EP1918407B1 - Iron-cobalt based soft magnetic alloy and method for its manufacture - Google Patents

Iron-cobalt based soft magnetic alloy and method for its manufacture Download PDF

Info

Publication number
EP1918407B1
EP1918407B1 EP07113372A EP07113372A EP1918407B1 EP 1918407 B1 EP1918407 B1 EP 1918407B1 EP 07113372 A EP07113372 A EP 07113372A EP 07113372 A EP07113372 A EP 07113372A EP 1918407 B1 EP1918407 B1 EP 1918407B1
Authority
EP
European Patent Office
Prior art keywords
weight
soft magnetic
alloy according
magnetic alloy
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07113372A
Other languages
German (de)
French (fr)
Other versions
EP1918407A1 (en
Inventor
Joachim Dr. Gerster
Witold Dr. Pieper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Publication of EP1918407A1 publication Critical patent/EP1918407A1/en
Application granted granted Critical
Publication of EP1918407B1 publication Critical patent/EP1918407B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9053Metals
    • F02M2200/9061Special treatments for modifying the properties of metals used for fuel injection apparatus, e.g. modifying mechanical or electromagnetic properties

Definitions

  • the invention relates to a soft magnetic iron-cobalt-based alloy having a cobalt content of 10% by weight (wt .-%) to 22 wt .-%, and a method for producing the alloy and a method for producing semi-finished from this alloy , in particular of magnetic components for actuator systems.
  • Soft magnetic alloys based on iron-cobalt have a high saturation magnetization and can therefore be used to form high-force and / or small-volume electromagnetic actuator systems.
  • a typical application of these alloys are solenoid valves, such as solenoid valves for fuel injection in internal combustion engines.
  • Soft magnetic alloys based on iron-cobalt with a cobalt content of 10 wt .-% to 22 wt .-% are for example from US 7,128,790 known.
  • the switching frequency can be limited due to the resulting eddy currents. Further, improvements in the strength of the magnetic cores in continuous operation in high frequency actuator systems are desired.
  • the object of the invention is therefore to provide an alloy which is better suited for use as a magnetic core in fast-switching actuators.
  • a soft magnetic alloy consists of 10% by weight ⁇ Co ⁇ 22% by weight, 0% by weight ⁇ V ⁇ 4% by weight, 1.5% by weight ⁇ Cr ⁇ 5% by weight, 1 wt .-% ⁇ Mn ⁇ 2 wt .-%, 0 wt .-% ⁇ Mo ⁇ 1 wt .-%, 0.5 wt .-% ⁇ Si ⁇ 1.5 wt .-%, 0.1 wt .-% ⁇ Al ⁇ 1.0 wt .-%, balance iron and unavoidable impurities.
  • the alloy has impurities such as a maximum of 200 ppm of nitrogen, a maximum of 400 ppm of carbon and a maximum of 100 ppm of oxygen.
  • the alloy according to the invention has a higher specific resistance compared with the binary Co-Fe alloy, which leads to a suppression of the eddy currents, with the lowest possible lowering of the saturation polarization. This is achieved by the alloying of the non-magnetic elements. Further, the alloy has higher strength due to the content of Al and Si. This alloy is suitable for use as a magnetic core of a fast-switching actuator system, such as a fuel injection valve of an internal combustion engine.
  • Al, V and Si also increase the electrical resistance while raising the annealing temperature.
  • an alloy with high resistance, high saturation and high annealing temperature and thus good soft magnetic properties can be specified.
  • the alloy has higher strength due to the content of Al and Si.
  • the alloy is cold-workable and ductile in the final annealed condition.
  • the alloy can have an elongation A L of> 2%, preferably A L > 20%.
  • the elongation A L is measured during tensile tests.
  • This alloy is suitable for use as a magnetic core of a fast-switching actuator system, such as a fuel injection valve of an internal combustion engine.
  • the alloy should also have high electrical resistivity and good soft magnetic properties.
  • This alloy thus has a cobalt content of 10% by weight ⁇ Co ⁇ 22% by weight.
