JP4389691B2 - Non-oriented electrical steel sheet for rotor and manufacturing method thereof - Google Patents
Non-oriented electrical steel sheet for rotor and manufacturing method thereof Download PDFInfo
- Publication number
- JP4389691B2 JP4389691B2 JP2004183554A JP2004183554A JP4389691B2 JP 4389691 B2 JP4389691 B2 JP 4389691B2 JP 2004183554 A JP2004183554 A JP 2004183554A JP 2004183554 A JP2004183554 A JP 2004183554A JP 4389691 B2 JP4389691 B2 JP 4389691B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- steel
- hot
- rotor
- soaking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000565 Non-oriented electrical steel Inorganic materials 0.000 title claims description 45
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 229910000831 Steel Inorganic materials 0.000 claims description 118
- 239000010959 steel Substances 0.000 claims description 118
- 238000000034 method Methods 0.000 claims description 64
- 238000005097 cold rolling Methods 0.000 claims description 58
- 238000002791 soaking Methods 0.000 claims description 55
- 230000008569 process Effects 0.000 claims description 48
- 229910052758 niobium Inorganic materials 0.000 claims description 33
- 238000000137 annealing Methods 0.000 claims description 31
- 229910052719 titanium Inorganic materials 0.000 claims description 31
- 229910052726 zirconium Inorganic materials 0.000 claims description 29
- 238000005098 hot rolling Methods 0.000 claims description 28
- 229910052720 vanadium Inorganic materials 0.000 claims description 28
- 239000000203 mixture Substances 0.000 claims description 21
- 239000010960 cold rolled steel Substances 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 229910000976 Electrical steel Inorganic materials 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 238000005728 strengthening Methods 0.000 description 34
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 27
- 239000006104 solid solution Substances 0.000 description 23
- 238000001953 recrystallisation Methods 0.000 description 14
- 229910052742 iron Inorganic materials 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 238000000576 coating method Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 230000004907 flux Effects 0.000 description 9
- 238000001556 precipitation Methods 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000008034 disappearance Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 239000011162 core material Substances 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 238000007429 general method Methods 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000004640 Melamine resin Substances 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000009661 fatigue test Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000005495 investment casting Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Description
本発明は、電気自動車、ハイブリッド自動車の駆動モータ、ロボット、工作機械などのサーボモータといった高効率モータの回転子に用いられる無方向性電磁鋼板およびその製造方法に関する。特に、高速回転する永久磁石埋め込み式モータの回転子として好適な優れた機械特性と磁気特性とを兼ね備えた無方向性電磁鋼板およびその製造方法に関する。 The present invention relates to a non-oriented electrical steel sheet used for a rotor of a high-efficiency motor such as a drive motor for an electric vehicle or a hybrid vehicle, a servo motor for a robot, a machine tool, and the like, and a method for manufacturing the same. In particular, the present invention relates to a non-oriented electrical steel sheet having excellent mechanical characteristics and magnetic characteristics suitable as a rotor of a permanent magnet embedded motor that rotates at high speed, and a method for manufacturing the same.
近年の地球環境問題の高まりから、多くの分野において省エネルギー、環境対策技術が進展している。自動車分野も例外ではなく、排ガス低減、燃費向上技術が急速に進歩している。電気自動車およびハイブリッド自動車はこれらの技術の集大成といっても過言ではなく、自動車駆動モータ(以下、単に「駆動モータ」ともいう。)の性能が自動車性能を大きく左右する。 Due to the recent increase in global environmental problems, energy conservation and environmental countermeasure technologies have been developed in many fields. The automobile field is no exception, and technologies for reducing exhaust gas and improving fuel efficiency are advancing rapidly. It is no exaggeration to say that electric vehicles and hybrid vehicles are the culmination of these technologies, and the performance of automobile drive motors (hereinafter also simply referred to as “drive motors”) greatly affects the performance of automobiles.
駆動モータの多くは永久磁石を用いており、巻き線を施した固定子(ステータ)部分と永久磁石を配置した回転子(ロータ)部分とから構成される。最近では永久磁石を回転子内部に埋め込んだ形状(永久磁石埋め込み型モータ;IPMモータ)が主流となっている。また、パワーエレクトロニクス技術の進展により回転数は任意に制御可能であり、高速化傾向にある。したがって、鉄心素材は商用周波数(50〜60Hz)以上の高周波数域で励磁される割合が高まっており、商用周波数での磁気特性のみでなく、400Hz〜数kHzでの磁気特性改善が要求されるようになってきた。また、回転子は高速回転時の遠心力のみならず回転数変動にともなう応力変動を常時うけることから、回転子の鉄心素材には機械特性も要求されている。特に、IPMモータの場合には複雑な回転子形状を有することから、回転子用の鉄心材料には応力集中を考慮して遠心力ならびに応力変動に耐えうるだけの機械特性が必要となる。また、ロボット、工作機械用のサーボモータ分野でも、駆動モータと同様に回転数の高速化が今後進行していくと予測される。 Many drive motors use permanent magnets, and are composed of a stator (stator) portion provided with windings and a rotor (rotor) portion provided with permanent magnets. Recently, a shape in which a permanent magnet is embedded in a rotor (permanent magnet embedded motor; IPM motor) has become mainstream. Further, with the advancement of power electronics technology, the rotational speed can be arbitrarily controlled, and there is a tendency to increase the speed. Therefore, the rate at which the iron core material is excited in a high frequency range higher than the commercial frequency (50 to 60 Hz) is increased, and not only the magnetic characteristic at the commercial frequency but also the improvement of the magnetic characteristic at 400 Hz to several kHz is required. It has become like this. In addition, since the rotor is constantly subjected not only to centrifugal force during high-speed rotation but also to stress fluctuations associated with fluctuations in the rotational speed, the rotor core material is also required to have mechanical characteristics. In particular, since the IPM motor has a complicated rotor shape, the core material for the rotor needs to have mechanical characteristics sufficient to withstand centrifugal force and stress fluctuation in consideration of stress concentration. Also, in the field of servo motors for robots and machine tools, it is predicted that the rotation speed will increase in the same way as drive motors.
従来、駆動モータの固定子は主に打ち抜き加工した無方向性電磁鋼板の積層により製造されていたが、回転子はロストワックス鋳造法あるいは焼結法などにより製造されることもあった。これは固定子には優れた磁気特性が、回転子には堅牢な機械特性が要求されることによる。しかしながら、モータ性能は回転子−固定子間のエアギャップに大きく影響されるため、上述の回転子では精密加工の必要性が生じ鉄心製造コストが大幅に増加するという問題があった。コスト削減の観点からは、打ち抜き加工した電磁鋼板を使用すればよいが、回転子に必要な磁気特性と機械特性とを兼備した無方向性電磁鋼板は見出されていないのが現状であった。 Conventionally, the stator of the drive motor has been manufactured mainly by stacking non-oriented electrical steel sheets that have been stamped, but the rotor has also been manufactured by a lost wax casting method or a sintering method. This is because the stator requires excellent magnetic properties and the rotor requires robust mechanical properties. However, since the motor performance is greatly influenced by the air gap between the rotor and the stator, the above-described rotor has a problem in that the necessity for precision machining is required and the core manufacturing cost is significantly increased. From the viewpoint of cost reduction, it is only necessary to use a punched electrical steel sheet, but the current situation is that no non-oriented electrical steel sheet having both the magnetic and mechanical properties necessary for the rotor has been found. .
優れた機械特性を有する電磁鋼板としては、例えば特許文献1に、3.5〜7%のSiに加えて、Ti,W,Mo,Mn,Ni,CoおよびAlのうちの1種または2種以上を20%を超えない範囲で含有する鋼板が提案されている。この方法では鋼の強化機構として固溶強化を利用している。しかしながら、固溶強化の場合には冷間圧延母材も同時に高強度化されるため冷間圧延が困難であり、またこの方法においては温間圧延という特殊工程が必須であることから、生産性向上や歩留まり向上など改善の余地がある。 As an electrical steel sheet having excellent mechanical properties, for example, in Patent Document 1, in addition to 3.5 to 7% Si, one or two of Ti, W, Mo, Mn, Ni, Co and Al are used. Steel sheets containing the above in a range not exceeding 20% have been proposed. In this method, solid solution strengthening is used as a steel strengthening mechanism. However, in the case of solid solution strengthening, the cold rolled base metal is also strengthened at the same time, so cold rolling is difficult, and in this method, a special process called warm rolling is indispensable. There is room for improvement such as improvement and yield improvement.
また、特許文献2には、2.0〜3.5%のSi、0.1〜6.0%のMnに加えてBおよび多量のNiを含有し、結晶粒径が30μm以下である鋼板が提案されている。この方法では鋼の強化機構として固溶強化と結晶粒径微細化による強化とを利用している。しかしながら、結晶粒微細化による強化は比較的効果が小さいため、特許文献2の実施例に示されるようにSiを3.0%程度含有させた上に高価なNiを多量に含有させることが必須であり、冷間圧延時に割れが多発するという問題や、合金コスト増加という課題が残っている。 Patent Document 2 discloses a steel sheet containing B and a large amount of Ni in addition to 2.0 to 3.5% Si and 0.1 to 6.0% Mn, and having a crystal grain size of 30 μm or less. Has been proposed. In this method, solid solution strengthening and strengthening by refinement of crystal grain size are used as the strengthening mechanism of steel. However, strengthening by grain refinement is relatively ineffective, so it is essential to contain a large amount of expensive Ni in addition to about 3.0% Si as shown in the example of Patent Document 2. However, the problem of frequent cracking during cold rolling and the problem of increased alloy costs remain.
さらに、特許文献3および特許文献4には、2.0〜4.0%のSiに加えてNb,Zr,B,TiまたはVなどを含有する鋼板が提案されている。これらの方法ではSiによる固溶強化に加えてNb,Zr,TiまたはVの析出物による析出強化を利用している。しかしながら、このような析出物による強化は比較的効果が小さいため、特許文献3および特許文献4の実施例に示されるようにSiを3.0%程度させる必要があり、特に特許文献3の方法では高価なNiを多量に含有させることも必要となる。そのため冷間圧延時に割れが多発するという問題や、合金コスト増加という課題が残っている。 Furthermore, Patent Documents 3 and 4 propose steel sheets containing Nb, Zr, B, Ti, V, or the like in addition to 2.0 to 4.0% Si. In these methods, precipitation strengthening by precipitates of Nb, Zr, Ti or V is used in addition to solid solution strengthening by Si. However, since such strengthening by precipitates is relatively ineffective, it is necessary to make Si about 3.0% as shown in Examples of Patent Document 3 and Patent Document 4, and in particular, the method of Patent Document 3 Then, it is necessary to contain a large amount of expensive Ni. Therefore, the problem that cracks frequently occur during cold rolling and the problem of increased alloy costs remain.
また、特許文献5および特許文献6には、SiおよびAlを0.03〜0.5%と制限した上でTi,NbおよびV、あるいはPおよびNiを含有する鋼板がそれぞれ提案されている。これらの方法では、Siによる固溶強化よりも炭化物の析出強化およびPの固溶強化を利用している。しかしながら、これらの方法では、後述する駆動モータの回転子として必要な強度レベルを確保することができないという問題や、特許文献5および特許文献6の実施例に示されているように2.0%以上のNi含有が必須であり、合金コストが高いという問題がある。 Patent Documents 5 and 6 propose steel sheets containing Ti, Nb and V, or P and Ni, respectively, after limiting Si and Al to 0.03 to 0.5%. In these methods, precipitation precipitation strengthening of carbide and solid solution strengthening of P are used rather than solid solution strengthening by Si. However, in these methods, there is a problem that a strength level necessary for a rotor of a drive motor, which will be described later, cannot be ensured, and as shown in Examples of Patent Documents 5 and 6, 2.0% There is a problem that the above Ni content is essential and the alloy cost is high.
さらに、特許文献7には、Si:1.6〜2.8%であって、結晶粒径、内部酸化層厚み、および降伏点を限定した永久磁石埋め込み型モータ用無方向性電磁鋼板が提案されている。しかしながら、この方法による鋼板の降伏点では、高速回転する駆動モータの回転子としては強度不足である。 Further, Patent Document 7 proposes a non-oriented electrical steel sheet for embedded permanent magnet motors with Si: 1.6 to 2.8% and limited crystal grain size, internal oxide layer thickness, and yield point. Has been. However, at the yield point of the steel plate by this method, the strength is insufficient as a rotor of a drive motor that rotates at high speed.
また、JIS C 2552に規定の無方向性電磁鋼板としては、いわゆる高グレード無方向性電磁鋼板(35A210,35A230など)が最も合金含有量が高く高強度であるが、機械特性レベルは上述の高張力電磁鋼板を下回っており高速回転する駆動モータの回転子としては強度不足である。 As non-oriented electrical steel sheets specified in JIS C 2552, so-called high-grade non-oriented electrical steel sheets (35A210, 35A230, etc.) have the highest alloy content and high strength, but the mechanical property level is high as described above. The strength is insufficient as a rotor of a drive motor that is below the tension electromagnetic steel plate and rotates at high speed.
上述したように、無方向性電磁鋼板の高強度化手法として従来から提案されている固溶強化および析出強化では冷間圧延の母材も強化されてしまうことから冷間圧延時に割れが多発し、結晶粒微細化による高強度化ではその強化量が不十分であるため回転子用途として実用に耐える強度を実現することができない。また、本発明者らは変態強化についても検討を行ったが、変態強化ではマルテンサイト等の変態組織が鉄損を著しく増大させることが判明し、回転子用途として実用に耐える磁気特性を実現することができない。 As mentioned above, the solid solution strengthening and precipitation strengthening conventionally proposed as methods for increasing the strength of non-oriented electrical steel sheets also strengthens the base material of cold rolling, so cracks frequently occur during cold rolling. In the case of increasing the strength by refining crystal grains, the amount of strengthening is insufficient, so that it is not possible to realize a strength that can be practically used as a rotor. In addition, the present inventors have also examined transformation strengthening, but it has been found that the transformation structure such as martensite significantly increases iron loss in transformation strengthening, and realizes magnetic characteristics that can be practically used as a rotor application. I can't.
本発明は、上記問題点に鑑みてなされたものであり、高速回転するモータの回転子として必要な優れた機械特性と磁気特性とを兼備する無方向性電磁鋼板およびその製造方法を提供することを主目的とする。 The present invention has been made in view of the above problems, and provides a non-oriented electrical steel sheet having excellent mechanical characteristics and magnetic characteristics necessary as a rotor of a motor that rotates at high speed, and a method for manufacturing the same. The main purpose.
本発明者らは、回転子に適した磁気特性と機械特性とを兼ね備えた無方向性電磁鋼板の有するべき鋼組織について種々検討を行い、従来全く検討されていなかった加工硬化による高強度化に着目した。そして、加工時に導入される転位は鉄損に及ぼす影響が比較的小さいとの新知見を得て、従来の無方向性電磁鋼板の技術認識である完全な再結晶フェライト組織とは全く逆の技術思想に立脚して、鋼板の組織を多量の転位が残存した加工組織および回復状態の組織(以下、「回復組織」と称する)とすることにより、回転子に要求される磁気特性および機械特性が得られることを見出し、本発明を完成させた。 The present inventors have made various studies on the steel structure that should be possessed by the non-oriented electrical steel sheet having both magnetic properties and mechanical properties suitable for rotors, and have achieved high strength by work hardening that has not been studied at all. Pay attention. The new knowledge that dislocations introduced during processing have a relatively small effect on iron loss has been obtained, and this technology is completely the opposite of the completely recrystallized ferrite structure that is the technical recognition of conventional non-oriented electrical steel sheets. Based on the idea, the magnetic structure and mechanical characteristics required for the rotor can be achieved by making the structure of the steel sheet a processed structure in which a large amount of dislocations remain and a recovered structure (hereinafter referred to as “recovered structure”). As a result, the present invention was completed.
すなわち、本発明は、質量%で、C:0.04%以下、Si:3.5%以下、Mn:0.1%以上2.5%以下、Al:2.5%以下、P:0.2%以下、S:0.03%以下、N:0.005%以下を含有し、残部が実質的にFeおよび不純物からなり、再結晶部分の面積比率が25%未満であることを特徴とする回転子用無方向性電磁鋼板を提供する。 That is, the present invention is, in mass%, C: 0.04% or less, Si: 3.5% or less, Mn: 0.1% or more and 2.5% or less, Al: 2.5% or less, P: 0 .2% or less, S: 0.03% or less, N: 0.005% or less, the balance being substantially composed of Fe and impurities, and the area ratio of the recrystallized portion being less than 25% A non-oriented electrical steel sheet for a rotor is provided.
本発明においては、再結晶部分の面積比率を適正に制御し、多くの転位が残存した鋼組織とすることにより強度を高めることができるので、機械特性および磁気特性が良好な回転子用無方向性電磁鋼板とすることができる。これにより、上述した回転子に要求される磁気特性および機械特性をも満足するものとすることができるのである。 In the present invention, the area ratio of the recrystallized portion is appropriately controlled, and the strength can be increased by making the steel structure in which many dislocations remain. Steel sheet. As a result, the magnetic characteristics and mechanical characteristics required for the rotor described above can also be satisfied.
また、本発明の回転子用無方向性電磁鋼板は、Nb、Ti、ZrおよびVからなる群から選択される少なくとも1種の元素を含有し、下記式(1)を満足する鋼組成を有することが好ましい。
Nb/93+Zr/91+Ti/48+V/51−(C/12+N/14)>0 (1)
(ここで、式(1)中、Nb、Zr、Ti、V、CおよびNはそれぞれの元素の含有量(質量%)を示す。)
Moreover, the non-oriented electrical steel sheet for rotor of the present invention contains at least one element selected from the group consisting of Nb, Ti, Zr and V, and has a steel composition satisfying the following formula (1). It is preferable.
Nb / 93 + Zr / 91 + Ti / 48 + V / 51− (C / 12 + N / 14)> 0 (1)
(Here, in the formula (1), Nb, Zr, Ti, V, C and N indicate the content (mass%) of each element.)
上記式(1)の左辺は、炭化物、窒化物または炭窒化物といった析出物を形成していない固溶した状態のNb,Zr,TiまたはVの含有量と対応するものであり、この値がゼロより大きければ固溶した状態のNb,Zr,TiまたはVが含有されるということである。この固溶した状態のNb,Zr,TiまたはVの含有量が多いほど、後述する均熱処理時に進行する転位の消滅および再結晶を抑制する効果は大きくなることから、上記式(1)を満足することが好ましいのである。 The left side of the above formula (1) corresponds to the content of Nb, Zr, Ti, or V in a solid solution state where no precipitate such as carbide, nitride, or carbonitride is formed, and this value is If it is larger than zero, it means that Nb, Zr, Ti or V in a solid solution is contained. The larger the content of Nb, Zr, Ti or V in the solid solution state, the greater the effect of suppressing the disappearance and recrystallization of dislocations that proceed during soaking, which will be described later. Therefore, the above formula (1) is satisfied. It is preferable to do.
本発明は、また、上述した鋼組成を備える鋼塊または鋼片に熱間圧延を施す熱間圧延工程と、上記熱間圧延工程により得られた熱間圧延鋼板に一回または中間焼鈍をはさむ二回以上の冷間圧延を施す冷間圧延工程とを有し、上記冷間圧延工程により得られた冷間圧延鋼板に均熱処理を施す均熱処理工程を行わないことを特徴とする回転子用無方向性電磁鋼板の製造方法を提供する。 The present invention also includes a hot rolling process in which hot rolling is performed on a steel ingot or steel slab having the above-described steel composition, and a hot rolled steel sheet obtained by the hot rolling process is subjected to one time or intermediate annealing. For a rotor characterized by not performing a soaking process for soaking a cold rolled steel sheet obtained by the above cold rolling process. A method for producing a non-oriented electrical steel sheet is provided.
本発明においては、均熱処理工程を行わないことから、所定の板厚への加工の際に導入された転位を消滅させることなく加工組織とすることができ、これにより鋼板の高強度化が可能である。また、従来の固溶強化や析出強化のように冷間圧延に供する鋼板、すなわち冷間圧延の母材の高強度化を伴うことがないので、冷間圧延時の破断を抑制することができる。さらに、所定の鋼組成を備える鋼塊または鋼片を用いることにより、機械特性だけでなく磁気特性も良好な回転子用無方向性電磁鋼板を製造することができる。 In the present invention, since the soaking process is not performed, it is possible to obtain a processed structure without annihilating the dislocations introduced during processing to a predetermined thickness, thereby enabling high strength of the steel sheet. It is. In addition, since there is no need to increase the strength of the steel sheet used for cold rolling as in the conventional solid solution strengthening and precipitation strengthening, that is, the base material of cold rolling, it is possible to suppress breakage during cold rolling. . Furthermore, by using a steel ingot or steel slab having a predetermined steel composition, it is possible to produce a non-oriented electrical steel sheet for a rotor that has not only mechanical properties but also good magnetic properties.
さらに本発明は、上述した鋼組成を備える鋼塊または鋼片に熱間圧延を施す熱間圧延工程と、上記熱間圧延工程により得られた熱間圧延鋼板に一回または中間焼鈍をはさむ二回以上の冷間圧延を施す冷間圧延工程と、上記冷間圧延工程により得られた冷間圧延鋼板を780℃以下で均熱する均熱処理工程とを有することを特徴とする回転子用無方向性電磁鋼板の製造方法を提供する。 Furthermore, the present invention provides a hot rolling process in which hot rolling is performed on a steel ingot or steel slab having the steel composition described above, and a hot rolled steel sheet obtained by the hot rolling process is subjected to one time or intermediate annealing. A rotor for rolling, characterized by having a cold rolling process for performing cold rolling more than once, and a soaking process for soaking the cold-rolled steel sheet obtained by the cold rolling process at 780 ° C. or less. A method for producing a grain-oriented electrical steel sheet is provided.
本発明においては、均熱処理での温度を所定の範囲とすることにより、再結晶を抑制して、所定の板厚への加工の際に導入された転位を消滅させることなく残存させた回復組織を主体とすることができるので、鋼板の強度を高めることができる。また、冷間圧延に供する鋼板、すなわち冷間圧延の母材の高強度化を伴うことがないので、冷間圧延時の破断を抑制することができる。さらに、所定の鋼組成を備える鋼塊または鋼片を用いることにより、機械特性だけでなく磁気特性も良好な回転子用無方向性電磁鋼板を製造することができる。さらにまた、均熱処理工程を行うことにより冷間圧延鋼板の平坦度を向上させることができ、これにより回転子を構成した際の占積率を向上させてモータ効率を向上させることができる。 In the present invention, by setting the temperature in soaking to a predetermined range, recrystallization is suppressed, and the recovered structure that has remained without annihilating dislocations introduced during processing to a predetermined plate thickness Therefore, the strength of the steel sheet can be increased. Moreover, since it does not accompany the high intensity | strength of the steel plate which uses for cold rolling, ie, the base material of cold rolling, the fracture | rupture at the time of cold rolling can be suppressed. Furthermore, by using a steel ingot or steel slab having a predetermined steel composition, it is possible to produce a non-oriented electrical steel sheet for a rotor that has not only mechanical properties but also good magnetic properties. Furthermore, the flatness of the cold-rolled steel sheet can be improved by performing the soaking process, thereby improving the space factor when the rotor is configured and improving the motor efficiency.
また、本発明の回転子用無方向性電磁鋼板の製造方法は、上記熱間圧延鋼板に熱延板焼鈍を施す熱延板焼鈍工程を有していてもよい。熱延板焼鈍を施すことにより、鋼板の延性が向上し冷間圧延工程での破断を抑制できるからである。 Moreover, the manufacturing method of the non-oriented electrical steel sheet for rotors of this invention may have the hot-rolled sheet annealing process which performs hot-rolled sheet annealing to the said hot-rolled steel sheet. This is because by performing hot-rolled sheet annealing, the ductility of the steel sheet is improved and breakage in the cold rolling process can be suppressed.
本発明によれば、高速回転するモータの回転子として必要な優れた機械特性と磁気特性とを兼備した無方向性電磁鋼板を、多大なコスト増加を招くことなく安定に製造することが可能である。そのため、電気自動車やハイブリッド自動車の駆動モータ分野などにおける回転数の高速化に十分対応でき、その工業的価値は極めて高い。 According to the present invention, it is possible to stably manufacture a non-oriented electrical steel sheet having both excellent mechanical properties and magnetic properties necessary as a rotor of a motor that rotates at high speed without causing a significant increase in cost. is there. Therefore, it can sufficiently cope with the increase in the rotational speed in the field of drive motors of electric vehicles and hybrid vehicles, and its industrial value is extremely high.
本発明で言及する回転子に用いる電磁鋼板として必要な特性とは、第一に機械特性であり、降伏点、および引張強さを指す。これは高速回転時の回転子の変形抑制のみならず、応力変動に起因する疲労破壊抑制を目的としている。近年の電気自動車、ハイブリッド自動車の駆動モータでは、回転子は250MPa程度の平均応力下で150MPa程度の応力振幅を受ける。したがって、変形抑制の観点から降伏点は400MPa以上、安全率を考慮すると500MPa以上を満たす必要がある。好ましくは550MPa以上である。また、上述の応力状態での疲労破壊を抑制する観点から引張強さは550MPa以上、安全率を考慮すると600MPa、好ましくは700MPa以上必要である。 The characteristics necessary for the electrical steel sheet used for the rotor referred to in the present invention are mechanical characteristics, which are yield point and tensile strength. This is intended to suppress not only the deformation of the rotor during high-speed rotation but also the fatigue failure caused by stress fluctuations. In drive motors of recent electric vehicles and hybrid vehicles, the rotor receives a stress amplitude of about 150 MPa under an average stress of about 250 MPa. Therefore, from the viewpoint of suppressing deformation, the yield point must be 400 MPa or more, and considering the safety factor, it is necessary to satisfy 500 MPa or more. Preferably it is 550 MPa or more. Further, from the viewpoint of suppressing fatigue failure in the above-described stress state, the tensile strength is 550 MPa or more, and 600 MPa, preferably 700 MPa or more is necessary in consideration of the safety factor.
また、回転子に用いる電磁鋼板として必要な第二の特性は磁束密度である。IPMモータのようにリラクタンストルクを活用するモータでは回転子に用いられる材質の磁束密度もトルクに影響を及ぼし、磁束密度が低いと所望のトルクを得られない。 The second characteristic necessary for the electromagnetic steel sheet used for the rotor is the magnetic flux density. In a motor that utilizes reluctance torque, such as an IPM motor, the magnetic flux density of the material used for the rotor also affects the torque. If the magnetic flux density is low, a desired torque cannot be obtained.
さらに、回転子に用いる電磁鋼板として必要な第三の特性は鉄損である。鉄損は不可逆な磁壁移動に起因するヒステリシス損失と、磁化変化に起因して発生する渦電流によるジュール熱(渦電流損失)とから構成され、電磁鋼板の鉄損はこれらの総和であるトータルの鉄損で評価される。回転子で発生する損失はモータ効率そのものを支配するものではないが、回転子の損失すなわち発熱により永久磁石が減磁するため、間接的にモータ性能を劣化させる。したがって、回転子に使用される材質の鉄損値の上限は永久磁石の耐熱温度の観点から決定され、固定子に使用される材質よりも鉄損値が高くとも許容されると想起される。 Furthermore, the third characteristic necessary for the electromagnetic steel sheet used for the rotor is iron loss. Iron loss is composed of hysteresis loss due to irreversible domain wall motion and Joule heat (eddy current loss) due to eddy currents caused by magnetization changes. The iron loss of electrical steel sheets is the sum of these totals. It is evaluated by iron loss. Although the loss generated in the rotor does not dominate the motor efficiency itself, the permanent magnet is demagnetized due to the loss of the rotor, that is, heat generation, which indirectly deteriorates the motor performance. Accordingly, it is recalled that the upper limit of the iron loss value of the material used for the rotor is determined from the viewpoint of the heat resistance temperature of the permanent magnet, and is allowed even if the iron loss value is higher than the material used for the stator.
本発明者らは、これらの着想をもとに回転子に適した磁気特性と機械特性とを兼ね備えた無方向性電磁鋼板の有するべき鋼組織について種々検討を行った。その結果、固溶強化および析出強化では冷間圧延母材も高強度化されるため冷間圧延時の破断が避けられないこと、結晶粒微細化のみでは要求レベルの機械特性を達成できないこと、および、マルテンサイト等の変態組織では鉄損が著しく増大することが判明した。さらに、強化機構として加工硬化について検討した結果、加工時に導入される転位は鉄損に及ぼす影響が比較的小さいことが判明した。これらの結果から、従来の無方向性電磁鋼板の技術認識である完全な再結晶フェライト組織とは全く逆に、多量の転位が残存した加工組織および回復組織とすることにより、回転子に要求される磁気特性と機械特性とが達成されるとの知見を得た。 Based on these ideas, the present inventors have made various studies on the steel structure that a non-oriented electrical steel sheet having both magnetic properties and mechanical properties suitable for a rotor should have. As a result, the strength of the cold-rolled base metal is strengthened by solid solution strengthening and precipitation strengthening, so it is inevitable to break during cold rolling. And it turned out that iron loss increases remarkably in transformation structures, such as martensite. Furthermore, as a result of examining work hardening as a strengthening mechanism, it was found that dislocations introduced during processing have a relatively small effect on iron loss. From these results, it is required for the rotor to have a processed structure and a recovered structure in which a large amount of dislocations remain, contrary to the complete recrystallized ferrite structure that is the technical recognition of conventional non-oriented electrical steel sheets. It was found that the magnetic properties and mechanical properties can be achieved.
