EP2840157B1 - Nicht kornorientiertes Elektroband oder -blech und Verfahren zur Erzeugung eines nicht kornorientierten Elektrobands oder -blechs - Google Patents

Nicht kornorientiertes Elektroband oder -blech und Verfahren zur Erzeugung eines nicht kornorientierten Elektrobands oder -blechs Download PDF

Info

Publication number
EP2840157B1
EP2840157B1 EP13180889.1A EP13180889A EP2840157B1 EP 2840157 B1 EP2840157 B1 EP 2840157B1 EP 13180889 A EP13180889 A EP 13180889A EP 2840157 B1 EP2840157 B1 EP 2840157B1
Authority
EP
European Patent Office
Prior art keywords
strip
oriented electrical
sheet
grain
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13180889.1A
Other languages
English (en)
French (fr)
Other versions
EP2840157A1 (de
Inventor
Dorothée Dr. Dorner
Olaf Dr.-Ing. Fischer
Karl Dr. Telger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP13180889.1A priority Critical patent/EP2840157B1/de
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Priority to US14/912,381 priority patent/US20160203897A1/en
Priority to JP2016535380A priority patent/JP6480446B2/ja
Priority to CN201480046092.5A priority patent/CN105473751B/zh
Priority to KR1020167007264A priority patent/KR102298564B1/ko
Priority to BR112016003059-1A priority patent/BR112016003059B1/pt
Priority to PCT/EP2014/065729 priority patent/WO2015024723A1/de
Publication of EP2840157A1 publication Critical patent/EP2840157A1/de
Application granted granted Critical
Publication of EP2840157B1 publication Critical patent/EP2840157B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1227Warm rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Definitions

  • the invention relates to a method for producing an electrical strip or sheet as well as a non-grain-oriented electrical strip or sheet produced by use of this method for electrical applications.
  • a NO electric steel strip or sheet having a yield strength of at least 60 kg-f / mm 2 (about 589 MPa) and made of a steel containing, in addition to iron and unavoidable impurities (in% by weight) to to 0.04% C, 2.0 - less than 4.0% Si, up to 2.0% Al, up to 0.2% P and at least one element from the group "Mn, Ni", wherein the Sum of the contents of Mn and Ni is at least 0.3% and at most 10%.
  • the thus composed steel is according to the US 5,084,112 shed to slabs, which subsequently closed hot rolled into a hot strip, which is optionally annealed, then pickled and then cold rolled to a cold strip having a given final thickness. Finally, the cold strip obtained is subjected to a recrystallizing annealing, in which it is annealed at a temperature of at least 650 ° C, but less than 900 ° C annealing temperature.
  • the electrical steel produced by this process has a predominantly ferritic microstructure containing up to 50% martensite by volume and, in addition to iron and unavoidable impurity (in% by weight), contains up to 0.0400% C, 0.2-6.5 % Si, 0.05-10.0% Mn, up to 0.30% P, up to 0.020% S, up to 15% Al, up to 0.0400% N, and further as Ausscheidungstruckner one or two or more elements from the group "Ni, Mo, Ti, Nb, Co and W" in amounts of up to 10.0 wt .-%.
  • Zr, Cr, B, Cu, Zn, Mg and Sn may also be present as precipitating agents in the steel in amounts of up to 10% by weight each.
  • the precipitates formed in the steel from said elements should be in the form of an intermetallic compound having a number density of more than 20 / ⁇ m 3 and a diameter of at most 0.050 ⁇ m.
  • the composition of the steel is in each case chosen so that the precipitates of Fe, Zr and Si are regularly present in binary form.
  • Non-grain oriented electrical steel sheet is known to have low iron loss.
  • the Sb content should preferably be 0.001-0.05%, especially 0.001-0.005%, whereas in the case that no Sb is present, the Sn content is 0.002-0.1 %, in particular 0.002 to 0.01% should be.
  • the JP 2010-121150 A finally discloses a non-grain oriented electrical steel sheet which has excellent machinability in combination with to have excellent magnetic properties.
  • This non-oriented electrical steel sheet intended especially for a rotary machine has a sheet thickness of 0.15-0.50 mm and a steel composition containing (in mass) up to 0.02% C, 1.0-4.0% Si, O.
  • the object of the invention was to provide a method by which NO electrical steel strip or sheet for electrical applications can be produced which has increased strengths, in particular a higher yield strength, and at the same time good magnetic properties Properties, in particular a low loss of magnetization at high frequencies.
  • this object has been achieved according to the invention in that the production steps specified in claim 1 are run through in the production of a NO electrical strip or sheet.
  • the solution according to the invention of the above-mentioned object with respect to a non-grain-oriented electrical steel sheet or strip is that this is produced by using the method according to the invention.
  • An inventively produced non-oriented electrical steel strip or sheet for electrical applications is thus made of a steel consisting of (in wt .-%) 2.0 - 4.5% Si, 0.03 - 0.3% Zr, and optionally in addition up to 2.0% Al, in particular up to 1.5% Al, up to 1.0% Mn, up to 0.01% C, in particular up to 0.006%, particularly advantageously up to 0.005% C, to to 0.01% N, in particular up to 0.006% N, up to 0.01% S, in particular up to 0.006% S, up to 0.015% P, in particular up to 0.006% P and the remainder being iron and unavoidable impurities ,
  • ternary Fe-Si-Zr precipitates are present in the microstructure of the electrical strip or sheet. These increase the strength of the steel according to the invention by precipitation or particle hardening.
  • the respective Fe-Si-Zr precipitates are formed as finely as possible in terms of their spatial extent.
  • their average diameter is preferably well below 100 nm.
  • Such small Fe-Si-Zr precipitations increase the strength of NO electrical steel strip or sheet of the type according to the invention, without losing the magnetic properties in applications for engine construction and the like important high frequency bands to deteriorate significantly.
  • the Fe-Si-Zr precipitates used according to the invention for increasing the strength hinder the movement of the Bloch walls only slightly due to their small size and thus cause at most a slight increase in the Ummagnetmaschineswe P 1.0 and P 1.5 compared to conventional, less solid electrical tapes and sheets.
  • the Bloch wall is the transition region between magnetic domains with different magnetization.
  • a non-grain oriented electrical steel sheet according to the invention has Si and Zr in levels adjusted to the desired formation of the Fe-Si-Zr precipitates comes.
  • Si at least 2.0 wt .-% Si are required, the Fe-Si-Zr precipitates then adjust particularly reliable in the desired frequency and distribution, if the Si content is at least 1.6 wt .-%, in particular at least 2.4 wt .-%, is.
  • the Si content is limited to at most 4.5 wt .-%, optimally the Si content, the upper limit of 3.5 wt .-% , in particular 3.4 wt .-%, does not exceed.
  • Levels of at least 0.03 wt% are required to form the desired ternary Zr precipitates. For this effect to occur particularly reliably, at least 0.07% by weight Zr, in particular at least 0.08% by weight Zr, may be added to the steel according to the invention. At levels greater than 0.3 wt% Zr, no significant increases in the property improvements caused by the presence of sufficient levels of Zr can be observed. An optimum effect of Zr in an electrical steel strip or sheet according to the invention can be achieved if the Zr content is limited to at most 0.25% by weight.
  • the steel from which the electrical steel strip or sheet is made according to the invention may contain contents of further alloying elements which are added in a manner known per se for adjusting its properties.
  • elements suitable for this purpose are, in particular, Al and Mn in the contents indicated here.
  • the invention does not have to rely on carbides, nitrides or carbonitrides to increase the strength, the C and N contents of an electric sheet or strip according to the invention can be minimized. In this way, the risk of magnetic aging is prevented, which can occur as a result of high C or N contents.
  • the electrical tapes or sheets assembled according to the invention generally increase the yield strength by at least 20 MPa compared with conventionally assembled electrical tapes or sheets in which no measures to increase the strength have been taken. The strength increases with the fineness of the precipitates. Strength increases of 100 - 200 MPa are possible with further refined precipitations.
  • the inventive method is designed so that it enables the reliable production of a non-grain-oriented electrical tape or sheet according to the invention.
  • a hot strip composed in the manner explained above for the non-grain-oriented electrical sheet or strip according to the invention is provided, which is subsequently cold-rolled and subjected to a final annealing as a cold-rolled strip.
  • the final annealed cold-rolled strip obtained after the final annealing then represents the electrical strip or sheet assembled and produced according to the invention, the strength of which is significantly improved by the presence of Fe-Si-Zr precipitates in its microstructure compared to a conventional NO electrical sheet or strip Therefore, it is particularly suitable for the production of electrical components and assemblies that are exposed to high dynamic loads in practical use.
  • the manufacture of the hot strip provided according to the invention can be carried out conventionally as far as possible.
  • a molten steel having a composition according to the invention corresponding composition Si: 2.0 to 4.5 wt .-%, Zr: 0.03 to 0.3 wt .-%, Al: up to 2.0 wt. %, Mn: up to 1.0% by weight, C: up to 0.01% by weight, N: up to 0.01% by weight, S: up to 0.01% by weight , P: up to 0.015 wt .-%, balance iron and unavoidable impurities
  • a starting material which may be a slab or thin slab in conventional manufacturing. Since the precipitation formation processes according to the invention take place only after solidification, it is in principle also possible to cast the molten steel into a cast strip, which is then hot rolled into a hot strip.
  • the starting material thus produced can then be brought to a pre-material temperature of 1020-1300 ° C.
  • the starting material is, if necessary, reheated or kept at the respective target temperature by utilizing the casting heat.
  • the thus heated starting material can then be hot rolled to a hot strip having a thickness which is typically 1.5-4 mm, in particular 2-3 mm.
  • the hot rolling starts in a conventional manner at a hot rolling start temperature in the finishing scale of 1000 - 1150 ° C and ends with a hot rolling end temperature of 700 - 920 ° C, especially 780 - 850 ° C.
  • the resulting hot strip can then be cooled to a coiling temperature and coiled into a coil.
  • the reel temperature is ideally chosen so that a precipitation of strength-increasing particles is still avoided at this time to avoid problems during subsequent cold rolling.
  • the reel temperature for this purpose, for example, at most 700 ° C.
  • the hot strip can be subjected to a hot strip annealing.
  • the supplied hot strip is cold rolled to a cold strip having a thickness typically in the range of 0.15-1.1 mm, especially 0.2-0.65 mm.
  • the final annealing contributes significantly to the formation of the Fe-Si-Zr particles used in the present invention for increasing the strength.
  • By varying the annealing conditions of the final annealing it is possible to optimize the material properties optionally in favor of a higher strength or a lower loss of core loss.
  • Non-grain-oriented electrical sheets or tapes according to the invention having yield strengths in the range of 350-500 MPa and remagnetization losses P 1.0 / 400 which are less than 35 W / kg at a strip thickness of 0.3 mm and a strip thickness of 0, 5 mm less than 45 W / kg, can be particularly reliable achieved by the inventively assembled cold strip is subjected in the course of the final annealing of a completed in the course of two-stage annealing.
  • the cold strip is annealed at an annealing temperature of 900 - 1150 ° C for 1 - 300 s. Subsequently, the cold strip is held in a second annealing stage at a temperature of 600 - 800 ° C for 50 - 120 s. Then the cold strip is cooled to a temperature below 100 ° C.
  • the possibly existing Fe-Si-Zr precipitates are dissolved in the first annealing stage and complete recrystallization of the microstructure is achieved. In the further annealing stages, the targeted precipitation of the Fe-Si-Zr particles then takes place.
  • the obtained, non-grain oriented electrical steel strip or sheet material may be finally subjected to a conventional flash annealing.
  • this flash annealing can still be performed in the coil of the manufacturer of NO-electric strip or sheet according to the invention, or it can first be divided from the produced in the inventive manner electrical strip or sheet, the blanks processed at the final processor, then the Be subjected to flash annealing.
  • Fig. 1 shows a diagram in which the target temperature profile during the final annealing of the electrical tapes and sheets produced in the manner explained below is shown.
  • the blocks were brought to 1250 ° C temperature and hot rolled with a hot rolling start temperature of 1020 ° C and a hot rolling end temperature of 840 ° C to a 2 mm thick hot strip.
  • the respective hot strip has been cooled to a reel temperature T HasPel of 620 ° C. Subsequently, a typical cooling in the coil has been simulated.
  • Some samples of the hot-rolled strip Zr1, Zr2 according to the invention and samples of the reference steels Ref1, Ref2 were then subjected to a hot strip annealing at a temperature of 740 ° C. for a period of 2 hours and then each to cold strips with a final thickness of 0, 5 mm or 0.3 mm cold rolled.
  • a final annealing was carried out in which the respective cold strip sample was first heated at a heating rate of 10 K / s over a period of 105 seconds from room temperature to an annealing temperature of 1090 ° C. Thereafter, the samples were held at the annealing temperature for a period of 15 seconds and then cooled at a cooling rate of 20 K / sec to an intermediate temperature of 700 ° C. At this intermediate temperature, the samples were held for over 60 seconds.
  • the mechanical and magnetic properties are upper yield strength R eH , lower yield strength R eL , tensile strength R m , the ratio Re / Rm of the mean yield strength Re to the tensile strength Rm, the uniform elongation A g , each measured at a frequency of 50 Hz
  • Correction loss P 1.0 loss of magnetization loss at a polarization of 1.0 T
  • P 1.5 loss of magnetization loss at a polarization of 1.5 T
  • each measured at 50 Hz each polarization J 2500 polarization at a magnetic field strength of 2500 A / m
  • J5000 polarization at a magnetic field strength of 5000 A / m
  • Table 3 the same information is given for 0.5 mm thick samples, which consist of the steels Zr1 or Zr2 according to the invention and of the reference steels Ref1 or Ref2 and have not been subjected to hot strip annealing.
  • Table 4 gives the corresponding values for 0.3 mm thick samples consisting of the Zr2 steel according to the invention or the reference steel Ref2 and subjected to a hot strip annealing
  • Table 5 the corresponding values for 0.3 mm thick specimens are given consisting of the steel according to the invention Zr2 or the reference steel Ref2 and have not undergone hot strip annealing.
  • the samples produced from the steels according to the invention have somewhat higher core losses than the samples produced from the reference steels.
  • the remagnetization losses of the samples according to the invention and of the reference samples hardly differ.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Erzeugung eines Elektrobands oder -blechs sowie ein durch Anwendung dieses Verfahrens hergestelltes nicht kornorientiertes Elektroband oder -blech für elektrotechnische Anwendungen.
  • Nicht kornorientierte Elektrobänder oder -bleche, in der Fachsprache auch als "NO-Elektroband oder -blech" oder im englischen Sprachgebrauch auch als "NGO-Electrical Steel" ("NGO" = Non Grain Oriented) bezeichnet, werden zur Verstärkung des magnetischen Flusses in Eisenkernen von rotierenden elektrischen Maschinen verwendet. Typische Verwendungen solcher Bleche sind elektrische Motoren und Generatoren.
  • Um die Effizienz solcher Maschinen zu steigern, werden möglichst hohe Drehzahlen oder große Durchmesser der im Betrieb jeweils rotierenden Bauteile angestrebt. In Folge dieses Trends sind die elektrisch relevanten, aus Elektrobändern oder -blechen der hier in Rede stehenden Art gefertigten Bauteile einer hohen mechanischen Belastung ausgesetzt, die von den heute zur Verfügung stehenden NO-Elektrobandsorten oft nicht erfüllt werden können.
  • Aus der US 5,084,112 ist ein NO-Elektroband oder -blech bekannt, das eine Streckgrenze von mindestens 60 kg-f/mm2 (ca. 589 MPa) besitzt und aus einem Stahl hergestellt ist, der neben Eisen und unvermeidbaren Verunreinigungen (in Gew.-%) bis zu 0,04 % C, 2,0 - weniger als 4,0 % Si, bis zu 2,0 % Al, bis zu 0,2 % P und mindestens ein Element aus der Gruppe "Mn, Ni" enthält, wobei die Summe der Gehalte an Mn und Ni mindestens 0,3 % und höchstens 10 % beträgt.
  • Um eine Festigkeitssteigerung durch die Bildung von Karbonitriden zu erreichen, enthält der aus der US 5,084,112 bekannte Stahl mindestens ein Element aus der Gruppe "Ti,V,Nb,Zr", wobei im Fall der Anwesenheit von Ti oder V der Ti-Gehalt %Ti und der V-Gehalt %V in Bezug auf den C-Gehalt %C und den jeweils unvermeidbaren N-Gehalt %N des Stahls die Bedingung [0,4x(%Ti+%V)]/[4x(%C+%N)] < 4,0 erfüllen soll. Auch der Anwesenheit von Phosphor in dem Stahl wird dabei eine festigkeitssteigernde Wirkung zugeschrieben. Jedoch wird vor der Anwesenheit höherer Phosphorgehalte gewarnt, weil sie eine Korngrenzversprödung auslösen können. Um diesem als gravierend angesehenen Problem entgegenzuwirken, wird ein zusätzlicher B-Gehalt von 0,001 - 0,007 % vorgeschlagen.
  • Der derart zusammengesetzte Stahl wird gemäß der US 5,084,112 zu Brammen vergossen, die anschließend zu einem Warmband warmgewalzt werden, welches optional geglüht, dann gebeizt und daraufhin zu einem Kaltband mit einer bestimmten Enddicke kaltgewalzt wird. Abschließend wird das erhaltene Kaltband einer rekristallisierenden Glühung unterzogen, bei der es bei einer mindestens 650 °C, jedoch weniger als 900 °C betragenden Glühtemperatur geglüht wird.
  • Im Fall der gleichzeitigen Anwesenheit von wirksamen Gehalten an Ti und P sowie B, N, C, Mn und Ni im Stahl erreichen die gemäß der US 5,084,112 erzeugten NO-Elektrobänder oder -bleche zwar Streckgrenzen von mindestens 70,4 kg-f/mm2 (688 MPa). Gleichzeitig betragen bei einer Blechdicke von 0,5 mm und bei einer Polarisation von 1,5 Tesla und einer Frequenz von 50 Hz die Ummagnetisierungsverluste P1,5 jedoch mindestens 6,94 W/kg. Derart hohe Ummagnetisierungsverluste sind für moderne elektrotechnische Anwendungen nicht mehr akzeptierbar. Weiterhin sind bei vielen solchen Anwendungen die Ummagnetisierungsverluste bei höheren Frequenzen von großer Bedeutung.
  • Ein anderes Verfahren, das die betriebssichere Herstellung von hochfestem nicht kornorientiertem Elektroblech mit guten elektromagnetischen Eigenschaften ermöglichen soll, ist aus der JP 2005 264315 A bekannt. Das mit diesem Verfahren erzeugte Elektroblech weist ein überwiegend ferritisches Gefüge mit bis zu 50 Vol.-% Martensit auf und enthält neben Eisen und unvermeidbaren Verunreinigung (in Gew.-%) bis zu 0,0400 % C, 0,2 - 6,5 % Si, 0,05 - 10,0 % Mn, bis zu 0,30 % P, bis zu 0,020 % S, bis zu 15 % Al, bis zu 0,0400 % N und des Weiteren als Ausscheidungsbildner ein oder zwei oder mehr Elemente aus der Gruppe "Ni, Mo, Ti, Nb, Co und W" in Gehalten von jeweils bis zu 10,0 Gew.-%. Zusätzlich können ebenfalls als Ausscheidungsbildner in dem Stahl Zr, Cr, B, Cu, Zn, Mg und Sn in Gehalten von jeweils bis zu 10 Gew.-% vorhanden sein. Die in dem Stahl aus den genannten Elementen gebildeten Ausscheidungen sollen in Form einer intermetallischen Verbindung mit einer Anzahldichte von mehr als 20/µm3 und einem Durchmesser von höchstens 0,050 µm vorliegen. Die Zusammensetzung des Stahls ist dabei jeweils so gewählt, dass die Ausscheidungen von Fe, Zr und Si regelmäßig in binärer Form vorliegen.
  • Neben dem voranstehend erläuterten Stand der Technik ist aus der JP H11-12701 A nicht-kornorientiertes Elektrostahlblech bekannt, dass einen geringen Eisenverlust aufweisen soll. Zu diesem Zweck hat das bekannte Stahlblech eine Zusammensetzung, die aus (in Gew.-%) bis zu 0,005 % C, bis zu 4 % Si, bis zu 0,05 % Mn, bis zu 0,2 % P, bis zu 0,005 % N, 0,005 - 0,1 % Zr, bis zu 0,001 % S und als Rest aus Fe besteht, wobei die Gehalte an Sb und Sn die Bedingung erfüllen Sb + Sn/ 2 = 0,001 - 0,05 %, insbesondere Sb + Sn / 2 = 0,001 - 0,005 %. Dabei soll im Fall, dass Sn nicht vorhanden ist, der Sb-Gehalt bevorzugt 0,001 - 0,05 %, insbesondere 0,001-0,005 %, betragen, wogegen im Fall, dass kein Sb vorhanden ist, der Sn-Gehalt 0,002 - 0,1 %, insbesondere 0,002 - 0,01 % betragen soll.
  • Die JP 2010-121150 A offenbart schließlich ein nicht-kornorientiertes Elektrostahlblech, das ausgezeichnete Bearbeitungseigenschaften in Kombination mit ausgezeichneten magnetischen Eigenschaften aufweisen soll. Dieses insbesondere für eine rotierende Maschine bestimmte nicht orientierte Elektrostahlblech hat eine Blechdicke von 0,15 - 0,50 mm und eine Stahlzusammensetzung, die (in Masse) bis zu 0,02 % C, 1,0 - 4,0 % Si, 0,05 - 3,0 % Mn, bis zu 2,5 % Al, bis zu 0,25 % P, bis zu 0,01 % S, bis zu 0,01 % N und ferner mindestens ein Element aus der Gruppe "Nb, Zr, Ti, V", Rest Fe und unvermeidbare Verunreinigungen enthält, wobei für die Gehalte an den dieser Gruppe angehörenden Elementen gilt: 0 < Nb/93 + Zr/91 + Ti/48 + V/51 - (C/12 + N/14) < 5 x 10-3.
  • Vor dem Hintergrund des voranstehend erläuterten Standes der Technik bestand die Aufgabe der Erfindung darin, ein Verfahren zu schaffen, mit dem NO-Elektroband oder -blech für elektrotechnische Anwendungen erzeugt werden kann, das erhöhte Festigkeiten, insbesondere eine höhere Streckgrenze, besitzt und gleichzeitig gute magnetische Eigenschaften, insbesondere einen niedrigen Ummagnetisierungsverlust bei hohen Frequenzen aufweist.
  • Darüber hinaus sollte ein entsprechend beschaffenes NO-Elektroband oder -blech angegeben werden.
  • In Bezug auf das Verfahren ist diese Aufgabe erfindungsgemäß dadurch gelöst worden, dass bei der Erzeugung eines NO-Elektrobands oder -blechs die in Anspruch 1 angegebenen Arbeitsschritte durchlaufen werden.
  • Dementsprechend besteht die erfindungsgemäße Lösung der oben genannten Aufgabe in Bezug auf ein nicht kornorientiertes Elektrostahlblech oder -band darin, dass dieses durch Anwendung des erfindungsgemäßen Verfahrens hergestellt ist.
  • Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben und werden nachfolgend wie der allgemeine Erfindungsgedanke im Einzelnen erläutert.
  • Ein erfindungsgemäß erzeugtes nicht kornorientiertes Elektroband oder -blech für elektrotechnische Anwendungen ist somit aus einem Stahl hergestellt, der aus (in Gew.-%) 2,0 - 4,5 % Si, 0,03 - 0,3 % Zr, sowie optional zusätzlich bis zu 2,0 % Al, insbesondere bis zu 1,5 % Al, bis zu 1,0 % Mn, bis zu 0,01 % C, insbesondere bis zu 0,006 %, besonders vorteilhafter Weise bis zu 0,005 % C, bis zu 0,01 % N, insbesondere bis zu 0,006 % N, bis zu 0,01 % S, insbesondere bis zu 0,006 % S, bis zu 0,015 % P, insbesondere bis zu 0,006 % P und als Rest aus Eisen und unvermeidbaren Verunreinigungen besteht.
  • Entscheidend für die Erfindung ist dabei, dass im Gefüge des Elektrobands oder -blechs ternäre Fe-Si-Zr-Ausscheidungen vorliegen. Diese steigern die Festigkeit des erfindungsgemäßen Stahls durch Ausscheidungs- bzw. Teilchenhärtung.
  • Aus Eisen, Zirkonium und Silizium gebildete ternäre Ausscheidungen treten, wie in Materials Science International Team, MSIT®, und Du, Yong, Xiong, Wei, Zhang, Weiwei, Chen, Hailin, Sun, Weihua: Iron - Silicon - Zirconium. Effenberg, Günter, Ilyenko, Svitlana (ed.). SpringerMaterials - The Landolt-Börnstein Database. Springer-Verlag Berlin Heidelberg, 2009. DOI: 10.1007/978-3-540-70890-2_29 Crystallographic and Thermodynamic Data, dargestellt, in sechs verschiedenen Phasen auf.
  • Für eine weitere Steigerung der Festigkeit ist es vorteilhaft, die betreffenden Fe-Si-Zr-Ausscheidungen bezüglich ihrer räumlichen Ausdehnung möglichst fein auszubilden. So liegt ihr durchschnittlicher Durchmesser erfindungsgemäß bevorzugt deutlich unterhalb von 100 nm. Derart kleine Fe-Si-Zr-Ausscheidungen steigern die Festigkeit von NO-Elektroband oder -blech der erfindungsgemäßen Art deutlich, ohne dabei die magnetischen Eigenschaften bei den für Anwendungen im Motorenbau und desgleichen wichtigen hohen Frequenzbereichen wesentlich zu verschlechtern. So behindern die erfindungsgemäß zur Festigkeitssteigerung genutzten Fe-Si-Zr-Ausscheidungen die Bewegung der Bloch-Wände aufgrund ihrer geringen Größe nur geringfügig und bewirken dementsprechend gegenüber konventionellen, weniger festen Elektrobändern und -blechen allenfalls eine geringe Erhöhung der Ummagnetisierungsverluste P1.0 und P1.5. Bei der Blochwand handelt es sich um den Übergangsbereich zwischen magnetischen Domänen mit unterschiedlicher Magnetisierung.
  • Ein erfindungsgemäßes nicht kornorientiertes Elektroblech weist Si und Zr in Gehalten auf, die so eingestellt sind, dass es zur angestrebten Bildung der Fe-Si-Zr-Ausscheidungen kommt. Hierzu sind einerseits mindestens 2,0 Gew.-% Si erforderlich, wobei sich die Fe-Si-Zr-Ausscheidungen dann besonders betriebssicher in der gewünschten Häufigkeit und Verteilung einstellen, wenn der Si-Gehalt mindestens 1,6 Gew.-%, insbesondere mindestens 2,4 Gew.-%, beträgt. Um negative Einflüsse auf die Eigenschaften des erfindungsgemäßen NO-Elektrobands oder -blechs zu vermeiden, ist der Si-Gehalt auf höchstens 4,5 Gew.-% beschränkt, wobei optimaler Weise der Si-Gehalt die Obergrenze von 3,5 Gew.-%, insbesondere 3,4 Gew.-%, nicht überschreitet.
  • Gehalte von mindestens 0,03 Gew.-% sind erforderlich, damit sich die gewünschten ternären Zr-Ausscheidungen bilden. Damit dieser Effekt besonders sicher eintritt, können mindestens 0,07 Gew.-% Zr, insbesondere mindestens 0,08 Gew.-% Zr, dem erfindungsgemäßen Stahl zugegeben werden. Bei Gehalten von mehr als 0,3 Gew.-% Zr können keine entscheidenden Steigerungen der durch die Anwesenheit von ausreichenden Gehalten an Zr bewirkten Eigenschaftsverbesserungen beobachtet werden. Eine optimale Wirkung von Zr in einem erfindungsgemäßen Elektroband oder -blech lässt sich dabei dann erzielen, wenn der Zr-Gehalt auf höchstens 0,25 Gew.-% beschränkt ist.
  • Der Stahl, aus dem erfindungsgemäß das Elektroband oder -blech besteht, kann Gehalte an weiteren Legierungselementen enthalten, die in an sich bekannter Weise zur Einstellung seiner Eigenschaften zugegeben werden. Zu den hierzu geeigneten Elementen zählen insbesondere Al und Mn in den hier angegebenen Gehalten.
  • Da die Erfindung zur Festigkeitssteigerung nicht auf Carbide, Nitride oder Karbonitride zurückgreifen muss, können die C- und N-Gehalte eines erfindungsgemäßen Elektroblechs oder -bands minimiert werden. Auf diese Weise ist der Gefahr einer magnetischen Alterung vorgebeugt, zu der es in Folge hoher C- oder N-Gehalte kommen kann.
  • In Folge ihrer erfindungsgemäßen Zusammensetzung weisen erfindungsgemäß zusammengesetzte Elektrobänder oder -bleche bei einer Dicke von 0,5 mm, einer Polarisation von 1,0 Tesla und einer Frequenz von 400 Hz Ummagnetisierungsverluste P1,0/400 von höchstens 65 W/kg auf. Bei einer Dicke von 0,35 mm, einer Polarisation von 1,0 Tesla und einer Frequenz von 400 Hz weisen die erfindungsgemäß zusammengesetzten Elektrobänder dagegen Ummagnetisierungsverluste P1,0/400 von höchstens 45 W/kg auf. Gleichzeitig erreichen die erfindungsgemäß zusammengesetzten Elektrobänder oder -bleche gegenüber konventionell zusammengesetzten Elektrobändern oder -blechen, bei denen keine Maßnahmen zur Festigkeitssteigerung ergriffen worden sind, regelmäßig eine Steigerung der Streckgrenze um mindestens 20 MPa. Die Festigkeit nimmt dabei mit der Feinheit der Ausscheidungen zu. Festigkeitsanstiege von 100 - 200 MPa sind bei weiter verfeinerten Ausscheidungen möglich.
  • Das erfindungsgemäße Verfahren ist so angelegt, dass es die betriebssichere Erzeugung eines erfindungsgemäßen nicht kornorientierten Elektrobands oder -blechs ermöglicht.
  • Dazu wird zunächst ein in der voranstehend für das erfindungsgemäße nicht kornorientierte Elektroblech oder -band erläuterten Weise zusammengesetztes Warmband zur Verfügung gestellt, das anschließend kaltgewalzt und als kaltgewalztes Band einer Schlussglühung unterzogen wird. Das nach dem Schlussglühen erhaltene schlussgeglühte Kaltband stellt dann das erfindungsgemäß zusammengesetzte und beschaffene Elektroband oder -blech dar, dessen Festigkeit durch die Anwesenheit von Fe-Si-Zr-Ausscheidungen in seinem Gefüge gegenüber einem konventionellen NO-Elektroblech oder -band deutlich verbessert ist und das daher besonders für die Herstellung von elektrischen Bauteilen und Aggregaten geeignet ist, die im praktischen Einsatz hohen dynamischen Belastungen ausgesetzt sind.
  • Die Herstellung des erfindungsgemäß bereitgestellten Warmbands kann weitestgehend konventionell erfolgen. Dazu kann zunächst eine Stahlschmelze mit einer der erfindungsgemäßen Vorgabe entsprechenden Zusammensetzung (Si: 2,0 - 4,5 Gew.-%, Zr: 0,03 - 0,3 Gew.-%, Al: bis zu 2,0 Gew.-%, Mn: bis zu 1,0 Gew.-%, C: bis zu 0,01 Gew.-%, N: bis zu 0,01 Gew.-%, S: bis zu 0,01 Gew.-%, P: bis zu 0,015 Gew.-%, Rest Eisen und unvermeidbare Verunreinigungen) erschmolzen und zu einem Vormaterial vergossen werden, bei dem es sich bei konventioneller Fertigung um eine Bramme oder Dünnbramme handeln kann. Da die erfindungsgemäßen Vorgänge der Ausscheidungsbildung erst nach der Erstarrung ablaufen, ist es prinzipiell auch möglich, die Stahlschmelze zu einem gegossenen Band zu vergießen, welches anschließend zu einem Warmband warmgewalzt wird.
  • Das so erzeugte Vormaterial kann anschließend auf eine 1020 - 1300 °C betragende Vormaterialtemperatur gebracht werden. Dazu wird das Vormaterial erforderlichenfalls wiedererwärmt oder unter Ausnutzung der Gießhitze auf der jeweiligen Zieltemperatur gehalten.
  • Das so erwärmte Vormaterial kann dann zu einem Warmband mit einer Dicke warmgewalzt werden, die typischerweise 1,5 - 4 mm, insbesondere 2 - 3 mm, beträgt. Das Warmwalzen beginnt dabei in an sich bekannter Weise bei einer Warmwalzanfangstemperatur in der Fertigstaffel von 1000 - 1150 °C und endet mit einer Warmwalzendtemperatur von 700 - 920 °C, insbesondere 780 - 850 °C.
  • Das erhaltene Warmband kann anschließend auf eine Haspeltemperatur abgekühlt und zu einem Coil gehaspelt werden. Die Haspeltemperatur wird dabei idealerweise so gewählt, dass eine Ausscheidung von festigkeitssteigernden Partikeln zu diesem Zeitpunkt noch vermieden wird, um Probleme beim anschließend durchgeführten Kaltwalzen zu vermeiden. In der Praxis beträgt die Haspeltemperatur hierzu beispielsweise höchstens 700 °C.
  • Optional kann das Warmband einer Warmbandglühung unterzogen werden.
  • Das bereitgestellte Warmband wird zu einem Kaltband mit einer Dicke kaltgewalzt, die typischerweise im Bereich von 0,15 - 1,1 mm, insbesondere 0,2 - 0,65 mm, liegt.
  • Die abschließende Schlussglühung trägt entscheidend zur Bildung der erfindungsgemäß zur Festigkeitssteigung genutzten Fe-Si-Zr-Partikel bei. Dabei ist es durch Variation der Glühbedingungen der Schlussglühung möglich, die Werkstoffeigenschaften wahlweise zu Gunsten einer höheren Festigkeit oder eines geringeren Ummagnetisierungsverlustes zu optimieren.
  • Erfindungsgemäße nicht kornorientierte Elektrobleche oder -bänder mit Streckgrenzen, die im Bereich von 350 - 500 MPa liegen, und Ummagnetisierungsverlusten P1,0/400, die bei einer Banddicke von 0,3 mm kleiner 35 W/kg und bei einer Banddicke von 0,5 mm kleiner 45 W/kg betragen, lassen sich besonders betriebssicher dadurch erzielen, dass das erfindungsgemäß zusammengesetzte Kaltband im Zuge der Schlussglühung einer im Durchlauf absolvierten zweistufigen Glühung unterzogen wird.
  • In der ersten Stufe wird das Kaltband bei einer Glühtemperatur von 900 - 1150 °C für 1 - 300 s geglüht. Anschließend wird das Kaltband in einer zweiten Glühstufe bei einer Temperatur von 600 - 800 °C für 50 - 120 s gehalten. Dann wird das Kaltband auf eine Temperatur unter 100 °C abgekühlt. Bei einem in der voranstehend erläuterten Weise durchgeführten Schlussglühen werden in der ersten Glühstufe die möglicherweise bereits vorhandenen Fe-Si-Zr-Ausscheidungen aufgelöst und eine vollständige Rekristallisation des Gefüges erzielt. In den weiteren Glühstufen erfolgt dann die gezielte Ausscheidung der Fe-Si-Zr-Teilchen.
  • Des Weiteren kann das erhaltene, nicht kornorientierte Elektroband oder -blechmaterial abschließend einer konventionellen Entspannungsglühung unterzogen werden. Abhängig von den Verarbeitungsabläufen beim Endverarbeiter kann diese Entspannungsglühung noch beim Hersteller des erfindungsgemäßen NO-Elektrobands oder -blechs im Coil durchgeführt werden, oder es können zunächst die beim Endverarbeiter verarbeiteten Zuschnitte von dem in erfindungsgemäßer Weise erzeugten Elektroband oder -blech abgeteilt werden, die dann der Entspannungsglühung unterzogen werden.
  • Nachfolgend wird die Erfindung von Ausführungsbeispielen näher erläutert.
  • Fig. 1 zeigt ein Diagramm, in dem der Soll-Temperaturverlauf beim Schlussglühen der in der nachfolgend erläuterten Weise erzeugten Elektrobänder und -bleche dargestellt ist.
  • Die nachfolgend erläuterten Versuche wurden jeweils unter Laborbedingungen durchgeführt. Dabei sind zunächst zwei erfindungsgemäß zusammengesetzte Stahlschmelze Zr1 und Zr2 sowie zwei Referenzschmelzen Ref1 und Ref2 erschmolzen und zu Blöcken vergossen worden. Die Zusammensetzungen der Schmelzen Zr1, Zr2, Ref1, Ref2 sind in Tabelle 1 angegeben. Mit Ausnahme des jeweils fehlenden wirksamen Gehalts an Zr stimmen die Legierungselemente und, im Rahmen der üblichen Toleranzen auch deren Gehalte, der Referenzschmelze Ref1 mit der erfindungsgemäßen Schmelze Zr1 und der Referenzschmelze Ref2 mit der erfindungsgemäßen Schmelze Ref2 überein.
  • Die Blöcke wurden auf eine 1250 °C betragende Temperatur gebracht und mit einer Warmwalzanfangstemperatur von 1020 °C und einer Warmwalzendtemperatur von 840 °C zu einem 2 mm dicken Warmband warmgewalzt. Das jeweilige Warmband ist auf eine Haspeltemperatur THasPel von 620 °C abgekühlt worden. Anschließend ist eine typische Abkühlung im Coil simuliert worden.
  • Einige Proben den aus der erfindungsgemäßen Stahllegierungen Zr1,Zr2 bestehenden Warmbänder und Proben aus den Referenzstählen Ref1,Ref2 sind anschließend über eine Dauer von 2 h bei einer Temperatur von 740 °C einer Warmbandglühung unterzogen worden und daraufhin jeweils zu Kaltbändern mit einer Enddicke von 0,5 mm oder 0,3 mm kaltgewalzt worden.
  • Weitere Proben der aus den erfindungsgemäßen Stahllegierungen Zr1,Zr2 und aus den Referenzstählen Ref1,Ref2 bestehenden Warmbänder sind dagegen jeweils ohne Warmbandglühung zu 0,3 mm oder 0,5 mm dickem Kaltband kaltgewalzt worden.
  • Nach dem Kaltwalzen erfolgte jeweils eine Schlussglühung, bei der die jeweilige Kaltbandprobe zunächst mit einer Aufheizrate von 10 K/s über eine Dauer von 105 Sekunden von der Raumtemperatur auf eine Glühtemperatur von 1090 °C erwärmt worden ist. Anschließend sind die Proben über eine Dauer von 15 Sekunden bei der Glühtemperatur gehalten worden und daraufhin mit einer Abkühlrate von 20 K/s auf eine Zwischentemperatur, die 700 °C betrug, abgekühlt worden. Bei dieser Zwischentemperatur sind die Proben über 60 Sekunden gehalten worden. Anschließend erfolgte eine zweistufige Abkühlung, bei der die Proben zunächst langsam mit 5 °C/s auf eine zweite Zwischentemperatur von 580 °C und nach Erreichen der zweiten Zwischentemperatur beschleunigt mit einer Abkühlrate von 30 °C/s auf Raumtemperatur abgekühlt worden sind.
  • In Tabelle 2 sind die mechanischen und magnetischen Eigenschaften obere Streckgrenze ReH, untere Streckgrenze ReL, Zugfestigkeit Rm, das Verhältnis Re/Rm der mittleren Streckgrenze Re zur Zugfestigkeit Rm, die Gleichmaßdehnung Ag, der jeweils bei einer Frequenz von 50 Hz gemessene Ummagnetisierungsverlust P1,0 (Ummagnetisierungsverlust bei einer Polarisation von 1,0 T) und P1,5 (Ummagnetisierungsverlust bei einer Polarisation von 1,5 T) sowie die ebenfalls jeweils bei 50 Hz gemessene jeweilige Polarisation J2500 (Polarisation bei einer magnetischen Feldstärke von 2500 A/m) und J5000 (Polarisation bei einer magnetischen Feldstärke von 5000 A/m), sowie die bei einer Frequenz von 400 Hz bzw. 1 kHz jeweils ermittelten Ummagnetisierungsverluste P1,0 (Ummagnetisierungsverlust bei einer Polarisation von 1,0 T) für 0,5 mm dicke Proben, die aus den erfindungsgemäßen Stählen Zr1 oder Zr2 sowie aus den Referenzstählen Ref1 oder Ref2 bestehen und einer Warmbandglühung unterzogen worden sind, angegeben.
  • In Tabelle 3 finden sich dieselben Angaben für 0,5 mm dicke Proben, die aus den erfindungsgemäßen Stählen Zr1 oder Zr2 sowie aus den Referenzstählen Ref1 oder Ref2 bestehen und keiner Warmbandglühung unterzogen worden sind.
  • In Tabelle 4 sind die entsprechenden Werte für 0,3 mm dicke Proben angegeben, die aus dem erfindungsgemäßen Stahl Zr2 oder dem Referenzstahl Ref2 bestehen und einer Warmbandglühung unterzogen worden sind, wogegen in Tabelle 5 die entsprechenden Werte für 0,3 mm dicke Proben angegeben sind, die aus dem erfindungsgemäßen Stahl Zr2 oder dem Referenzstahl Ref2 bestehen und keine Warmbandglühung durchlaufen haben.
  • Es zeigt sich, dass die untere Streckgrenze ReL bei den erfindungsgemäß zusammengesetzten und verarbeiteten Proben im Vergleich zu den aus den Referenzstählen Ref erzeugten Proben um jeweils 20 - 80 MPa höher ist. Zwischen den mit und ohne Warmbandglühung erzeugten Proben besteht dagegen kein signifikanter Unterschied.
  • Bei einer Frequenz von 50 Hz weisen die aus den erfindungsgemäßen Stählen erzeugten Proben etwas höhere Ummagnetisierungsverluste auf als die aus den Referenzstählen erzeugten Proben. Dagegen weichen bei den höheren Frequenzen von 400 Hz und 1 kHz, die für die Anwendungen, für die die erfindungsgemäßen Stähle bestimmt sind, von besonderer Bedeutung sind, die Ummagnetisierungsverluste der erfindungsgemäßen Proben und der Referenzproben kaum voneinander ab.
  • Mit der Erfindung lassen sich somit für Anwendungen in elektrischen Maschinen bestimmte Elektrobleche und -bänder zur Verfügung stellen, die bei deutlich erhöhten Festigkeiten optimale magnetische Eigenschaften aufweisen, ohne dass dazu teure oder schwer zu beschaffende Legierungselemente vorgesehen oder komplizierte Fertigungsabläufe durchlaufen werden müssen. Tabelle 1
    Variante Si Zr Al Mn C N S P
    Ref1 3,1 - 0,4 0,07 0,004 0,002 0,003 0,005
    Zr1 3,0 0,23 0,4 0,07 0,004 0,002 0,003 0,004
    Ref2 3,0 - 0,006 0,64 0,006 0,002 0,001 0,004
    Zr2 3,1 0,09 0,008 0,62 0,004 0,002 <0,001 0,003
    Rest Eisen und unvermeidbare Verunreinigungen,
    Angaben in Gew.-%
    Tabelle 2 (Blechdicke 0,5 mm, mit Warmbandglühung)
    Richtung Stahl ReH ReL Rm Re/Rm Ag 50 Hz 400Hz 1kHz
    P1,0 P1,5 J2500 J5000 P1,0 P1.0
    [MPa] [MPa] [MPa] [%] [%] [W/kg] [W/kg] [T] [T] [W/kg] [W/kg]
    Walzrichtung Ref1 - 368 *) 515 71 13 1,44 3,20 1,62 1,71 - 177
    Zr1 413 391 567 69 14 2,30 4,93 1, 62 - 44,1 191
    Ref2 329 321 472 68 17 1,72 3,78 1,61 1,70 43,9 205
    Zr2 413 395 569 69 18 2,28 5,04 1, 58 1, 67 43,1 184
    Querrichtung Ref1 - 380 *) 535 71 13 1,52 3,51 1, 58 1, 67 - 178
    Zr1 443 413 587 70 18 2,69 5,82 1,59 1, 68 48,4 208
    Ref2 351 340 492 69 16 1,63 3,88 1,53 1, 63 43,4 206
    Zr2 410 405 577 70 16 2,28 5,14 1,56 1,65 43,9 190
    *) RP0,2
    Tabelle 3 (Blechdicke 0,5 mm, ohne Warmbandglühung)
    Richtung Stahl ReH ReL Rm Re/Rm Ag 50 Hz 400Hz 1kHz
    P1,0 P1,5 J2500 J5000 P1,0 P1,0
    [MPa] [MPa] [MPa] [%] [%] [W/kg] [W/kg] [T] [T] [W/kg] [W/kg]
    Walzrichtung Ref1 - 383 *) 527 73 15 1,38 3,03 1, 63 - 30,4 136
    Zr1 417 386 565 68 17 2,53 5,53 1,57 1,66 39,6 163
    Ref2 365 339 480 71 17 1,47 3,34 1, 63 1,71 38,0 173
    Zr2 398 387 558 69 16 2,22 4,80 1,59 1,68 40,7 177
    Querrichtung Ref1 - 393 *) 536 73 13 1,54 3,32 1,56 1,66 33,9 162
    Zr1 445 415 597 70 17 2,59 5,80 1,55 1,64 42,1 179
    Ref2 382 362 500 72 14 1,55 3,68 1,53 1, 63 40,4 191
    Zr2 415 406 582 70 17 2,27 4,95 1,59 1,68 43,5 194
    *) RP0,2
    Tabelle 4 (Blechdicke 0,3 mm, mit Warmbandglühung)
    Richtung Stahl ReH ReL Rm Re/Rm Ag 50 Hz 400Hz 1kHz
    P1,0 P1,5 J2500 J5000 P1,0 P1,0
    [MPa] [MPa] [MPa] [%] [%] [W/kg] [W/kg] [T] [T] [W/kg] [W/kg]
    Walzrichtung Ref2 322 316 459 69 15 1,32 3,10 1,59 1,68 26,5 118
    Zr2 403 393 566 69 17 2,03 4,55 1,57 1,66 29,1 117
    Querrichtung Ref2 353 342 491 70 15 1,39 3,44 1,52 1,61 27,2 122
    Zr2 430 417 588 71 16 2,07 4,71 1,54 1,64 30,0 123
    Tabelle 5 (Blechdicke 0,3 mm, ohne Warmbandglühung)
    Richtung Stahl ReH ReL Rm Re/Rm Ag 50 Hz 400Hz 1kHz
    P 1,0 P 1,5 J 2500 J 5000 P 1,0 P 1,0
    [MPa] [MPa] [MPa] [%] [%] [W/kg] [W/kg] [T] [T] [W/kg] [W/kg]
    Walzrichtung Ref2 350 331 466 71 14 1,26 3,06 1,57 1,66 23,6 100
    Zr2 393 384 549 70 14 1,91 4,22 1,58 1,67 24,2 92
    Querrichtung Ref2 359 344 453 76 7 1,28 3,22 1,54 1,63 23,2 99
    Zr2 432 417 590 71 17 2,01 4,45 1,56 1,65 25,6 96

Claims (10)

  1. Verfahren zum Erzeugen eines nicht kornorientierten Elektrobands oder -blechs, das ternäre Fe-Zr-Si-Ausscheidungen in seinem Gefüge aufweist, wobei das Verfahren folgende Arbeitsschritte umfasst:
    a) Bereitstellen eines Warmbands, das aus einem Stahl besteht, der neben Eisen und unvermeidbaren Verunreinigungen (in Gew.-%)
    Si: 2,0 - 4,5 %,
    Zr: 0,03 - 0,3 %,
    Al: bis zu 2,0 %,
    Mn: bis zu 1,0 %,
    C: bis zu 0,01 %,
    N: bis zu 0,01 %,
    S: bis zu 0,01 %,
    P: bis zu 0,015 %,
    enthält;
    b) Kaltwalzen des Warmbands zu einem Kaltband und
    c) Schlussglühen des Kaltbands, wobei
    - das Schlussglühen des Kaltbands in zwei Stufen durchgeführt wird,
    - das Kaltband in der ersten Stufe der Schlussglühung bei einer Glühtemperatur von 900 - 1100 °C für 1 - 300 s und in der zweiten Stufe der Schlussglühung bei einer Temperatur von 600 - 800 °C für 50 - 120 s gehalten wird und
    - das Kaltband nach der zweiten Stufe der Schlussglühung auf eine Temperatur von unter 100 °C abgekühlt wird.
  2. Nicht kornorientiertes Elektroband oder -blech für elektrotechnische Anwendungen, wobei im Gefüge des Elektrobands oder -blechs im kaltgewalzten und schlussgeglühten Zustand ternäre Fe-Si-Zr-Ausscheidungen vorliegen, dadurch gekennzeichnet, dass es durch Anwendung des Verfahrens gemäß Anspruch 1 hergestellt ist.
  3. Nicht kornorientiertes Elektroband oder -blech nach Anspruch 2, dadurch gekennzeichnet, dass sein Si-Gehalt mindestens 2,5 Gew.-% beträgt.
  4. Nicht kornorientiertes Elektroband oder -blech einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass sein Si-Gehalt höchstens 3,5 Gew.-% beträgt.
  5. Nicht kornorientiertes Elektroband oder -blech nach einem der Ansprüche 2 - 4, dadurch gekennzeichnet, dass sein Zr-Gehalt mindestens 0,08 Gew.-% beträgt.
  6. Nicht kornorientiertes Elektroband oder -blech nach einem der Ansprüche 2 - 5, dadurch gekennzeichnet, dass sein Zr-Gehalt höchstens 0,25 Gew.-% beträgt.
  7. Nicht kornorientiertes Elektroband oder -blech nach einem der Ansprüche 2 - 6, dadurch gekennzeichnet, dass sein C-Gehalt höchstens 0,006 Gew.-% beträgt.
  8. Nicht kornorientiertes Elektroband oder -blech nach einem der Ansprüche 2 - 7, dadurch gekennzeichnet, dass sein N-Gehalt höchstens 0,006 Gew.-% beträgt.
  9. Nicht kornorientiertes Elektroband oder -blech nach einem der Ansprüche 2 - 8, dadurch gekennzeichnet, dass sein S-Gehalt höchstens 0,006 Gew.-% beträgt.
  10. Nicht kornorientiertes Elektroband oder -blech nach einem der Ansprüche 2 - 9, dadurch gekennzeichnet, dass sein Ummagnetisierungsverlust P1,0/400 bei einer Polarisation von 1,0 Tesla und einer Frequenz von 400 Hz bei einer Dicke des Elektrobands oder - blechs von 0,5 mm höchstens 65 W/kg und bei einer Dicke von 0,3 mm höchstens 45 W/kg beträgt.
EP13180889.1A 2013-08-19 2013-08-19 Nicht kornorientiertes Elektroband oder -blech und Verfahren zur Erzeugung eines nicht kornorientierten Elektrobands oder -blechs Active EP2840157B1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP13180889.1A EP2840157B1 (de) 2013-08-19 2013-08-19 Nicht kornorientiertes Elektroband oder -blech und Verfahren zur Erzeugung eines nicht kornorientierten Elektrobands oder -blechs
JP2016535380A JP6480446B2 (ja) 2013-08-19 2014-07-22 無方向性の電磁鋼片または電磁鋼板、およびこれから製造された部品、並びに無方向性の電磁鋼片または電磁鋼板の製造方法
CN201480046092.5A CN105473751B (zh) 2013-08-19 2014-07-22 非晶粒取向的电工钢带或电工钢板、由其制成的部件及用于制造非晶粒取向的电工钢带或电工钢板的方法
KR1020167007264A KR102298564B1 (ko) 2013-08-19 2014-07-22 무방향성 전기 강철 스트립 또는 전기 강판, 이로부터 제조되는 부품, 및 무방향성 전기 강철 스트립 또는 전기 강판을 제조하기 위한 방법
US14/912,381 US20160203897A1 (en) 2013-08-19 2014-07-22 Non-grain-oriented electrical steel strip or electrical steel sheet, component produced therefrom, and methods for producing same
BR112016003059-1A BR112016003059B1 (pt) 2013-08-19 2014-07-22 Tira magnética ou chapa magnética de grãos não orientados, componente produzido a partir da mesma e método para a produção de uma tira magnética ou chapa magnética de grãos não orientados
PCT/EP2014/065729 WO2015024723A1 (de) 2013-08-19 2014-07-22 Nicht kornorientiertes elektroband oder -blech, daraus hergestelltes bauteil und verfahren zur erzeugung eines nicht kornorientierten elektrobands oder -blechs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13180889.1A EP2840157B1 (de) 2013-08-19 2013-08-19 Nicht kornorientiertes Elektroband oder -blech und Verfahren zur Erzeugung eines nicht kornorientierten Elektrobands oder -blechs

Publications (2)

Publication Number Publication Date
EP2840157A1 EP2840157A1 (de) 2015-02-25
EP2840157B1 true EP2840157B1 (de) 2019-04-03

Family

ID=48998522

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13180889.1A Active EP2840157B1 (de) 2013-08-19 2013-08-19 Nicht kornorientiertes Elektroband oder -blech und Verfahren zur Erzeugung eines nicht kornorientierten Elektrobands oder -blechs

Country Status (7)

Country Link
US (1) US20160203897A1 (de)
EP (1) EP2840157B1 (de)
JP (1) JP6480446B2 (de)
KR (1) KR102298564B1 (de)
CN (1) CN105473751B (de)
BR (1) BR112016003059B1 (de)
WO (1) WO2015024723A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017208146B4 (de) * 2017-05-15 2019-06-19 Thyssenkrupp Ag NO-Elektroband für E-Motoren
DE102018201618A1 (de) 2018-02-02 2019-08-08 Thyssenkrupp Ag Nachglühfähiges, aber nicht nachglühpflichtiges Elektroband
DE102018201622A1 (de) 2018-02-02 2019-08-08 Thyssenkrupp Ag Nachglühfähiges, aber nicht nachglühpflichtiges Elektroband
WO2020094230A1 (de) 2018-11-08 2020-05-14 Thyssenkrupp Steel Europe Ag Elektroband oder -blech für höherfrequente elektromotoranwendungen mit verbesserter polarisation und geringen ummagnetisierungsverlusten
CN109453833B (zh) * 2018-12-10 2023-12-22 李赫川 一种生物安全中生命维持系统用装置
DE102019113291A1 (de) * 2019-05-20 2020-11-26 Thyssenkrupp Steel Europe Ag Blech für die Herstellung einer elektromagnetischen Komponente, insbesondere eines Statorpakets oder eines Rotorpakets, sowie Verfahren zur Herstellung einer elektromagnetischen Komponente
JP7364143B2 (ja) 2021-04-01 2023-10-18 大成建設株式会社 チャタテムシの防除方法、チャタテムシの防除空調システム、チャタテムシフリー施設

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2446509B1 (de) * 1974-09-28 1975-08-07 Hoesch Werke Ag Verwendung eines im fluessigen Zustand vakuumbehandelten Stahls als Elektroband
GB2057500B (en) * 1979-09-07 1983-05-18 British Steel Corp Electro magnetic steels
JPS56158839A (en) * 1980-05-14 1981-12-07 Matsushita Electric Ind Co Ltd Manufacture of very rapidly cooled steel strip
JPS5983723A (ja) * 1982-11-01 1984-05-15 Kobe Steel Ltd 磁束密度の高い無方向性電気鉄板の製造方法
JPS644454A (en) * 1987-06-25 1989-01-09 Sumitomo Metal Ind Isotropic electromagnetic steel plate having good magnetic characteristics
JPH0222442A (ja) 1988-07-12 1990-01-25 Nippon Steel Corp 高張力電磁鋼板及びその製造方法
JPH1112701A (ja) * 1997-06-27 1999-01-19 Nkk Corp 鉄損の低い無方向性電磁鋼板
JP4833523B2 (ja) 2004-02-17 2011-12-07 新日本製鐵株式会社 電磁鋼板とその製造方法
JP4389691B2 (ja) * 2004-06-22 2009-12-24 住友金属工業株式会社 回転子用無方向性電磁鋼板およびその製造方法
JP5126787B2 (ja) * 2008-07-11 2013-01-23 新日鐵住金株式会社 回転子用無方向性電磁鋼板の製造方法
JP2010121150A (ja) * 2008-11-17 2010-06-03 Sumitomo Metal Ind Ltd 回転機用無方向性電磁鋼板および回転機ならびにそれらの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2015024723A1 (de) 2015-02-26
CN105473751B (zh) 2018-01-12
US20160203897A1 (en) 2016-07-14
JP2016535168A (ja) 2016-11-10
CN105473751A (zh) 2016-04-06
KR20160044569A (ko) 2016-04-25
EP2840157A1 (de) 2015-02-25
KR102298564B1 (ko) 2021-09-07
BR112016003059B1 (pt) 2020-03-10
JP6480446B2 (ja) 2019-03-13

Similar Documents

Publication Publication Date Title
EP2840157B1 (de) Nicht kornorientiertes Elektroband oder -blech und Verfahren zur Erzeugung eines nicht kornorientierten Elektrobands oder -blechs
EP2612942B1 (de) Nicht kornorientiertes Elektroband oder -blech, daraus hergestelltes Bauteil und Verfahren zur Erzeugung eines nicht kornorientierten Elektrobands oder -blechs
EP2690183B1 (de) Warmgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
DE69518529T2 (de) Verfahren zur herstellung von elektrischen nicht orientierten stahlplatten mit hoher magnetischer flussdichte und geringem eisenverlust
EP1918403B1 (de) Verfahren zum Herstellen von Stahl-Flachprodukten aus einem ein martensitisches Gefüge bildenden Stahl
DE102017208146B4 (de) NO-Elektroband für E-Motoren
WO2008052919A1 (de) Verfahren zum herstellen von stahl-flachprodukten aus einem mit bor mikrolegierten mehrphasenstahl
DE102011119395A1 (de) Verfahren zum Herstellen eines kornorientierten, für elektrotechnische Anwendungen bestimmten Elektrostahlflachprodukts
DE102019107422A1 (de) Band aus einer Kobalt-Eisen-Legierung, Blechpaket und Verfahren zum Herstellen eines Bands aus einer Kobalt-Eisen-Legierung
DE68916980T2 (de) Verfahren zum Herstellen kornorientierter Elektrostahlbleche mit hoher Flussdichte.
DE102011107304A1 (de) Verfahren zum Herstellen eines kornorientierten, für elektrotechnische Anwendungen bestimmten Elektrostahlflachprodukts
EP3541969B1 (de) Verfahren zum herstellen eines bandes aus einer co-fe-legierung, band aus einer co-fe-legierung und blechpaket
DE69428537T2 (de) Verfahren zur herstellung von stahlblech mit gerichteter magnetisierung unterverwendung von niedrigen brammenaufheiztemperaturen.
DE69030781T3 (de) Verfahren zur Herstellung kornorientierter Elektrostahlbleche mittels rascher Abschreckung und Erstarrung
DE19930519C1 (de) Verfahren zum Herstellen von nicht kornorientiertem Elektroblech
DE10221793C1 (de) Nichtkornorientiertes Elektroband oder -blech und Verfahren zu seiner Herstellung
DE69712757T2 (de) Elektromagnetisch bidirektionale stahlplatte und verfahren zu deren herstellung
DE69028241T3 (de) Verfahren zur Herstellung von dünnen kornorientierten Elektroblechen mit geringen Eisenverlusten und hoher Flussdichte
DE69222964T2 (de) Kornorientiertes Silizium-Stahlblech und dessen Herstellungsverfahren
WO2020078529A1 (de) Verfahren zur herstellung eines no elektrobands mit zwischendicke
DE19930518C1 (de) Verfahren zum Herstellen von nicht kornorientiertem Elektroblech
DE2537092C3 (de) Material für den Rotor eines schnellaufenden Hysteresemotors und Verfahren zu seiner Herstellung
DE10139699C2 (de) Nichtkornorientiertes Elektroblech oder -band und Verfahren zu seiner Herstellung
WO2003014404A1 (de) Nichtkornorientiertes elektroblech oder -band und verfahren zu seiner herstellung
DE10159501A1 (de) Nichtkornorientiertes Elektroblech oder -band und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130819

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150825

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180208

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 8/12 20060101ALI20180913BHEP

Ipc: C22C 38/02 20060101ALI20180913BHEP

Ipc: C22C 38/06 20060101ALI20180913BHEP

Ipc: C21D 9/46 20060101ALI20180913BHEP

Ipc: C22C 38/04 20060101ALI20180913BHEP

Ipc: C21D 6/00 20060101ALI20180913BHEP

Ipc: C21D 9/52 20060101ALI20180913BHEP

Ipc: C22C 38/00 20060101AFI20180913BHEP

Ipc: H01F 1/147 20060101ALI20180913BHEP

Ipc: H01F 1/16 20060101ALI20180913BHEP

Ipc: C22C 38/14 20060101ALI20180913BHEP

Ipc: C21D 8/02 20060101ALI20180913BHEP

INTG Intention to grant announced

Effective date: 20181009

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1115816

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013012528

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190403

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190803

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013012528

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

26N No opposition filed

Effective date: 20200106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190819

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190819

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230822

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230821

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240821

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240829

Year of fee payment: 12