  • a low cobalt content reduces the raw material cost of the alloy, making it suitable for high cost pressure applications, such as in the automotive industry.
  • the maximum permeability is high within this range, which leads to cheaper lower drive currents when used as an actuator.
  • the alloy has a cobalt content of 14 wt% ⁇ Co ⁇ 22 wt% and 14 wt% ⁇ Co ⁇ 20 wt%.
  • the soft magnetic alloy of the magnetic core has a content of chromium and manganese, which leads to a higher electrical resistivity p in the annealed state with little decrease in saturation. This higher resistivity allows smaller switching times for an actuator as eddy currents are reduced. At the same time, the alloy has a high saturation and a high permeability ⁇ max , so that good soft magnetic properties are maintained.
  • the elements Si and Al of the alloy provide improved strength of the alloy without significantly degrading the soft magnetic properties.
  • the strength of the alloy can be significantly increased by solid solution hardening, without a significant deterioration of the soft magnetic properties.
  • the aluminum content and vanadium content according to the invention enables a higher annealing temperature, which leads to good soft magnetic properties of the coercive force H c and the maximum permeability ⁇ max leads.
  • High permeability is desired, as this leads to lower drive currents when using the alloy as a magnetic core or flux guide of an actuator.
  • the alloy has a silicon content of 0.5% by weight ⁇ Si ⁇ 1.0% by weight.
  • the content of Mo has been kept low to prevent the formation of carbides, which may lead to deterioration of the magnetic properties.
  • the content of aluminum and silicon is from 0.6% by weight ⁇ Al + Si ⁇ 1.5% by weight, so that brittleness and processing problems that may occur with higher total contents of aluminum and silicon are avoided ,
  • the content of the elements is chromium and manganese and molybdenum and aluminum and silicon and vanadium 4.0 wt% ⁇ (Cr + Mn + Mo + Al + Si + V) ⁇ 9.0 wt%.
  • This alloy has an even higher resistivity compared to the binary CoFe alloy, which leads to a suppression of the eddy currents, at the same time the saturation polarization is lowered as little as possible and the coercive field strength H c is even less increased.
  • the content of chromium and manganese and molybdenum and aluminum and silicon and vanadium in one embodiment is 6.0% by weight ⁇ Cr + Mn + Mo + Al + Si + V ⁇ 9.0% by weight.
  • the soft magnetic alloy consists of 10 wt% ⁇ Co ⁇ 22 wt%, 0 wt% ⁇ V ⁇ 1 wt%, 1.5 wt% ⁇ Cr ⁇ 3 wt. %, 1 wt% ⁇ Mn ⁇ 2 wt%, 0 wt% ⁇ Mo ⁇ 1 wt%, 0.5 wt% ⁇ Si ⁇ 1.5 wt%, 0 , 1 wt .-% ⁇ Al ⁇ 1.0 wt .-%, balance iron and unavoidable impurities.
  • It can have a content of aluminum and silicon of 0.6% by weight ⁇ Al + Si ⁇ 1.5% by weight and / or a content of chromium and manganese and molybdenum and aluminum and silicon of 4.5% by weight.
  • the alloy contains 0 wt% ⁇ V ⁇ 2.0 wt%, 1.6 wt% ⁇ Cr ⁇ 2.5 wt%, 1.25 wt% ⁇ Mn ⁇ 1.5 wt%, 0 wt% ⁇ Mo ⁇ 0.02 wt%, 0.6 wt% ⁇ Si ⁇ 0.9 wt%, and 0.2 wt% ⁇ Al ⁇ 0.7% by weight.
  • the alloy contains 0 wt% ⁇ V ⁇ 0.01 wt%, 2.3 wt% ⁇ Cr ⁇ 3.0 wt%, 1.25 wt% ⁇ Mn ⁇ 1.5 wt%, 0.75 wt% ⁇ Mo ⁇ 1 wt%, 0.6 wt% ⁇ Si ⁇ 0.9 wt% and 0.1 wt% ⁇ Al ⁇ 0.2 wt .-%.
  • the alloy contains 0.75 wt% ⁇ V ⁇ 2.75 wt%, 2.3 wt% ⁇ Cr ⁇ 3.5 wt%, 1.25 wt% ⁇ Mn ⁇ 1.5 wt%, 0 wt% ⁇ Mo ⁇ 0.01 wt%, 0.6 wt% ⁇ Si ⁇ 0.9 wt% and 0.2 wt% % ⁇ Al ⁇ 1.0 wt%.
  • These three alloys have a preferred combination of high electrical resistance, high saturation, and low coercivity.
  • Alloys with the abovementioned compositions have a specific electrical resistance ⁇ > 0.50 ⁇ m or ⁇ > 0.55 ⁇ m or ⁇ > 0.60 ⁇ m or ⁇ > 0.65 ⁇ m. This value provides for an alloy, so that when used as a magnetic core of an actuator system lower eddy currents. This allows the use of the alloy in actuator systems with higher switching times.
  • the proportion of the elements aluminum and silicon in the alloy according to the invention leads to an alloy with a yield strength of R p0.2 > 340 MPa. This higher strength of the alloy can extend the life of the alloy when used as a magnetic core of an actuator system. This is attractive in using the alloy in high frequency actuator systems, such as fuel injection valves in internal combustion engines.
  • the alloy according to the invention has good soft magnetic properties as well as good strength and high electrical resistivity.
  • the alloy has a saturation of J (400A / cm)> 2.00 T or> 1.90 T, and / or a coercive force H c ⁇ 3.5 A / cm or H c ⁇ 2.0 A / cm or and / or H c ⁇ 1.0 A / cm has a maximum permeability ⁇ max > 1000 or ⁇ max > 2000.
  • the inventive content of chromium and manganese and molybdenum and aluminum and silicon and vanadium is between 4.0 wt .-% and 9.0 wt .-%. This higher content allows to provide an alloy that has a higher electrical resistance of ⁇ > 0.6 ⁇ m and a low coercive force H c ⁇ 2.0 A / cm. This combination of properties is particularly suitable for use with fast switching actuators.
  • the invention further provides a soft magnetic core or flux guide for an electromagnetic actuator made of an alloy according to one of the preceding embodiments.
  • This soft magnetic core is in various embodiments a soft magnetic core for a solenoid valve of an internal combustion engine, a soft magnetic core for a fuel injection valve of an internal combustion engine, a soft magnetic core for a direct fuel injection valve of a gasoline engine or a diesel engine, or a soft magnetic component for electromagnetic valve timing such as intake and exhaust valves.
  • the different actuator systems such as solenoid valves and fuel injection valves have different requirements for strength and magnetic properties. These requirements can be met by selecting an alloy having a composition within the ranges described above.
  • the invention also provides a fuel injection valve of an internal combustion engine with a soft magnetic alloy component according to one of the preceding embodiments.
  • the fuel injector is a direct fuel injection valve of a gasoline engine and a direct fuel injection valve of a diesel engine.
  • the invention provides an electromagnetic actuator return member and a soft magnetic rotor and a soft magnetic stator for an electric motor and a soft magnetic component for electromagnetic valve timing on an intake valve or exhaust valve used in an engine compartment of, for example, a motor vehicle, of an alloy according to one of the preceding embodiments.
  • the invention also provides a process for the production of semi-finished products from a cobalt-iron alloy, in which workpieces made of a soft magnetic alloy are first produced by melting and hot working, which consist of 10% by weight ⁇ Co ⁇ 22% by weight, 0 wt% ⁇ V ⁇ 4 wt%, 1.5 wt% ⁇ Cr ⁇ 5 wt%, 1 wt% ⁇ Mn ⁇ 2 wt%, 0 wt% ⁇ Mo ⁇ 1 wt .-%, 0.5 wt .-% ⁇ Si ⁇ 1.5 wt .-%, 0.1 wt .-% ⁇ Al ⁇ 1.0 wt .-%, balance iron and unavoidable impurities ,
  • the alloy of the workpieces can also have a composition according to one of the preceding embodiments.