加工組織および回復組織は、所定の板厚への加工時に導入された転位を均熱処理時に消滅させることなく、あるいは消滅を抑制して残存させることにより得られる。そのため、固溶強化あるいは析出強化主体の従来技術とは異なり、冷間圧延母材の高強度化を伴うことなく高強度化が可能であり、冷間圧延時の破断を抑制できる。このような加工組織および回復組織を得るためには、再結晶および結晶粒成長を目的として通常冷間圧延後に行われる均熱処理を施さないか、あるいは、均熱処理を施す場合であっても再結晶が不十分となるような低温で行うことが必要である。また、均熱処理時に再結晶を抑制するには、Nb,Zr,TiおよびVを適正量含有させることが効果的である。以下、本発明を完成させるに至った知見について説明する。 The processed structure and the recovered structure can be obtained by allowing dislocations introduced during processing to a predetermined plate thickness to remain without being eliminated during soaking or by suppressing the disappearance. Therefore, unlike the prior art mainly based on solid solution strengthening or precipitation strengthening, it is possible to increase the strength without increasing the strength of the cold-rolled base material, and to suppress breakage during cold rolling. In order to obtain such a processed structure and a recovered structure, the recrystallization and crystal grain growth are usually not subjected to a soaking treatment that is usually performed after cold rolling, or even if a soaking treatment is applied. It is necessary to carry out at a low temperature such that is insufficient. In order to suppress recrystallization during soaking, it is effective to contain appropriate amounts of Nb, Zr, Ti and V. Hereinafter, the knowledge that led to the completion of the present invention will be described.
主要成分が質量%で、Si:2.0%、Mn:0.2%、Al:0.3%、N:0.002%であり、C,SおよびNbの含有量をそれぞれC:0.001〜0.04%、S:0.0002〜0.03%、Nb:0.001〜0.4%と変化させた鋼に熱間圧延を施して2.3mmとした後、800℃で10時間の熱延板焼鈍を行い、さらに0.35mmまで冷間圧延し、700℃で20秒間保持あるいは750℃で20秒間保持の2つの条件で均熱処理を施した。このようにして得られた鋼板の引張強さを測定した。 The main components are mass%, Si: 2.0%, Mn: 0.2%, Al: 0.3%, N: 0.002%, and the contents of C, S and Nb are respectively C: 0 0.001% to 0.04%, S: 0.0002% to 0.03%, Nb: 0.001% to 0.4%, hot rolled to 2.3mm, then 800 ° C Was subjected to hot rolling annealing for 10 hours, further cold-rolled to 0.35 mm, and subjected to soaking treatment under two conditions of holding at 700 ° C. for 20 seconds or holding at 750 ° C. for 20 seconds. The tensile strength of the steel sheet thus obtained was measured.
図1および図2に、700℃または750℃で20秒間保持の均熱処理を施したそれぞれの鋼板について、Nb,CおよびNの含有量により規定される下記式(2)で示されるNb*と、鋼板の引張強さとの関係を示す。
Nb*=Nb/93−C/12−N/14 (2)
(ここで、式(2)中、Nb、CおよびNはそれぞれの元素の含有量(質量%)を示す。)
1 and 2, Nb * represented by the following formula (2) defined by the contents of Nb, C and N for each steel plate subjected to soaking at 700 ° C. or 750 ° C. for 20 seconds The relationship with the tensile strength of a steel plate is shown.
Nb * = Nb / 93-C / 12-N / 14 (2)
(Here, in the formula (2), Nb, C and N indicate the content (mass%) of each element.)
図1および図2より、Nb*>0の場合にのみ優れた機械特性が得られることがわかった。また、鋼組織を調査した結果、Nb*>0の場合にのみ再結晶が抑制されており、鋼組織は加工組織および回復組織であった。Nb*は固溶Nb含有量と対応しており、再結晶抑制には固溶Nb含有量の確保が重要であると判明した。さらに、均熱処理での均熱温度が高温化した場合にはNb*が高いほど再結晶抑制効果が大きくなることも判明した。 1 and 2, it was found that excellent mechanical properties can be obtained only when Nb * > 0. As a result of investigating the steel structure, recrystallization was suppressed only when Nb * > 0, and the steel structure was a processed structure and a recovered structure. Nb * corresponds to the solid solution Nb content, and it has been found that securing the solid solution Nb content is important for suppressing recrystallization. Furthermore, it has been found that when the soaking temperature in soaking is increased, the effect of suppressing recrystallization increases as Nb * increases.
また、Ti,ZrおよびVについても、上記と同様の検討を行い、それらの知見を合わせて本発明を完成したのである。
以下、本発明の回転子用無方向性電磁鋼板およびその製造方法について詳細に説明する。
Further, for Ti, Zr and V, the same examination as described above was performed, and the present invention was completed by combining these findings.
Hereinafter, the non-oriented electrical steel sheet for rotors of the present invention and the manufacturing method thereof will be described in detail.
A.回転子用無方向性電磁鋼板
本発明の回転子用無方向性電磁鋼板は、質量%で、C:0.04%以下、Si:3.5%以下、Mn:0.1%以上2.5%以下、Al:2.5%以下、P:0.2%以下、S:0.03%以下、N:0.005%以下を含有し、残部が実質的にFeおよび不純物からなり、再結晶部分の面積比率が25%未満であることを特徴とするものである。
A. Non-oriented electrical steel sheet for rotors The non-oriented electrical steel sheet for rotors of the present invention is mass%, C: 0.04% or less, Si: 3.5% or less, Mn: 0.1% or more. 5% or less, Al: 2.5% or less, P: 0.2% or less, S: 0.03% or less, N: 0.005% or less, the balance being substantially composed of Fe and impurities, The area ratio of the recrystallized portion is less than 25%.
なお、各元素の含有量を示す「%」は、特に断りのない限り「質量%」を意味するもの
である。
“%” Indicating the content of each element means “mass%” unless otherwise specified .
本発明においては、再結晶部分の面積比率を適正に制御し、多くの転位が残存した加工組織および回復組織とすることにより強度を高めることができ、機械特性を改善することができる。また、所定の鋼組成を有するものとすることにより、磁気特性および機械特性が良好な回転子用無方向性電磁鋼板とすることができる。これにより、例えば駆動モータの回転子に要求される磁気特性および機械特性をも満足するものとすることができるのである。
以下、本発明の回転子用無方向性電磁鋼板における鋼組成および再結晶部分の面積比率について説明する。
In the present invention, the strength can be increased and the mechanical characteristics can be improved by appropriately controlling the area ratio of the recrystallized portion to obtain a processed structure and a recovered structure in which many dislocations remain. Moreover, it can be set as the non-oriented electrical steel sheet for rotors with favorable magnetic characteristics and mechanical characteristics by having a predetermined steel composition. Thereby, for example, the magnetic characteristics and mechanical characteristics required for the rotor of the drive motor can be satisfied.
Hereinafter, the steel composition and the area ratio of the recrystallized portion in the non-oriented electrical steel sheet for rotor of the present invention will be described.
1.鋼組成
(1)C
CはNb,Zr,TiまたはVと結びついて析出物を形成するため、固溶Nb,Zr,TiおよびVの含有量の減少に繋がる。したがって、固溶Nb,Zr,TiおよびVの含有量を確保するためには、C含有量は低減することが好ましい。しかしながら、過度のC含有量の低減は製鋼コストが増加する点や、C含有量が多くてもNb,Zr,TiおよびVの含有量をそれに応じて増加させれば固溶Nb,Zr,TiおよびVの含有量は確保される点を鑑み、C含有量の上限値は0.04%とする。好ましくは0.02%以下、さらに好ましくは0.01%以下である。
1. Steel composition (1) C
Since C is combined with Nb, Zr, Ti or V to form a precipitate, it leads to a decrease in the content of solute Nb, Zr, Ti and V. Therefore, in order to secure the contents of solute Nb, Zr, Ti and V, it is preferable to reduce the C content. However, excessive reduction of the C content increases the steelmaking cost, and even if the C content is large, if the contents of Nb, Zr, Ti and V are increased accordingly, solid solution Nb, Zr, Ti In view of securing the V and V contents, the upper limit of the C content is set to 0.04%. Preferably it is 0.02% or less, More preferably, it is 0.01% or less.
(2)Si
Siは電気抵抗を高め、渦電流損失を低減する効果を有する元素である。しかしながら、多量のSiを含有させた場合には冷間圧延時の割れを誘発し、鋼板の歩留まり低下により製造コストが増加する。そのためSi含有量は3.5%以下とする。また、割れ抑制の観点からは3.0%以下が好ましい。さらに、Siを脱酸剤として使用する場合は0.01%以上含有させることが必要であるが、Alを脱酸剤として使用する場合もあるため、Si含有量の下限値は特に限定しない。
(2) Si
Si is an element that has the effect of increasing electrical resistance and reducing eddy current loss. However, when a large amount of Si is contained, cracks during cold rolling are induced, and the manufacturing cost increases due to a decrease in the yield of the steel sheet. Therefore, the Si content is 3.5% or less. Moreover, 3.0% or less is preferable from a viewpoint of crack suppression. Furthermore, when using Si as a deoxidizing agent, it is necessary to contain 0.01% or more, but since Al may be used as a deoxidizing agent, the lower limit of the Si content is not particularly limited.
(3)Mn
MnはSiと同様に電気抵抗を高め、渦電流損失を低減する効果がある。しかしながら、Mnを多量に含有させると合金コストが増加するため、Mn含有量の上限は2.5%とする。一方、Mn含有量の下限はSを固定する観点から定められるものであり、0.1%とする。
(3) Mn
Mn, like Si, has the effect of increasing electrical resistance and reducing eddy current loss. However, since an alloy cost increases when Mn is contained in a large amount, the upper limit of the Mn content is set to 2.5%. On the other hand, the lower limit of the Mn content is determined from the viewpoint of fixing S, and is set to 0.1%.
(4)Al
Alは電気抵抗を高めるためSiと同様に渦電流損失を低減する。しかしながら、多量にAlを含有させると合金コストが増加するとともに、飽和磁束密度低下により磁束の漏れが発生するためモータ効率が低下する。これらの観点からAl含有量の上限は2.5%とする。また、Alを脱酸剤として使用する場合は0.01%以上含有させることが必要であるが、Siを脱酸剤として使用する場合があるため、Al含有量の下限値は特に限定しない。
(4) Al
Al increases eddy current loss in the same manner as Si because it increases electric resistance. However, when Al is contained in a large amount, the alloy cost increases and the leakage of magnetic flux occurs due to the decrease of the saturation magnetic flux density, so that the motor efficiency decreases. From these viewpoints, the upper limit of the Al content is 2.5%. Moreover, when using Al as a deoxidizer, it is necessary to contain 0.01% or more, but since Si may be used as a deoxidizer, the lower limit of the Al content is not particularly limited.
(5)P
Pは固溶強化により鋼板の強度を高める効果があるが、多量にPを含有する場合には冷間圧延時の割れを誘発する。そのためP含有量は0.2%以下とする。
(5) P
P has the effect of increasing the strength of the steel sheet by solid solution strengthening, but when it contains a large amount of P, it induces cracks during cold rolling. Therefore, the P content is 0.2% or less.
(6)S
Sは鋼中に不可避的に混入する不純物であるが、製鋼段階で低減するにはコストが増加するためS含有量としては0.03%を上限とする。
(6) S
S is an impurity inevitably mixed in the steel. However, since the cost increases to reduce it in the steelmaking stage, the upper limit of the S content is 0.03%.
(7)N
NはNb,Zr,TiまたはVと結びついて析出物を形成するため、固溶Nb,Zr,TiおよびVの含有量の減少に繋がる。したがって、固溶Nb,Zr,TiおよびVの含有量を確保する観点からはN含有量は低減することが好ましい。そのためN含有量は0.005%以下とする。
(7) N
Since N is combined with Nb, Zr, Ti, or V to form a precipitate, the content of solute Nb, Zr, Ti, and V is reduced. Therefore, it is preferable to reduce the N content from the viewpoint of securing the contents of the solute Nb, Zr, Ti and V. Therefore, the N content is 0.005% or less.
(8)Nb,Zr,TiおよびV
均熱処理を施した上で加工組織および回復組織を得るためには析出物を形成していない固溶した状態のNb,Zr,TiまたはVを含有させることが有効であることから、Nb、Zr、TiおよびVからなる群から選択される少なくとも1種の元素を下記式(1)を満足する範囲で含有させることが好ましい。
(8) Nb, Zr, Ti and V
In order to obtain a processed structure and a recovered structure after soaking, it is effective to contain Nb, Zr, Ti, or V in a solid solution state in which no precipitate is formed. Therefore, Nb, Zr It is preferable to contain at least one element selected from the group consisting of Ti and V in a range satisfying the following formula (1).
Nb/93+Zr/91+Ti/48+V/51−(C/12+N/14)>0 (1)
(ここで、式(1)中、Nb、Zr、Ti、V、CおよびNはそれぞれの元素の含有量(質量%)を示す。)
Nb / 93 + Zr / 91 + Ti / 48 + V / 51− (C / 12 + N / 14)> 0 (1)
(Here, in the formula (1), Nb, Zr, Ti, V, C and N indicate the content (mass%) of each element.)
上記式(1)の左辺は、Nb,Zr,TiおよびVの含有量とCおよびNの含有量との差を表しており、この値が正であることは炭化物、窒化物または炭窒化物といった析出物を形成していない固溶した状態のNb,Zr,TiまたはVを含有していることに対応する。 The left side of the above formula (1) represents the difference between the contents of Nb, Zr, Ti and V and the contents of C and N, and this value is positive that carbide, nitride or carbonitride It corresponds to containing Nb, Zr, Ti or V in a solid solution state in which no precipitate is formed.
図1および図2に示すように、均熱処理時の均熱温度が高温の場合、固溶Nb,Zr,TiおよびVの含有量が多ければ多いほど転位の消滅および再結晶を抑制する効果は大きくなり、加工組織または回復組織を得るには有効である。そのため、上記式(1)で示される値の上限は特に限定しない。鋼板の平坦度向上には均熱処理を実施することが好ましく、その際に進行する転位の消滅や再結晶を抑制するにはNb,Zr,TiおよびVを上記式(1)を満足する範囲で含有させるのが好ましいのである。 As shown in FIGS. 1 and 2, when the soaking temperature during soaking is high, the more the content of solid solution Nb, Zr, Ti and V is, the more effective the effect of suppressing dislocation disappearance and recrystallization. It is effective for obtaining a processed structure or a recovered structure. Therefore, the upper limit of the value represented by the above formula (1) is not particularly limited. In order to improve the flatness of the steel sheet, it is preferable to perform soaking, and in order to suppress the disappearance and recrystallization of dislocations that proceed, Nb, Zr, Ti and V are within the range satisfying the above formula (1). It is preferable to make it contain.
また、硫化物を考慮すると固溶状態のNb,Zr,TiおよびVの含有量はS含有量にも影響される。しかしながら、上述したS含有量の範囲内ではSによる影響は認められなかったため、本発明においてはSの項を省略した上記式(1)を採用した。Sの影響が認められなかった理由は明確でないが、凝固末期のSが濃化した領域からMnSとなって晶出するなどしてMnによりSが固定されたためと考えられる。 Further, when considering sulfide, the contents of Nb, Zr, Ti and V in a solid solution state are also affected by the S content. However, since the influence of S was not recognized within the range of the S content described above, the above formula (1) in which the S term was omitted was adopted in the present invention. The reason why the influence of S was not recognized is not clear, but it is considered that S was fixed by Mn by, for example, crystallization as MnS from a region where S at the end of solidification was concentrated.
2.再結晶部分の面積比率
次に、本発明における再結晶部分の面積比率について説明する。
本発明においては、鋼組成を上述した範囲となるように調製しても、再結晶部分の面積比率が25%以上であると急激に強度が低下するため所望の機械特性が得られない場合がある。そのため、再結晶部分の面積比率は25%未満とする。機械特性の観点からは再結晶部分の面積比率は低いほど好ましく、20%以下であることが好ましい。また、再結晶部分の面積比率をゼロとし、完全に未再結晶状態(加工組織および回復組織)とすることが好ましく、そのためには均熱処理を施さないか、あるいは均熱処理を施す場合には均熱温度などを調整することが重要である。
2. Next, the area ratio of the recrystallized portion in the present invention will be described.
In the present invention, even if the steel composition is adjusted to be in the above-described range, if the area ratio of the recrystallized portion is 25% or more, the strength suddenly decreases, so that desired mechanical properties may not be obtained. is there. Therefore, the area ratio of the recrystallized portion is set to less than 25%. From the viewpoint of mechanical properties, the area ratio of the recrystallized portion is preferably as low as possible, and is preferably 20% or less. In addition, it is preferable that the area ratio of the recrystallized portion is zero and it is completely non-recrystallized state (worked structure and recovery structure). For this purpose, soaking is not performed or if soaking is performed, soaking is performed. It is important to adjust the heat temperature and the like.
ここで、再結晶部分の面積比率とは、本発明の回転子用無方向性電磁鋼板の縦断面組織写真において視野中に占める再結晶粒の割合を示すものであり、この縦断面組織写真をもとに測定することができる。縦断面組織写真としては、光学顕微鏡写真を用いることができ、例えば100倍の倍率で撮影した写真を用いればよい。 Here, the area ratio of the recrystallized portion indicates the ratio of the recrystallized grains in the visual field in the longitudinal sectional structure photograph of the non-oriented electrical steel sheet for rotors of the present invention. It can be measured originally. As the longitudinal cross-sectional structure photograph, an optical microscope photograph can be used. For example, a photograph taken at a magnification of 100 times may be used.
B.本発明の回転子用無方向性電磁鋼板の製造方法
次に、本発明の回転子用無方向性電磁鋼板の製造方法について説明する。本発明の回転子用無方向性電磁鋼板の製造方法は、均熱処理工程の有無により2つの態様に分けることができる。以下、各態様について説明する。
B. Next, the manufacturing method of the non-oriented electrical steel sheet for rotors of the present invention will be described. The method for producing a non-oriented electrical steel sheet for a rotor of the present invention can be divided into two modes depending on the presence or absence of a soaking process. Hereinafter, each aspect will be described.
1.第1の態様
本発明の回転子用無方向性電磁鋼板の製造方法の第1の態様は、上述した「A.回転子用無方向性電磁鋼板」の項に記載した鋼組成を備える鋼塊または鋼片に熱間圧延を施す熱間圧延工程と、上記熱間圧延工程により得られた熱間圧延鋼板に一回または中間焼鈍をはさむ二回以上の冷間圧延を施す冷間圧延工程とを有し、上記冷間圧延工程により得られた冷間圧延鋼板に均熱処理を施す均熱処理工程を行わないことを特徴とするものである。
1. 1st aspect The 1st aspect of the manufacturing method of the non-oriented electrical steel sheet for rotors of this invention is a steel ingot provided with the steel composition described in the term of the "A. non-oriented electrical steel sheet for rotors" mentioned above. Or a hot rolling process in which hot rolling is performed on a steel slab, and a cold rolling process in which the hot rolled steel sheet obtained by the hot rolling process is subjected to cold rolling twice or more with one or intermediate annealing. And the soaking process in which soaking process is performed on the cold-rolled steel sheet obtained by the cold rolling process is not performed.
