core such as a laminated core or a reactor by press punching of a motor or the like is also easy.
[0052]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a grain-oriented electrical steel sheet exhibiting excellent low iron loss characteristics particularly in a high frequency range of 1 kHz to 10 kHz and further having excellent steel sheet manufacturability and core workability. It becomes possible. The electromagnetic steel sheet of the present invention is suitable for a core material of a high-speed rotating machine such as a motor or a generator or a high-frequency reactor in which iron loss characteristics in a high frequency range of 1 kHz to 20 kHz are important.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a shift angle between a [001] axis of a crystal grain and a rolling direction.
FIG. 2 is a micrograph showing a macro-etched structure of secondary recrystallized grains.
FIG. 3 is a (100) pole figure of a secondary recrystallized sample.

Claims (4)

Cr:1.5 mass%以上20mass%以下および
Si:2.5 mass%以上10mass%以下
を含有し、
酸可溶性Al:0.03mass%以下、
Mn:1.0 mass%以下、
S:50massppm 以下、
Se:50massppm 以下、
O:100massppm以下および
C及びNを合計で100massppm以下
に低減し、残部Feおよび不可避的不純物の成分組成を有し、
結晶粒の[001] 軸と圧延方向とのずれ角をα(圧延面内)およびβ(圧延垂直面内)と定義したとき、α≦15°である結晶粒の面積率が70%以上およびβ≦10°である結晶粒の面積率が80%以上であり、かつ平均結晶粒径が1.0 mm以上であることを特徴とする高周波磁気特性、圧延性および加工性に優れる方向性電磁鋼板。
Cr: 1.5 mass% or more and 20 mass% or less and Si: 2.5 mass% or more and 10 mass% or less,
Acid-soluble Al: 0.03 mass% or less,
Mn: 1.0 mass% or less,
S: 50 mass ppm or less,
Se: 50 mass ppm or less,
O: 100 mass ppm or less and C and N are reduced to a total of 100 mass ppm or less, and the balance has a component composition of Fe and unavoidable impurities,
When the deviation angle between the [001] axis of the crystal grains and the rolling direction is defined as α (in the rolling plane) and β (in the rolling vertical plane), the area ratio of the crystal grains satisfying α ≦ 15 ° is 70% or more and a directional electromagnetic layer excellent in high-frequency magnetic properties, rollability and workability, characterized in that the area ratio of crystal grains satisfying β ≦ 10 ° is 80% or more and the average crystal grain size is 1.0 mm or more. steel sheet.
請求項1において、さらにSbおよびSnのいずれか1種または2種を合計で 0.005mass%以上 0.2mass%以下含有する成分組成を有することを特徴とする高周波磁気特性、圧延性および加工性に優れる方向性電磁鋼板。2. The high-frequency magnetic properties, rollability and workability according to claim 1, further comprising a component composition containing at least one of Sb and Sn at least 0.005% by mass and 0.2% by mass or less. Grain-oriented electrical steel sheet with excellent properties. Cr:1.5 mass%以上20mass%以下および
Si:2.5 mass%以上10mass%以下
を含有し、
酸可溶性Al:0.03mass%以下、
Mn:1.0 mass%以下、
S:50massppm 以下、
Se:50massppm 以下、
O:100massppm以下および
C及びNを合計で100massppm以下
に低減し、残部Feおよび不可避的不純物からなる、鋼素材を熱間圧延後、1回または中間焼鈍を含む2回以上の冷間圧延を施し、次いで一次再結晶焼鈍を兼ねる二次再結晶焼鈍、さらに絶縁コーティングを施す、一連の工程によって方向性電磁鋼板を製造するに当たり、最終冷延工程での圧下率を40〜80%、二次再結晶焼鈍温度を 900℃〜1175℃とすることを特徴とする高周波磁気特性、圧延性および加工性に優れる方向性電磁鋼板の製造方法。
Cr: 1.5 mass% or more and 20 mass% or less and Si: 2.5 mass% or more and 10 mass% or less,
Acid-soluble Al: 0.03 mass% or less,
Mn: 1.0 mass% or less,
S: 50 mass ppm or less,
Se: 50 mass ppm or less,
O: 100 mass ppm or less and C and N reduced to a total of 100 mass ppm or less, and after hot rolling a steel material composed of the balance of Fe and unavoidable impurities, cold rolling is performed once or twice or more including intermediate annealing. Then, a secondary recrystallization annealing also serving as a primary recrystallization annealing, and further applying an insulating coating. In manufacturing a grain-oriented electrical steel sheet through a series of steps, the rolling reduction in the final cold rolling step is 40 to 80%, and the secondary recrystallization is performed. A method for producing a grain-oriented electrical steel sheet having excellent high-frequency magnetic properties, rollability and workability, wherein the crystal annealing temperature is 900 ° C to 1175 ° C.
請求項3において、冷間圧延後に、一次再結晶焼鈍および焼鈍分離剤の塗布を行い、その後二次再結晶焼鈍を施してから、絶縁コーティングを施すことを特徴とする高周波磁気特性、圧延性および加工性に優れる方向性電磁鋼板の製造方法の製造方法。The high-frequency magnetic characteristics, rollability and rollability according to claim 3, wherein after the cold rolling, a primary recrystallization annealing and an annealing separator are applied, and then a secondary recrystallization annealing is performed, and then an insulating coating is applied. A method for producing a grain-oriented electrical steel sheet having excellent workability.
JP2002223210A 2002-07-31 2002-07-31 Oriented electrical steel sheet and manufacturing method thereof Expired - Fee Related JP4265166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002223210A JP4265166B2 (en) 2002-07-31 2002-07-31 Oriented electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002223210A JP4265166B2 (en) 2002-07-31 2002-07-31 Oriented electrical steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004060026A true JP2004060026A (en) 2004-02-26
JP4265166B2 JP4265166B2 (en) 2009-05-20

Family

ID=31943026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002223210A Expired - Fee Related JP4265166B2 (en) 2002-07-31 2002-07-31 Oriented electrical steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4265166B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305820A (en) * 2007-06-05 2008-12-18 Jfe Steel Kk High frequency reactor
JP2009010253A (en) * 2007-06-29 2009-01-15 Jfe Steel Kk High-frequency reactor
JP2009117442A (en) * 2007-11-02 2009-05-28 Jfe Steel Corp Compound reactor
CN102172622A (en) * 2011-01-29 2011-09-07 首钢总公司 Production method of black steel for 510L automobile frame
JP2013108149A (en) * 2011-11-24 2013-06-06 Jfe Steel Corp Iron core for three-phase transformer
WO2017057513A1 (en) * 2015-09-29 2017-04-06 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet
EP3205738A4 (en) * 2014-10-06 2017-08-30 JFE Steel Corporation Low-core-loss grain-oriented electromagnetic steel sheet and method for manufacturing same
WO2020027219A1 (en) 2018-07-31 2020-02-06 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
WO2020027215A1 (en) 2018-07-31 2020-02-06 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
WO2020027218A1 (en) 2018-07-31 2020-02-06 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
JP2020190026A (en) * 2019-05-15 2020-11-26 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing the same
WO2021156980A1 (en) 2020-02-05 2021-08-12 日本製鉄株式会社 Oriented electromagnetic steel sheet
WO2021156960A1 (en) 2020-02-05 2021-08-12 日本製鉄株式会社 Grain-oriented electrical steel sheet
CN113740144A (en) * 2020-05-27 2021-12-03 宝山钢铁股份有限公司 Method for evaluating rolling property of sheet electrical steel

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305820A (en) * 2007-06-05 2008-12-18 Jfe Steel Kk High frequency reactor
JP2009010253A (en) * 2007-06-29 2009-01-15 Jfe Steel Kk High-frequency reactor
JP2009117442A (en) * 2007-11-02 2009-05-28 Jfe Steel Corp Compound reactor
CN102172622A (en) * 2011-01-29 2011-09-07 首钢总公司 Production method of black steel for 510L automobile frame
JP2013108149A (en) * 2011-11-24 2013-06-06 Jfe Steel Corp Iron core for three-phase transformer
EP3205738A4 (en) * 2014-10-06 2017-08-30 JFE Steel Corporation Low-core-loss grain-oriented electromagnetic steel sheet and method for manufacturing same
CN108026645B (en) * 2015-09-29 2020-09-08 日本制铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet
WO2017057513A1 (en) * 2015-09-29 2017-04-06 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet
CN108026645A (en) * 2015-09-29 2018-05-11 新日铁住金株式会社 The manufacture method of grain-oriented magnetic steel sheet and grain-oriented magnetic steel sheet
JPWO2017057513A1 (en) * 2015-09-29 2018-08-30 新日鐵住金株式会社 Directional electrical steel sheet and method for manufacturing the grain oriented electrical steel sheet
RU2688982C1 (en) * 2015-09-29 2019-05-23 Ниппон Стил Энд Сумитомо Метал Корпорейшн Electrotechnical steel sheet with directed crystallization and method for its production
US11072861B2 (en) 2015-09-29 2021-07-27 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
WO2020027219A1 (en) 2018-07-31 2020-02-06 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
WO2020027218A1 (en) 2018-07-31 2020-02-06 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
WO2020027215A1 (en) 2018-07-31 2020-02-06 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
KR20210024077A (en) 2018-07-31 2021-03-04 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet
KR20210024076A (en) 2018-07-31 2021-03-04 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet
KR20210024614A (en) 2018-07-31 2021-03-05 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet
US11753691B2 (en) 2018-07-31 2023-09-12 Nippon Steel Corporation Grain oriented electrical steel sheet
US11939641B2 (en) 2018-07-31 2024-03-26 Nippon Steel Corporation Grain oriented electrical steel sheet
US11851726B2 (en) 2018-07-31 2023-12-26 Nippon Steel Corporation Grain oriented electrical steel sheet
JP2020190026A (en) * 2019-05-15 2020-11-26 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing the same
JP7334673B2 (en) 2019-05-15 2023-08-29 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
KR20220123453A (en) 2020-02-05 2022-09-06 닛폰세이테츠 가부시키가이샤 grain-oriented electrical steel sheet
KR20220124785A (en) 2020-02-05 2022-09-14 닛폰세이테츠 가부시키가이샤 grain-oriented electrical steel sheet
WO2021156960A1 (en) 2020-02-05 2021-08-12 日本製鉄株式会社 Grain-oriented electrical steel sheet
WO2021156980A1 (en) 2020-02-05 2021-08-12 日本製鉄株式会社 Oriented electromagnetic steel sheet
CN113740144A (en) * 2020-05-27 2021-12-03 宝山钢铁股份有限公司 Method for evaluating rolling property of sheet electrical steel
CN113740144B (en) * 2020-05-27 2023-10-17 宝山钢铁股份有限公司 Method for evaluating rollability of thin plate electrical steel

Also Published As

Publication number Publication date
JP4265166B2 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
JP6478004B1 (en) Non-oriented electrical steel sheet
JP6651759B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPWO2003002777A1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP7174053B2 (en) Bidirectional electrical steel sheet and manufacturing method thereof
JP4265166B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP4389691B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
JP2012036459A (en) Non-oriented magnetic steel sheet and production method therefor
JP5447167B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2007031755A (en) Method for producing non-oriented silicon steel sheet for rotor
TWI641702B (en) Non-oriented electromagnetic steel sheet with excellent recyclability
JP2000129410A (en) Nonoriented silicon steel sheet high in magnetic flux density
JP3835227B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5671872B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPH0888114A (en) Manufacture of nonoriented flat rolled magnetic steel sheet
JP2005060811A (en) High-tensile non-oriented magnetic steel sheet and its production method
JP4331900B2 (en) Oriented electrical steel sheet and method and apparatus for manufacturing the same
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
JP2006207026A (en) Method for manufacturing non-oriented electromagnetic steel sheet superior in magnetic property
JP2007056303A (en) Method for producing non-oriented silicon steel sheet excellent in magnetic characteristic
JP2003055746A (en) Nonoriented silicon steel sheet and production method therefor
JP2012036457A (en) Non-oriented magnetic steel sheet and production method therefor
US5308411A (en) Ultrahigh silicon, grain-oriented electrical steel sheet and process for producing the same
JP2002146493A (en) Nonoriented silicon steel sheet having excellent mechanical strength property and magnetic property and its production method
JPWO2020090156A1 (en) Manufacturing method of non-oriented electrical steel sheet
JPH0949023A (en) Production of grain oriented silicon steel sheet excellent in iron loss

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090209

R150 Certificate of patent or registration of utility model

Ref document number: 4265166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees