EP3541969B1 - Method for producing a strip of a co-fe alloy, strip of a co-fe alloy and sheet metal stack - Google Patents

Method for producing a strip of a co-fe alloy, strip of a co-fe alloy and sheet metal stack Download PDF

Info

Publication number
EP3541969B1
EP3541969B1 EP17811215.7A EP17811215A EP3541969B1 EP 3541969 B1 EP3541969 B1 EP 3541969B1 EP 17811215 A EP17811215 A EP 17811215A EP 3541969 B1 EP3541969 B1 EP 3541969B1
Authority
EP
European Patent Office
Prior art keywords
strip
thickness
less
temperature
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17811215.7A
Other languages
German (de)
French (fr)
Other versions
EP3541969A1 (en
Inventor
Niklas Volbers
Jan Frederik Fohr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Publication of EP3541969A1 publication Critical patent/EP3541969A1/en
Application granted granted Critical
Publication of EP3541969B1 publication Critical patent/EP3541969B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling

Definitions

  • the invention relates to a method for manufacturing a CoFe alloy strip and a CoFe alloy strip.
  • Soft magnetic cobalt-iron alloys with a Co content of 49% are used due to their high saturation polarization.
  • One class of CoFe alloys has a composition of 49% Fe, 49% Co and 2% V by weight, which may also contain additions of Ni, Nb, Zr, Ta or B. With such a composition, a saturation polarization of about 2.3 T is achieved with a sufficiently high electrical resistance of 0.4 ⁇ m at the same time.
  • Such alloys are used, for example, as highly saturating flux guides or for applications in electrical machines.
  • stators or rotors are typically manufactured in the form of laminated packages. The material is used in strip thicknesses ranging from 0.50 mm to very thin dimensions of 0.050 mm.
  • the material is subjected to a heat treatment, also known as final magnetic annealing.
  • This heat treatment takes place above the recrystallization temperature and below the ⁇ / ⁇ phase transition, usually in the range from 700°C to 900°C.
  • strip made of CoFe is typically not offered in a final annealed condition.
  • Final annealed strip is soft due to a recrystallized structure and at the same time brittle due to the adjustment of order and can therefore only be punched inadequately.
  • cutting or stamping processes lead to a significant deterioration in the magnetic properties. For this reason, CoFe sheets undergo final annealing after shaping, either on sheet metal panels, on individual laminations or on finished sheet metal packages.
  • the magnetic final annealing also changes the dimensions of the sheet. This increase in length is in the range of 0.03% to 0.20%.
  • the pamphlet JP S62 188756 A discloses a foil having a composition (Fe 1-a Co a ) 100-x M x , where M is one or more of Ti, V, Cr, Mn, Si, Zr, Nb, Mo, Sn, Pb, Zn, Ta , W, Ni, and Al, a denotes the ratio of Co to Fe of 0.2-0.6, and x is 0.05-10% by weight.
  • the object is therefore to specify a strip made from a CoFe alloy and a method for producing a strip made from a CoFe alloy which exhibits reduced growth after the final magnetic anneal.
  • a method of manufacturing CoFe alloy ribbon comprising the following. First, a melt consisting of 35% by weight ⁇ Co ⁇ 55% by weight, 0% by weight ⁇ V ⁇ 3% by weight, 0% by weight ⁇ Ni ⁇ 2% by weight, 0% by weight % ⁇ Nb ⁇ 0.50 wt%, 0 wt% ⁇ Zr + Ta ⁇ 1.5 wt%, 0 wt% ⁇ Cr ⁇ 3 wt%, 0 wt% % ⁇ Si ⁇ 3 wt%, 0 wt% ⁇ Al ⁇ 1 wt%, 0 wt% ⁇ Mn ⁇ 1 wt%, 0 wt% ⁇ B ⁇ 0.25 wt% .-%, 0 wt .-% ⁇ C ⁇ 0.1 wt .-%, remainder Fe and up to 1 wt .-% impurities provided, the impurities one or
  • the hot-rolled strip is then quenched from a temperature above 700°C to a temperature below 200°C.
  • the hot-rolled strip is cold-rolled to form an intermediate strip with a thickness D 2 , the intermediate strip is subjected to intermediate annealing at a temperature above 700° C. and cooled to a temperature of above 700° C. to a temperature below 200° C. in a gaseous medium.
  • Intermediate annealing is carried out continuously at a speed of 1 m/min to 10 m/min, the time the strip stays in the heating zone of the continuous furnace at a temperature of 700°C to 1100°C, preferably 800°C to 1000°C between 30 seconds and 5 minutes and the intermediate annealing of the intermediate strip takes place in a continuous process at a temperature of 800°C to 900°C or 1000°C to 1100°C.
  • the heat-treated intermediate strip is cold-rolled with a metallically bright surface to a strip with a thickness D 3 , the degree of cold deformation (D 2 -D 3 )/D 2 being ⁇ 80%, preferably ⁇ 60% and 0.05 mm ⁇ D 3 ⁇ is 0.5mm.
  • the heat-treated intermediate strip After the continuous intermediate annealing of the cold-rolled intermediate strip, no quenching and pickling is carried out, so that the heat-treated intermediate strip has a bright metallic surface.
  • the heat-treated intermediate strip is further processed with this metallically bright surface by further cold rolling.
  • the manufacturing process is simplified.
  • the degree of cold deformation of the last cold rolling step is limited, which allows the resulting strip to have a growth dl/l 0 in the longitudinal direction of the strip less than 0.08%, preferably 0.06% and/or in the cross direction of the tape less than 0.08%, preferably 0.06%.
  • l 0 denotes the initial length before final annealing
  • dl the absolute change in length after final annealing
  • dl/l 0 the relative change in length based on the initial length.
  • the final magnetic annealing of this CoFe alloy takes place above the recrystallization temperature and below the ⁇ / ⁇ phase transition.
  • the recrystallization temperature and the temperature at which the ⁇ / ⁇ phase transition takes place depends on the composition of the CoFe alloy.
  • the magnetic Final annealing carried out in the range from 700°C to 900°C.
  • an adjustment of order takes place, ie a B2 superstructure is formed. Due to the magnetic final annealing and the associated adjustment of order, there is a permanent change in the dimensions of the sheet at room temperature or a permanent increase in length.
  • a strip with an initial length l 0 at room temperature before the final anneal thus has a length l 0 + dl after the final anneal and at the same room temperature. In some embodiments, dl is greater than 0.
  • the permanent growth dl/l 0 in the longitudinal direction of the strip is less than 0.08%, preferably 0.06% and/or in the transverse direction of the strip is less than 0.08%, preferably 0.06%.
  • This small permanent growth is not achieved in CoFe alloy strip produced with any of the cold working ratios of the final cold rolling step greater than 80%.
  • the thickness of the strip which is achieved by hot rolling and/or cold rolling, as well as the thickness of the strip on which the intermediate annealing is carried out, can be defined more precisely.
  • the strip may have a thickness D 1 of 1.0 mm ⁇ D 1 ⁇ 2.5 mm after hot rolling, and a thickness D 2 of 0.1 mm ⁇ D 2 ⁇ 1.0 mm before intermediate annealing second cold rolling, the strip has a thickness D 3 of 0.05 mm ⁇ D 3 ⁇ 0.5 mm.
  • the thickness of the hot-rolled strip is reduced from D 1 to D 2 by means of cold rolling and/or the thickness of the intermediate strip is reduced from D 2 to D 3 reduced by cold rolling. No further intermediate annealing is therefore carried out.
  • the conditions of the intermediate anneal in the pass are selected so that the strip can be cold rolled after the intermediate anneal.
  • the intermediate strip after the intermediate annealing, has a structure in which a ferritically recrystallized portion has an average grain size of less than 10 ⁇ m and/or a ferritically recrystallized portion has no grains larger than 10 ⁇ m.
  • This structure can be created, for example, by a temperature of 800°C to 900°C.
  • the intermediate strip has a bending number before fracture of at least 20 after the intermediate annealing in a reverse bending test.
  • the flex fatigue test can be used to determine the cold formability of the strip.
  • Intermediate continuous annealing is carried out at a speed of 1 m/min to 10 m/min, and the residence time of the strip in the heating zone of the continuous furnace with the temperature of 700°C to 1100°C, preferably 800°C to 1000°C is between 30 seconds and 5 minutes.
  • the intermediate strip is continuously annealed at a temperature of 800°C to 900°C or 1000°C to 1100°C.
  • the annealing temperature and belt speed parameters can be adjusted in order to set the properties shown here.
  • the strip may have essentially a deformation microstructure or a mixed microstructure with portions of a former ⁇ -phase in a matrix of an ⁇ -phase.
  • a deformation structure can be achieved at a temperature of 800°C to 900°C.
  • a mixed structure with portions of a former ⁇ -phase in a matrix of an ⁇ -phase can be achieved at a temperature of 1000°C to 1100°C.
  • the intermediate annealing can be carried out under an inert gas or a dry hydrogen-containing atmosphere with a dew point lower than -30°C.
  • the intermediate strip is cooled to a temperature lower than 200°C in a gaseous medium such as an inert gas or a dry hydrogen-containing atmosphere.
  • a gaseous medium such as an inert gas or a dry hydrogen-containing atmosphere.
  • the intermediate strip is not quenched, for example in water.
  • the hot rolling strain rate is adjusted so that the cold rolling strain rate remains below a predetermined limit in order to keep the elongation after the final magnetic anneal low.
  • This method of manufacturing a CoFe alloy includes the following. A melt consisting of 35% by weight ⁇ Co ⁇ 55% by weight, 0% by weight ⁇ V ⁇ 3% by weight, 0% by weight ⁇ Ni ⁇ 2% by weight, 0% by weight % ⁇ Nb ⁇ 0.50 wt%, 0 wt% ⁇ Zr + Ta ⁇ 1.5 wt%, 0 wt% ⁇ Cr ⁇ 3 wt%, 0 wt% ⁇ Si ⁇ 3 wt%, 0 wt% ⁇ Al ⁇ 1 wt%, 0 wt% ⁇ Mn ⁇ 1 wt%, 0 wt% ⁇ B ⁇ 0.25 wt% %, 0% by weight ⁇ C ⁇ 0.1% by weight, remainder Fe and up to 1% by weight impurities is provided
  • the melt is cast under vacuum and then solidified into a cast block.
  • the ingot is hot rolled into a slab and then into a strip having a thickness D 1 where 1 mm ⁇ D 1 ⁇ 2 mm.
  • the strip is then quenched from a temperature above 700°C to a temperature below 200°C.
  • the strip is cold rolled and the thickness reduced from D 1 to a thickness D 2 , the degree of cold deformation (D 1 -D 2 )/D 1 being ⁇ 80%, preferably ⁇ 60%.
  • the final thickness D 2 is 0.05 mm ⁇ D 2 ⁇ 0.5 mm.
  • the degree of deformation during hot rolling and thus the thickness D 1 of the strip after hot rolling and before cold rolling is adjusted in such a way that the desired final thickness D 2 can be achieved with a degree of deformation of less than 80%, preferably less than 60% .
  • the degree of deformation of hot rolling is increased and the degree of deformation of cold rolling is correspondingly reduced.
  • the heat treatment of the ribbon can take place under a dry atmosphere containing hydrogen.
  • Both alternative methods may further include forming at least one sheet from the strip.
  • the sheet metal can be stamped from the strip.
  • a plurality of laminations can be joined to form a lamination stack.
  • the strip or the sheet or the laminated core can also be heat-treated at a temperature between 700°C and 900°C, i.e. a final magnetic anneal can be carried out. This heat treatment takes place above the recrystallization temperature and below the temperature of the phase transition ⁇ / ⁇ , mostly in the range of 700°C to 900°C.
  • the order is adjusted, i.e. a B2 superstructure is formed, and the desired magnetic properties, for example a saturation polarization of around 2.3 T and an electrical resistance of 0.4 ⁇ m, are generated.
  • a growth dl/l 0 in the longitudinal direction of the strip is less than 0.08% and/or in the transverse direction of the strip is less than 0.08% and/or a difference between the longitudinal growth and the transverse direction growth of the tape less than 0.06%, preferably less than 0.04%.
  • l 0 denotes the initial length before final annealing
  • dl the absolute change in length after final annealing
  • dl/l 0 the relative change in length based on the initial length.
  • a strip with an initial length l 0 at room temperature before final annealing thus has a length l 0 + dl after final annealing and at the same room temperature.
  • a strip made of a CoFe alloy which has a composition consisting of 35% by weight ⁇ Co ⁇ 55% by weight, 0% by weight ⁇ V ⁇ 3% by weight, 0% by weight ⁇ Ni ⁇ 2 wt%, 0 wt% ⁇ Nb ⁇ 0.50 wt%, 0 wt% ⁇ Zr + Ta ⁇ 1.5 wt%, 0 wt% ⁇ Cr ⁇ 3 wt%, 0 wt% ⁇ Si ⁇ 3 wt%, 0 wt% ⁇ Al ⁇ 1 wt%, 0 wt% ⁇ Mn ⁇ 1 wt%, 0 Wt of the groups O, N, S, P, Ce, Ti, Mg, Be, Cu, Mo and W.
  • the tape has a thickness d, where 0.05 mm ⁇ d ⁇ 0.5 mm, a Vickers hardness greater than 300 and an elongation at break less than 5%.
  • the strip After heat treatment of the strip at a temperature between 700°C and 900°C, the strip has a growth dl/l 0 in the longitudinal direction of the strip less than 0.08%, preferably 0.06% and/or in the transverse direction of the strip less than 0.08%, preferably 0.06%.
  • This strip thus has mechanical properties that are present in a cold-rolled condition, namely an elongation at break of less than 5% and a Vickers hardness greater than 300.
  • This strip can be further processed, for example to form sheets from the strip and to cut the sheets a laminated core that is heat treated to adjust the magnetic properties.
  • This heat treatment of the strip is referred to as a final magnetic anneal because it serves to adjust the magnetic properties and can be carried out at a temperature between 700°C and 900°C.
  • a strip with an initial length l 0 at room temperature before final annealing thus has a length l 0 + dl after final annealing and at the same room temperature.
  • dl is greater than 0.
  • the strip according to the invention makes it possible to produce sheet metal sections, to subject them to final annealing in order to set an optimal magnetic field and then to obtain a sufficiently high dimensional accuracy so that further correction of the geometry can be dispensed with.
  • the possible disadvantages of subsequent correction of the geometry eg by grinding, are a deterioration in the magnetic permeability at these points, the risk of eddy currents, since grinding processes can result in smearing of the lamellae, and higher costs.
  • low Air gaps are set, which leads to improved efficiency of the electric machine.
  • the band may have a reduced thickness, for example a thickness of 0.05 mm ⁇ d ⁇ 0.356 mm. Furthermore, a multiplicity of laminations can form a laminated core.
  • a difference between the permanent growth in the longitudinal direction and the permanent growth in the transverse direction of the ribbon is less than 0.06%, preferably less than 0.04%.
  • the CoFe ribbon according to the invention with significantly reduced growth has the further advantage that a stamping tool can be designed in such a way that it can be used both for other alloys such as SiFe and for CoFe. Given the high costs for such a tool, this leads to an economic advantage.
  • CoFe-based alloys are available under the trade names VACOFLUX 50, VACOFLUX 48, VACODUR 49, VACODUR 50, VACODUR S Plus, Rotelloy, HIPERCO 50, Permendur, AFK and 1J22.
  • the impurities can contain one or more of the group O, N, S, P, Ce, Ti, Mg, Be, Cu, Mo and W.
  • figure 1 shows a graph of measured average growth dl/l0 after a final anneal in % in the longitudinal direction on the 50% CoFe materials VACOFLUX 50 (49Fe-49Co-2V) and as a comparative example HIPERCO 50 (49Fe-49Co-2V).
  • VACOFLUX 50 49Fe-49Co-2V
  • HIPERCO 50 49Fe-49Co-2V
  • the samples examined had a gauge after hot rolling of 2mm or greater, and are cold rolled to different final gauges and thus undergo different degrees of cold working.
  • l 0 denotes the initial length before final annealing
  • dl the absolute change in length after final annealing
  • dl/l 0 the relative change in length based on the initial length.
  • This change in length or growth is a permanent change in length or growth that is caused by the final magnetic annealing and the associated adjustment of order.
  • a sample with an initial length l 0 at room temperature before the final annealing thus has a length of l 0 + dl after the final annealing and at the same room temperature.
  • the permanent change in elongation can be reduced if the degree of cold working is reduced.
  • the degree of cold working can be reduced by performing an intermediate anneal between two cold working steps, each with a smaller cold working degree. Due to the adjustment of order through intermediate annealing, however, a CoFe alloy is subsequently brittle and can no longer be processed. Consequently, the brittleness is conventionally eliminated again by a subsequent quenching process.
  • this quenching process is complex and associated with technical disadvantages and high costs.
  • the reduction in the degree of cold deformation for a given final thickness is achieved by introducing intermediate annealing or by reducing the hot-rolled thickness.
  • intermediate annealing is carried out in a continuous process in such a way that the strain hardening caused by rolling is reduced and at the same time, by avoiding coarse-grained ferrite, a structure that can be rolled is created despite the brittle adjustment of order. Furthermore, after the intermediate annealing, the strip is not quenched, for example in water or oil, and is not pickled, so that the strip is cold-rolled with a bright metallic surface. As a result, the process is simpler and less expensive to carry out.
  • the cold deformation should be at most 80%, preferably up to 60%, as illustrated by the following examples and test results.
  • Table 1 intermediate anneal to thickness final thickness no 1.0mm 0.5mm 0.35mm 0.20mm 0.10mm 0.35mm 83% 65% (*) 30% (*) - - - 0.20mm 90% 80% (*) 60% (*) 43% (*) - - 0.10mm 95% 90% 80% (*) 71% (*) 50% (*) - 0.05mm 98% 95% 90% 86% 75% (*) 50% (*)
  • Table 1 shows the degree of cold working as a function of the final thickness and intermediate annealing. A hot-rolled thickness of 2 mm was assumed. The states marked with (*) represent states according to the invention.
  • a strip of the VACODUR 49 alloy was used as the material, with a composition of 48.6% by weight Co, 1.86% by weight V, 0.09% by weight Nb, C ⁇ 0.0070% by weight. %, balance Fe and impurities.
  • the strip was hot-rolled to a thickness of 2 mm and then quenched in an ice-salt water bath at a temperature above 700°C. The strip could then be cold-rolled to a thickness of 0.35 mm.
  • Table 2 shows the measured mechanical properties of the continuously annealed strips of variants 1 to 5.
  • the tensile specimens were taken along the direction of rolling.
  • the bending cycles were determined on strips (longitudinal/transverse to the rolling direction).
  • a bend test 900°C 6m/min transverse was not available.
  • figure 2 shows a graph of yield point R p0.2 and tensile strength R m of the tensile specimens versus the temperature T of the continuous annealing at 6 m/min.
  • the condition Ref. denotes the condition of a sample without continuous annealing and thus a comparative condition.
  • a metallographic examination shows that the different variants have very different structures, which can be divided into three groups.
  • an intermediate annealing in the two-phase area ⁇ / ⁇ leads to a mixed structure with parts of the former ⁇ -phase in an ⁇ -matrix.
  • the present structure was achieved at a temperature of 1000°C.
  • figure 3 shows optical images of the structures of three samples after intermediate annealing at different temperatures.
  • Variant 1 was heat treated at 850°C 6m/min and shows good rollability, N > 20, a deformation structure and the beginning of recrystallization.
  • Variant 4 was heat-treated at 1000°C at 6 m/min and shows good rollability, N > 20, a non-uniform ferrite, mixed structure with portions of the former ⁇ -phase in an ⁇ -matrix.
  • Table 3 shows the influence of additional cold working on the mechanical properties of continuously annealed VACODUR 49. All annealed strips were rolled on a commercial 20-high mill. A strong Hardening of the material is shown as early as the first stitch, indicating that the material is in the ordered state.
  • variants 1, 4 and 5 were manufactured according to variants 1, 4 and 5, could be rolled up to a thickness of 0.10 mm.
  • variants 2 and 3 showed strong brittleness and were sensitive to tension. Therefore, the material of variant 2 could not be rolled and the material of variant 3 could only be rolled to a limited extent.
  • Table 4 shows the growth in length (measured in longitudinal direction) after final magnetic annealing of VACODUR 49, hot-rolled thickness 2 mm. Both variants, ie variants 1 and 4, therefore exhibit significantly reduced growth with a small strip thickness.
  • the tape obtained in this way was characterized with regard to length growth with an intermediate thickness of 0.25 mm and with different final thicknesses of 0.20 mm and 0.10 mm.
  • the measurement was carried out on individual strips with a length of 165 mm, the length of which was measured exactly before and after the final annealing (6h 880°C under H 2 ).
  • the change in length dl can be determined from the difference in the measured lengths. If you put this in relation to the initial length l 0 , you get the relative increase in length dl/l 0 .
  • the measurements listed in Table 4 were always carried out in the longitudinal direction, ie the growth was determined along the direction of rolling.
  • the increase in length at a thickness of 0.35 mm is already 0.129%.
  • the growth increases up to 0.195% at a thickness of 0.10 mm.
  • variant 1 according to the invention has a significantly reduced change in length at the final thickness of 0.10 mm. So was post on the tape the final magnetic anneal at 0.10 mm measured an average growth dl/l 0 in the longitudinal direction of 0.054%.
  • Variant 4 tape also showed reduced growth.
  • An average growth dl/l 0 in the longitudinal direction of 0.000% was measured, with the individual values being between +0.013% and -0.010%.
  • the anisotropy of the growth i.e. the difference between the growth in length along and across the ribbon, is examined.
  • Table 5 shows the growth in length of the VACODUR 49 samples after additional final annealing of 6 hours at 880°C, measured on tensile samples or longitudinal strips 165 mm x 20 mm.
  • Variant 1 of Table 5 shows the advantageous property that growth in the longitudinal and transverse directions is almost identical.
  • , is only 0.002% for a strip thickness of 0.10 mm. It is thus possible to stock punching tools symmetrically. Stamped round parts remain round after final annealing.
  • Variant 4 of Table 5 still has a slight anisotropy, but also shows a clearly small increase in length in terms of absolute value.
  • is, at about 0.06% of the original length, much less than the difference observed in conventionally manufactured tape, which is about 0.10%.
  • both variants show properties in the final thickness that correspond to what is obtained in the starting material with a thickness of 0.35 mm without continuous annealing.
  • the following figure shows the new curves after final magnetic annealing for different strip thicknesses.
  • figure 4 shows magnetization curves and the influence of further cold working on the new curve B(H) of continuously annealed strip (850°C, 1050°C; 6 m/min each). The measurements were carried out on stamped rings after a final anneal of 6 hours at 880°C in a dry H 2 atmosphere.
  • the second approach according to the invention is to reduce the hot rolling gauge so that with a final gauge of 0.50 mm or thinner, the cold working on the final gauge is a maximum of 80%.
  • the thickness of the hot-rolled strip is typically 2 mm to 4 mm. With a final thickness of 0.35 mm, a reduction to 1 mm can reduce the degree of cold deformation and thus the growth in length.
  • Hot-rolled strips were produced in the thicknesses according to Table 6 (WW thickness) and cold-rolled to different final thicknesses.
  • Table 6 final thickness WW thickness 3.5 mm WW thickness 2.0 mm WW thickness 1.5 mm WW thickness 1.0 mm 0.35mm 90% 83% 77% (*) 65% (*) 0.20mm 94% 90% 87% 80% (*) 0.10mm 97% 95% 93% 90% 0.05mm 99% 98% 97% 95%
  • Table 6 shows degree of cold working as a function of final gauge and hot-rolled gauge (without intermediate annealing).
  • the states marked with (*) represent tapes according to the invention.
  • figure 5 shows a graph of growth in length (dl/l 0 ) of strips of different hot-rolled gauges made of VACOFLUX 50 along the rolling direction after final annealing versus the degree of cold deformation (D 1 -D 2 )/D 1 .
  • the change in length in the rolling direction versus the degree of cold deformation is shown for two different samples A and B after final magnetic annealing.
  • D 2 With a constant cold-rolled thickness D 2 of 0.35 mm, the hot-rolled thickness D 1 was varied between 1.0 mm and 3.5 mm. For each data point, the associated hot rolled thickness (WW thickness) is marked with an arrow.
  • continuous annealing can also be dispensed with as long as cold working is up to 80%, preferably up to 60%.

Description

Die Erfindung betrifft ein Verfahren zum Herstellen eines Bandes aus einer CoFe-Legierung und ein Band aus einer CoFe-Legierung.The invention relates to a method for manufacturing a CoFe alloy strip and a CoFe alloy strip.

Weichmagnetische Kobalt-Eisen-Legierungen (CoFe) mit einem Co-Gehalt von 49% werden aufgrund ihrer hohen Sättigungspolarisation verwendet. Eine CoFe-Legierungsklasse weist eine Zusammensetzung von 49 Gew.-% Fe, 49 Gew.-% Co und 2 % V auf, die ferner Zusätze von Ni, Nb, Zr, Ta oder B enthalten kann. Bei einer solchen Zusammensetzung wird eine Sättigungspolarisation von etwa 2,3 T erreicht bei gleichzeitig ausreichend hohem elektrischen Widerstand von 0,4µΩm.Soft magnetic cobalt-iron alloys (CoFe) with a Co content of 49% are used due to their high saturation polarization. One class of CoFe alloys has a composition of 49% Fe, 49% Co and 2% V by weight, which may also contain additions of Ni, Nb, Zr, Ta or B. With such a composition, a saturation polarization of about 2.3 T is achieved with a sufficiently high electrical resistance of 0.4 μΩm at the same time.

Solche Legierungen finden Anwendung z.B. als hochsättigende Flussleitstücke oder aber auch für Anwendungen in elektrischen Maschinen. In der Anwendung als Generator oder Motor werden typischerweise Statoren oder Rotoren in Form von geblechten Paketen hergestellt. Das Material wird dabei in Banddicken im Bereich von 0,50 mm bis hin zu sehr dünnen Abmessungen von 0,050 mm eingesetzt.Such alloys are used, for example, as highly saturating flux guides or for applications in electrical machines. When used as a generator or motor, stators or rotors are typically manufactured in the form of laminated packages. The material is used in strip thicknesses ranging from 0.50 mm to very thin dimensions of 0.050 mm.

Das Material wird zur Erzielung der magnetischen Eigenschaften einer Wärmebehandlung unterzogen, die auch als magnetische Schlussglühung bezeichnet wird. Diese Wärmebehandlung findet oberhalb der Rekristallisationstemperatur und unterhalb des Phasenübergangs α/γ statt, meist im Bereich von 700°C bis 900°C.To achieve the magnetic properties, the material is subjected to a heat treatment, also known as final magnetic annealing. This heat treatment takes place above the recrystallization temperature and below the α/γ phase transition, usually in the range from 700°C to 900°C.

Im Gegensatz zu Elektroblechen aus Eisen-Silizium (FeSi) wird Band aus CoFe typischerweise nicht bereits schlussgeglüht angeboten. Schlussgeglühtes Band ist weich durch ein rekristallisiertes Gefüge und gleichzeitig spröde durch die Ordnungseinstellung und lässt sich daher nur unzureichend stanzen. Des Weiteren führen Schneid- oder Stanzprozesse zu einer signifikanten Verschlechterung der magnetischen Eigenschaften. Daher findet bei CoFe-Blechen nach der Formgebung noch eine Schlussglühung statt, entweder an Blechtafeln, an Einzellamellen oder an fertigen Blechpaketen.In contrast to electrical steel made of iron-silicon (FeSi), strip made of CoFe is typically not offered in a final annealed condition. Final annealed strip is soft due to a recrystallized structure and at the same time brittle due to the adjustment of order and can therefore only be punched inadequately. Furthermore, cutting or stamping processes lead to a significant deterioration in the magnetic properties. For this reason, CoFe sheets undergo final annealing after shaping, either on sheet metal panels, on individual laminations or on finished sheet metal packages.

Durch die magnetische Schlussglühung kommt es allerdings auch zu einer Veränderung der Abmessungen des Bleches. Dieses Längenwachstum liegt im Bereich von 0,03 % bis 0,20 %.However, the magnetic final annealing also changes the dimensions of the sheet. This increase in length is in the range of 0.03% to 0.20%.

Bei Kenntnis des Wachstums lässt sich durch ein Vorhaltemaß des Stanzwerkzeugs ein isotropes Wachstum in gewissen Grenzen ausgleichen und/oder die Bleche bzw. Blechpakete können nachbearbeitet werden, wie zum Beispiel in der WO 2007/009442 A2 offenbart ist. Solche Prozesse sind mit höheren Kosten verbunden und sind je nach Geometrie auch nicht immer praktisch.If the growth is known, an allowance of the punching tool can compensate for isotropic growth within certain limits and/or the laminations or laminations can be reworked, such as in FIG WO 2007/009442 A2 is revealed. Such processes are associated with higher costs and, depending on the geometry, are not always practical.

Die Druckschrift JP S62 188756 A offenbart eine Folie mit einer Zusammensetzung (Fe1-a Coa)100-xMx, wobei M eines oder mehrerer der Elemente Ti, V, Cr, Mn, Si, Zr, Nb, Mo, Sn, Pb, Zn, Ta, W, Ni, und Al ist, a das Verhältnis von Co zu Fe von 0.2-0.6 bezeichnet und x 0,05-10 Gew.-% beträgt.The pamphlet JP S62 188756 A discloses a foil having a composition (Fe 1-a Co a ) 100-x M x , where M is one or more of Ti, V, Cr, Mn, Si, Zr, Nb, Mo, Sn, Pb, Zn, Ta , W, Ni, and Al, a denotes the ratio of Co to Fe of 0.2-0.6, and x is 0.05-10% by weight.

Aufgabe ist es daher, ein Band aus einer CoFe-Legierung sowie ein Verfahren zum Herstellen eines Bandes aus einer CoFe-Legierung anzugeben, die nach der magnetischen Schlussglühung ein reduziertes Wachstum aufweist.The object is therefore to specify a strip made from a CoFe alloy and a method for producing a strip made from a CoFe alloy which exhibits reduced growth after the final magnetic anneal.

Erfindungsgemäß wird ein Verfahren nach Anspruch 1, ein Verfahren nach Anspruch 7 und ein Band aus einer CoFe-Legierung nach Anspruch 13 bereitgestellt.According to the present invention there is provided a method as claimed in claim 1, a method as claimed in claim 7 and a CoFe alloy ribbon as claimed in claim 13.

Erfindungsgemäß wird ein Verfahren zum Herstellen eines Bandes aus einer CoFe-Legierung bereitgestellt, das Folgendes umfasst. Zunächst wird eine Schmelze bestehend aus 35 Gew.-% ≤ Co ≤ 55 Gew.-%, 0 Gew.-% ≤ V ≤ 3 Gew.-%, 0 Gew.-% ≤ Ni ≤ 2 Gew.-%, 0 Gew.-% ≤ Nb ≤ 0,50 Gew.-%, 0 Gew.-% ≤ Zr + Ta ≤ 1,5 Gew.-%, 0 Gew.-% ≤ Cr ≤ 3 Gew.-%, 0 Gew.-% ≤ Si ≤ 3 Gew.-%, 0 Gew.-% ≤ Al ≤ 1 Gew.-%, 0 Gew.-% ≤ Mn ≤ 1 Gew.-%, 0 Gew.-% ≤ B ≤ 0,25 Gew.-%, 0 Gew.-% ≤ C ≤ 0,1 Gew.-%, Rest Fe sowie bis zu 1 Gew.-% Verunreinigungen bereitgestellt, wobei die Verunreinigungen eines oder mehrere der Gruppen O, N, S, P, Ce, Ti, Mg, Be, Cu, Mo und W aufweisen können. Die Schmelze wird unter Vakuum abgegossen und anschließend zu einem Gussblock erstarrt. Der Gussblock wird zu einer Bramme und anschließend zu einem Warmwalzband mit einer Dicke D1 warmgewalzt.According to the present invention, there is provided a method of manufacturing CoFe alloy ribbon, comprising the following. First, a melt consisting of 35% by weight ≤ Co ≤ 55% by weight, 0% by weight ≤ V ≤ 3% by weight, 0% by weight ≤ Ni ≤ 2% by weight, 0% by weight % ≤ Nb ≤ 0.50 wt%, 0 wt% ≤ Zr + Ta ≤ 1.5 wt%, 0 wt% ≤ Cr ≤ 3 wt%, 0 wt% % ≤ Si ≤ 3 wt%, 0 wt% ≤ Al ≤ 1 wt%, 0 wt% ≤ Mn ≤ 1 wt%, 0 wt% ≤ B ≤ 0.25 wt% .-%, 0 wt .-% ≤ C ≤ 0.1 wt .-%, remainder Fe and up to 1 wt .-% impurities provided, the impurities one or more of the groups O, N, S, P, Ce , Ti, Mg, Be, Cu, Mo and W. The melt is cast under vacuum and then solidified into a cast block. The ingot is hot-rolled into a slab and then into a hot-rolled strip having a thickness D 1 .

Danach wird das Warmwalzband von einer Temperatur oberhalb 700°C auf eine Temperatur kleiner 200°C abgeschreckt. Das Warmwalzband wird zu einem Zwischenband mit einer Dicke D2 kaltgewalzt, das Zwischenband im Durchlauf bei einer Temperatur von oberhalb 700°C zwischengeglüht und auf einer Temperatur von oberhalb 700°C bis auf eine Temperatur kleiner als 200°C in einem gasförmigen Medium abgekühlt. Das Zwischenglühen wird im Durchlauf bei einer Geschwindigkeit von 1 m/min bis 10 m/min durchgeführt, die Verweildauer des Bandes in der Heizzone des Durchlaufofens mit der Temperatur von 700°C bis 1100°C, vorzugsweise 800°C bis 1000°C liegt zwischen 30 Sekunden und 5 Minuten und das Zwischenglühen des Zwischenbandes erfolgt im Durchlauf bei einer Temperatur von 800°C bis 900°C oder 1000°C bis 1100°C. Das wärmebehandelte Zwischenband wird mit einer metallisch blanken Oberfläche zu einem Band mit einer Dicke D3 kaltgewalzt, wobei der Kaltverformungsgrad (D2-D3)/D2≤80%, vorzugsweise ≤60% beträgt und 0,05 mm ≤D3 ≤0,5 mm ist.The hot-rolled strip is then quenched from a temperature above 700°C to a temperature below 200°C. The hot-rolled strip is cold-rolled to form an intermediate strip with a thickness D 2 , the intermediate strip is subjected to intermediate annealing at a temperature above 700° C. and cooled to a temperature of above 700° C. to a temperature below 200° C. in a gaseous medium. Intermediate annealing is carried out continuously at a speed of 1 m/min to 10 m/min, the time the strip stays in the heating zone of the continuous furnace at a temperature of 700°C to 1100°C, preferably 800°C to 1000°C between 30 seconds and 5 minutes and the intermediate annealing of the intermediate strip takes place in a continuous process at a temperature of 800°C to 900°C or 1000°C to 1100°C. The heat-treated intermediate strip is cold-rolled with a metallically bright surface to a strip with a thickness D 3 , the degree of cold deformation (D 2 -D 3 )/D 2 being ≤80%, preferably ≤60% and 0.05 mm ≤D 3 ≤ is 0.5mm.

Nach dem Zwischenglühen des kaltgewalzten Zwischenbandes im Durchlauf wird kein Abschrecken und Beizen durchgeführt, sodass das wärmebehandelte Zwischenband eine metallisch blanke Oberfläche aufweist. Das wärmebehandelte Zwischenband wird mit dieser metallisch blanken Oberfläche durch ein weiteres Kaltwalzen weiterbearbeitet. Somit wird das Herstellungsverfahren vereinfacht. Ferner wird der Kaltverformungsgrad des letzten Kaltwalzenschritts begrenzt, was ermöglicht, dass das daraus resultierende Band nach einer magnetische Schlussglühung, d.h. nach einer Wärmebehandlung bei einer Temperatur zwischen 700°C bis 900°C, ein Wachstum dl/l0 in Längsrichtung des Bandes weniger als 0,08%, vorzugsweise 0,06% und/oder in Querrichtung des Bandes weniger als 0,08%, vorzugsweise 0,06% aufweist. Dabei bezeichnen l0 die Ausgangslänge vor Schlussglühung, dl die absolute Längenänderung nach Schlussglühung und dl/l0 die relative Längenänderung bezogen auf die Ausgangslänge.After the continuous intermediate annealing of the cold-rolled intermediate strip, no quenching and pickling is carried out, so that the heat-treated intermediate strip has a bright metallic surface. The heat-treated intermediate strip is further processed with this metallically bright surface by further cold rolling. Thus, the manufacturing process is simplified. Furthermore, the degree of cold deformation of the last cold rolling step is limited, which allows the resulting strip to have a growth dl/l 0 in the longitudinal direction of the strip less than 0.08%, preferably 0.06% and/or in the cross direction of the tape less than 0.08%, preferably 0.06%. l 0 denotes the initial length before final annealing, dl the absolute change in length after final annealing and dl/l 0 the relative change in length based on the initial length.

Die magnetische Schlussglühung dieser CoFe-Legierung findet oberhalb der Rekristallisationstemperatur und unterhalb des Phasenübergangs α/γ statt. Die Rekristallisationstemperatur und die Temperatur, bei der der α/γ Phasenübergang stattfindet, ist von der Zusammensetzung der CoFe-Legierung abhängig. Meist wird die magnetische Schlussglühung im Bereich von 700°C bis 900°C durchgeführt. Beim anschließenden Abkühlen findet eine Ordnungseinstellung statt, d.h. es bildet sich eine B2-Überstruk-tur aus. Durch die magnetische Schlussglühung und die damit verbundene Ordnungseinstellung kommt es zu einer bleibenden Veränderung der Abmessungen des Blechs bei Raumtemperatur bzw. ein bleibendes Längenwachstum. Ein Band mit einer Ausgangslänge l0 bei Raumtemperaturvor der Schlussglühung weist somit eine Länge von l0 + dl nach der Schlussglühung und bei derselben Raumtemperatur auf. In manchen Ausführungsbeispielen ist dl größer als 0.The final magnetic annealing of this CoFe alloy takes place above the recrystallization temperature and below the α/γ phase transition. The recrystallization temperature and the temperature at which the α/γ phase transition takes place depends on the composition of the CoFe alloy. Mostly the magnetic Final annealing carried out in the range from 700°C to 900°C. During the subsequent cooling, an adjustment of order takes place, ie a B2 superstructure is formed. Due to the magnetic final annealing and the associated adjustment of order, there is a permanent change in the dimensions of the sheet at room temperature or a permanent increase in length. A strip with an initial length l 0 at room temperature before the final anneal thus has a length l 0 + dl after the final anneal and at the same room temperature. In some embodiments, dl is greater than 0.

Dieses bleibende Längenwachstum wird durch das erfindungsgemäße Verfahren reduziert. Erfindungsgemäß beträgt das bleibende Wachstum dl/l0 in Längsrichtung des Bandes weniger als 0,08%, vorzugsweise 0,06% und/oder in Querrichtung des Bandes weniger als 0,08%, vorzugsweise 0,06%. Dieses kleine bleibende Wachstum ist nicht bei Bändern aus einer CoFe-Legierung erreicht, die mit einem der Kaltverformungsgrade des letzten Kaltwalzenschritts von mehr als 80% herstellt werden.This permanent increase in length is reduced by the method according to the invention. According to the invention, the permanent growth dl/l 0 in the longitudinal direction of the strip is less than 0.08%, preferably 0.06% and/or in the transverse direction of the strip is less than 0.08%, preferably 0.06%. This small permanent growth is not achieved in CoFe alloy strip produced with any of the cold working ratios of the final cold rolling step greater than 80%.

Es wurde festgestellt, dass ein wichtiger Einflussfaktor auf die Größe dieses Wachstums der Grad der Kaltverformung (KV) ist: Je höher die Kaltverformung des Materials, desto ausgeprägter wird das Längenwachstum nach der Schlussglühung. Durch die Verwendung einer Zwischenglühung kann der Kaltverformungsgrad im letzten Schritt reduziert werden, sodass nach der magnetischen Schlussglühung das Band ein reduziertes Längenwachstum zeigt.It has been found that an important factor influencing the magnitude of this growth is the degree of cold working (CV): the higher the cold working of the material, the more pronounced the growth in length will be after the final anneal. By using intermediate annealing, the degree of cold working can be reduced in the last step, so that after the final magnetic anneal the strip shows reduced growth in length.

Die Dicke des Bandes, die durch das Warmwalzen und/oder das Kaltwalzen erreicht wird, sowie die Dicke des Bandes, bei dem die Zwischenglühung durchgeführt wird, kann näher definiert werden. Zum Beispiel kann das Band nach dem Warmwalzen eine Dicke D1 von 1,0 mm ≤D1 ≤2,5 mm, vor der Zwischenglühung eine Dicke D2 von 0,1 mm ≤D2 ≤1,0 mm aufweisen.Nach dem zweiten Kaltwalzen weist das Band eine Dicke D3 von 0,05 mm ≤D3 ≤0,5 mm auf.The thickness of the strip, which is achieved by hot rolling and/or cold rolling, as well as the thickness of the strip on which the intermediate annealing is carried out, can be defined more precisely. For example, the strip may have a thickness D 1 of 1.0 mm ≤ D 1 ≤ 2.5 mm after hot rolling, and a thickness D 2 of 0.1 mm ≤ D 2 ≤ 1.0 mm before intermediate annealing second cold rolling, the strip has a thickness D 3 of 0.05 mm ≤D 3 ≤0.5 mm.

In einem Ausführungsbeispiel wird die Dicke des Warmwalzbandes von D1 auf D2 mittels des Kaltwalzens und/oder die Dicke des Zwischenbandes von D2 auf D3 mittels des Kaltwalzens reduziert. Keine weiteren Zwischenglühungen werden somit durchgeführt.In one embodiment, the thickness of the hot-rolled strip is reduced from D 1 to D 2 by means of cold rolling and/or the thickness of the intermediate strip is reduced from D 2 to D 3 reduced by cold rolling. No further intermediate annealing is therefore carried out.

Die Bedingungen der Zwischenglühung im Durchlauf werden so ausgewählt, dass das Band nach der Zwischenglühung kaltgewalzt werden kann. In einem Ausführungsbeispiel weist nach dem Zwischenglühen das Zwischenband ein Gefüge auf, bei dem ein ferritisch rekristallisierter Anteil eine mittlere Korngröße von weniger als 10 µm und/oder ein ferritisch rekristallisierter Anteil keine Körner mit einer Größe von größer als 10 µm aufweist. Dieses Gefüge kann zum Beispiel durch eine Temperatur von 800°C bis 900°C erzeugt werden.The conditions of the intermediate anneal in the pass are selected so that the strip can be cold rolled after the intermediate anneal. In one embodiment, after the intermediate annealing, the intermediate strip has a structure in which a ferritically recrystallized portion has an average grain size of less than 10 μm and/or a ferritically recrystallized portion has no grains larger than 10 μm. This structure can be created, for example, by a temperature of 800°C to 900°C.

In einem Ausführungsbeispiel weist das Zwischenband nach dem Zwischenglühen in einem Biegewechseltest eine Biegezahl bis zum Bruch von mindestens 20 auf. Der Biegewechseltest kann verwendet werden, die Kaltverformbarkeit des Bandes festzustellen.In one exemplary embodiment, the intermediate strip has a bending number before fracture of at least 20 after the intermediate annealing in a reverse bending test. The flex fatigue test can be used to determine the cold formability of the strip.

Das Zwischenglühen im Durchlauf wird bei einer Geschwindigkeit von 1 m/min bis 10 m/min durchgeführt, und die Verweildauer des Bandes in der Heizzone des Durchlaufofens mit der Temperatur von 700°C bis 1100°C, vorzugsweise 800°C bis 1000°C liegt zwischen 30 Sekunden und 5 Minuten. Das Zwischenglühen des Zwischenbandes im Durchlauf erfolgt bei einer Temperatur von 800°C bis 900°C oder 1000°C bis 1100°C. Je nach Länge der Heizzone des Durchlaufofens können die Parameter Glühtemperatur und Bandgeschwindigkeit angepasst werden, um die hier dargestellten Eigenschaften einzustellen.Intermediate continuous annealing is carried out at a speed of 1 m/min to 10 m/min, and the residence time of the strip in the heating zone of the continuous furnace with the temperature of 700°C to 1100°C, preferably 800°C to 1000°C is between 30 seconds and 5 minutes. The intermediate strip is continuously annealed at a temperature of 800°C to 900°C or 1000°C to 1100°C. Depending on the length of the heating zone of the continuous furnace, the annealing temperature and belt speed parameters can be adjusted in order to set the properties shown here.

Nach dem Zwischenglühen kann das Band im Wesentlichen ein Verformungsgefüge oder ein Mischgefüge mit Anteilen einer ehemaligen γ-Phase in einer Matrix aus einer α-Phase aufweisen. Ein Verformungsgefüge kann zum Beispiel bei einer Temperatur von 800°C bis 900°C erreicht werden. Ein Mischgefüge mit Anteilen einer ehemaligen γ-Phase in einer Matrix aus einer α-Phase kann bei einer Temperatur von 1000°C bis 1100°C erreicht werden.After the intermediate anneal, the strip may have essentially a deformation microstructure or a mixed microstructure with portions of a former γ-phase in a matrix of an α-phase. For example, a deformation structure can be achieved at a temperature of 800°C to 900°C. A mixed structure with portions of a former γ-phase in a matrix of an α-phase can be achieved at a temperature of 1000°C to 1100°C.

Das Zwischenglühen kann unter einem Inertgas oder einer trockenen wasserstoffhaltigen Atmosphäre mit einem Taupunkt von weniger als -30°C durchgeführt werden. Nach dem Zwischenglühen im Durchlauf wird das Zwischenband auf eine Temperatur kleiner als 200°C in einem gasförmigen Medium wie einem Inertgas oder einer trockenen wasserstoffhaltigen Atmosphäre abgekühlt. Das Zwischenband wird jedoch nicht abgeschreckt, beispielsweise in Wasser.The intermediate annealing can be carried out under an inert gas or a dry hydrogen-containing atmosphere with a dew point lower than -30°C. After the intermediate continuous annealing, the intermediate strip is cooled to a temperature lower than 200°C in a gaseous medium such as an inert gas or a dry hydrogen-containing atmosphere. However, the intermediate strip is not quenched, for example in water.

In einem alternativen Verfahren wird der Verformungsgrad des Warmwalzens eingestellt, sodass der Verformungsgrad des Kaltwalzens unterhalb einer vorbestimmten Grenze bleibt, damit das Längenwachstum nach der magnetischen Schlussglühung niedrig bleibt. Dieses Verfahren zum Herstellen einer CoFe-Legierung umfasst Folgendes. Eine Schmelze bestehend aus 35 Gew.-% ≤Co ≤55 Gew.-%, 0 Gew.-% ≤V ≤3 Gew.-%, 0 Gew.-% ≤Ni ≤2 Gew.-%, 0 Gew.-% ≤Nb ≤0,50 Gew.-%, 0 Gew.-% ≤ Zr + Ta ≤1,5 Gew.-%, 0 Gew.-% ≤Cr ≤3 Gew.-%, 0 Gew.-% ≤Si ≤3 Gew.-%, 0 Gew.-% ≤Al ≤1 Gew.-%, 0 Gew.-% ≤Mn ≤1 Gew.-%, 0 Gew.-% ≤B ≤0,25 Gew.-%, 0 Gew.-% ≤C ≤0,1 Gew.-%, Rest Fe sowie bis zu 1 Gew.-% Verunreinigungen wird bereitgestellt, wobei die Verunreinigungen eine oder mehrere der Gruppen O, N, S, P, Ce, Ti, Mg, Be, Cu, Mo und W aufweisen können. Die Schmelze wird unter Vakuum abgegossen und anschließend zu einem Gussblock erstarrt. Der Gussblock wird zu einer Bramme und anschließend zu einem Band mit einer Dicke D1 warmgewalzt, wobei 1 mm ≤D1 < 2 mm ist. Danach wird das Band von einer Temperatur oberhalb 700°C auf eine Temperatur kleiner 200°C abgeschreckt. Das Band wird kaltgewalzt und die Dicke von D1 auf eine Dicke D2 reduziert, wobei der Kaltverformungsgrad (D1-D2)/D1 ≤80%, vorzugsweise ≤60% beträgt. Die Enddicke D2 ist 0,05 mm ≤D2 ≤0,5 mm.In an alternative method, the hot rolling strain rate is adjusted so that the cold rolling strain rate remains below a predetermined limit in order to keep the elongation after the final magnetic anneal low. This method of manufacturing a CoFe alloy includes the following. A melt consisting of 35% by weight ≤Co ≤55% by weight, 0% by weight ≤V ≤3% by weight, 0% by weight ≤Ni ≤2% by weight, 0% by weight %≦Nb≦0.50 wt%, 0 wt%≦Zr + Ta≦1.5 wt%, 0 wt%≦Cr≦3 wt%, 0 wt%≦ Si ≤3 wt%, 0 wt% ≤Al ≤1 wt%, 0 wt% ≤Mn ≤1 wt%, 0 wt% ≤B ≤0.25 wt% %, 0% by weight ≤C ≤0.1% by weight, remainder Fe and up to 1% by weight impurities is provided, the impurities being one or more of the groups O, N, S, P, Ce, Ti, Mg, Be, Cu, Mo and W may include. The melt is cast under vacuum and then solidified into a cast block. The ingot is hot rolled into a slab and then into a strip having a thickness D 1 where 1 mm ≤ D 1 < 2 mm. The strip is then quenched from a temperature above 700°C to a temperature below 200°C. The strip is cold rolled and the thickness reduced from D 1 to a thickness D 2 , the degree of cold deformation (D 1 -D 2 )/D 1 being ≤80%, preferably ≤60%. The final thickness D 2 is 0.05 mm ≤ D 2 ≤ 0.5 mm.

In diesem Verfahren wird der Verformungsgrad des Warmwalzens und somit die Dicke D1 des Bandes nach dem Warmwalzen und vor dem Kaltwalzen so eingestellt, dass mit einem Verformungsgrad von weniger als 80%, vorzugsweise weniger als 60%, die gewünschte Enddicke D2 erreicht werden kann. Typischerweise wird im Vergleich zu einem herkömmlichen kommerziellen Verfahren der Verformungsgrad des Warmwalzens erhöht und der Verformungsgrad des Kaltwalzens entsprechend reduziert.In this process, the degree of deformation during hot rolling and thus the thickness D 1 of the strip after hot rolling and before cold rolling is adjusted in such a way that the desired final thickness D 2 can be achieved with a degree of deformation of less than 80%, preferably less than 60% . Typically, compared to a conventional commercial process, the degree of deformation of hot rolling is increased and the degree of deformation of cold rolling is correspondingly reduced.

Die Wärmebehandlung des Bandes kann unter einer trockenen wasserstoffhaltigen Atmosphäre stattfinden.The heat treatment of the ribbon can take place under a dry atmosphere containing hydrogen.

Beide alternative Verfahren können ferner das Formen zumindest eines Blechs aus dem Band umfassen. Das Blech kann aus dem Band gestanzt werden. Eine Vielzahl von Blechen kann zusammengefügt werden, um ein Blechpaket zu bilden. Das Band bzw. das Blech bzw. das Blechpaket können ferner bei einer Temperatur zwischen 700°C bis 900°C wärmebehandelt werden, d.h. eine magnetische Schlussglühung kann durchgeführt werden. Diese Wärmebehandlung findet oberhalb der Rekristallisationstemperatur und unterhalb der Temperatur des Phasenübergangs α/γ statt, meist im Bereich von 700°C bis 900°C. Beim anschließenden Abkühlen findet eine Ordnungseinstellung statt, d.h. es bildet sich eine B2-Überstruktur aus, und die gewünschten magnetischen Eigenschaften, beispielsweise eine Sättigungspolarisation von etwa 2,3 T, und ein elektrischer Widerstand von 0,4 µΩm werden erzeugt.Both alternative methods may further include forming at least one sheet from the strip. The sheet metal can be stamped from the strip. A plurality of laminations can be joined to form a lamination stack. The strip or the sheet or the laminated core can also be heat-treated at a temperature between 700°C and 900°C, i.e. a final magnetic anneal can be carried out. This heat treatment takes place above the recrystallization temperature and below the temperature of the phase transition α/γ, mostly in the range of 700°C to 900°C. During subsequent cooling, the order is adjusted, i.e. a B2 superstructure is formed, and the desired magnetic properties, for example a saturation polarization of around 2.3 T and an electrical resistance of 0.4 µΩm, are generated.

Nach dieser Wärmebehandlung des Bandes beträgt ein Wachstum dl/l0 in Längsrichtung des Bandes weniger als 0,08% und/oder in Querrichtung des Bandes weniger als 0,08% und/oder eine Differenz zwischen dem Wachstum in Längsrichtung und dem Wachstum in Querrichtung des Bandes weniger als 0,06%, vorzugsweise weniger als 0,04%. Dabei bezeichnen l0 die Ausgangslänge vor Schlussglühung, dl die absolute Längenänderung nach Schlussglühung und dl/l0 die relative Längenänderung bezogen auf die Ausgangslänge.After this heat treatment of the strip, a growth dl/l 0 in the longitudinal direction of the strip is less than 0.08% and/or in the transverse direction of the strip is less than 0.08% and/or a difference between the longitudinal growth and the transverse direction growth of the tape less than 0.06%, preferably less than 0.04%. l 0 denotes the initial length before final annealing, dl the absolute change in length after final annealing and dl/l 0 the relative change in length based on the initial length.

Dieses Wachstum ist ein bleibendes Wachstum, das durch die magnetische Schlussglühung und die damit verbundene Ordnungseinstellung verursacht ist. Ein Band mit einer Ausgangslänge l0 bei Raumtemperatur vor der Schlussglühung weist somit eine Länge von l0 + dl nach der Schlussglühung und bei derselben Raumtemperatur auf.This growth is permanent growth, which is caused by the final magnetic annealing and the adjustment of order associated with it. A strip with an initial length l 0 at room temperature before final annealing thus has a length l 0 + dl after final annealing and at the same room temperature.

Erfindungsgemäß wird ein Band aus einer CoFe-Legierung bereitgestellt, die eine Zusammensetzung bestehend aus 35 Gew.-% ≤ Co ≤ 55 Gew.-%, 0 Gew.-% ≤ V ≤ 3 Gew.-%, 0 Gew.-% ≤ Ni ≤ 2 Gew.-%, 0 Gew.-% ≤ Nb ≤ 0,50 Gew.-%, 0 Gew.-% ≤ Zr + Ta ≤ 1,5 Gew.-%, 0 Gew.-% ≤ Cr ≤ 3 Gew.-%, 0 Gew.-% ≤ Si ≤ 3 Gew.-%, 0 Gew.-% ≤ Al ≤ 1 Gew.-%, 0 Gew.-% ≤ Mn ≤ 1 Gew.-%, 0 Gew.-% ≤ B ≤ 0,25 Gew.-%, 0 Gew.-% ≤ C ≤ 0,1 Gew.-%, Rest Fe sowie bis zu 1 Gew.-% Verunreinigungen umfasst, wobei die Verunreinigungen eine oder mehrere der Gruppen O, N, S, P, Ce, Ti, Mg, Be, Cu, Mo und W aufweisen können. Das Band weist eine Dicke d auf, wobei 0,05 mm ≤ d ≤ 0,5 mm ist, eine Vickershärte von größer als 300 und eine Bruchdehnung von weniger als 5%. Nach einer Wärmebehandlung des Bandes bei einer Temperatur zwischen 700°C bis 900°C weist das Band ein Wachstum dl/l0 in Längsrichtung des Bandes weniger als 0,08%, vorzugsweise 0,06% und/oder in Querrichtung des Bandes weniger als 0,08%, vorzugsweise 0,06%, auf.According to the invention, a strip made of a CoFe alloy is provided which has a composition consisting of 35% by weight ≦Co≦55% by weight, 0% by weight ≦V≦3% by weight, 0% by weight ≦ Ni ≤ 2 wt%, 0 wt% ≤ Nb ≤ 0.50 wt%, 0 wt% ≤ Zr + Ta ≤ 1.5 wt%, 0 wt% ≤ Cr ≤ 3 wt%, 0 wt% ≤ Si ≤ 3 wt%, 0 wt% ≤ Al ≤ 1 wt%, 0 wt% ≤ Mn ≤ 1 wt%, 0 Wt of the groups O, N, S, P, Ce, Ti, Mg, Be, Cu, Mo and W. The tape has a thickness d, where 0.05 mm ≤ d ≤ 0.5 mm, a Vickers hardness greater than 300 and an elongation at break less than 5%. After heat treatment of the strip at a temperature between 700°C and 900°C, the strip has a growth dl/l 0 in the longitudinal direction of the strip less than 0.08%, preferably 0.06% and/or in the transverse direction of the strip less than 0.08%, preferably 0.06%.

Dieses Band weist somit mechanische Eigenschaften auf, die in einem kaltgewalzten Zustand vorhanden sind, nämlich eine Bruchdehnung von weniger als 5% und eine Vickershärte von größer als 300. Dieses Band kann weiterbearbeitet werden, beispielsweise um Bleche aus dem Band zu formen und die Bleche zu einem Blechpaket aufzubauen, das wärmbehandelt wird, um die magnetischen Eigenschaften einzustellen. Diese Wärmebehandlung des Bandes wird als magnetische Schlussglühung bezeichnet, da sie dazu dient, die magnetischen Eigenschaften einzustellen, und kann bei einer Temperatur zwischen 700°C und 900°C durchgeführt werden.This strip thus has mechanical properties that are present in a cold-rolled condition, namely an elongation at break of less than 5% and a Vickers hardness greater than 300. This strip can be further processed, for example to form sheets from the strip and to cut the sheets a laminated core that is heat treated to adjust the magnetic properties. This heat treatment of the strip is referred to as a final magnetic anneal because it serves to adjust the magnetic properties and can be carried out at a temperature between 700°C and 900°C.

Dieses Wachstum ist ein bleibendes Wachstum, das durch die magnetische Schlussglühung und die damit verbundene Ordnungseinstellung verursacht ist. Ein Band mit einer Ausgangslänge l0 bei Raumtemperatur vor der Schlussglühung weist somit eine Länge von l0 + dl nach der Schlussglühung und bei derselben Raumtemperatur auf. In manchen Ausführungsbeispielen ist dl größer als 0.This growth is permanent growth, which is caused by the final magnetic annealing and the adjustment of order associated with it. A strip with an initial length l 0 at room temperature before final annealing thus has a length l 0 + dl after final annealing and at the same room temperature. In some embodiments, dl is greater than 0.

Das erfindungsgemäße Band ermöglicht es, Blechschnitte herzustellen, diese zur Einstellung einer optimalen Magnetik einer Schlussglühung zu unterziehen und anschlie-βend eine ausreichend hohe Formgenauigkeit zu erhalten, sodass auf eine weitere Korrektur der Geometrie verzichtet werden kann. Die möglichen Nachteile einer nachträglichen Korrektur der Geometrie, z.B. durch Schleifen, sind eine Verschlechterung der magnetischen Permeabilität an diesen Stellen, das Risiko von Wirbelströmen, da Schleifprozesse ein Verschmieren der Lamellen zur Folge haben können, sowie höhere Kosten. Dadurch können in der Anwendung z.B. als Stator bzw. Rotor geringe Luftspalte eingestellt werden, was zu einer verbesserten Effizienz der elektrischen Maschine führt.The strip according to the invention makes it possible to produce sheet metal sections, to subject them to final annealing in order to set an optimal magnetic field and then to obtain a sufficiently high dimensional accuracy so that further correction of the geometry can be dispensed with. The possible disadvantages of subsequent correction of the geometry, eg by grinding, are a deterioration in the magnetic permeability at these points, the risk of eddy currents, since grinding processes can result in smearing of the lamellae, and higher costs. As a result, when used as a stator or rotor, for example, low Air gaps are set, which leads to improved efficiency of the electric machine.

In einem Ausführungsbeispiel kann das Band eine geringere Dicke, beispielsweise eine Dicke mit 0,05 mm ≤ d ≤ 0,356 mm, aufweisen. Ferner können eine Vielzahl von Blechen ein Blechpaket bilden.In one embodiment, the band may have a reduced thickness, for example a thickness of 0.05 mm≦d≦0.356 mm. Furthermore, a multiplicity of laminations can form a laminated core.

In einem Ausführungsbeispiel beträgt nach der Wärmebehandlung des Bandes bei einer Temperatur zwischen 700 °C bis 900 °C eine Differenz zwischen dem bleibenden Wachstum in Längsrichtung und dem bleibenden Wachstum in Querrichtung des Bandes weniger als 0,06%, vorzugsweise weniger als 0,04%.In one embodiment, after heat treating the ribbon at a temperature between 700°C to 900°C, a difference between the permanent growth in the longitudinal direction and the permanent growth in the transverse direction of the ribbon is less than 0.06%, preferably less than 0.04%. .

Das erfindungsgemäße CoFe-Band mit deutlich reduziertem Wachstum hat den weiteren Vorteil, dass ein Stanzwerkzeug so ausgelegt werden kann, dass es sowohl für andere Legierungen wie SiFe als auch für CoFe verwendbar ist. Dies führt bei den hohen Kosten für ein solches Werkzeug zu einem wirtschaftlichen Vorteil.The CoFe ribbon according to the invention with significantly reduced growth has the further advantage that a stamping tool can be designed in such a way that it can be used both for other alloys such as SiFe and for CoFe. Given the high costs for such a tool, this leads to an economic advantage.

Verschiedene CoFe-Legierung können verwendet werden. In anderen Ausführungsbeispielen weist die CoFe-Legierung eine der folgenden Zusammensetzungen auf:

  • 35 bis 55 Gew.-% Co, bis zu 2.5 Gew.-% V, Rest Fe, zum Beispiel 49 Gew.-% Co, 49 Gew.-% Fe und 2 Gew.-% V sowie bis zu 1 Gew.-% Verunreinigungen,
  • 45 Gew.-% ≤ Co ≤ 52 Gew.-%, 45 Gew.-% ≤ Fe ≤ 52 Gew.-%, 0.5 Gew.-% ≤ V ≤ 2.5 Gew.-% Rest Fe sowie bis zu 1 Gew.-% Verunreinigungen,
  • 35 Gew.-% ≤Co ≤55 Gew.-%, vorzugsweise 45 Gew.-% ≤Co ≤52 Gew.-%, 0 Gew.-% ≤Ni ≤0.5 Gew.-%, 0.5 Gew.-% ≤V ≤2.5 Gew.-%, Rest Eisen sowie bis zu 1 Gew.-% Verunreinigungen,
  • 35 Gew.-% ≤Co ≤55 Gew.-%, 0 Gew.-% ≤V ≤2.5 Gew.-%, 0 Gew.-% ≤(Ta + 2Nb) ≤1 Gew.-%, 0 Gew.-% ≤Zr ≤1,5 Gew.-%, 0 Gew.-% ≤Ni ≤5 Gew.-%, 0 Gew.-% ≤ C ≤0,5 Gew.-%, 0 Gew.-% ≤Cr ≤1 Gew.-%, 0 Gew.-% ≤Mn ≤1 Gew.-%, 0 Gew.-% ≤Si ≤1 Gew.-%, 0 Gew.-% ≤Al ≤1 Gew.-%, 0 Gew.-% ≤B ≤0.01 Gew.-%, Rest Fe sowie bis zu 1 Gew.-% Verunreinigungen (nicht Teil der beanspruchten Erfindung),
  • 47 Gew.-% ≤ Co ≤ 50 Gew.-%, 1 Gew.-% ≤ V ≤ 3 Gew.-%, 0 Gew.-% ≤ Ni ≤ 0.25 Gew.-%, 0 Gew.-% ≤ C ≤ 0.007 Gew.-%, 0 Gew.-% ≤ Mn ≤ 0.1 Gew.-%, 0 Gew.-% ≤ Si ≤ 0.1 Gew.-%, 0.07 Gew.-% ≤ Nb ≤ 0.125 Gew.-%, 0 Gew.-% ≤ Zr ≤ 0.5 Gew.-%, Rest Fe sowie bis zu 1 Gew.-% Verunreinigungen, oder
  • 49 Gew.-% ≤ Co ≤ 51 Gew.-%, 0.8 Gew.-% ≤ V ≤ 1.8 Gew.-%, 0 Gew.-% ≤ Ni ≤ 0.5 Gew.-%, Rest Fe sowie bis zu 1 Gew.-% Verunreinigungen.
Various CoFe alloys can be used. In other exemplary embodiments, the CoFe alloy has one of the following compositions:
  • 35 to 55% by weight Co, up to 2.5% by weight V, balance Fe, for example 49% by weight Co, 49% by weight Fe and 2% by weight V and up to 1% by weight % impurities,
  • 45% by weight ≦Co≦52% by weight, 45% by weight ≦Fe≦52% by weight, 0.5% by weight ≦V≦2.5% by weight, remainder Fe and up to 1% by weight % impurities,
  • 35 wt% ≤Co ≤55 wt%, preferably 45 wt% ≤Co ≤52 wt%, 0 wt% ≤Ni ≤0.5 wt%, 0.5 wt% ≤V ≤2.5% by weight, remainder iron and up to 1% by weight impurities,
  • 35 wt% ≤Co ≤55 wt%, 0 wt% ≤V ≤2.5 wt%, 0 wt% ≤(Ta + 2Nb) ≤1 wt%, 0 wt% %≦Zr≦1.5 wt%, 0 wt%≦Ni≦5 wt%, 0 wt%≦C≦0.5 wt%, 0 wt%≦Cr≦ 1 wt%, 0 wt% ≤Mn ≤1 wt%, 0 wt% ≤Si ≤1 wt%, 0 wt% ≤Al ≤1 wt%, 0 wt% % ≤B ≤0.01% by weight, balance Fe and up to 1% by weight impurities (not part of the claimed invention),
  • 47 wt%≦Co≦50 wt%, 1 wt%≦V≦3 wt%, 0 wt%≦Ni≦0.25 wt%, 0 wt%≦C≦ 0.007 wt%, 0 wt% ≤ Mn ≤ 0.1 wt%, 0 wt% ≤ Si ≤ 0.1 wt%, 0.07 wt% ≤ Nb ≤ 0.125 wt%, 0 wt% .-% ≤ Zr ≤ 0.5 wt .-%, balance Fe and up to 1 wt .-% impurities, or
  • 49% by weight ≤ Co ≤ 51% by weight, 0.8% by weight ≤ V ≤ 1.8% by weight, 0% by weight ≤ Ni ≤ 0.5% by weight, remainder Fe and up to 1% by weight. -% impurities.

CoFe-basierte Legierungen sind unter den Handelsnamen VACOFLUX 50, VACOFLUX 48, VACODUR 49, VACODUR 50, VACODUR S Plus, Rotelloy, HIPERCO 50, Permendur, AFK und 1J22 erhältlich.CoFe-based alloys are available under the trade names VACOFLUX 50, VACOFLUX 48, VACODUR 49, VACODUR 50, VACODUR S Plus, Rotelloy, HIPERCO 50, Permendur, AFK and 1J22.

Die Verunreinigungen können eine oder mehrere der Gruppe O, N, S, P, Ce, Ti, Mg, Be, Cu, Mo und W aufweisen.The impurities can contain one or more of the group O, N, S, P, Ce, Ti, Mg, Be, Cu, Mo and W.

Ausführungsbeispiele werden nun anhand der Zeichnungen und folgenden Beispielen näher erläutert.

Figur 1
zeigt einen Graph von gemessenem mittlerem Wachstum dl/l0 nach einer Schlussglühung von Bändern, die zu unterschiedlichen Dicken d kaltgewalzt werden.
Figur 2
zeigt einen Graph von Dehngrenze Rp0,2 und Zugfestigkeit Rm in Abhängigkeit von der Temperatur der Durchlaufglühung.
Figur 3
zeigt optische Aufnahmen der Gefüge von drei Proben nach einer Zwischenglühung bei unterschiedlichen Temperaturen.
Figur 4
zeigt Magnetisierungskurven B(H) nach verschiedenen Zwischenglühungen und einer Schlussglühung.
Figur 5
zeigt einen Graph der gemessenen Längenänderung in Walzrichtung gegenüber dem Kaltverformungsgrad für zwei verschiedene Proben.
Exemplary embodiments will now be explained in more detail with reference to the drawings and the following examples.
figure 1
shows a graph of measured mean growth dl/l0 after a final anneal of strips cold rolled to different gauges d.
figure 2
shows a graph of yield strength R p0.2 and tensile strength R m as a function of continuous annealing temperature.
figure 3
shows optical images of the structures of three samples after intermediate annealing at different temperatures.
figure 4
shows magnetization curves B(H) after various intermediate anneals and a final anneal.
figure 5
Figure 12 shows a graph of the measured length change in the rolling direction versus the degree of cold working for two different samples.

Es hat sich gezeigt, dass das Längenwachstum eines Bandes aus einer CoFe-Legierung nach einer Schlussglühung durch eine Begrenzung des Kaltverformungsgrads reduziert werden kann.It has been shown that the growth in length of a strip made of a CoFe alloy after a final anneal can be reduced by limiting the degree of cold working.

Figur 1 zeigt einen Graph von gemessenem mittlerem Wachstum dl/l0 nach einer Schlussglühung in % in Längsrichtung an den 50% CoFe-Werkstoffen VACOFLUX 50 (49Fe-49Co-2V) und als Vergleichsbeispiel HIPERCO 50 (49Fe-49Co-2V). Die untersuchten Proben hatten eine Dicke nach einem Warmwalzen von 2 mm oder größer, und werden zu unterschiedlichen Enddicken kaltgewalzt und somit unterschiedlichen Kaltverformungsgraden unterzogen. l0 bezeichnet die Ausgangslänge vor Schlussglühung, dl die absolute Längenänderung nach Schlussglühung und dl/l0 die relative Längenänderung bezogen auf die Ausgangslänge. figure 1 shows a graph of measured average growth dl/l0 after a final anneal in % in the longitudinal direction on the 50% CoFe materials VACOFLUX 50 (49Fe-49Co-2V) and as a comparative example HIPERCO 50 (49Fe-49Co-2V). The samples examined had a gauge after hot rolling of 2mm or greater, and are cold rolled to different final gauges and thus undergo different degrees of cold working. l 0 denotes the initial length before final annealing, dl the absolute change in length after final annealing and dl/l 0 the relative change in length based on the initial length.

Diese Längenänderung bzw. Wachstum ist eine bleibende Längenänderung bzw. ein bleibendes Wachstum, die durch die magnetische Schlussglühung und die damit verbundene Ordnungseinstellung verursacht ist. Eine Probe mit einer Ausgangslänge l0 bei Raumtemperatur vor der Schlussglühung weist somit eine Länge von l0 + dl nach der Schlussgühung und bei derselben Raumtemperatur auf.This change in length or growth is a permanent change in length or growth that is caused by the final magnetic annealing and the associated adjustment of order. A sample with an initial length l 0 at room temperature before the final annealing thus has a length of l 0 + dl after the final annealing and at the same room temperature.

Während an Warmwalzmaterial, d.h. mit 0% Kaltverformung (KV), noch ein bleibendes kleines Längenwachstum gegenüber der Ausgangslänge im Bereich von 0,03 % bis 0,05 % bei Raumtemperatur gemessen wird, zeigt ein Band mit einer Banddicke von 0,35 mm bereits ein bleibendes Wachstum von über 0,10 %. Bei noch höherer Kaltverformung, z.B. an Banddicke 0,10 mm, findet bereits ein bleibendes Wachstum von über 0,20 % statt. Diese bleibende Veränderung im Längenwachstum ist voraussichtlich auf eine sich zunehmend ausgeprägte Textur zurückzuführen. Diese Ergebnisse zeigen, dass ein wichtiger Einflussfaktor auf die Größe dieses Wachstums der Grad der Kaltverformung ist: Je höher die Kaltverformung des Materials, desto ausgeprägter wird das Längenwachstum nach der Schlussglühung.While hot-rolled material, ie with 0% cold deformation (KV), still shows a small, persistent increase in length compared to the original length in the range of 0.03% to 0.05% at room temperature, a strip with a strip thickness of 0.35 mm already shows this a sustained growth of over 0.10%. With even higher cold forming, eg on a strip thickness of 0.10 mm, permanent growth of over 0.20% takes place. This permanent change in length growth is likely due to an increasingly distinct texture. These results show that an important factor influencing the size of this growth is the degree of cold working: the higher the cold working of the material, the more pronounced the growth in length after the final anneal.

Folglich zeigen dieser Ergebnisse, dass im Prinzip die bleibende Veränderung im Längenwachstum reduziert werden kann, wenn der Grad der Kaltverformung reduziert ist. Im Prinzip kann der Grad der Kaltverformung reduziert werden, in dem eine Zwischenglühung zwischen zwei Kaltverformungsschritten mit jeweils einem kleineren Kaltverformungsgrad durchgeführt wird. Auf Grund der Ordnungseinstellung durch eine Zwischenglühung ist jedoch eine CoFe-Legierung anschließend spröde und nicht mehr verarbeitbar. Folglich wird herkömmlich durch einen anschließenden Abschreckvorgang die Sprödigkeit wieder aufgehoben. Dieser Abschreckvorgang ist jedoch aufwändig und mit technischen Nachteilen sowie hohen Kosten verbunden.Consequently, these results indicate that, in principle, the permanent change in elongation can be reduced if the degree of cold working is reduced. In principle, the degree of cold working can be reduced by performing an intermediate anneal between two cold working steps, each with a smaller cold working degree. Due to the adjustment of order through intermediate annealing, however, a CoFe alloy is subsequently brittle and can no longer be processed. Consequently, the brittleness is conventionally eliminated again by a subsequent quenching process. However, this quenching process is complex and associated with technical disadvantages and high costs.

Erfindungsgemäß wird die Reduzierung des Kaltverformungsgrads bei vorgegebener Enddicke durch die Einführung einer Zwischenglühung oder durch die Reduzierung der Warmwalzdicke erreicht.According to the invention, the reduction in the degree of cold deformation for a given final thickness is achieved by introducing intermediate annealing or by reducing the hot-rolled thickness.

Erfindungsgemäß wird eine Zwischenglühung im Durchlauf so ausgeführt, dass die durch das Walzen verursachte Kaltverfestigung verringert wird und gleichzeitig durch die Vermeidung von grobkörnigem Ferrit ein walzbares Gefüge trotz versprödender Ordnungseinstellung entsteht. Ferner wird das Band nach der Zwischenglühung nicht abgeschreckt, beispielsweise in Wasser oder Öl, und nicht gebeizt, so dass das Band mit einer metallisch blanken Oberfläche kaltgewalzt wird. Folglich ist das Verfahren einfacher und kostengünstiger durchzuführen.According to the invention, intermediate annealing is carried out in a continuous process in such a way that the strain hardening caused by rolling is reduced and at the same time, by avoiding coarse-grained ferrite, a structure that can be rolled is created despite the brittle adjustment of order. Furthermore, after the intermediate annealing, the strip is not quenched, for example in water or oil, and is not pickled, so that the strip is cold-rolled with a bright metallic surface. As a result, the process is simpler and less expensive to carry out.

Nach erfolgter Zwischenglühung ist es somit möglich, eine weitere Kaltverformung bis an Enddicke durchzuführen. Durch ein solches Verfahren ist es prinzipiell möglich, den Kaltverformungsgrad an Enddicke 0,50 mm oder dünner soweit zu begrenzen, dass gleichzeitig das Längenwachstum signifikant reduziert wird. Die Kaltverformung soll erfindungsgemäß maximal 80 % betragen, vorzugsweise bis zu 60 %, wie durch die folgenden Beispiele und Versuchsergebnisse dargelegt wird. Tabelle 1 Zwischenglühung an Dicke Enddicke keine Zwgl. 1,0 mm 0,5 mm 0,35 mm 0,20 mm 0,10 mm 0,35 mm 83 % 65 % (*) 30 % (*) - - - 0,20 mm 90 % 80 % (*) 60 % (*) 43 % (*) - - 0,10 mm 95 % 90 % 80 % (*) 71 % (*) 50 % (*) - 0,05 mm 98 % 95 % 90 % 86 % 75 % (*) 50 % (*) After intermediate annealing, it is therefore possible to carry out further cold forming up to the final thickness. In principle, such a process makes it possible to limit the degree of cold deformation at the final thickness of 0.50 mm or thinner to such an extent that length growth is significantly reduced at the same time. According to the invention, the cold deformation should be at most 80%, preferably up to 60%, as illustrated by the following examples and test results. Table 1 intermediate anneal to thickness final thickness no 1.0mm 0.5mm 0.35mm 0.20mm 0.10mm 0.35mm 83% 65% (*) 30% (*) - - - 0.20mm 90% 80% (*) 60% (*) 43% (*) - - 0.10mm 95% 90% 80% (*) 71% (*) 50% (*) - 0.05mm 98% 95% 90% 86% 75% (*) 50% (*)

Tabelle 1 zeigt den Kaltverformungsgrad in Abhängigkeit von Enddicke und Zwischenglühung. Als Warmwalzdicke wurde 2 mm angenommen. Die mit (*) gekennzeichneten Zustände stellen erfindungsgemäße Zustände dar.Table 1 shows the degree of cold working as a function of the final thickness and intermediate annealing. A hot-rolled thickness of 2 mm was assumed. The states marked with (*) represent states according to the invention.

Als Material wurde ein Band der Legierung VACODUR 49 verwendet, mit einer Zusammensetzung von 48,6 Gew.-% Co, 1,86 Gew.-% V, 0,09 Gew.-% Nb, C < 0,0070 Gew.-%, Rest Fe und Verunreinigungen. Das Band wurde an eine Dicke von 2 mm warmgewalzt und anschließend im Eis-Salzwasserbad bei einer Temperatur oberhalb 700°C abgeschreckt. Anschließend konnte das Band an Dicke 0,35 mm kaltgewalzt werden.A strip of the VACODUR 49 alloy was used as the material, with a composition of 48.6% by weight Co, 1.86% by weight V, 0.09% by weight Nb, C <0.0070% by weight. %, balance Fe and impurities. The strip was hot-rolled to a thickness of 2 mm and then quenched in an ice-salt water bath at a temperature above 700°C. The strip could then be cold-rolled to a thickness of 0.35 mm.

Die Zwischenglühung im Durchlauf wurde an einem Durchlaufofen mit einer Glühzone von 6 m Länge erprobt. Als Temperaturen wurden dabei 850°C, 900°C, 950°C, 1000°C und 1050°C gewählt, bei einer Geschwindigkeit von 6 m/min. Die Glühung wurde unter trockenem H2 durchgeführt. Die unterschiedlichen Temperaturen der Zwischenglühung im Durchlauf sind im Folgenden als Varianten 1 bis 5 bezeichnet.Intermediate continuous annealing was tested in a continuous furnace with an annealing zone 6 m long. The temperatures chosen were 850° C., 900° C., 950° C., 1000° C. and 1050° C. at a speed of 6 m/min. The anneal was performed under dry H 2 . The different temperatures of the intermediate annealing in the run are referred to below as variants 1 to 5.

Tabelle 2 zeigt die gemessenen mechanischen Eigenschaften der durchlaufgeglühten Bänder der Varianten 1 bis 5. Die Zugproben wurden längs zur Walzrichtung entnommen. Die Biegewechsel wurden an Streifen bestimmt (längs/quer zur Walzrichtung). Eine Biegeprobe 900°C 6m/min quer war nicht verfügbar.Table 2 shows the measured mechanical properties of the continuously annealed strips of variants 1 to 5. The tensile specimens were taken along the direction of rolling. The bending cycles were determined on strips (longitudinal/transverse to the rolling direction). A bend test 900°C 6m/min transverse was not available.

Figur 2 zeigt einen Graph von Dehngrenze Rp0,2 und Zugfestigkeit Rm der Zugproben gegen die Temperatur T der Durchlaufglühung mit 6 m/min.. Der Zustand Ref. bezeichnet den Zustand einer Probe ohne Durchlaufglühung und somit einen Vergleichszustand. figure 2 shows a graph of yield point R p0.2 and tensile strength R m of the tensile specimens versus the temperature T of the continuous annealing at 6 m/min. The condition Ref. denotes the condition of a sample without continuous annealing and thus a comparative condition.

Die mechanischen Eigenschaften dieser Proben mit einer Dicke von 0,35 mm zeigen, dass bei allen durchlaufgeglühten Varianten (1-5) eine hohe Bruchdehnung des Materials resultiert. Bei den Varianten 1, 3, 4 und 5 ist zudem die Differenz Rm zu Rp0,2 relativ groß (>400 MPa), was auf eine gute plastische Verformbarkeit hinweist. Tabelle 2 Variante Zwischenglühung im Durchlauf Härte HV10 E-Modul GPa Rp0,2 MPa Rm MPa Rm-Rp0,2 MPa A % #Biegewechsel Probenentnahme längs / quer Referenz walzhart 342 214 1119 1194 75 1,6 >20 / 3-7 1 850°C, 6 m/min 337 243 868 1322 454 16,0 >20 / 15 2 900°C, 6 m/min 256 223 514 798 284 8,0 3 / n.v. 3 950°C, 6 m/min 233 219 459 865 406 10,6 2-7/2 4 1000°C, 6 m/min 247 197 492 1084 592 18,5 >20 / >20 5 1050°C, 6 m/min 266 224 576 1005 429 11,9 >20 / >20 The mechanical properties of these samples with a thickness of 0.35 mm show that all continuously annealed variants (1-5) result in a high elongation at break of the material. In variants 1, 3, 4 and 5, the difference between R m and Rp 0.2 is relatively large (>400 MPa), which indicates good plastic deformability. Table 2 variant Intermediate annealing in the run Hardness HV10 Modulus of elasticity GPa R p0.2 MPa R m MPa R m - R p0.2 MPa A% #Bending change Sampling longitudinal / transverse reference hard as rolled 342 214 1119 1194 75 1.6 >20 / 3-7 1 850°C, 6 m/min 337 243 868 1322 454 16.0 >20 / 15 2 900°C, 6 m/min 256 223 514 798 284 8.0 3 / not applicable 3 950°C, 6 m/min 233 219 459 865 406 10.6 2-7/2 4 1000°C, 6 m/min 247 197 492 1084 592 18.5 >20 / >20 5 1050°C, 6 m/min 266 224 576 1005 429 11.9 >20 / >20

Ein weiterer Nachweis der unterschiedlichen Duktilität gelingt über die Zahl der Biegewechsel im Biege-Wechselversuch. Die als Varianten 1, 4 und 5 gekennzeichneten Zustände zeigen in beiden Richtungen eine hohe Anzahl an möglichen Biegewechseln.A further proof of the different ductility succeeds via the number of bending cycles in the bending cycle test. The states marked as variants 1, 4 and 5 show a high number of possible bending cycles in both directions.

Eine metallographische Untersuchung zeigt, dass die unterschiedlichen Varianten stark unterschiedliche Gefüge aufweisen, die in drei Gruppen unterteilt werden können.A metallographic examination shows that the different variants have very different structures, which can be divided into three groups.

Bei Variante 1 führt eine Zwischenglühung bei niedrigen Temperaturen nur zu einer unvollständigen Rekristallisation. Beispielhaft wurde bei einer Temperatur von 850°C das vorliegende Gefüge erzielt.In Variant 1, intermediate annealing at low temperatures only leads to incomplete recrystallization. For example, the present structure was achieved at a temperature of 850°C.

Bei Varianten 2 und 3 führt eine Zwischenglühung bei 900°C bzw. 950°C zu einem ferritisch rekristallisierten, grobkörnigen Gefüge.In variants 2 and 3, intermediate annealing at 900°C or 950°C leads to a ferritic, recrystallized, coarse-grained structure.

Bei Varianten 4 und 5 führt eine Zwischenglühung im Zweiphasengebiet α/γ zu einem Mischgefüge mit Anteilen der ehemaligen γ-Phase in einer α-Matrix. Beispielhaft wurde bei einer Temperatur von 1000°C das vorliegende Gefüge erzielt.In variants 4 and 5, an intermediate annealing in the two-phase area α/γ leads to a mixed structure with parts of the former γ-phase in an α-matrix. By way of example, the present structure was achieved at a temperature of 1000°C.

Figur 3 zeigt optische Aufnahmen der Gefüge von drei Proben nach einer Zwischenglühung bei unterschiedlichen Temperaturen. Variante 1 wurde bei 850°C 6m/min wärmebehandelt und zeigt gute Walzbarkeit, N > 20, ein Verformungsgefüge und beginnende Rekristallisation. Variante 3 wurde bei 950°C 6 m/min wärmebehandelt und zeigt schlechte Walzbarkeit, N = 2 - 7 und ist ferritisch rekristallisiert. Variante 4 wurde bei 1000°C 6 m/min wärmebehandelt und zeigt gute Walzbarkeit, N > 20, ein ungleichförmiger Ferrit, Mischgefüge mit Anteilen der ehemaligen γ-Phase in einer α-Matrix. figure 3 shows optical images of the structures of three samples after intermediate annealing at different temperatures. Variant 1 was heat treated at 850°C 6m/min and shows good rollability, N > 20, a deformation structure and the beginning of recrystallization. Variant 3 was heat treated at 950°C 6 m/min and shows poor rollability, N = 2 - 7 and is ferritic recrystallized. Variant 4 was heat-treated at 1000°C at 6 m/min and shows good rollability, N > 20, a non-uniform ferrite, mixed structure with portions of the former γ-phase in an α-matrix.

Tabelle 3 zeigt den Einfluss zusätzlicher Kaltverformung auf die mechanischen Eigenschaften von durchlaufgeglühtem VACODUR 49. Alle geglühten Bänder wurden an einem kommerziellen 20-Rollen-Walzgerüst gewalzt. Eine starke Verhärtung des Materials wird bereits beim ersten Stich gezeigt, was darauf hindeutet, dass das Material im geordneten Zustand vorliegt. Tabelle 3 Variante Durchlaufglühung Banddicke Härte HV E-Modul GPa Rp0,2 MPa Rm MPa A % Referenz walz hart 0,35 342 214 1119 1194 1,6 1 850°C 6 m/min 0,35 337 243 868 1322 16,0 0,27 461 210 1541 1570 0,6 0,20 443 214 1505 1549 0,6 0,10 424 215 1399 1470 0,8 2 900°C 6 m/min 0,35 256 223 514 798 8,0 0,33 414 213 1189 1269 4,8 4 1000°C 6 m/min 0,35 247 197 492 1084 18,5 0,10 368 200 1157 1217 0,6 Table 3 shows the influence of additional cold working on the mechanical properties of continuously annealed VACODUR 49. All annealed strips were rolled on a commercial 20-high mill. A strong Hardening of the material is shown as early as the first stitch, indicating that the material is in the ordered state. Table 3 variant continuous annealing tape thickness Hardness HV Modulus of elasticity GPa R p0.2 MPa R m MPa A % reference roll hard 0.35 342 214 1119 1194 1.6 1 850°C 6 m/min 0.35 337 243 868 1322 16.0 0.27 461 210 1541 1570 0.6 0.20 443 214 1505 1549 0.6 0.10 424 215 1399 1470 0.8 2 900°C 6 m/min 0.35 256 223 514 798 8.0 0.33 414 213 1189 1269 4.8 4 1000°C 6 m/min 0.35 247 197 492 1084 18.5 0.10 368 200 1157 1217 0.6

Die Bänder, die nach Variante 1, 4 und 5 gefertigt wurden, konnten bis an Dicke 0,10 mm gewalzt werden. Im Gegensatz dazu zeigten die Varianten 2 und 3 eine starke Sprödigkeit und reagierten empfindlich auf Zug. Daher konnte das Material der Variante 2 nicht und das Material der Variante 3 nur bedingt gewalzt werden.The strips, which were manufactured according to variants 1, 4 and 5, could be rolled up to a thickness of 0.10 mm. In contrast, variants 2 and 3 showed strong brittleness and were sensitive to tension. Therefore, the material of variant 2 could not be rolled and the material of variant 3 could only be rolled to a limited extent.

Überraschenderweise stellte sich also bei den Versuchen heraus, dass es die Möglichkeit gibt, ein CoFe-Band nach einer Durchlaufglühung zu walzen, sofern die Ausbildung eines grobkörnigen Gefüges vermieden wird.Surprisingly, the tests showed that it is possible to roll a CoFe strip after continuous annealing, as long as the formation of a coarse-grained structure is avoided.

Das Längenwachstum nach einer weiteren Wärmbehandlung zum Einstellen der magnetischen Eigenschaften bei einer Temperatur zwischen 700°C und 900°C, d.h. nach einer Schlussglühung wird untersucht.The growth in length after a further heat treatment to adjust the magnetic properties at a temperature between 700°C and 900°C, ie after a final anneal, is examined.

Tabelle 4 zeigt das Längenwachstum (gemessen in Längsrichtung) nach magnetischer Schlussglühung von VACODUR 49, Warmwalzdicke 2 mm. Beide Varianten, d.h. Varianten 1 und 4, weisen also ein deutlich reduziertes Wachstum bei geringer Banddicke auf. Tabelle 4 Referenz: Variante 1: Variante 4: keine Zwischenglühung Zwischenglühung an 0,35 mm bei 850°C 6 m/min Zwischenglühung an 0,35 mm bei 1000°C 6 m/min Enddicke KV dl/l0 KV dl/l0 KV dl/l0 0,35 mm 83 % 0,129 % 0 % 0,035 % 0 % 0,032 % 0,20 mm 90 % 0,145 % 43 % 0,055 % 43 % 0,037 % 0,10 mm 95 % 0,195 % 71 % 0,054 % 71 % 0,000 % 0,055 mm - - - - 84% 0,159 % Table 4 shows the growth in length (measured in longitudinal direction) after final magnetic annealing of VACODUR 49, hot-rolled thickness 2 mm. Both variants, ie variants 1 and 4, therefore exhibit significantly reduced growth with a small strip thickness. Table 4 Reference: Version 1: Variant 4: no intermediate glow Intermediate annealing at 0.35 mm at 850°C 6 m/min Intermediate annealing at 0.35 mm at 1000°C 6 m/min final thickness KV dl/l 0 KV dl/l 0 KV dl/l 0 0.35mm 83% 0.129% 0% 0.035% 0% 0.032% 0.20mm 90% 0.145% 43% 0.055% 43% 0.037% 0.10mm 95% 0.195% 71% 0.054% 71% 0.000% 0.055mm - - - - 84% 0.159%

Das so erhaltene Band wurde bei Zwischendicke 0,25 mm und bei verschiedenen Enddicken von 0,20 mm bzw. 0,10 mm hinsichtlich des Längenwachstums charakterisiert. Die Messung erfolgte jeweils an Einzelstreifen der Länge 165 mm, deren Länge vor und nach der Schlussglühung (6h 880°C unter H2) exakt vermessen wurde. Aus der Differenz der Messlängen kann die Längenänderung dl bestimmt werden. Setzt man diese ins Verhältnis zur Ausgangslänge l0, so erhält man das relative Längenwachstum dl/l0. Die in Tabelle 4 angeführten Messungen wurden stets in Längsrichtung durchgeführt, d.h. es wurde das Wachstum längs zur Walzrichtung bestimmt.The tape obtained in this way was characterized with regard to length growth with an intermediate thickness of 0.25 mm and with different final thicknesses of 0.20 mm and 0.10 mm. The measurement was carried out on individual strips with a length of 165 mm, the length of which was measured exactly before and after the final annealing (6h 880°C under H 2 ). The change in length dl can be determined from the difference in the measured lengths. If you put this in relation to the initial length l 0 , you get the relative increase in length dl/l 0 . The measurements listed in Table 4 were always carried out in the longitudinal direction, ie the growth was determined along the direction of rolling.

Bei dem herkömmlich hergestellten Referenzmaterial, d.h. ohne Zwischenglühung, liegt das Längenwachstum an Dicke 0,35 mm bereits bei 0,129 %. Bei steigender Kaltverformung steigt das Wachstum bis auf 0,195 % an Dicke 0,10 mm.With the conventionally produced reference material, i.e. without intermediate annealing, the increase in length at a thickness of 0.35 mm is already 0.129%. With increasing cold deformation, the growth increases up to 0.195% at a thickness of 0.10 mm.

Die erfindungsgemäße Variante 1 weist hingegen an Enddicke 0,10 mm eine betragsmäßig deutlich reduzierte Längenänderung auf. So wurde an dem Band nach der magnetischen Schlussglühung an 0,10 mm ein mittleres Wachstum dl/l0 in Längsrichtung von 0,054% gemessen.In contrast, variant 1 according to the invention has a significantly reduced change in length at the final thickness of 0.10 mm. So was post on the tape the final magnetic anneal at 0.10 mm measured an average growth dl/l 0 in the longitudinal direction of 0.054%.

Auch das Band der Variante 4 zeigte ein reduziertes Wachstum. Es wurde ein mittleres Wachstum dl/l0 in Längsrichtung von 0,000% gemessen, wobei die Einzelwerte zwischen +0,013 % und -0,010 % lagen.Variant 4 tape also showed reduced growth. An average growth dl/l 0 in the longitudinal direction of 0.000% was measured, with the individual values being between +0.013% and -0.010%.

Wenn die Kaltverformung nach Zwischenglühung zu hoch wird, steigt das Wachstum wieder deutlich an. In dem Ausführungsbeispiel Variante 4 (Zwischenglühung 1000°C 6 m/min an 0,35 mm) erhält man an Enddicke 0,055 mm, d.h. bei 84% Kaltverformung bereits wieder ein sehr ausgeprägtes Längenwachstum dl/l0 von 0,159 % in Längsrichtung.If the cold working after intermediate annealing becomes too high, the growth increases again significantly. In the exemplary embodiment variant 4 (intermediate annealing 1000° C. 6 m/min at 0.35 mm) a very pronounced length growth dl/l 0 of 0.159% in the longitudinal direction is obtained at the final thickness of 0.055 mm, ie with 84% cold deformation.

Die Anisotropie des Wachstums, d.h. die Differenz zwischen dem Längenwachstum Längs und quer des Bands, wird untersucht.The anisotropy of the growth, i.e. the difference between the growth in length along and across the ribbon, is examined.

Tabelle 5 zeigt Längenwachstum der Proben aus VACODUR 49 nach zusätzlicher Schlussglühung von 6h bei 880°C, gemessen an Zugproben bzw. Längsstreifen 165 mm x 20 mm. Der Zustand walzhart, 0,10 mm, wurde aus an einer vergleichbaren Probe aus VACOFLUX 48 gemessen, ebenfalls nach Schlussglühung von 6h bei 880°C. Tabelle 5 Wachstum nach zusätzlicher Schlussglühung (6h 880°C) Variante Durchlaufglühung Enddicke längs quer |längs - quer| Referenz keine Zwischenglühung 0,35 mm 0,129 % 0,106 % 0,023 % 0,10 mm 0,210 % 0,110 % 0,100 % 1 850°C, 6 m/min 0,35 mm 0,035 % 0,051 % 0,016 % 0,10 mm 0,054 % 0,052 % 0,002 % 4 1000°C, 6 m/min 0,35 mm 0,032 % 0,058 % 0,026 % 0,10 mm 0,000 % 0,056 % 0,056 % Table 5 shows the growth in length of the VACODUR 49 samples after additional final annealing of 6 hours at 880°C, measured on tensile samples or longitudinal strips 165 mm x 20 mm. The as-rolled condition, 0.10 mm, was measured on a comparable sample made of VACOFLUX 48, also after final annealing of 6 hours at 880°C. Table 5 Growth after additional final annealing (6h 880°C) variant continuous annealing final thickness along across |longitudinal - transverse| reference no intermediate glow 0.35mm 0.129% 0.106% 0.023% 0.10mm 0.210% 0.110% 0.100% 1 850°C, 6 m/min 0.35mm 0.035% 0.051% 0.016% 0.10mm 0.054% 0.052% 0.002% 4 1000°C, 6 m/min 0.35mm 0.032% 0.058% 0.026% 0.10mm 0.000% 0.056% 0.056%

Variante 1 der Tabelle 5 zeigt die vorteilhafte Eigenschaft auf, dass das Wachstum in Längs- und Querrichtung nahezu identisch ist. Die Differenz im Wachstum zwischen Längs- und Querrichtung, |längs - quer|, liegt an Banddicke 0,10 mm bei nur 0,002 %. Somit ist es möglich, Stanzwerkzeuge entsprechend symmetrisch vorzuhalten. Gestanzte runde Teile sind nach der Schlussglühung weiterhin rund.Variant 1 of Table 5 shows the advantageous property that growth in the longitudinal and transverse directions is almost identical. The difference in growth between the longitudinal and transverse directions, |longitudinal - transverse|, is only 0.002% for a strip thickness of 0.10 mm. It is thus possible to stock punching tools symmetrically. Stamped round parts remain round after final annealing.

Variante 4 der Tabelle 5 weist noch eine leichte Anisotropie auf, zeigt aber betragsmäßig ebenfalls ein deutlich geringes Längenwachstum. Die Differenz zwischen Längs- und Querrichtung |längs - quer| liegt mit etwa 0,06 % der Ausgangslänge wesentlich geringer als die Differenz, die bei konventionell hergestelltem Band beobachtet wird und etwa 0,10 % beträgt.Variant 4 of Table 5 still has a slight anisotropy, but also shows a clearly small increase in length in terms of absolute value. The difference between longitudinal and transverse directions |longitudinal - transverse| is, at about 0.06% of the original length, much less than the difference observed in conventionally manufactured tape, which is about 0.10%.

Magnetisch zeigen beide Varianten an Enddicke Eigenschaften, die dem entsprechen, was man an dem Ausgangsmaterial an Dicke 0,35 mm ohne Durchlaufglühung erhält. In nachfolgender Abbildung sind dazu die Neukurven nach magnetischer Schlussglühung bei verschiedenen Banddicken aufgezeigt.Magnetically, both variants show properties in the final thickness that correspond to what is obtained in the starting material with a thickness of 0.35 mm without continuous annealing. The following figure shows the new curves after final magnetic annealing for different strip thicknesses.

Figur 4 zeigt Magnetisierungskurven und den Einfluss weiterer Kaltverformung auf die Neukurve B(H) von durchlaufgeglühtem Band (850°C, 1050°C; jeweils 6 m/min). Die Messungen wurden an Stanzringen nach einer Schlussglühung von 6 Stunden bei 880°C in einer trockenen H2 Atmosphäre durchgeführt. figure 4 shows magnetization curves and the influence of further cold working on the new curve B(H) of continuously annealed strip (850°C, 1050°C; 6 m/min each). The measurements were carried out on stamped rings after a final anneal of 6 hours at 880°C in a dry H 2 atmosphere.

In der Figur 4 bezeichnet:

  1. (a) eine Probe mit einer Banddicke von 0,35mm, bei dem keine Durchlaufglühung durchgeführt wird, (Referenz)
  2. (b) eine Probe mit einer Banddicke von 0,35mm, bei dem eine Durchlaufglühung bei 850°C und 6 m/min durchgeführt wird,(Referenz)
  3. (c) eine Probe, die bei einer Banddicke von 0,35mm einer Durchlaufglühung bei 850°C und 6 m/min unterzogen wird und anschließend zu einer Banddicke 0,20mm kaltverformt wird (erfindungsgemäß).
  4. (d) eine Probe mit einer Banddicke von 0,35mm, bei dem keine Durchlaufglühung durchgeführt wird, (Referenz)
  5. (e) eine Probe mit einer Banddicke von 0,35mm, bei dem eine Durchlaufglühung bei 1050°C und 6 m/min durchgeführt wird,(Referenz)
  6. (f) eine Probe, die bei einer Banddicke von 0,35mm einer Durchlaufglühung bei 1050°C und 6 m/min unterzogen wird und anschließend zu einer Banddicke 0,20mm kaltverformt wird (erfindungsgemäß).
In the figure 4 designated:
  1. (a) a sample with a strip thickness of 0.35mm, on which no continuous annealing is carried out, (reference)
  2. (b) a sample with a strip thickness of 0.35mm, which is subjected to continuous annealing at 850°C and 6 m/min (reference)
  3. (c) a sample which, with a strip thickness of 0.35 mm, is subjected to continuous annealing at 850° C. and 6 m/min and is then cold-worked to a strip thickness of 0.20 mm (according to the invention).
  4. (d) a sample with a strip thickness of 0.35mm on which no continuous annealing is carried out (reference)
  5. (e) a sample with a strip thickness of 0.35mm, which is subjected to continuous annealing at 1050°C and 6 m/min (reference)
  6. (f) a sample which, with a strip thickness of 0.35 mm, is subjected to continuous annealing at 1050° C. and 6 m/min and is then cold-worked to a strip thickness of 0.20 mm (according to the invention).

Diese Ergebnisse zeigen, dass das erfindungsgemäße Verfahren wenig Einfluss auf die Magnetisierungskurve hat, so dass Band mit geeigneten magnetischen Eigenschaften bereitgestellt werden kann.These results show that the inventive method has little influence on the magnetization curve, so that tape with suitable magnetic properties can be provided.

Der erfindungsgemäße zweite Ansatz besteht darin, die Warmwalzdicke zu reduzieren, so dass bei einer Enddicke von 0,50 mm oder dünner die Kaltverformung an Enddicke maximal 80 % beträgt. Die Dicke des Warmwalzbands liegt bei CoFe-Legierungen typischerweise bei 2 mm bis 4 mm. Durch eine Reduzierung auf 1 mm kann bei einer Enddicke von 0,35 mm eine Reduzierung des Kaltverformungsgrads und damit des Längenwachstums erreicht werden.The second approach according to the invention is to reduce the hot rolling gauge so that with a final gauge of 0.50 mm or thinner, the cold working on the final gauge is a maximum of 80%. In the case of CoFe alloys, the thickness of the hot-rolled strip is typically 2 mm to 4 mm. With a final thickness of 0.35 mm, a reduction to 1 mm can reduce the degree of cold deformation and thus the growth in length.

Warmwalzbänder wurden in den Dicken nach Tabelle 6 hergestellt (WW-Dicke) und jeweils an unterschiedliche Enddicke kaltgewalzt. Tabelle 6 Enddicke WW-Dicke 3,5 mm WW-Dicke 2,0 mm WW-Dicke 1,5 mm WW-Dicke 1,0 mm 0,35 mm 90 % 83% 77 % (*) 65 % (*) 0,20 mm 94% 90% 87% 80 % (*) 0,10 mm 97% 95 % 93 % 90 % 0,05 mm 99 % 98 % 97% 95 % Hot-rolled strips were produced in the thicknesses according to Table 6 (WW thickness) and cold-rolled to different final thicknesses. Table 6 final thickness WW thickness 3.5 mm WW thickness 2.0 mm WW thickness 1.5 mm WW thickness 1.0 mm 0.35mm 90% 83% 77% (*) 65% (*) 0.20mm 94% 90% 87% 80% (*) 0.10mm 97% 95% 93% 90% 0.05mm 99% 98% 97% 95%

Tabelle 6 zeigt Kaltverformungsgrad in Abhängigkeit von Enddicke und Warmwalzdicke (ohne Zwischenglühung). Die mit (*) gekennzeichneten Zustände stellen erfindungsgemäße Bänder dar.Table 6 shows degree of cold working as a function of final gauge and hot-rolled gauge (without intermediate annealing). The states marked with (*) represent tapes according to the invention.

Figur 5 zeigt einen Graph von Längenwachstum (dl/l0) von Streifen unterschiedlicher Warmwalzdicke aus VACOFLUX 50 längs zur Walzrichtung nach Schlussglühung gegen den Kaltverformungsgrad (D1-D2)/D1. Die Längenänderung in Walzrichtung gegenüber dem Kaltverformungsgrad ist für zwei verschiedene Proben A und B nach magnetischer Schlussglühung dargestellt. Bei einer konstanten Kaltwalzdicke D2 von 0,35 mm wurde die Warmwalzdicke D1 zwischen 1,0 mm und 3,5 mm variiert. Für jeden Datenpunkt ist die zugehörige Warmwalzdicke (WW-Dicke) mit einem Pfeil markiert. figure 5 shows a graph of growth in length (dl/l 0 ) of strips of different hot-rolled gauges made of VACOFLUX 50 along the rolling direction after final annealing versus the degree of cold deformation (D 1 -D 2 )/D 1 . The change in length in the rolling direction versus the degree of cold deformation is shown for two different samples A and B after final magnetic annealing. With a constant cold-rolled thickness D 2 of 0.35 mm, the hot-rolled thickness D 1 was varied between 1.0 mm and 3.5 mm. For each data point, the associated hot rolled thickness (WW thickness) is marked with an arrow.

Aus diesen Ergebnissen erkennt man, dass der Schritt von der WW-Dicke D1 3,5 mm auf 2,0 mm bereits zu einer deutlichen Reduzierung des Wachstums an einer Probe mit einer Enddicke D2 von 0,35 mm führt. Für eine WW-Dicke 1,0 mm oder dünner ist es möglich, an Enddicke 0,35 mm ein Längenwachstum nach Schlussglühung von < 0,08% zu erhalten.From these results it can be seen that the step from the WW thickness D 1 of 3.5 mm to 2.0 mm already leads to a significant reduction in growth on a sample with a final thickness D 2 of 0.35 mm. For a WW thickness of 1.0 mm or thinner, it is possible to obtain < 0.08% growth in length after final annealing at a final thickness of 0.35 mm.

In einer weiteren Untersuchung wurde exemplarisch ein WW-Band der Dicke 1,5 mm aus VACOFLUX 50 bis an Enddicke 0,50 mm gewalzt und einer magnetischen Schlussglühung (4h 820°C, H2) unterzogen. Das Längenwachstum bei diesem Versuch betrug nur 0,045 %. Insgesamt erkennt man, dass für eine Enddicke 0,50 mm oder dünner mit einer entsprechend geringen Warmwalzdicke eine starke Reduzierung des Längenwachstums erzielbar ist.In a further investigation, a WW strip with a thickness of 1.5 mm was rolled from VACOFLUX 50 to a final thickness of 0.50 mm and subjected to final magnetic annealing (4h 820°C, H 2 ). The increase in length in this test was only 0.045%. Overall, it can be seen that for a final thickness of 0.50 mm or thinner with a correspondingly small hot-rolled thickness, a strong reduction in length growth can be achieved.

Zusammengefasst wird in einem bestimmten Beispiel das erfindungsgemäße Band über folgenden Weg hergestellt:

  • Warmwalzen an Dicke 2,5 mm bis 1,0 mm
  • Abschrecken von Temperaturen oberhalb 700°C
  • Walzen an Zwischendicke (1,0 mm bis 0,20 mm)
  • Glühung im Durchlauf bei 700°C bis 1100°C, vorzugsweise derart, dass kein grobkörniges ferritisches Gefüge entsteht, sondern ein unvollständig rekristallisiertes oder ein feinkörnig rekristallisiertes ferritisches Gefüge
  • Walzen an Enddicke mit einer Kaltverformung von bis zu 80%, vorzugsweise mit einer Kaltverformung von bis zu 60%
In summary, in a specific example, the tape of the present invention is made through the following route:
  • Hot rolling to thickness 2.5mm to 1.0mm
  • Quenching from temperatures above 700°C
  • Rolling to Intermediate Thickness (1.0mm to 0.20mm)
  • Continuous annealing at 700°C to 1100°C, preferably in such a way that no coarse-grained ferritic structure is formed, but rather an incompletely recrystallized or a fine-grained recrystallized ferritic structure
  • Rolling to final gauge with a cold reduction of up to 80%, preferably with a cold reduction of up to 60%

Alternativ kann bei einer Warmbanddicke unterhalb von 2 mm auch auf die Glühung im Durchlauf verzichtet werden, solange die Kaltverformung bei bis zu 80 % liegt, vorzugsweise bei bis zu 60 %.Alternatively, in the case of a hot strip thickness of less than 2 mm, continuous annealing can also be dispensed with as long as cold working is up to 80%, preferably up to 60%.

Das erfindungsgemäße Band weist folgende Eigenschaften auf:

  • Zusammensetzung wie übliche CoFe-Bänder mit in etwa gleichen Anteilen von Eisen und Kobalt und ca. 2 Gew.-% Vanadiumzusatz.
  • Enddicke des Bands 0,50 mm oder dünner, vorzugsweise 0,356 mm oder dünner
  • Vickershärte > 300 HV
  • Bruchdehnung < 5%
  • ein bleibendes Wachstum in Längsrichtung nach magnetischer Schlussglühung < 0,08%, vorzugsweise < 0,06 %
  • ein bleibendes Wachstum in Querrichtung nach magnetischer Schlussglühung < 0,08%, vorzugsweise < 0,06 %
  • Differenz zwischen dem bleibenden Wachstum in Längs- zu dem bleibenden Wachstum in Querrichtung < 0,06 %, vorzugsweise <0,04 %
The tape according to the invention has the following properties:
  • Composition as usual CoFe ribbons with roughly equal proportions of iron and cobalt and approx. 2% by weight added vanadium.
  • Final gauge of tape 0.50 mm or thinner, preferably 0.356 mm or thinner
  • Vickers hardness > 300 HV
  • Elongation at break < 5%
  • a permanent longitudinal growth after magnetic final annealing < 0.08%, preferably < 0.06%
  • a permanent growth in the transverse direction after magnetic final annealing < 0.08%, preferably < 0.06%
  • Difference between permanent growth in the longitudinal direction and permanent growth in the transverse direction < 0.06%, preferably < 0.04%

Claims (15)

  1. Method for producing a strip from a CoFe alloy according to claim 13, comprising:
    the provision of a melt consisting of 35 % w/w ≤ Co ≤ 55 % w/w, 0 % w/w ≤ V ≤ 3 % w/w, 0 % w/w ≤ Ni ≤ 2 % w/w, 0 % w/w ≤ Nb ≤ 0.50 % w/w, 0 % w/w ≤ Zr + Ta ≤ 1.5 % w/w, 0 % w/w ≤ Cr ≤ 3 % w/w, 0 % w/w ≤ Si ≤ 3 % w/w, 0 % w/w ≤ Al ≤ 1 % w/w, 0 % w/w ≤ Mn ≤ 1 % w/w, 0 % w/w ≤ B ≤ 0.25 % w/w, 0 % w/w ≤ C ≤ 0.1 % w/w, rest Fe and up to 1% w/w impurities, wherein the impurities can comprise one or more of the groups of O, N, S, P, Ce, Ti, Mg, Be, Cu, Mo and W,
    the decanting of the melt under vacuum followed by solidifying to form an ingot,
    the hot-rolling of the ingot to form a slab and then a hot-rolled strip with a thickness D1, followed by the quenching of the strip from a temperature above 700°C to a temperature of less than 200°C,
    the cold-rolling of the hot-rolled strip to form an intermediate strip with a thickness D2,
    the intermediate annealing of the intermediate strip in a continuous process at a temperature above 700°C, wherein the intermediate strip is cooled in a gaseous medium from a temperature above 700°C to a temperature of less than 200°C, wherein the intermediate annealing in a continuous process is carried out at a speed of 1 m/min to 10 m/min, the dwell time of the strip in the heating zone of the continuous furnace with the temperature of 700°C to 1100°C, preferably 800°C to 1000°C, is between 30 seconds and 5 minutes and the intermediate annealing of the intermediate strip in a continuous process is carried out at a temperature of 800°C to 900°C or 1000°C to 1100°C,
    the cold-rolling of the heat-treated intermediate strip with a metallic bright surface to form a strip with a thickness D3, wherein the degree of cold deformation (D2-D3)/D2 is ≤ 80%, preferably < 60%, and 0.05 mm ≤ D3 ≤ 0.5 mm.
  2. Method according to claim 1, wherein 1.0 mm ≤ D1 < 2.5 mm and/or 0.1 mm ≤ D2 ≤ 1.0 mm.
  3. Method according to claim 1 or claim 2, wherein after the intermediate annealing the intermediate strip has a structure in which a ferritically recrystallised component has an average grain size of less than 10 µm, or in which a ferritically recrystallised component has no grains with a size of more than 10 µm.
  4. Method according to any of claims 1 to 3, wherein after the intermediate annealing the strip substantially has a deformation structure or a mixed structure with components of a former γ-phase in an α-matrix.
  5. Method according to any of claims 1 to 4, wherein after the intermediate annealing in a continuous process the intermediate strip is cooled in air to a temperature of less than 200°C.
  6. Method according to any of claims 1 to 5, wherein the intermediate annealing is carried out in an inert gas or in a dry hydrogenous atmosphere.
  7. Method for producing a strip from a CoFe alloy according to claim 13, comprising:
    the provision of a melt consisting of 35 % w/w ≤ Co ≤ 55 % w/w, 0 % w/w ≤ V ≤ 3 % w/w, 0 % w/w ≤ Ni ≤ 2 % w/w, 0 % w/w ≤ Nb ≤ 0.50 % w/w, 0 % w/w ≤ Zr + Ta ≤ 1.5 % w/w, 0 % w/w ≤ Cr ≤ 3 % w/w, 0 % w/w ≤ Si ≤ 3 % w/w, 0 % w/w ≤ Al ≤ 1 % w/w, 0 % w/w ≤ Mn ≤ 1 % w/w, 0 % w/w ≤ B ≤ 0.25 % w/w, 0 % w/w ≤ C ≤ 0.1 % w/w, rest Fe and up to 1% w/w impurities, wherein the impurities can comprise one or more of the groups of O, N, S, P, Ce, Ti, Mg, Be, Cu, Mo and W,
    the decanting of the melt under vacuum followed by solidifying to form an ingot,
    the hot-rolling of the ingot to form a slab and then a hot-rolled strip with a thickness D1, wherein 1 mm ≤ D1 ≤ 2 mm, followed by the quenching of the strip from a temperature above 700°C to a temperature of less than 200°C,
    the cold-rolling of the strip and the reduction of the thickness Di to a thickness D2, wherein the degree of cold deformation (D1-D2)/D1 is ≤ 80%, preferably ≤ 60%, wherein 0.05 mm ≤ D2 ≤ 0.5 mm.
  8. Method according to any of claims 1 to 7, further comprising:
    the forming of at least one sheet from the strip.
  9. Method according to claim 7 or claim 8, further comprising:
    the joining of a plurality of sheets to form a laminated core.
  10. Method according to any of claims 1 to 9, further comprising:
    the heat treatment of the strip at a temperature between 700°C and 900°C.
  11. Method according to claim 10, wherein after the heat treatment of the strip a permanent growth dl/l0 in the longitudinal direction of the strip is less than 0.08% and/or in the transverse direction of the strip less than 0.08%, wherein l0 denotes the starting length before the heat treatment, dl the absolute length change after the heat treatment and dl/l0 the relative length change with reference to the starting length, or wherein after the heat treatment of the strip a difference between the permanent growth in the longitudinal direction and the permanent growth in the transverse direction of the strip is less than 0.06%, preferably less than 0.04%.
  12. Method according to claim 10 or claim 11, wherein the heat treatment of the strip is carried out in a dry hydrogenous atmosphere.
  13. Strip from a CoFe alloy,
    consisting of 35 % w/w ≤ Co ≤ 55 % w/w, 0 % w/w ≤ V ≤ 3 % w/w, 0 % w/w ≤ Ni ≤ 2 % w/w, 0 % w/w ≤ Nb ≤ 0.50 % w/w, 0 % w/w ≤ Zr + Ta ≤ 1.5 % w/w, 0 % w/w ≤ Cr ≤ 3 % w/w, 0 % w/w ≤ Si ≤ 3 % w/w, 0 % w/w ≤ Al ≤ 1 % w/w, 0 % w/w ≤ Mn ≤ 1 % w/w, 0 % w/w ≤ B ≤ 0.25 % w/w, 0 % w/w ≤ C ≤ 0.1 % w/w, rest Fe and up to 1% w/w impurities, wherein the impurities can comprise one or more of the groups of O, N, S, P, Ce, Ti, Mg, Be, Cu, Mo and W,
    wherein the strip has a thickness d, 0.05 mm ≤ d ≤ 0.5 mm, a Vickers hardness HV10 of more than 300 and an elongation at break of less than 5% and, after a heat treatment of the tape at a temperature between 700°C and 900°C, a permanent growth dl/l0 in the longitudinal direction of the strip of less than 0.08%, preferably 0.06%, and/or in the transverse direction of the strip of less than 0.08%, preferably 0.06%, wherein l0 denotes the starting length before the heat treatment, dl the absolute length change after the heat treatment and dl/l0 the relative length change with reference to the starting length.
  14. Strip according to claim 13, wherein 0.05 mm ≤ d ≤ 0.356 mm.
  15. Laminated core having a plurality of sheets which form the laminated core, wherein the sheets are formed from the strip according to claim 13 or claim 14.
EP17811215.7A 2016-11-18 2017-11-17 Method for producing a strip of a co-fe alloy, strip of a co-fe alloy and sheet metal stack Active EP3541969B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016222805.6A DE102016222805A1 (en) 2016-11-18 2016-11-18 Semi-finished product and method for producing a CoFe alloy
PCT/EP2017/079682 WO2018091694A1 (en) 2016-11-18 2017-11-17 Method for producing a strip from a cofe alloy, and semi-finished product containing said strip

Publications (2)

Publication Number Publication Date
EP3541969A1 EP3541969A1 (en) 2019-09-25
EP3541969B1 true EP3541969B1 (en) 2023-06-28

Family

ID=60627588

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17811215.7A Active EP3541969B1 (en) 2016-11-18 2017-11-17 Method for producing a strip of a co-fe alloy, strip of a co-fe alloy and sheet metal stack

Country Status (4)

Country Link
US (1) US20190360065A1 (en)
EP (1) EP3541969B1 (en)
DE (1) DE102016222805A1 (en)
WO (1) WO2018091694A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019107422A1 (en) 2019-03-22 2020-09-24 Vacuumschmelze Gmbh & Co. Kg Strip made from a cobalt-iron alloy, laminated core and method for producing a strip made from a cobalt-iron alloy
EP3957757B1 (en) * 2020-08-18 2023-03-01 Vacuumschmelze GmbH & Co. KG Method of producing a cofe alloy strip and a cofe alloy lamination
US11827961B2 (en) * 2020-12-18 2023-11-28 Vacuumschmelze Gmbh & Co. Kg FeCoV alloy and method for producing a strip from an FeCoV alloy

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3065118A (en) * 1959-01-16 1962-11-20 Gen Electric Treatment of iron-cobalt alloys
US3024141A (en) * 1960-08-02 1962-03-06 Allegheny Ludlum Steel Processing magnetic material
DE1180954B (en) * 1961-12-09 1964-11-05 Vacuumschmelze Ag Process for improving the magnetic properties of iron-cobalt alloys
US3634072A (en) * 1970-05-21 1972-01-11 Carpenter Technology Corp Magnetic alloy
JPS62188756A (en) * 1986-02-13 1987-08-18 Kawasaki Steel Corp Grain-oriented foil of high saturation magnetic flux density and its production
IL128067A (en) * 1998-02-05 2001-10-31 Imphy Ugine Precision Iron-cobalt alloy
US6685882B2 (en) * 2001-01-11 2004-02-03 Chrysalis Technologies Incorporated Iron-cobalt-vanadium alloy
DE10320350B3 (en) * 2003-05-07 2004-09-30 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-based alloy used as a material for magnetic bearings and rotors, e.g. in electric motors and in aircraft construction contains alloying additions of cobalt, vanadium and zirconium
DE102005034486A1 (en) 2005-07-20 2007-02-01 Vacuumschmelze Gmbh & Co. Kg Process for the production of a soft magnetic core for generators and generator with such a core
US9243304B2 (en) * 2011-07-01 2016-01-26 Vacuumschmelze Gmbh & Company Kg Soft magnetic alloy and method for producing a soft magnetic alloy
WO2017016604A1 (en) * 2015-07-29 2017-02-02 Aperam Feco alloy, fesi alloy or fe sheet or strip and production method thereof, magnetic transformer core produced from said sheet or strip, and transformer comprising same
CA3040715C (en) * 2016-10-21 2021-07-06 Crs Holdings, Inc. Reducing ordered growth in soft-magnetic fe-co alloys

Also Published As

Publication number Publication date
US20190360065A1 (en) 2019-11-28
EP3541969A1 (en) 2019-09-25
DE102016222805A1 (en) 2018-05-24
WO2018091694A1 (en) 2018-05-24

Similar Documents

Publication Publication Date Title
EP3712283B1 (en) Method of manufacturing a cobalt-iron alloy strip
EP2612942B1 (en) Non-grain oriented electrical steel or sheet metal, component produced from same and method for producing non-grain oriented electrical steel or sheet metal
DE102011053722B3 (en) Process for producing a high-strength electrical steel, electrical steel and its use
EP3971919B1 (en) Method for producing high permeability soft magnetic alloy
EP1918407B1 (en) Iron-cobalt based soft magnetic alloy and method for its manufacture
EP3730286A1 (en) Laminated core and method for producing high permeability soft magnetic alloy
EP2840157B1 (en) Method for producing a non-grain oriented electrical steel strip or sheet and a non-grain oriented electrical steel strip or sheet produced according to this method
DE19934989B4 (en) A composite magnetic member, a method of manufacturing the ferromagnetic member thereof, and a method of manufacturing the non-magnetic member thereof
DE102017208146B4 (en) NO electrical steel for electric motors
EP3541969B1 (en) Method for producing a strip of a co-fe alloy, strip of a co-fe alloy and sheet metal stack
DE10320350B3 (en) Soft magnetic iron-based alloy used as a material for magnetic bearings and rotors, e.g. in electric motors and in aircraft construction contains alloying additions of cobalt, vanadium and zirconium
AT394581B (en) METHOD FOR PRODUCING A NI-FE ALLOY SHEET WITH EXCELLENT DC-MAGNETIC AND AC-MAGNETIC PROPERTIES
WO2020078529A1 (en) Method for producing an no electric strip of intermediate thickness
DE102012105605A1 (en) Soft magnetic alloy and process for producing a soft magnetic alloy
EP4027357A1 (en) Fecov alloy and method for producing a fecov alloy strip
DE60103933T2 (en) MAGNETIC STEEL SHEET WITH NON-ORIENTED GRAIN, METHOD FOR PRODUCING STEEL PLATES AND STEEL PLATES RECEIVED THEREOF
EP3960886A1 (en) Non-grain oriented metallic flat product, method for its production and use of same
WO2020094230A1 (en) Electric steel strip or sheet for higher frequency electric motor applications, with improved polarisation and low magnetic losses
DE102012105606A1 (en) Soft magnetic alloy and process for producing a soft magnetic alloy
DE2537092B2 (en) Material for the rotor of a fast-running hysteresis motor and process for its manufacture

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190618

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200923

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref document number: 502017014985

Country of ref document: DE

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: C22C0038100000

Ipc: C22C0030000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 8/02 20060101ALI20221220BHEP

Ipc: C21D 8/12 20060101ALI20221220BHEP

Ipc: C21D 1/18 20060101ALI20221220BHEP

Ipc: C22C 19/07 20060101ALI20221220BHEP

Ipc: C22C 38/12 20060101ALI20221220BHEP

Ipc: H01F 1/147 20060101ALI20221220BHEP

Ipc: C22C 38/10 20060101ALI20221220BHEP

Ipc: C22F 1/10 20060101ALI20221220BHEP

Ipc: C22C 30/00 20060101AFI20221220BHEP

INTG Intention to grant announced

Effective date: 20230118

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FOHR, JAN FREDERIK

Inventor name: VOLBERS, NIKLAS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1582762

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017014985

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230928

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231030

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231028

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231123

Year of fee payment: 7

Ref country code: DE

Payment date: 20231127

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628