従来の無方向性電磁鋼板の製造方法では、再結晶および結晶粒成長を目的として通常冷間圧延後に均熱処理工程が必ず行われるのに対し、本態様においては、このような均熱処理工程を行わないことにより、所定の板厚への加工の際に導入された転位を消滅させることなく残存させて、鋼組織を冷間圧延時のままの加工組織とするものであり、これにより鋼板の高強度化が可能である。また、このような加工組織による鋼板の高強度化は、従来の固溶強化や析出強化といった強化機構とは異なり冷間圧延に供する鋼板、すなわち冷間圧延の母材の高強度化を伴うことがないので、冷間圧延時の破断を抑制することができる。さらに本態様においては、所定の鋼組成を有する鋼塊または鋼片を用い、また上述したように均熱処理工程を行わないことで高強度化を図ることから、従来のように高価な鋼成分を用いることも、特殊な工程を経ることもなく、例えば駆動モータの回転子として必要な磁気特性および機械特性を満足する回転子用無方向性電磁鋼板を安定して製造することができる。
以下、このような回転子用無方向性電磁鋼板の製造方法における各工程について説明する。
In conventional non-oriented electrical steel sheet manufacturing methods, a soaking process is usually performed after cold rolling for the purpose of recrystallization and grain growth, whereas in this embodiment, the soaking process is performed. Therefore, the dislocations introduced at the time of processing to a predetermined plate thickness are allowed to remain without annihilation, and the steel structure is made as it is during cold rolling. Strengthening is possible. In addition, the strengthening of steel sheets by such a processed structure is accompanied by the strengthening of steel sheets used for cold rolling, that is, the base material of cold rolling, unlike conventional strengthening mechanisms such as solid solution strengthening and precipitation strengthening. Therefore, breakage during cold rolling can be suppressed. Further, in this embodiment, steel ingots or steel slabs having a predetermined steel composition are used, and as described above, high strength is achieved by not performing the soaking process, so that expensive steel components are conventionally used. It is possible to stably produce a non-oriented electrical steel sheet for a rotor that satisfies the magnetic characteristics and mechanical characteristics required for a rotor of a drive motor, for example, without using a special process.
Hereinafter, each process in the manufacturing method of such a non-oriented electrical steel sheet for rotors is demonstrated.
(1)熱間圧延工程
本態様における熱間圧延工程は、上述した鋼組成を備える鋼塊または鋼片(以下、「スラブ」ともいう。)に熱間圧延を施す工程である。
(1) Hot rolling process The hot rolling process in this aspect is a process which hot-rolls the steel ingot or steel slab (henceforth "slab") provided with the steel composition mentioned above.
なお、鋼塊または鋼片の鋼組成については、上述した「A.回転子用無方向性電磁鋼板」に項に記載したものと同様であるので、ここでの説明は省略する。 In addition, about the steel composition of a steel ingot or a steel slab, since it is the same as that of what was described in the above-mentioned "A. Non-oriented electrical steel sheet for rotors", description here is abbreviate | omitted.
本工程においては、上述した組成を有する鋼を、連続鋳造法あるいは鋼塊を分塊圧延する方法など一般的な方法によりスラブとし、加熱炉に装入して熱間圧延を施す。この際、スラブ温度が高い場合には加熱炉に装入しないで熱間圧延を行ってもよい。 In this step, the steel having the above-described composition is made into a slab by a general method such as a continuous casting method or a method of rolling a steel ingot, and is charged in a heating furnace and subjected to hot rolling. At this time, when the slab temperature is high, hot rolling may be performed without charging the heating furnace.
また、スラブ加熱温度は特に限定されるものではないが、コストおよび熱間圧延性の観点から1000〜1300℃とすることが好ましい。より好ましくは1050〜1250℃ある。 Moreover, although the slab heating temperature is not specifically limited, it is preferable to set it as 1000-1300 degreeC from a viewpoint of cost and hot rolling property. More preferably, it is 1050-1250 degreeC.
熱間圧延は、特に限定されるものではなく、例えば仕上げ温度が700〜950℃、巻き取り温度が750℃以下など、一般的な条件に従って行えばよい。 Hot rolling is not particularly limited, and may be performed according to general conditions such as a finishing temperature of 700 to 950 ° C. and a winding temperature of 750 ° C. or less.
(2)冷間圧延工程
本態様における冷間圧延工程は、上記熱間圧延工程により得られた熱間圧延鋼板に一回または中間焼鈍をはさむ二回以上の冷間圧延を施す工程である。このような冷間圧延工程を行うことにより、鋼板を所定の板厚に仕上げる。
(2) Cold rolling step The cold rolling step in this embodiment is a step of subjecting the hot rolled steel sheet obtained by the hot rolling step to cold rolling twice or more with one or intermediate annealing. By performing such a cold rolling process, the steel sheet is finished to a predetermined thickness.
本工程においては、一回の冷間圧延で所定の板厚まで仕上げてもよいし、中間焼鈍を含む二回以上の冷間圧延によって仕上げてもよい。 In this step, the sheet thickness may be finished by one cold rolling or may be finished by two or more cold rollings including intermediate annealing.
また、冷間圧延の各種条件は特に限定されるものではなく、被圧延材の鋼組成、目的とする鋼板の板厚などにより適宜選択するものとする。 Various conditions for cold rolling are not particularly limited, and are appropriately selected depending on the steel composition of the material to be rolled, the thickness of the target steel sheet, and the like.
(3)熱延板焼鈍工程
本態様においては、上記熱間圧延工程により得られた熱間圧延鋼板に熱延板焼鈍を施す熱延板焼鈍工程を行ってもよい。熱延板焼鈍は必ずしも必須の工程ではないが、熱延板焼鈍工程を行うことにより、鋼板の延性が向上し冷間圧延工程での破断を抑制できるからである。
(3) Hot-rolled sheet annealing process In this aspect, you may perform the hot-rolled sheet annealing process which performs hot-rolled sheet annealing to the hot-rolled steel plate obtained by the said hot-rolling process. This is because hot-rolled sheet annealing is not necessarily an essential process, but by performing the hot-rolled sheet annealing process, the ductility of the steel sheet is improved and breakage in the cold rolling process can be suppressed.
(4)その他
本態様においては、上記冷間圧延工程後に、一般的な方法に従って有機成分のみ、無機成分のみ、あるいは有機無機複合物からなる絶縁被膜を鋼板表面に塗布するコーティング工程を行うことが好ましい。また、コーティング工程は、加熱・加圧することにより接着能を発揮する絶縁コーティングを施す工程であってもよい。接着能を発揮するコーティング材料としては、アクリル樹脂、フェノール樹脂、エポキシ樹脂またはメラミン樹脂などを用いることができる。
(4) Others In this embodiment, after the cold rolling step, a coating step of applying an insulating film made of only an organic component, only an inorganic component, or an organic-inorganic composite to a steel sheet surface according to a general method may be performed. preferable. Further, the coating process may be a process of applying an insulating coating that exhibits adhesive ability by heating and pressurizing. As a coating material exhibiting adhesive ability, an acrylic resin, a phenol resin, an epoxy resin, a melamine resin, or the like can be used.
なお、本発明により製造される回転子用無方向性電磁鋼板については、上述した「A.回転子用無方向性電磁鋼板」に項に記載したものと同様であるので、ここでの説明は省略する。 The non-oriented electrical steel sheet for rotors manufactured according to the present invention is the same as that described in the section “A. Non-oriented electrical steel sheet for rotors” described above. Omitted.
2.第2の態様
本発明の回転子用無方向性電磁鋼板の製造方法の第2の態様は、上述した「A.回転子用無方向性電磁鋼板」の項に記載した鋼組成を備える鋼塊または鋼片に熱間圧延を施す熱間圧延工程と、上記熱間圧延工程により得られた熱間圧延鋼板に一回または中間焼鈍をはさむ二回以上の冷間圧延を施す冷間圧延工程と、上記冷間圧延工程により得られた冷間圧延鋼板を780℃以下で均熱する均熱処理工程とを有することを特徴とするものである。
2. 2nd aspect The 2nd aspect of the manufacturing method of the non-oriented electrical steel sheet for rotors of this invention is a steel ingot provided with the steel composition described in the term of the "A. non-oriented electrical steel sheet for rotors" mentioned above. Or a hot rolling process in which hot rolling is performed on a steel slab, and a cold rolling process in which the hot rolled steel sheet obtained by the hot rolling process is subjected to cold rolling twice or more with one or intermediate annealing. And a soaking treatment step of soaking the cold-rolled steel sheet obtained by the cold rolling step at 780 ° C. or lower.
本態様においては、均熱処理工程での温度を所定の範囲とすることにより、再結晶を抑制して、所定の板厚への加工の際に導入された転位の消滅を抑制して多量の転位を残存させた回復組織を主体とすることができ、これにより鋼板の高強度化が可能である。また、従来の固溶強化や析出強化のように冷間圧延に供する鋼板、すなわち冷間圧延の母材の高強度化を伴うことがないので、冷間圧延時の破断を抑制することができる。さらに本態様においては、所定の鋼組成を有する鋼塊または鋼片を用い、また上述したように均熱処理工程での温度を所定の範囲とすることで高強度化を図ることから、磁気特性および機械特性が良好な回転子用無方向性電磁鋼板を安定して製造することができる。さらにまた、均熱処理工程を行うことにより冷間圧延鋼板の平坦度を向上させることができ、これにより回転子を構成した際の占積率を向上させてモータ効率を向上させることができる。 In this embodiment, by setting the temperature in the soaking process to a predetermined range, recrystallization is suppressed, and the disappearance of dislocations introduced during processing to a predetermined plate thickness is suppressed, so that a large amount of dislocations The main body is a recovery structure in which the steel remains, which makes it possible to increase the strength of the steel sheet. In addition, since there is no need to increase the strength of the steel sheet used for cold rolling as in the conventional solid solution strengthening and precipitation strengthening, that is, the base material of cold rolling, it is possible to suppress breakage during cold rolling. . Furthermore, in this embodiment, since the strength is increased by using a steel ingot or steel slab having a predetermined steel composition and setting the temperature in the soaking process to a predetermined range as described above, the magnetic properties and A non-oriented electrical steel sheet for rotors having good mechanical properties can be stably produced. Furthermore, the flatness of the cold-rolled steel sheet can be improved by performing the soaking process, thereby improving the space factor when the rotor is configured and improving the motor efficiency.
なお、熱間圧延工程、冷間圧延工程、および熱延板焼鈍工程については、上述した第1の態様に記載したものと同様であるので、ここでの説明は省略する。以下、本態様の回転子用無方向性電磁鋼板の製造方法における均熱処理工程について説明する。 In addition, about a hot rolling process, a cold rolling process, and a hot-rolled sheet annealing process, since it is the same as that of what was described in the 1st aspect mentioned above, description here is abbreviate | omitted. Hereinafter, the soaking process in the manufacturing method of the non-oriented electrical steel sheet for rotors of this embodiment will be described.
(1)均熱処理工程
本態様における均熱処理工程は、上述した冷間圧延工程により得られた冷間圧延鋼板を780℃以下で均熱する工程である。
(1) Soaking process The soaking process in this aspect is a process of soaking the cold-rolled steel sheet obtained by the cold rolling process described above at 780 ° C. or lower.
均熱処理は、連続焼鈍ラインにより行うことができる。この際、均熱温度が高温であると再結晶が進行するため十分な機械特性が得られない可能性がある。そのため、均熱温度の上限は780℃とする。好ましくは750℃以下、さらに好ましくは700℃以下である。また、均熱温度は低ければ低いほど再結晶進行が抑制されるため、下限は特に限定されない。冷間圧延鋼板の平坦度が悪い場合には、均熱温度が低いと平坦が矯正されずに回転子に積層した場合の占積率が低下する場合がある。そのため、平坦矯正の観点からは均熱温度の下限値は500℃が好ましい。 The soaking process can be performed by a continuous annealing line. At this time, if the soaking temperature is high, recrystallization proceeds and sufficient mechanical properties may not be obtained. Therefore, the upper limit of the soaking temperature is 780 ° C. Preferably it is 750 degrees C or less, More preferably, it is 700 degrees C or less. In addition, the lower the soaking temperature, the more the progress of recrystallization is suppressed, so the lower limit is not particularly limited. When the flatness of the cold-rolled steel sheet is poor, the space factor when the flatness is not corrected and the lamination is performed on the rotor may be lowered if the soaking temperature is low. Therefore, the lower limit of the soaking temperature is preferably 500 ° C. from the viewpoint of flattening.
このような均熱処理工程は、上述したように冷間圧延鋼板の平坦を矯正することができるので、冷間圧延鋼板の平坦度が悪い場合に有効である。 Such a soaking process can correct the flatness of the cold-rolled steel sheet as described above, and is therefore effective when the flatness of the cold-rolled steel sheet is poor.
(2)その他
本態様においては、上記均熱処理工程後に、一般的な方法に従って有機成分のみ、無機成分のみ、あるいは有機無機複合物からなる絶縁被膜を鋼板表面に塗布するコーティング工程を行うことが好ましい。また、コーティング工程は、加熱・加圧することにより接着能を発揮する絶縁コーティングを施す工程であってもよい。接着能を発揮するコーティング材料としては、アクリル樹脂、フェノール樹脂、エポキシ樹脂またはメラミン樹脂などを用いることができる。
(2) Others In this embodiment, after the soaking step, it is preferable to perform a coating step in which an insulating coating composed of only an organic component, only an inorganic component, or an organic-inorganic composite is applied to the steel sheet surface according to a general method. . Further, the coating process may be a process of applying an insulating coating that exhibits adhesive ability by heating and pressurizing. As a coating material exhibiting adhesive ability, an acrylic resin, a phenol resin, an epoxy resin, a melamine resin, or the like can be used.
なお、本発明により製造される回転子用無方向性電磁鋼板については、上述した「A.回転子用無方向性電磁鋼板」に項に記載したものと同様であるので、ここでの説明は省略する。 The non-oriented electrical steel sheet for rotors manufactured according to the present invention is the same as that described in the section “A. Non-oriented electrical steel sheet for rotors” described above. Omitted.
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.
以下、実施例および比較例を例示して、本発明を具体的に説明する。 Hereinafter, the present invention will be described specifically by way of examples and comparative examples.
[実施例1〜18]
下記の表1に示す鋼組成を有する鋼を真空溶製し、これらの鋼を1150℃に加熱し、仕上げ温度820℃で熱間圧延を行い580℃で巻き取り、厚さが2.0mmの熱間圧延鋼板を得た。これらの熱間圧延鋼板のうち一部を除いて水素雰囲気中にて10時間保持する箱焼鈍、あるいは1000℃で60秒間保持する連続焼鈍による熱延板焼鈍を施し、一回の冷間圧延にて板厚0.35mmまで仕上げた。また、一部の熱間圧延鋼板については、上記の熱延板焼鈍後、中間板厚まで冷間圧延した後、水素雰囲気中にて10時間保持する箱焼鈍、あるいは1000℃で60秒間保持する連続焼鈍による中間焼鈍を実施し、二回目の冷間圧延で0.35mmに仕上げた。さらに、一部の熱間圧延鋼板については熱延板焼鈍を施すことなく、一回あるいは中間焼鈍を含む二回の冷間圧延にて0.35mmに仕上げた。その後、種々の温度で30秒間保持する均熱処理を施した。このようにして、鋼板を作製した。
[Examples 1 to 18]
Steels having the steel compositions shown in Table 1 below are vacuum-melted, these steels are heated to 1150 ° C., hot-rolled at a finishing temperature of 820 ° C., wound up at 580 ° C., and a thickness of 2.0 mm. A hot rolled steel sheet was obtained. Except for some of these hot-rolled steel sheets, box annealing that is held for 10 hours in a hydrogen atmosphere or hot-rolled sheet annealing by continuous annealing that is held at 1000 ° C. for 60 seconds is performed for one cold rolling. And finished to a plate thickness of 0.35 mm. In addition, some hot-rolled steel sheets are subjected to box annealing that is held in a hydrogen atmosphere for 10 hours after the above hot-rolled sheet annealing and then cold-rolled to an intermediate thickness, or held at 1000 ° C. for 60 seconds. Intermediate annealing by continuous annealing was performed and finished to 0.35 mm by the second cold rolling. Furthermore, some hot-rolled steel sheets were finished to 0.35 mm by performing cold rolling once or twice including intermediate annealing without performing hot-rolled sheet annealing. Thereafter, a soaking treatment was performed for 30 seconds at various temperatures. In this way, a steel plate was produced.
[比較例1〜7]
実施例1〜18と同様にして鋼板を作製した。
[Comparative Examples 1 to 7]
Steel plates were produced in the same manner as in Examples 1-18.
[評価]
実施例1〜18および比較例1〜7の鋼板について、再結晶部分の面積比率、機械特性、磁気特性および疲労特性を評価した。
[Evaluation]
About the steel plates of Examples 1-18 and Comparative Examples 1-7, the area ratio of the recrystallized portion, mechanical properties, magnetic properties, and fatigue properties were evaluated.
再結晶部分の面積比率は、100倍の倍率で撮影した鋼板の縦断面の光学顕微鏡写真を用い、視野中に占める再結晶粒の割合を算出した。
機械特性は、JIS5号試験片を用いた引張試験にて降伏点:YPおよび引張強さ:TSにて評価した。
磁気特性は、JIS C 2550に規定されるエプスタイン試験にて、最大磁束密度:1.0T、励磁周波数:400Hzでの鉄損W10/400と磁化力5000A/mでの磁束密度B50を測定した。
疲労試験は、打ち抜き加工により試験片を採取し、端面に研削加工を施すことなく打ち抜きのままで振動数60Hzの片振り電磁共振試験に供した。この疲労試験では、駆動モータの応力状態に対して安全率を考慮し、平均応力:300MPa、応力振幅:180MPaの条件で疲労破壊しなかったものを良好と判断した。また、繰り返し数は107まで実施し、この繰り返し数での破壊の有無で判断した。表2において疲労破壊のないものを「○」印、疲労破壊のあるものを「×」印で示した。
As the area ratio of the recrystallized portion, the ratio of the recrystallized grains in the visual field was calculated using an optical micrograph of the longitudinal section of the steel sheet taken at a magnification of 100 times.
Mechanical properties were evaluated by a yield test: YP and a tensile strength: TS in a tensile test using a JIS No. 5 test piece.
Magnetic properties were measured in the Epstein test specified in JIS C 2550 by measuring iron loss W 10/400 at a maximum magnetic flux density of 1.0 T and excitation frequency of 400 Hz and a magnetic flux density B 50 at a magnetizing force of 5000 A / m. did.
In the fatigue test, a test piece was collected by punching, and subjected to a single-sided electromagnetic resonance test at a frequency of 60 Hz while being punched without grinding the end face. In this fatigue test, the safety factor was taken into consideration with respect to the stress state of the drive motor, and those that did not undergo fatigue failure under the conditions of average stress: 300 MPa and stress amplitude: 180 MPa were judged to be good. The number of repetitions was up to 10 7 , and the determination was made based on the presence or absence of destruction at this number of repetitions. In Table 2, those with no fatigue failure are indicated with “◯”, and those with fatigue failure are indicated with “x”.
表2に、実施例1〜18および比較例1〜7の鋼板についての熱延板焼鈍条件、冷間圧延条件、均熱処理条件および評価結果をそれぞれ示す。 Table 2 shows hot rolled sheet annealing conditions, cold rolling conditions, soaking conditions, and evaluation results for the steel sheets of Examples 1 to 18 and Comparative Examples 1 to 7, respectively.
比較例1の鋼板はSi含有量が高いために冷間圧延時に破断した。また、比較例2の鋼板はAl含有量が高いために磁束密度が低かった。比較例3の鋼板はP含有量が高いために冷間圧延時に破断した。さらに、比較例4の鋼板はCおよびMnの含有量が高く、鋼組織がマルテンサイト組織であるために鉄損が著しく増大し、磁束密度も低かった。また、比較例5〜7の鋼板は再結晶部分の面積比率が高いために降伏点および引張強さともに劣っていた。これに対して本発明で規定する要件を満足する実施例1〜18の鋼板では降伏点および引張強さとも優れた値を示しており、上述の応力条件にて疲労破壊を生じなかった。 The steel plate of Comparative Example 1 broke during cold rolling because of the high Si content. Moreover, since the steel plate of Comparative Example 2 had a high Al content, the magnetic flux density was low. Since the steel plate of Comparative Example 3 had a high P content, it broke during cold rolling. Further, the steel sheet of Comparative Example 4 had a high C and Mn content, and the steel structure was a martensite structure, so that the iron loss was remarkably increased and the magnetic flux density was low. Moreover, since the steel sheets of Comparative Examples 5 to 7 had a high area ratio of the recrystallized portion, both the yield point and the tensile strength were inferior. On the other hand, in the steel plates of Examples 1 to 18 that satisfy the requirements defined in the present invention, both the yield point and the tensile strength were excellent, and fatigue failure did not occur under the stress conditions described above.
また、同一の均熱処理条件である実施例14〜17を比較することにより、固溶Nb,Zr,TiおよびVの含有量の尺度である(※;Nb/93+Zr/91+Ti/48+V/51−(C/12+N/14))値の高い鋼ほど再結晶が抑制され、機械特性が良好となることがわかった。さらに、実施例14および15を比較することにより、S含有量が増加しても機械特性は変化しないことがわかった。 Further, by comparing Examples 14 to 17 having the same soaking conditions, it is a measure of the content of solute Nb, Zr, Ti and V (*; Nb / 93 + Zr / 91 + Ti / 48 + V / 51− ( C / 12 + N / 14)) It was found that the higher the value of the steel, the lower the recrystallization and the better the mechanical properties. Furthermore, by comparing Examples 14 and 15, it was found that the mechanical properties did not change even when the S content increased.
Claims (4)
0.0064≧Nb/93+Zr/91+Ti/48+V/51−(C/12+N/14)>0 (1)
(ここで、式(1)中、Nb、Zr、Ti、V、CおよびNはそれぞれの元素の含有量(質量%)を示す。) In mass%, C: 0.04% or less, Si: 3.5% or less, Mn: 0.1% or more and 2.5% or less, Al: 2.5% or less, P: 0.2% or less, S : 0.03% or less, N: 0.005% or less, and further containing at least one element selected from the group consisting of Nb, Ti, Zr and V, the balance being Fe and inevitable impurities A non-oriented electrical steel sheet for a rotor having a steel composition satisfying the following formula (1) and having an area ratio of a recrystallized portion of less than 25%.
0.0064 ≧ Nb / 93 + Zr / 91 + Ti / 48 + V / 51− (C / 12 + N / 14)> 0 (1)
(Here, in the formula (1), Nb, Zr, Ti, V, C and N indicate the content (mass%) of each element.)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004183554A JP4389691B2 (en) | 2004-06-22 | 2004-06-22 | Non-oriented electrical steel sheet for rotor and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004183554A JP4389691B2 (en) | 2004-06-22 | 2004-06-22 | Non-oriented electrical steel sheet for rotor and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006009048A JP2006009048A (en) | 2006-01-12 |
JP4389691B2 true JP4389691B2 (en) | 2009-12-24 |
Family
ID=35776611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004183554A Expired - Lifetime JP4389691B2 (en) | 2004-06-22 | 2004-06-22 | Non-oriented electrical steel sheet for rotor and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4389691B2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4510559B2 (en) * | 2004-09-06 | 2010-07-28 | 新日本製鐵株式会社 | High-strength electrical steel sheet and manufacturing method and processing method thereof |
JP5028992B2 (en) * | 2005-12-15 | 2012-09-19 | Jfeスチール株式会社 | Non-oriented electrical steel sheet and manufacturing method thereof |
WO2007069776A1 (en) * | 2005-12-15 | 2007-06-21 | Jfe Steel Corporation | Highly strong, non-oriented electrical steel sheet and method for manufacture thereof |
JP5223190B2 (en) * | 2005-12-15 | 2013-06-26 | Jfeスチール株式会社 | Non-oriented electrical steel sheet and manufacturing method thereof |
JPWO2007144964A1 (en) * | 2006-06-16 | 2009-10-29 | 新日本製鐵株式会社 | High strength electrical steel sheet and manufacturing method thereof |
JP2008113531A (en) * | 2006-10-31 | 2008-05-15 | Hitachi Ltd | Rotary electric machine |
JP4946492B2 (en) * | 2007-02-16 | 2012-06-06 | Jfeスチール株式会社 | Non-oriented electrical steel sheet and manufacturing method thereof |
JP4853392B2 (en) * | 2007-06-12 | 2012-01-11 | 住友金属工業株式会社 | Non-oriented electrical steel sheet for rotor and manufacturing method thereof |
JP2009214823A (en) * | 2008-03-12 | 2009-09-24 | Toyota Motor Corp | Vehicle and control method thereof |
JP5126787B2 (en) * | 2008-07-11 | 2013-01-23 | 新日鐵住金株式会社 | Method for producing non-oriented electrical steel sheet for rotor |
JP5445194B2 (en) * | 2010-02-09 | 2014-03-19 | 新日鐵住金株式会社 | Manufacturing method and processing method of high strength electrical steel sheet |
CN103415638B (en) | 2011-08-18 | 2015-09-02 | 新日铁住金株式会社 | Non-oriented electromagnetic steel sheet having, its manufacture method, electric machine iron core duplexer and manufacture method thereof |
US9512500B2 (en) | 2011-08-18 | 2016-12-06 | Nippon Steel & Sumitomo Metal Corporation | Non-oriented electrical steel sheet, method of manufacturing the same, laminate for motor iron core, and method of manufacturing the same |
JP5947539B2 (en) * | 2011-12-27 | 2016-07-06 | 日新製鋼株式会社 | Steel plate for rotor core of high-speed rotation IPM motor excellent in magnetic property anisotropy, manufacturing method thereof, rotor core of IPM motor and IPM motor |
CN102965470B (en) * | 2012-12-24 | 2014-01-22 | 中国第一重型机械股份公司 | Smelting and pouring method of low-silicon and aluminum-controlled steel |
EP2840157B1 (en) * | 2013-08-19 | 2019-04-03 | ThyssenKrupp Steel Europe AG | Method for producing a non-grain oriented electrical steel strip or sheet and a non-grain oriented electrical steel strip or sheet produced according to this method |
CN112912186B (en) * | 2018-10-24 | 2023-04-07 | 日本制铁株式会社 | Non-oriented magnetic steel sheet and method for manufacturing laminated iron core using same |
-
2004
- 2004-06-22 JP JP2004183554A patent/JP4389691B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2006009048A (en) | 2006-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4779474B2 (en) | Non-oriented electrical steel sheet for rotor and manufacturing method thereof | |
JP4586669B2 (en) | Method for producing non-oriented electrical steel sheet for rotor | |
US8157928B2 (en) | Non-oriented electrical steel sheet and production process thereof | |
JP5228379B2 (en) | Non-oriented electrical steel sheet with excellent strength and magnetic properties and manufacturing method thereof | |
JP5126788B2 (en) | Non-oriented electrical steel sheet for rotor and manufacturing method thereof | |
JP5076510B2 (en) | Non-oriented electrical steel sheet for rotor and manufacturing method thereof | |
JP4389691B2 (en) | Non-oriented electrical steel sheet for rotor and manufacturing method thereof | |
JP2010121150A (en) | Non-oriented electrical steel sheet for rotating machine, the rotating machine, and method of manufacturing the same | |
JP2011084761A (en) | Non-oriented electromagnetic steel sheet for rotor and manufacturing method therefor | |
JP6606988B2 (en) | Non-oriented electrical steel sheet for rotor and manufacturing method thereof | |
JP4710465B2 (en) | Method for producing non-oriented electrical steel sheet for rotor | |
JP2009299102A (en) | Nonoriented silicon steel sheet for rotor and production method therefor | |
WO2007063581A1 (en) | Nonoriented electromagnetic steel sheet and process for producing the same | |
JP4311127B2 (en) | High tension non-oriented electrical steel sheet and method for producing the same | |
JP2004183002A (en) | Non-oriented silicon steel sheet for automobile, and its production method | |
JP4710458B2 (en) | Method for producing non-oriented electrical steel sheet for rotor | |
JP4506664B2 (en) | Non-oriented electrical steel sheet for rotor and manufacturing method thereof | |
JP2009007592A (en) | Method for manufacturing non-oriented electrical steel sheet for rotor | |
JP4265508B2 (en) | Non-oriented electrical steel sheet for rotor and manufacturing method thereof | |
JP5333415B2 (en) | Non-oriented electrical steel sheet for rotor and manufacturing method thereof | |
JP2003096548A (en) | Non-oriented silicon steel sheet, and production method therefor | |
JP4415933B2 (en) | Method for producing non-oriented electrical steel sheet for rotor | |
JP2007039754A (en) | METHOD FOR PRODUCING Cu-CONTAINING NONORIENTED ELECTRICAL STEEL SHEET | |
JP2003055746A (en) | Nonoriented silicon steel sheet and production method therefor | |
JP4415932B2 (en) | Method for producing non-oriented electrical steel sheet for rotor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060626 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080306 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080311 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080411 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090630 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090724 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090915 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090928 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121016 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4389691 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120703 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131016 Year of fee payment: 4 |
|
A072 | Dismissal of procedure [no reply to invitation to correct request for examination] |
Free format text: JAPANESE INTERMEDIATE CODE: A072 Effective date: 20121030 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131016 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131016 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |