EP2840157B1 - Method for producing a non-grain oriented electrical steel strip or sheet and a non-grain oriented electrical steel strip or sheet produced according to this method - Google Patents
Method for producing a non-grain oriented electrical steel strip or sheet and a non-grain oriented electrical steel strip or sheet produced according to this method Download PDFInfo
- Publication number
- EP2840157B1 EP2840157B1 EP13180889.1A EP13180889A EP2840157B1 EP 2840157 B1 EP2840157 B1 EP 2840157B1 EP 13180889 A EP13180889 A EP 13180889A EP 2840157 B1 EP2840157 B1 EP 2840157B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- strip
- oriented electrical
- sheet
- grain
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 12
- 238000004519 manufacturing process Methods 0.000 title description 10
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 title description 8
- 238000000137 annealing Methods 0.000 claims description 35
- 229910000831 Steel Inorganic materials 0.000 claims description 33
- 239000010959 steel Substances 0.000 claims description 33
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 20
- 239000002244 precipitate Substances 0.000 claims description 14
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- 229910052726 zirconium Inorganic materials 0.000 claims description 12
- 229910008341 Si-Zr Inorganic materials 0.000 claims description 11
- 229910006682 Si—Zr Inorganic materials 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- 229910000976 Electrical steel Inorganic materials 0.000 claims description 10
- 229910052748 manganese Inorganic materials 0.000 claims description 10
- 229910052698 phosphorus Inorganic materials 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 239000012535 impurity Substances 0.000 claims description 7
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 238000005097 cold rolling Methods 0.000 claims description 3
- 238000004870 electrical engineering Methods 0.000 claims description 2
- 229910007735 Zr—Si Inorganic materials 0.000 claims 1
- 101100269674 Mus musculus Alyref2 gene Proteins 0.000 description 19
- 230000010287 polarization Effects 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 8
- 101100537098 Mus musculus Alyref gene Proteins 0.000 description 7
- 101150095908 apex1 gene Proteins 0.000 description 7
- 230000005415 magnetization Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 229910052719 titanium Inorganic materials 0.000 description 7
- 238000001556 precipitation Methods 0.000 description 6
- 238000005098 hot rolling Methods 0.000 description 5
- 229910052720 vanadium Inorganic materials 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 238000005275 alloying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 229910000851 Alloy steel Inorganic materials 0.000 description 2
- 229910000565 Non-oriented electrical steel Inorganic materials 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 230000005417 remagnetization Effects 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- WNMKSPOOQSCFMI-UHFFFAOYSA-N [Zr].[Si].[Fe] Chemical compound [Zr].[Si].[Fe] WNMKSPOOQSCFMI-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1222—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1227—Warm rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1233—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1272—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
- H01F1/14775—Fe-Si based alloys in the form of sheets
Definitions
- the invention relates to a method for producing an electrical strip or sheet as well as a non-grain-oriented electrical strip or sheet produced by use of this method for electrical applications.
- a NO electric steel strip or sheet having a yield strength of at least 60 kg-f / mm 2 (about 589 MPa) and made of a steel containing, in addition to iron and unavoidable impurities (in% by weight) to to 0.04% C, 2.0 - less than 4.0% Si, up to 2.0% Al, up to 0.2% P and at least one element from the group "Mn, Ni", wherein the Sum of the contents of Mn and Ni is at least 0.3% and at most 10%.
- the thus composed steel is according to the US 5,084,112 shed to slabs, which subsequently closed hot rolled into a hot strip, which is optionally annealed, then pickled and then cold rolled to a cold strip having a given final thickness. Finally, the cold strip obtained is subjected to a recrystallizing annealing, in which it is annealed at a temperature of at least 650 ° C, but less than 900 ° C annealing temperature.
- the electrical steel produced by this process has a predominantly ferritic microstructure containing up to 50% martensite by volume and, in addition to iron and unavoidable impurity (in% by weight), contains up to 0.0400% C, 0.2-6.5 % Si, 0.05-10.0% Mn, up to 0.30% P, up to 0.020% S, up to 15% Al, up to 0.0400% N, and further as Ausscheidungstruckner one or two or more elements from the group "Ni, Mo, Ti, Nb, Co and W" in amounts of up to 10.0 wt .-%.
- Zr, Cr, B, Cu, Zn, Mg and Sn may also be present as precipitating agents in the steel in amounts of up to 10% by weight each.
- the precipitates formed in the steel from said elements should be in the form of an intermetallic compound having a number density of more than 20 / ⁇ m 3 and a diameter of at most 0.050 ⁇ m.
- the composition of the steel is in each case chosen so that the precipitates of Fe, Zr and Si are regularly present in binary form.
- Non-grain oriented electrical steel sheet is known to have low iron loss.
- the Sb content should preferably be 0.001-0.05%, especially 0.001-0.005%, whereas in the case that no Sb is present, the Sn content is 0.002-0.1 %, in particular 0.002 to 0.01% should be.
- the JP 2010-121150 A finally discloses a non-grain oriented electrical steel sheet which has excellent machinability in combination with to have excellent magnetic properties.
- This non-oriented electrical steel sheet intended especially for a rotary machine has a sheet thickness of 0.15-0.50 mm and a steel composition containing (in mass) up to 0.02% C, 1.0-4.0% Si, O.
- the object of the invention was to provide a method by which NO electrical steel strip or sheet for electrical applications can be produced which has increased strengths, in particular a higher yield strength, and at the same time good magnetic properties Properties, in particular a low loss of magnetization at high frequencies.
- this object has been achieved according to the invention in that the production steps specified in claim 1 are run through in the production of a NO electrical strip or sheet.
- the solution according to the invention of the above-mentioned object with respect to a non-grain-oriented electrical steel sheet or strip is that this is produced by using the method according to the invention.
- An inventively produced non-oriented electrical steel strip or sheet for electrical applications is thus made of a steel consisting of (in wt .-%) 2.0 - 4.5% Si, 0.03 - 0.3% Zr, and optionally in addition up to 2.0% Al, in particular up to 1.5% Al, up to 1.0% Mn, up to 0.01% C, in particular up to 0.006%, particularly advantageously up to 0.005% C, to to 0.01% N, in particular up to 0.006% N, up to 0.01% S, in particular up to 0.006% S, up to 0.015% P, in particular up to 0.006% P and the remainder being iron and unavoidable impurities ,
- ternary Fe-Si-Zr precipitates are present in the microstructure of the electrical strip or sheet. These increase the strength of the steel according to the invention by precipitation or particle hardening.
- the respective Fe-Si-Zr precipitates are formed as finely as possible in terms of their spatial extent.
- their average diameter is preferably well below 100 nm.
- Such small Fe-Si-Zr precipitations increase the strength of NO electrical steel strip or sheet of the type according to the invention, without losing the magnetic properties in applications for engine construction and the like important high frequency bands to deteriorate significantly.
- the Fe-Si-Zr precipitates used according to the invention for increasing the strength hinder the movement of the Bloch walls only slightly due to their small size and thus cause at most a slight increase in the Ummagnetmaschineswe P 1.0 and P 1.5 compared to conventional, less solid electrical tapes and sheets.
- the Bloch wall is the transition region between magnetic domains with different magnetization.
- a non-grain oriented electrical steel sheet according to the invention has Si and Zr in levels adjusted to the desired formation of the Fe-Si-Zr precipitates comes.
- Si at least 2.0 wt .-% Si are required, the Fe-Si-Zr precipitates then adjust particularly reliable in the desired frequency and distribution, if the Si content is at least 1.6 wt .-%, in particular at least 2.4 wt .-%, is.
- the Si content is limited to at most 4.5 wt .-%, optimally the Si content, the upper limit of 3.5 wt .-% , in particular 3.4 wt .-%, does not exceed.
- Levels of at least 0.03 wt% are required to form the desired ternary Zr precipitates. For this effect to occur particularly reliably, at least 0.07% by weight Zr, in particular at least 0.08% by weight Zr, may be added to the steel according to the invention. At levels greater than 0.3 wt% Zr, no significant increases in the property improvements caused by the presence of sufficient levels of Zr can be observed. An optimum effect of Zr in an electrical steel strip or sheet according to the invention can be achieved if the Zr content is limited to at most 0.25% by weight.
- the steel from which the electrical steel strip or sheet is made according to the invention may contain contents of further alloying elements which are added in a manner known per se for adjusting its properties.
- elements suitable for this purpose are, in particular, Al and Mn in the contents indicated here.
- the invention does not have to rely on carbides, nitrides or carbonitrides to increase the strength, the C and N contents of an electric sheet or strip according to the invention can be minimized. In this way, the risk of magnetic aging is prevented, which can occur as a result of high C or N contents.
- the electrical tapes or sheets assembled according to the invention generally increase the yield strength by at least 20 MPa compared with conventionally assembled electrical tapes or sheets in which no measures to increase the strength have been taken. The strength increases with the fineness of the precipitates. Strength increases of 100 - 200 MPa are possible with further refined precipitations.
- the inventive method is designed so that it enables the reliable production of a non-grain-oriented electrical tape or sheet according to the invention.
- a hot strip composed in the manner explained above for the non-grain-oriented electrical sheet or strip according to the invention is provided, which is subsequently cold-rolled and subjected to a final annealing as a cold-rolled strip.
- the final annealed cold-rolled strip obtained after the final annealing then represents the electrical strip or sheet assembled and produced according to the invention, the strength of which is significantly improved by the presence of Fe-Si-Zr precipitates in its microstructure compared to a conventional NO electrical sheet or strip Therefore, it is particularly suitable for the production of electrical components and assemblies that are exposed to high dynamic loads in practical use.
- the manufacture of the hot strip provided according to the invention can be carried out conventionally as far as possible.
- a molten steel having a composition according to the invention corresponding composition Si: 2.0 to 4.5 wt .-%, Zr: 0.03 to 0.3 wt .-%, Al: up to 2.0 wt. %, Mn: up to 1.0% by weight, C: up to 0.01% by weight, N: up to 0.01% by weight, S: up to 0.01% by weight , P: up to 0.015 wt .-%, balance iron and unavoidable impurities
- a starting material which may be a slab or thin slab in conventional manufacturing. Since the precipitation formation processes according to the invention take place only after solidification, it is in principle also possible to cast the molten steel into a cast strip, which is then hot rolled into a hot strip.
- the starting material thus produced can then be brought to a pre-material temperature of 1020-1300 ° C.
- the starting material is, if necessary, reheated or kept at the respective target temperature by utilizing the casting heat.
- the thus heated starting material can then be hot rolled to a hot strip having a thickness which is typically 1.5-4 mm, in particular 2-3 mm.
- the hot rolling starts in a conventional manner at a hot rolling start temperature in the finishing scale of 1000 - 1150 ° C and ends with a hot rolling end temperature of 700 - 920 ° C, especially 780 - 850 ° C.
- the resulting hot strip can then be cooled to a coiling temperature and coiled into a coil.
- the reel temperature is ideally chosen so that a precipitation of strength-increasing particles is still avoided at this time to avoid problems during subsequent cold rolling.
- the reel temperature for this purpose, for example, at most 700 ° C.
- the hot strip can be subjected to a hot strip annealing.
- the supplied hot strip is cold rolled to a cold strip having a thickness typically in the range of 0.15-1.1 mm, especially 0.2-0.65 mm.
- the final annealing contributes significantly to the formation of the Fe-Si-Zr particles used in the present invention for increasing the strength.
- By varying the annealing conditions of the final annealing it is possible to optimize the material properties optionally in favor of a higher strength or a lower loss of core loss.
- Non-grain-oriented electrical sheets or tapes according to the invention having yield strengths in the range of 350-500 MPa and remagnetization losses P 1.0 / 400 which are less than 35 W / kg at a strip thickness of 0.3 mm and a strip thickness of 0, 5 mm less than 45 W / kg, can be particularly reliable achieved by the inventively assembled cold strip is subjected in the course of the final annealing of a completed in the course of two-stage annealing.
- the cold strip is annealed at an annealing temperature of 900 - 1150 ° C for 1 - 300 s. Subsequently, the cold strip is held in a second annealing stage at a temperature of 600 - 800 ° C for 50 - 120 s. Then the cold strip is cooled to a temperature below 100 ° C.
- the possibly existing Fe-Si-Zr precipitates are dissolved in the first annealing stage and complete recrystallization of the microstructure is achieved. In the further annealing stages, the targeted precipitation of the Fe-Si-Zr particles then takes place.
- the obtained, non-grain oriented electrical steel strip or sheet material may be finally subjected to a conventional flash annealing.
- this flash annealing can still be performed in the coil of the manufacturer of NO-electric strip or sheet according to the invention, or it can first be divided from the produced in the inventive manner electrical strip or sheet, the blanks processed at the final processor, then the Be subjected to flash annealing.
- Fig. 1 shows a diagram in which the target temperature profile during the final annealing of the electrical tapes and sheets produced in the manner explained below is shown.
- the blocks were brought to 1250 ° C temperature and hot rolled with a hot rolling start temperature of 1020 ° C and a hot rolling end temperature of 840 ° C to a 2 mm thick hot strip.
- the respective hot strip has been cooled to a reel temperature T HasPel of 620 ° C. Subsequently, a typical cooling in the coil has been simulated.
- Some samples of the hot-rolled strip Zr1, Zr2 according to the invention and samples of the reference steels Ref1, Ref2 were then subjected to a hot strip annealing at a temperature of 740 ° C. for a period of 2 hours and then each to cold strips with a final thickness of 0, 5 mm or 0.3 mm cold rolled.
- a final annealing was carried out in which the respective cold strip sample was first heated at a heating rate of 10 K / s over a period of 105 seconds from room temperature to an annealing temperature of 1090 ° C. Thereafter, the samples were held at the annealing temperature for a period of 15 seconds and then cooled at a cooling rate of 20 K / sec to an intermediate temperature of 700 ° C. At this intermediate temperature, the samples were held for over 60 seconds.
- the mechanical and magnetic properties are upper yield strength R eH , lower yield strength R eL , tensile strength R m , the ratio Re / Rm of the mean yield strength Re to the tensile strength Rm, the uniform elongation A g , each measured at a frequency of 50 Hz
- Correction loss P 1.0 loss of magnetization loss at a polarization of 1.0 T
- P 1.5 loss of magnetization loss at a polarization of 1.5 T
- each measured at 50 Hz each polarization J 2500 polarization at a magnetic field strength of 2500 A / m
- J5000 polarization at a magnetic field strength of 5000 A / m
- Table 3 the same information is given for 0.5 mm thick samples, which consist of the steels Zr1 or Zr2 according to the invention and of the reference steels Ref1 or Ref2 and have not been subjected to hot strip annealing.
- Table 4 gives the corresponding values for 0.3 mm thick samples consisting of the Zr2 steel according to the invention or the reference steel Ref2 and subjected to a hot strip annealing
- Table 5 the corresponding values for 0.3 mm thick specimens are given consisting of the steel according to the invention Zr2 or the reference steel Ref2 and have not undergone hot strip annealing.
- the samples produced from the steels according to the invention have somewhat higher core losses than the samples produced from the reference steels.
- the remagnetization losses of the samples according to the invention and of the reference samples hardly differ.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Manufacture Of Motors, Generators (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Erzeugung eines Elektrobands oder -blechs sowie ein durch Anwendung dieses Verfahrens hergestelltes nicht kornorientiertes Elektroband oder -blech für elektrotechnische Anwendungen.The invention relates to a method for producing an electrical strip or sheet as well as a non-grain-oriented electrical strip or sheet produced by use of this method for electrical applications.
Nicht kornorientierte Elektrobänder oder -bleche, in der Fachsprache auch als "NO-Elektroband oder -blech" oder im englischen Sprachgebrauch auch als "NGO-Electrical Steel" ("NGO" = Non Grain Oriented) bezeichnet, werden zur Verstärkung des magnetischen Flusses in Eisenkernen von rotierenden elektrischen Maschinen verwendet. Typische Verwendungen solcher Bleche sind elektrische Motoren und Generatoren.Non-grain oriented electrical tapes or sheets, also referred to in the jargon as "NO electrical steel or sheet" or in the English language as "NGO-Electrical Steel" ("NGO" = Non Grain Oriented), are used to enhance the magnetic flux in Iron cores used by rotating electrical machines. Typical uses of such sheets are electric motors and generators.
Um die Effizienz solcher Maschinen zu steigern, werden möglichst hohe Drehzahlen oder große Durchmesser der im Betrieb jeweils rotierenden Bauteile angestrebt. In Folge dieses Trends sind die elektrisch relevanten, aus Elektrobändern oder -blechen der hier in Rede stehenden Art gefertigten Bauteile einer hohen mechanischen Belastung ausgesetzt, die von den heute zur Verfügung stehenden NO-Elektrobandsorten oft nicht erfüllt werden können.In order to increase the efficiency of such machines, the highest possible speeds or large diameters of the components rotating during operation are sought. As a result of this trend, the electrically relevant components made of electrical tapes or sheets of the type in question here are of a high mechanical nature Exposed to stress that can not be met by the currently available NO-Elektrobandsorten often.
Aus der
Um eine Festigkeitssteigerung durch die Bildung von Karbonitriden zu erreichen, enthält der aus der
Der derart zusammengesetzte Stahl wird gemäß der
Im Fall der gleichzeitigen Anwesenheit von wirksamen Gehalten an Ti und P sowie B, N, C, Mn und Ni im Stahl erreichen die gemäß der
Ein anderes Verfahren, das die betriebssichere Herstellung von hochfestem nicht kornorientiertem Elektroblech mit guten elektromagnetischen Eigenschaften ermöglichen soll, ist aus der
Neben dem voranstehend erläuterten Stand der Technik ist aus der
Die
Vor dem Hintergrund des voranstehend erläuterten Standes der Technik bestand die Aufgabe der Erfindung darin, ein Verfahren zu schaffen, mit dem NO-Elektroband oder -blech für elektrotechnische Anwendungen erzeugt werden kann, das erhöhte Festigkeiten, insbesondere eine höhere Streckgrenze, besitzt und gleichzeitig gute magnetische Eigenschaften, insbesondere einen niedrigen Ummagnetisierungsverlust bei hohen Frequenzen aufweist.Against the background of the prior art described above, the object of the invention was to provide a method by which NO electrical steel strip or sheet for electrical applications can be produced which has increased strengths, in particular a higher yield strength, and at the same time good magnetic properties Properties, in particular a low loss of magnetization at high frequencies.
Darüber hinaus sollte ein entsprechend beschaffenes NO-Elektroband oder -blech angegeben werden.In addition, a correspondingly procured NO electrical steel strip or sheet should be specified.
In Bezug auf das Verfahren ist diese Aufgabe erfindungsgemäß dadurch gelöst worden, dass bei der Erzeugung eines NO-Elektrobands oder -blechs die in Anspruch 1 angegebenen Arbeitsschritte durchlaufen werden.With regard to the method, this object has been achieved according to the invention in that the production steps specified in claim 1 are run through in the production of a NO electrical strip or sheet.
Dementsprechend besteht die erfindungsgemäße Lösung der oben genannten Aufgabe in Bezug auf ein nicht kornorientiertes Elektrostahlblech oder -band darin, dass dieses durch Anwendung des erfindungsgemäßen Verfahrens hergestellt ist.Accordingly, the solution according to the invention of the above-mentioned object with respect to a non-grain-oriented electrical steel sheet or strip is that this is produced by using the method according to the invention.
Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben und werden nachfolgend wie der allgemeine Erfindungsgedanke im Einzelnen erläutert.Advantageous embodiments of the invention are specified in the dependent claims and are explained below as the general inventive concept in detail.
Ein erfindungsgemäß erzeugtes nicht kornorientiertes Elektroband oder -blech für elektrotechnische Anwendungen ist somit aus einem Stahl hergestellt, der aus (in Gew.-%) 2,0 - 4,5 % Si, 0,03 - 0,3 % Zr, sowie optional zusätzlich bis zu 2,0 % Al, insbesondere bis zu 1,5 % Al, bis zu 1,0 % Mn, bis zu 0,01 % C, insbesondere bis zu 0,006 %, besonders vorteilhafter Weise bis zu 0,005 % C, bis zu 0,01 % N, insbesondere bis zu 0,006 % N, bis zu 0,01 % S, insbesondere bis zu 0,006 % S, bis zu 0,015 % P, insbesondere bis zu 0,006 % P und als Rest aus Eisen und unvermeidbaren Verunreinigungen besteht.An inventively produced non-oriented electrical steel strip or sheet for electrical applications is thus made of a steel consisting of (in wt .-%) 2.0 - 4.5% Si, 0.03 - 0.3% Zr, and optionally in addition up to 2.0% Al, in particular up to 1.5% Al, up to 1.0% Mn, up to 0.01% C, in particular up to 0.006%, particularly advantageously up to 0.005% C, to to 0.01% N, in particular up to 0.006% N, up to 0.01% S, in particular up to 0.006% S, up to 0.015% P, in particular up to 0.006% P and the remainder being iron and unavoidable impurities ,
Entscheidend für die Erfindung ist dabei, dass im Gefüge des Elektrobands oder -blechs ternäre Fe-Si-Zr-Ausscheidungen vorliegen. Diese steigern die Festigkeit des erfindungsgemäßen Stahls durch Ausscheidungs- bzw. Teilchenhärtung.Decisive for the invention is that ternary Fe-Si-Zr precipitates are present in the microstructure of the electrical strip or sheet. These increase the strength of the steel according to the invention by precipitation or particle hardening.
Aus Eisen, Zirkonium und Silizium gebildete ternäre Ausscheidungen treten, wie in Materials Science International Team, MSIT®, und
Für eine weitere Steigerung der Festigkeit ist es vorteilhaft, die betreffenden Fe-Si-Zr-Ausscheidungen bezüglich ihrer räumlichen Ausdehnung möglichst fein auszubilden. So liegt ihr durchschnittlicher Durchmesser erfindungsgemäß bevorzugt deutlich unterhalb von 100 nm. Derart kleine Fe-Si-Zr-Ausscheidungen steigern die Festigkeit von NO-Elektroband oder -blech der erfindungsgemäßen Art deutlich, ohne dabei die magnetischen Eigenschaften bei den für Anwendungen im Motorenbau und desgleichen wichtigen hohen Frequenzbereichen wesentlich zu verschlechtern. So behindern die erfindungsgemäß zur Festigkeitssteigerung genutzten Fe-Si-Zr-Ausscheidungen die Bewegung der Bloch-Wände aufgrund ihrer geringen Größe nur geringfügig und bewirken dementsprechend gegenüber konventionellen, weniger festen Elektrobändern und -blechen allenfalls eine geringe Erhöhung der Ummagnetisierungsverluste P1.0 und P1.5. Bei der Blochwand handelt es sich um den Übergangsbereich zwischen magnetischen Domänen mit unterschiedlicher Magnetisierung.For a further increase in the strength, it is advantageous to form the respective Fe-Si-Zr precipitates as finely as possible in terms of their spatial extent. Thus, according to the invention, their average diameter is preferably well below 100 nm. Such small Fe-Si-Zr precipitations increase the strength of NO electrical steel strip or sheet of the type according to the invention, without losing the magnetic properties in applications for engine construction and the like important high frequency bands to deteriorate significantly. Thus, the Fe-Si-Zr precipitates used according to the invention for increasing the strength hinder the movement of the Bloch walls only slightly due to their small size and thus cause at most a slight increase in the Ummagnetisierungsverluste P 1.0 and P 1.5 compared to conventional, less solid electrical tapes and sheets. The Bloch wall is the transition region between magnetic domains with different magnetization.
Ein erfindungsgemäßes nicht kornorientiertes Elektroblech weist Si und Zr in Gehalten auf, die so eingestellt sind, dass es zur angestrebten Bildung der Fe-Si-Zr-Ausscheidungen kommt. Hierzu sind einerseits mindestens 2,0 Gew.-% Si erforderlich, wobei sich die Fe-Si-Zr-Ausscheidungen dann besonders betriebssicher in der gewünschten Häufigkeit und Verteilung einstellen, wenn der Si-Gehalt mindestens 1,6 Gew.-%, insbesondere mindestens 2,4 Gew.-%, beträgt. Um negative Einflüsse auf die Eigenschaften des erfindungsgemäßen NO-Elektrobands oder -blechs zu vermeiden, ist der Si-Gehalt auf höchstens 4,5 Gew.-% beschränkt, wobei optimaler Weise der Si-Gehalt die Obergrenze von 3,5 Gew.-%, insbesondere 3,4 Gew.-%, nicht überschreitet.A non-grain oriented electrical steel sheet according to the invention has Si and Zr in levels adjusted to the desired formation of the Fe-Si-Zr precipitates comes. For this purpose, on the one hand at least 2.0 wt .-% Si are required, the Fe-Si-Zr precipitates then adjust particularly reliable in the desired frequency and distribution, if the Si content is at least 1.6 wt .-%, in particular at least 2.4 wt .-%, is. In order to avoid negative influences on the properties of the NO electrical strip or sheet according to the invention, the Si content is limited to at most 4.5 wt .-%, optimally the Si content, the upper limit of 3.5 wt .-% , in particular 3.4 wt .-%, does not exceed.
Gehalte von mindestens 0,03 Gew.-% sind erforderlich, damit sich die gewünschten ternären Zr-Ausscheidungen bilden. Damit dieser Effekt besonders sicher eintritt, können mindestens 0,07 Gew.-% Zr, insbesondere mindestens 0,08 Gew.-% Zr, dem erfindungsgemäßen Stahl zugegeben werden. Bei Gehalten von mehr als 0,3 Gew.-% Zr können keine entscheidenden Steigerungen der durch die Anwesenheit von ausreichenden Gehalten an Zr bewirkten Eigenschaftsverbesserungen beobachtet werden. Eine optimale Wirkung von Zr in einem erfindungsgemäßen Elektroband oder -blech lässt sich dabei dann erzielen, wenn der Zr-Gehalt auf höchstens 0,25 Gew.-% beschränkt ist.Levels of at least 0.03 wt% are required to form the desired ternary Zr precipitates. For this effect to occur particularly reliably, at least 0.07% by weight Zr, in particular at least 0.08% by weight Zr, may be added to the steel according to the invention. At levels greater than 0.3 wt% Zr, no significant increases in the property improvements caused by the presence of sufficient levels of Zr can be observed. An optimum effect of Zr in an electrical steel strip or sheet according to the invention can be achieved if the Zr content is limited to at most 0.25% by weight.
Der Stahl, aus dem erfindungsgemäß das Elektroband oder -blech besteht, kann Gehalte an weiteren Legierungselementen enthalten, die in an sich bekannter Weise zur Einstellung seiner Eigenschaften zugegeben werden. Zu den hierzu geeigneten Elementen zählen insbesondere Al und Mn in den hier angegebenen Gehalten.The steel from which the electrical steel strip or sheet is made according to the invention may contain contents of further alloying elements which are added in a manner known per se for adjusting its properties. Among the elements suitable for this purpose are, in particular, Al and Mn in the contents indicated here.
Da die Erfindung zur Festigkeitssteigerung nicht auf Carbide, Nitride oder Karbonitride zurückgreifen muss, können die C- und N-Gehalte eines erfindungsgemäßen Elektroblechs oder -bands minimiert werden. Auf diese Weise ist der Gefahr einer magnetischen Alterung vorgebeugt, zu der es in Folge hoher C- oder N-Gehalte kommen kann.Since the invention does not have to rely on carbides, nitrides or carbonitrides to increase the strength, the C and N contents of an electric sheet or strip according to the invention can be minimized. In this way, the risk of magnetic aging is prevented, which can occur as a result of high C or N contents.
In Folge ihrer erfindungsgemäßen Zusammensetzung weisen erfindungsgemäß zusammengesetzte Elektrobänder oder -bleche bei einer Dicke von 0,5 mm, einer Polarisation von 1,0 Tesla und einer Frequenz von 400 Hz Ummagnetisierungsverluste P1,0/400 von höchstens 65 W/kg auf. Bei einer Dicke von 0,35 mm, einer Polarisation von 1,0 Tesla und einer Frequenz von 400 Hz weisen die erfindungsgemäß zusammengesetzten Elektrobänder dagegen Ummagnetisierungsverluste P1,0/400 von höchstens 45 W/kg auf. Gleichzeitig erreichen die erfindungsgemäß zusammengesetzten Elektrobänder oder -bleche gegenüber konventionell zusammengesetzten Elektrobändern oder -blechen, bei denen keine Maßnahmen zur Festigkeitssteigerung ergriffen worden sind, regelmäßig eine Steigerung der Streckgrenze um mindestens 20 MPa. Die Festigkeit nimmt dabei mit der Feinheit der Ausscheidungen zu. Festigkeitsanstiege von 100 - 200 MPa sind bei weiter verfeinerten Ausscheidungen möglich.As a result of their inventive composition according to the invention composite electrical tapes or sheets at a thickness of 0.5 mm, a polarization of 1.0 Tesla and a frequency of 400 Hz re-magnetization losses P 1.0 / 400 of at most 65 W / kg. With a thickness of 0.35 mm, a polarization of 1.0 Tesla and a frequency of 400 Hz, however, the electrical tapes assembled according to the invention have magnetization losses P 1.0 / 400 of at most 45 W / kg. At the same time, the electrical tapes or sheets assembled according to the invention generally increase the yield strength by at least 20 MPa compared with conventionally assembled electrical tapes or sheets in which no measures to increase the strength have been taken. The strength increases with the fineness of the precipitates. Strength increases of 100 - 200 MPa are possible with further refined precipitations.
Das erfindungsgemäße Verfahren ist so angelegt, dass es die betriebssichere Erzeugung eines erfindungsgemäßen nicht kornorientierten Elektrobands oder -blechs ermöglicht.The inventive method is designed so that it enables the reliable production of a non-grain-oriented electrical tape or sheet according to the invention.
Dazu wird zunächst ein in der voranstehend für das erfindungsgemäße nicht kornorientierte Elektroblech oder -band erläuterten Weise zusammengesetztes Warmband zur Verfügung gestellt, das anschließend kaltgewalzt und als kaltgewalztes Band einer Schlussglühung unterzogen wird. Das nach dem Schlussglühen erhaltene schlussgeglühte Kaltband stellt dann das erfindungsgemäß zusammengesetzte und beschaffene Elektroband oder -blech dar, dessen Festigkeit durch die Anwesenheit von Fe-Si-Zr-Ausscheidungen in seinem Gefüge gegenüber einem konventionellen NO-Elektroblech oder -band deutlich verbessert ist und das daher besonders für die Herstellung von elektrischen Bauteilen und Aggregaten geeignet ist, die im praktischen Einsatz hohen dynamischen Belastungen ausgesetzt sind.For this purpose, first of all a hot strip composed in the manner explained above for the non-grain-oriented electrical sheet or strip according to the invention is provided, which is subsequently cold-rolled and subjected to a final annealing as a cold-rolled strip. The final annealed cold-rolled strip obtained after the final annealing then represents the electrical strip or sheet assembled and produced according to the invention, the strength of which is significantly improved by the presence of Fe-Si-Zr precipitates in its microstructure compared to a conventional NO electrical sheet or strip Therefore, it is particularly suitable for the production of electrical components and assemblies that are exposed to high dynamic loads in practical use.
Die Herstellung des erfindungsgemäß bereitgestellten Warmbands kann weitestgehend konventionell erfolgen. Dazu kann zunächst eine Stahlschmelze mit einer der erfindungsgemäßen Vorgabe entsprechenden Zusammensetzung (Si: 2,0 - 4,5 Gew.-%, Zr: 0,03 - 0,3 Gew.-%, Al: bis zu 2,0 Gew.-%, Mn: bis zu 1,0 Gew.-%, C: bis zu 0,01 Gew.-%, N: bis zu 0,01 Gew.-%, S: bis zu 0,01 Gew.-%, P: bis zu 0,015 Gew.-%, Rest Eisen und unvermeidbare Verunreinigungen) erschmolzen und zu einem Vormaterial vergossen werden, bei dem es sich bei konventioneller Fertigung um eine Bramme oder Dünnbramme handeln kann. Da die erfindungsgemäßen Vorgänge der Ausscheidungsbildung erst nach der Erstarrung ablaufen, ist es prinzipiell auch möglich, die Stahlschmelze zu einem gegossenen Band zu vergießen, welches anschließend zu einem Warmband warmgewalzt wird.The manufacture of the hot strip provided according to the invention can be carried out conventionally as far as possible. For this purpose, first a molten steel having a composition according to the invention corresponding composition (Si: 2.0 to 4.5 wt .-%, Zr: 0.03 to 0.3 wt .-%, Al: up to 2.0 wt. %, Mn: up to 1.0% by weight, C: up to 0.01% by weight, N: up to 0.01% by weight, S: up to 0.01% by weight , P: up to 0.015 wt .-%, balance iron and unavoidable impurities) are melted and cast into a starting material, which may be a slab or thin slab in conventional manufacturing. Since the precipitation formation processes according to the invention take place only after solidification, it is in principle also possible to cast the molten steel into a cast strip, which is then hot rolled into a hot strip.
Das so erzeugte Vormaterial kann anschließend auf eine 1020 - 1300 °C betragende Vormaterialtemperatur gebracht werden. Dazu wird das Vormaterial erforderlichenfalls wiedererwärmt oder unter Ausnutzung der Gießhitze auf der jeweiligen Zieltemperatur gehalten.The starting material thus produced can then be brought to a pre-material temperature of 1020-1300 ° C. For this purpose, the starting material is, if necessary, reheated or kept at the respective target temperature by utilizing the casting heat.
Das so erwärmte Vormaterial kann dann zu einem Warmband mit einer Dicke warmgewalzt werden, die typischerweise 1,5 - 4 mm, insbesondere 2 - 3 mm, beträgt. Das Warmwalzen beginnt dabei in an sich bekannter Weise bei einer Warmwalzanfangstemperatur in der Fertigstaffel von 1000 - 1150 °C und endet mit einer Warmwalzendtemperatur von 700 - 920 °C, insbesondere 780 - 850 °C.The thus heated starting material can then be hot rolled to a hot strip having a thickness which is typically 1.5-4 mm, in particular 2-3 mm. The hot rolling starts in a conventional manner at a hot rolling start temperature in the finishing scale of 1000 - 1150 ° C and ends with a hot rolling end temperature of 700 - 920 ° C, especially 780 - 850 ° C.
Das erhaltene Warmband kann anschließend auf eine Haspeltemperatur abgekühlt und zu einem Coil gehaspelt werden. Die Haspeltemperatur wird dabei idealerweise so gewählt, dass eine Ausscheidung von festigkeitssteigernden Partikeln zu diesem Zeitpunkt noch vermieden wird, um Probleme beim anschließend durchgeführten Kaltwalzen zu vermeiden. In der Praxis beträgt die Haspeltemperatur hierzu beispielsweise höchstens 700 °C.The resulting hot strip can then be cooled to a coiling temperature and coiled into a coil. The reel temperature is ideally chosen so that a precipitation of strength-increasing particles is still avoided at this time to avoid problems during subsequent cold rolling. In practice, the reel temperature for this purpose, for example, at most 700 ° C.
Optional kann das Warmband einer Warmbandglühung unterzogen werden.Optionally, the hot strip can be subjected to a hot strip annealing.
Das bereitgestellte Warmband wird zu einem Kaltband mit einer Dicke kaltgewalzt, die typischerweise im Bereich von 0,15 - 1,1 mm, insbesondere 0,2 - 0,65 mm, liegt.The supplied hot strip is cold rolled to a cold strip having a thickness typically in the range of 0.15-1.1 mm, especially 0.2-0.65 mm.
Die abschließende Schlussglühung trägt entscheidend zur Bildung der erfindungsgemäß zur Festigkeitssteigung genutzten Fe-Si-Zr-Partikel bei. Dabei ist es durch Variation der Glühbedingungen der Schlussglühung möglich, die Werkstoffeigenschaften wahlweise zu Gunsten einer höheren Festigkeit oder eines geringeren Ummagnetisierungsverlustes zu optimieren.The final annealing contributes significantly to the formation of the Fe-Si-Zr particles used in the present invention for increasing the strength. By varying the annealing conditions of the final annealing, it is possible to optimize the material properties optionally in favor of a higher strength or a lower loss of core loss.
Erfindungsgemäße nicht kornorientierte Elektrobleche oder -bänder mit Streckgrenzen, die im Bereich von 350 - 500 MPa liegen, und Ummagnetisierungsverlusten P1,0/400, die bei einer Banddicke von 0,3 mm kleiner 35 W/kg und bei einer Banddicke von 0,5 mm kleiner 45 W/kg betragen, lassen sich besonders betriebssicher dadurch erzielen, dass das erfindungsgemäß zusammengesetzte Kaltband im Zuge der Schlussglühung einer im Durchlauf absolvierten zweistufigen Glühung unterzogen wird.Non-grain-oriented electrical sheets or tapes according to the invention having yield strengths in the range of 350-500 MPa and remagnetization losses P 1.0 / 400 which are less than 35 W / kg at a strip thickness of 0.3 mm and a strip thickness of 0, 5 mm less than 45 W / kg, can be particularly reliable achieved by the inventively assembled cold strip is subjected in the course of the final annealing of a completed in the course of two-stage annealing.
In der ersten Stufe wird das Kaltband bei einer Glühtemperatur von 900 - 1150 °C für 1 - 300 s geglüht. Anschließend wird das Kaltband in einer zweiten Glühstufe bei einer Temperatur von 600 - 800 °C für 50 - 120 s gehalten. Dann wird das Kaltband auf eine Temperatur unter 100 °C abgekühlt. Bei einem in der voranstehend erläuterten Weise durchgeführten Schlussglühen werden in der ersten Glühstufe die möglicherweise bereits vorhandenen Fe-Si-Zr-Ausscheidungen aufgelöst und eine vollständige Rekristallisation des Gefüges erzielt. In den weiteren Glühstufen erfolgt dann die gezielte Ausscheidung der Fe-Si-Zr-Teilchen.In the first stage, the cold strip is annealed at an annealing temperature of 900 - 1150 ° C for 1 - 300 s. Subsequently, the cold strip is held in a second annealing stage at a temperature of 600 - 800 ° C for 50 - 120 s. Then the cold strip is cooled to a temperature below 100 ° C. In a final annealing carried out in the manner described above, the possibly existing Fe-Si-Zr precipitates are dissolved in the first annealing stage and complete recrystallization of the microstructure is achieved. In the further annealing stages, the targeted precipitation of the Fe-Si-Zr particles then takes place.
Des Weiteren kann das erhaltene, nicht kornorientierte Elektroband oder -blechmaterial abschließend einer konventionellen Entspannungsglühung unterzogen werden. Abhängig von den Verarbeitungsabläufen beim Endverarbeiter kann diese Entspannungsglühung noch beim Hersteller des erfindungsgemäßen NO-Elektrobands oder -blechs im Coil durchgeführt werden, oder es können zunächst die beim Endverarbeiter verarbeiteten Zuschnitte von dem in erfindungsgemäßer Weise erzeugten Elektroband oder -blech abgeteilt werden, die dann der Entspannungsglühung unterzogen werden.Furthermore, the obtained, non-grain oriented electrical steel strip or sheet material may be finally subjected to a conventional flash annealing. Depending on the processing operations at the end processor, this flash annealing can still be performed in the coil of the manufacturer of NO-electric strip or sheet according to the invention, or it can first be divided from the produced in the inventive manner electrical strip or sheet, the blanks processed at the final processor, then the Be subjected to flash annealing.
Nachfolgend wird die Erfindung von Ausführungsbeispielen näher erläutert.The invention of embodiments will be explained in more detail.
Die nachfolgend erläuterten Versuche wurden jeweils unter Laborbedingungen durchgeführt. Dabei sind zunächst zwei erfindungsgemäß zusammengesetzte Stahlschmelze Zr1 und Zr2 sowie zwei Referenzschmelzen Ref1 und Ref2 erschmolzen und zu Blöcken vergossen worden. Die Zusammensetzungen der Schmelzen Zr1, Zr2, Ref1, Ref2 sind in Tabelle 1 angegeben. Mit Ausnahme des jeweils fehlenden wirksamen Gehalts an Zr stimmen die Legierungselemente und, im Rahmen der üblichen Toleranzen auch deren Gehalte, der Referenzschmelze Ref1 mit der erfindungsgemäßen Schmelze Zr1 und der Referenzschmelze Ref2 mit der erfindungsgemäßen Schmelze Ref2 überein.The experiments described below were carried out under laboratory conditions. In this case, two molten steel alloys Zr1 and Zr2 composed according to the invention and two reference melts Ref1 and Ref2 have first been melted and cast into blocks. The compositions of the melts Zr1, Zr2, Ref1, Ref2 are given in Table 1. With the exception of the respectively missing effective content of Zr, the alloying elements and, within the usual tolerances, their contents, the reference melt Ref1 with the melt Zr1 according to the invention and the reference melt Ref2 with the melt Ref2 according to the invention are identical.
Die Blöcke wurden auf eine 1250 °C betragende Temperatur gebracht und mit einer Warmwalzanfangstemperatur von 1020 °C und einer Warmwalzendtemperatur von 840 °C zu einem 2 mm dicken Warmband warmgewalzt. Das jeweilige Warmband ist auf eine Haspeltemperatur THasPel von 620 °C abgekühlt worden. Anschließend ist eine typische Abkühlung im Coil simuliert worden.The blocks were brought to 1250 ° C temperature and hot rolled with a hot rolling start temperature of 1020 ° C and a hot rolling end temperature of 840 ° C to a 2 mm thick hot strip. The respective hot strip has been cooled to a reel temperature T HasPel of 620 ° C. Subsequently, a typical cooling in the coil has been simulated.
Einige Proben den aus der erfindungsgemäßen Stahllegierungen Zr1,Zr2 bestehenden Warmbänder und Proben aus den Referenzstählen Ref1,Ref2 sind anschließend über eine Dauer von 2 h bei einer Temperatur von 740 °C einer Warmbandglühung unterzogen worden und daraufhin jeweils zu Kaltbändern mit einer Enddicke von 0,5 mm oder 0,3 mm kaltgewalzt worden.Some samples of the hot-rolled strip Zr1, Zr2 according to the invention and samples of the reference steels Ref1, Ref2 were then subjected to a hot strip annealing at a temperature of 740 ° C. for a period of 2 hours and then each to cold strips with a final thickness of 0, 5 mm or 0.3 mm cold rolled.
Weitere Proben der aus den erfindungsgemäßen Stahllegierungen Zr1,Zr2 und aus den Referenzstählen Ref1,Ref2 bestehenden Warmbänder sind dagegen jeweils ohne Warmbandglühung zu 0,3 mm oder 0,5 mm dickem Kaltband kaltgewalzt worden.On the other hand, further samples of the hot strips consisting of the steel alloys Zr1, Zr2 according to the invention and of the reference steels Ref1, Ref2 have been cold-rolled to 0.3 mm or 0.5 mm thick cold strip each without hot strip annealing.
Nach dem Kaltwalzen erfolgte jeweils eine Schlussglühung, bei der die jeweilige Kaltbandprobe zunächst mit einer Aufheizrate von 10 K/s über eine Dauer von 105 Sekunden von der Raumtemperatur auf eine Glühtemperatur von 1090 °C erwärmt worden ist. Anschließend sind die Proben über eine Dauer von 15 Sekunden bei der Glühtemperatur gehalten worden und daraufhin mit einer Abkühlrate von 20 K/s auf eine Zwischentemperatur, die 700 °C betrug, abgekühlt worden. Bei dieser Zwischentemperatur sind die Proben über 60 Sekunden gehalten worden. Anschließend erfolgte eine zweistufige Abkühlung, bei der die Proben zunächst langsam mit 5 °C/s auf eine zweite Zwischentemperatur von 580 °C und nach Erreichen der zweiten Zwischentemperatur beschleunigt mit einer Abkühlrate von 30 °C/s auf Raumtemperatur abgekühlt worden sind.After the cold rolling, in each case a final annealing was carried out in which the respective cold strip sample was first heated at a heating rate of 10 K / s over a period of 105 seconds from room temperature to an annealing temperature of 1090 ° C. Thereafter, the samples were held at the annealing temperature for a period of 15 seconds and then cooled at a cooling rate of 20 K / sec to an intermediate temperature of 700 ° C. At this intermediate temperature, the samples were held for over 60 seconds. Subsequently followed a two-stage cooling, in which the samples have been slowly cooled at 5 ° C / s to a second intermediate temperature of 580 ° C and after reaching the second intermediate temperature accelerated at a cooling rate of 30 ° C / s to room temperature.
In Tabelle 2 sind die mechanischen und magnetischen Eigenschaften obere Streckgrenze ReH, untere Streckgrenze ReL, Zugfestigkeit Rm, das Verhältnis Re/Rm der mittleren Streckgrenze Re zur Zugfestigkeit Rm, die Gleichmaßdehnung Ag, der jeweils bei einer Frequenz von 50 Hz gemessene Ummagnetisierungsverlust P1,0 (Ummagnetisierungsverlust bei einer Polarisation von 1,0 T) und P1,5 (Ummagnetisierungsverlust bei einer Polarisation von 1,5 T) sowie die ebenfalls jeweils bei 50 Hz gemessene jeweilige Polarisation J2500 (Polarisation bei einer magnetischen Feldstärke von 2500 A/m) und J5000 (Polarisation bei einer magnetischen Feldstärke von 5000 A/m), sowie die bei einer Frequenz von 400 Hz bzw. 1 kHz jeweils ermittelten Ummagnetisierungsverluste P1,0 (Ummagnetisierungsverlust bei einer Polarisation von 1,0 T) für 0,5 mm dicke Proben, die aus den erfindungsgemäßen Stählen Zr1 oder Zr2 sowie aus den Referenzstählen Ref1 oder Ref2 bestehen und einer Warmbandglühung unterzogen worden sind, angegeben.In Table 2, the mechanical and magnetic properties are upper yield strength R eH , lower yield strength R eL , tensile strength R m , the ratio Re / Rm of the mean yield strength Re to the tensile strength Rm, the uniform elongation A g , each measured at a frequency of 50 Hz Correction loss P 1.0 (loss of magnetization loss at a polarization of 1.0 T) and P 1.5 (loss of magnetization loss at a polarization of 1.5 T) and also each measured at 50 Hz each polarization J 2500 (polarization at a magnetic field strength of 2500 A / m) and J5000 (polarization at a magnetic field strength of 5000 A / m), as well as the respectively determined at a frequency of 400 Hz and 1 kHz Ummagnetisierungsverluste P 1.0 (loss of magnetization at a polarization of 1.0 T. ) for 0.5 mm thick samples, which consist of the steels according to the invention Zr1 or Zr2 and of the reference steels Ref1 or Ref2 and a hot strip annealing unterzo been given.
In Tabelle 3 finden sich dieselben Angaben für 0,5 mm dicke Proben, die aus den erfindungsgemäßen Stählen Zr1 oder Zr2 sowie aus den Referenzstählen Ref1 oder Ref2 bestehen und keiner Warmbandglühung unterzogen worden sind.In Table 3, the same information is given for 0.5 mm thick samples, which consist of the steels Zr1 or Zr2 according to the invention and of the reference steels Ref1 or Ref2 and have not been subjected to hot strip annealing.
In Tabelle 4 sind die entsprechenden Werte für 0,3 mm dicke Proben angegeben, die aus dem erfindungsgemäßen Stahl Zr2 oder dem Referenzstahl Ref2 bestehen und einer Warmbandglühung unterzogen worden sind, wogegen in Tabelle 5 die entsprechenden Werte für 0,3 mm dicke Proben angegeben sind, die aus dem erfindungsgemäßen Stahl Zr2 oder dem Referenzstahl Ref2 bestehen und keine Warmbandglühung durchlaufen haben.Table 4 gives the corresponding values for 0.3 mm thick samples consisting of the Zr2 steel according to the invention or the reference steel Ref2 and subjected to a hot strip annealing, whereas in Table 5 the corresponding values for 0.3 mm thick specimens are given consisting of the steel according to the invention Zr2 or the reference steel Ref2 and have not undergone hot strip annealing.
Es zeigt sich, dass die untere Streckgrenze ReL bei den erfindungsgemäß zusammengesetzten und verarbeiteten Proben im Vergleich zu den aus den Referenzstählen Ref erzeugten Proben um jeweils 20 - 80 MPa höher ist. Zwischen den mit und ohne Warmbandglühung erzeugten Proben besteht dagegen kein signifikanter Unterschied.It can be seen that the lower yield strength R eL in the samples assembled and processed according to the invention is 20-80 MPa higher in comparison with the samples produced from the reference steels Ref. By contrast, there is no significant difference between the samples produced with and without hot-band annealing.
Bei einer Frequenz von 50 Hz weisen die aus den erfindungsgemäßen Stählen erzeugten Proben etwas höhere Ummagnetisierungsverluste auf als die aus den Referenzstählen erzeugten Proben. Dagegen weichen bei den höheren Frequenzen von 400 Hz und 1 kHz, die für die Anwendungen, für die die erfindungsgemäßen Stähle bestimmt sind, von besonderer Bedeutung sind, die Ummagnetisierungsverluste der erfindungsgemäßen Proben und der Referenzproben kaum voneinander ab.At a frequency of 50 Hz, the samples produced from the steels according to the invention have somewhat higher core losses than the samples produced from the reference steels. On the other hand, at the higher frequencies of 400 Hz and 1 kHz, which are of particular importance for the applications for which the steels of the invention are intended, the remagnetization losses of the samples according to the invention and of the reference samples hardly differ.
Mit der Erfindung lassen sich somit für Anwendungen in elektrischen Maschinen bestimmte Elektrobleche und -bänder zur Verfügung stellen, die bei deutlich erhöhten Festigkeiten optimale magnetische Eigenschaften aufweisen, ohne dass dazu teure oder schwer zu beschaffende Legierungselemente vorgesehen oder komplizierte Fertigungsabläufe durchlaufen werden müssen.
Angaben in Gew.-%
Data in% by weight
Claims (10)
- A method of producing a non-grain oriented electrical strip or sheet having ternary Fe-Zr-Si precipitates in its microstructure, wherein the method comprises the following working steps:a) Providing a hot-rolled strip consisting of a steel which contains, in addition to iron and unavoidable impurities (in % by weight)Si: 2.0 - 4.5%,Zr: 0.03 - 0.3%,Al: up to 2.0%,Mn: up to 1.0%,C: up to 0.01%,N: up to 0.01%,S: up to 0.01%,P: up to 0.015%;b) Cold rolling of the hot strip into a cold strip; andc) final annealing of the cold strip, whereby- the final annealing of the cold strip is carried out in two stages;- the cold strip is maintained at an annealing temperature of 900 - 1100°C for 1 - 300 s in the first stage of final annealing and at a temperature of 600 - 800°C for 50 - 120 s in the second stage of final annealing;- and the cold strip is cooled to a temperature below 100°C after the second stage of final annealing.
- Non-grain-oriented electrical strip or sheet for electrical engineering applications, wherein ternary Fe-Si-Zr precipitates are present in the microstructure of the electrical steel strip or sheet in the cold-rolled and final annealed condition, characterised in that it is manufactured by applying the method according to Claim 1.
- Non-grain-oriented electrical strip or sheet according to Claim 2, characterised in that its Si- content is at least 2.5% by weight.
- Non-grain-oriented electrical strip or sheet according to any one of Claims 2 or 3, characterised in that its Si- content is at most 3.5% by weight.
- Non-grain-oriented electrical strip or sheet according to any one of Claims 2 to 4, characterised in that its Zr- content is at least 0.08% by weight.
- Non-grain-oriented electrical strip or sheet according to any one of Claims 2 to 5, characterised in that its Zr- content is at most 0.25% by weight.
- Non-grain-oriented electrical strip or sheet according to any one of Claims 2 to 6, characterised in that its C- content is at most 0.006% by weight.
- Non-grain-oriented electrical strip or sheet according to any one of Claims 2 to 7, characterised in that its N- content is at most 0.006% by weight.
- Non-grain-oriented electrical strip or sheet according to any one of Claims 2 to 8, characterised in that its S- content is at most 0.006% by weight.
- Non-grain-oriented electrical strip or sheet according to any one of Claims 2 to 9, characterised in that its remagnetisation loss P1.0/400 is at most 65 W/kg at a polarisation of 1.0 Tesla and a frequency of 400 Hz at a thickness of the electrical strip or sheet of 0.5 mm and at most 45 W/kg at a thickness of 0.3 mm.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13180889.1A EP2840157B1 (en) | 2013-08-19 | 2013-08-19 | Method for producing a non-grain oriented electrical steel strip or sheet and a non-grain oriented electrical steel strip or sheet produced according to this method |
JP2016535380A JP6480446B2 (en) | 2013-08-19 | 2014-07-22 | Non-oriented electrical steel slab or electrical steel sheet, parts manufactured therefrom, and method for producing non-directional electrical steel slab or electrical steel sheet |
CN201480046092.5A CN105473751B (en) | 2013-08-19 | 2014-07-22 | The method of the electrical steel strip or electric steel plate of non grain orientation, the part being made from it and electrical steel strip or electric steel plate for manufacturing non grain orientation |
KR1020167007264A KR102298564B1 (en) | 2013-08-19 | 2014-07-22 | Non-grain-oriented electrical steel strip or electrical steel sheet, component produced therefrom, and method for producing a non-grain-oriented electrical steel strip or electrical steel sheet |
US14/912,381 US20160203897A1 (en) | 2013-08-19 | 2014-07-22 | Non-grain-oriented electrical steel strip or electrical steel sheet, component produced therefrom, and methods for producing same |
BR112016003059-1A BR112016003059B1 (en) | 2013-08-19 | 2014-07-22 | MAGNETIC STRIP OR MAGNETIC SHEET OF UNINIENTED GRAINS, COMPONENT PRODUCED FROM THE SAME AND METHOD FOR THE PRODUCTION OF A MAGNETIC STRIP OR MAGNETIC PLATE OF UNINIENTED GRAINS |
PCT/EP2014/065729 WO2015024723A1 (en) | 2013-08-19 | 2014-07-22 | Non-grain-oriented electrical steel strip or electrical steel sheet, component produced therefrom, and method for producing a non-grain-oriented electrical steel strip or electrical steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13180889.1A EP2840157B1 (en) | 2013-08-19 | 2013-08-19 | Method for producing a non-grain oriented electrical steel strip or sheet and a non-grain oriented electrical steel strip or sheet produced according to this method |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2840157A1 EP2840157A1 (en) | 2015-02-25 |
EP2840157B1 true EP2840157B1 (en) | 2019-04-03 |
Family
ID=48998522
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13180889.1A Active EP2840157B1 (en) | 2013-08-19 | 2013-08-19 | Method for producing a non-grain oriented electrical steel strip or sheet and a non-grain oriented electrical steel strip or sheet produced according to this method |
Country Status (7)
Country | Link |
---|---|
US (1) | US20160203897A1 (en) |
EP (1) | EP2840157B1 (en) |
JP (1) | JP6480446B2 (en) |
KR (1) | KR102298564B1 (en) |
CN (1) | CN105473751B (en) |
BR (1) | BR112016003059B1 (en) |
WO (1) | WO2015024723A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017208146B4 (en) * | 2017-05-15 | 2019-06-19 | Thyssenkrupp Ag | NO electrical steel for electric motors |
DE102018201618A1 (en) | 2018-02-02 | 2019-08-08 | Thyssenkrupp Ag | Afterglow, but not nachglühpflichtiges electrical tape |
DE102018201622A1 (en) | 2018-02-02 | 2019-08-08 | Thyssenkrupp Ag | Afterglow, but not nachglühpflichtiges electrical tape |
WO2020094230A1 (en) | 2018-11-08 | 2020-05-14 | Thyssenkrupp Steel Europe Ag | Electric steel strip or sheet for higher frequency electric motor applications, with improved polarisation and low magnetic losses |
CN109453833B (en) * | 2018-12-10 | 2023-12-22 | 李赫川 | Device for life support system in biosafety |
DE102019113291A1 (en) * | 2019-05-20 | 2020-11-26 | Thyssenkrupp Steel Europe Ag | Sheet metal for the production of an electromagnetic component, in particular a stator assembly or a rotor assembly, and a method for manufacturing an electromagnetic component |
JP7364143B2 (en) | 2021-04-01 | 2023-10-18 | 大成建設株式会社 | Chat beetle control method, chat beetle control air conditioning system, chat beetle free facility |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2446509B1 (en) * | 1974-09-28 | 1975-08-07 | Hoesch Werke Ag | Use of steel that has been vacuum-treated in the liquid state as electrical steel |
GB2057500B (en) * | 1979-09-07 | 1983-05-18 | British Steel Corp | Electro magnetic steels |
JPS56158839A (en) * | 1980-05-14 | 1981-12-07 | Matsushita Electric Ind Co Ltd | Manufacture of very rapidly cooled steel strip |
JPS5983723A (en) * | 1982-11-01 | 1984-05-15 | Kobe Steel Ltd | Preparation of non-directional electric iron plate having high magnetic flux density |
JPS644454A (en) * | 1987-06-25 | 1989-01-09 | Sumitomo Metal Ind | Isotropic electromagnetic steel plate having good magnetic characteristics |
JPH0222442A (en) | 1988-07-12 | 1990-01-25 | Nippon Steel Corp | High tensile electrical steel sheet and its manufacture |
JPH1112701A (en) * | 1997-06-27 | 1999-01-19 | Nkk Corp | Nonoriented silicon steel sheet with low iron loss |
JP4833523B2 (en) | 2004-02-17 | 2011-12-07 | 新日本製鐵株式会社 | Electrical steel sheet and manufacturing method thereof |
JP4389691B2 (en) * | 2004-06-22 | 2009-12-24 | 住友金属工業株式会社 | Non-oriented electrical steel sheet for rotor and manufacturing method thereof |
JP5126787B2 (en) * | 2008-07-11 | 2013-01-23 | 新日鐵住金株式会社 | Method for producing non-oriented electrical steel sheet for rotor |
JP2010121150A (en) * | 2008-11-17 | 2010-06-03 | Sumitomo Metal Ind Ltd | Non-oriented electrical steel sheet for rotating machine, the rotating machine, and method of manufacturing the same |
-
2013
- 2013-08-19 EP EP13180889.1A patent/EP2840157B1/en active Active
-
2014
- 2014-07-22 CN CN201480046092.5A patent/CN105473751B/en active Active
- 2014-07-22 KR KR1020167007264A patent/KR102298564B1/en active IP Right Grant
- 2014-07-22 WO PCT/EP2014/065729 patent/WO2015024723A1/en active Application Filing
- 2014-07-22 US US14/912,381 patent/US20160203897A1/en not_active Abandoned
- 2014-07-22 BR BR112016003059-1A patent/BR112016003059B1/en not_active IP Right Cessation
- 2014-07-22 JP JP2016535380A patent/JP6480446B2/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
WO2015024723A1 (en) | 2015-02-26 |
CN105473751B (en) | 2018-01-12 |
US20160203897A1 (en) | 2016-07-14 |
JP2016535168A (en) | 2016-11-10 |
CN105473751A (en) | 2016-04-06 |
KR20160044569A (en) | 2016-04-25 |
EP2840157A1 (en) | 2015-02-25 |
KR102298564B1 (en) | 2021-09-07 |
BR112016003059B1 (en) | 2020-03-10 |
JP6480446B2 (en) | 2019-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2840157B1 (en) | Method for producing a non-grain oriented electrical steel strip or sheet and a non-grain oriented electrical steel strip or sheet produced according to this method | |
EP2612942B1 (en) | Non-grain oriented electrical steel or sheet metal, component produced from same and method for producing non-grain oriented electrical steel or sheet metal | |
EP2690183B1 (en) | Hot-rolled steel flat product and method for its production | |
DE69518529T2 (en) | METHOD FOR THE PRODUCTION OF ELECTRICAL NON-ORIENTED STEEL PLATES WITH HIGH MAGNETIC FLOW DENSITY AND LOW IRON LOSS | |
EP1918403B1 (en) | Process for manufacturing steel flat products from a steel forming martensitic structure | |
DE102017208146B4 (en) | NO electrical steel for electric motors | |
WO2008052919A1 (en) | Method for manufacturing flat steel products from a multiphase steel microalloyed with boron | |
DE102011119395A1 (en) | Method for producing a grain-oriented electrical steel flat product intended for electrotechnical applications | |
DE102019107422A1 (en) | Strip made from a cobalt-iron alloy, laminated core and method for producing a strip made from a cobalt-iron alloy | |
DE68916980T2 (en) | Process for producing grain-oriented electrical steel sheets with high flux density. | |
DE102011107304A1 (en) | Method for producing a grain-oriented electrical steel flat product intended for electrotechnical applications | |
EP3541969B1 (en) | Method for producing a strip of a co-fe alloy, strip of a co-fe alloy and sheet metal stack | |
DE69428537T2 (en) | METHOD FOR PRODUCING STEEL SHEET WITH DIRECTIONAL MAGNETIZATION USING LOW SLAM HEATING TEMPERATURES. | |
DE69030781T3 (en) | Process for the production of grain-oriented electrical steel sheets by means of rapid quenching and solidification | |
DE19930519C1 (en) | Non-textured electrical steel sheet, useful for cores in rotary electrical machines such as motors and generators, is produced by multi-pass hot rolling mainly in the two-phase austenite-ferrite region | |
DE10221793C1 (en) | Non-grain oriented electrical steel or sheet and process for its manufacture | |
DE69712757T2 (en) | ELECTROMAGNETIC BIDIRECTIONAL STEEL PLATE AND METHOD FOR THE PRODUCTION THEREOF | |
DE69028241T3 (en) | Process for the production of thin grain-oriented electrical sheets with low iron losses and high flux density | |
DE69222964T2 (en) | Grain-oriented silicon steel sheet and its manufacturing process | |
WO2020078529A1 (en) | Method for producing an no electric strip of intermediate thickness | |
DE19930518C1 (en) | Production of a non grain-oriented electric sheet used as core material in motors and generators comprises producing a hot strip from a steel pre-material, hot rolling and spooling | |
DE2537092C3 (en) | Material for the rotor of a high-speed hysteresis motor and process for its manufacture | |
DE10139699C2 (en) | Non-grain oriented electrical sheet or strip and process for its manufacture | |
WO2003014404A1 (en) | Non-grain oriented electric sheet steel or strip and method for the production thereof | |
DE10159501A1 (en) | Non-grain oriented electric sheet steel or strip obtained from a steel melt has an austenitic structure, then a mixed structure consisting of austenite and ferrite, and finally a ferritic structure over the course of cooling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130819 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
R17P | Request for examination filed (corrected) |
Effective date: 20150825 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180208 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C21D 8/12 20060101ALI20180913BHEP Ipc: C22C 38/02 20060101ALI20180913BHEP Ipc: C22C 38/06 20060101ALI20180913BHEP Ipc: C21D 9/46 20060101ALI20180913BHEP Ipc: C22C 38/04 20060101ALI20180913BHEP Ipc: C21D 6/00 20060101ALI20180913BHEP Ipc: C21D 9/52 20060101ALI20180913BHEP Ipc: C22C 38/00 20060101AFI20180913BHEP Ipc: H01F 1/147 20060101ALI20180913BHEP Ipc: H01F 1/16 20060101ALI20180913BHEP Ipc: C22C 38/14 20060101ALI20180913BHEP Ipc: C21D 8/02 20060101ALI20180913BHEP |
|
INTG | Intention to grant announced |
Effective date: 20181009 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1115816 Country of ref document: AT Kind code of ref document: T Effective date: 20190415 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013012528 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190403 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190803 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190704 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190803 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502013012528 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
26N | No opposition filed |
Effective date: 20200106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190819 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190819 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20230822 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20230821 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240821 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240829 Year of fee payment: 12 |