  • the alloy can be melted by various methods. In theory, all common techniques are possible, such as air melting or VIM (vacuum induction melting). For this, e.g. the arc furnace or inductive techniques are used. Treatment with VOD (Vacuum Oxygen Decarburization) or AOD (Argon Oxygen Decarburization) or ESU (Electric Slag Remelting) improves the quality of the product.
  • VIM vacuum induction melting
  • the VIM method is preferred, since thus the contents of the alloying elements more exactly can be set and non-metallic inclusions in the solidified alloy can be better avoided.
  • the melting process is followed by a different series of process steps, depending on the semifinished product to be produced.
  • the ingot resulting from the melting process is converted by pre-blocking into a slab.
  • Preblocking is understood to mean the forming of the ingot into a rectangular section slab by a hot rolling operation at a temperature of, for example, 1250 ° C. After blooming, the scale formed on the surface of the slab is removed by grinding. The grinding is followed by another hot rolling process by which the slab is formed into a strip at a temperature of, for example, 1250 ° C. Subsequently, the impurities formed on the surface of the belt during hot rolling are removed by grinding or pickling, and the strip is cold-worked to the final thickness, which may be in the range of 0.1 mm to 2 mm. Finally, the tape is subjected to a final annealing. During final annealing, the lattice defects resulting from the forming processes heal and crystalline grains are formed in the microstructure.
  • the manufacturing process is when turning parts are produced.
  • billets are made by pre-blocking the ingot with a square cross-section.
  • the so-called pre-blocking takes place at a temperature of for example 1250 ° C.
  • the scale formed during pre-blocking is removed by grinding.
  • Another hot rolling process through which the billets in bars or wires up to a diameter of, for example 13 mm to be formed.
  • distortions of the material are corrected and, on the other hand, the impurities forming on the surface during the hot rolling process are removed.
  • the material is subjected to a final annealing.
  • the final annealing can be carried out in a temperature range of 700 ° C to 1100 ° C. In one embodiment, the final annealing is carried out in the temperature range from 750 ° C to 850 ° C.
  • the final annealing can be carried out under inert gas, hydrogen or vacuum.
  • the conditions such as temperature and duration of the final annealing can be selected so that after the final annealing the alloy has tensile strain parameters of elongation at break A L > 2% or A L > 20%.
  • the alloy is cold worked prior to final annealing.
  • a coil 22 is supplied with power from a current source 23, so that upon energization of the coil 22, a magnetic field is induced.
  • the coil 22 is disposed around the magnetic core 21 so that, due to the induced magnetic field, the magnetic core 21 moves from a first position 24 indicated by the dashed line in FIG FIG. 1 is shown to a second position 25.
  • the first position 24 is a closed position and the second position is an open position. Consequently, the current 26 is controlled by the channel 27 from the actuator system 20.
  • the actuator system 20 is a fuel injection valve of a gasoline engine or a diesel engine, or a direct fuel injection valve of a gasoline engine or a diesel engine.
  • the soft magnetic alloy of the magnetic core 21 has a content of chromium and manganese, which leads to a specific electrical resistance p in the annealed state of 0.572 ⁇ m. This higher resistivity allows for smaller shutter times on the actuator as eddy currents are reduced. At the same time, the alloy has a high saturation J (400 A / cm), measured at a magnetic field strength of 400 A / cm, of 2.137 T and a permeability ⁇ max of 1915, so that good soft magnetic properties are maintained.
  • the elements Si and Al of the alloy provide improved strength of the magnetic core 21 without significantly deteriorating the soft magnetic properties.
  • the yield strength R p0.2 of this alloy is 402 Mpa.
  • the aluminum content enables a higher annealing temperature, which leads to good soft magnetic properties of a coercive force H c of only 2.57 A / cm and a maximum permeability ⁇ max of 1915. A high permeability is desired because this leads to lower drive currents when using the alloy as the magnetic core of an actuator.
  • the content of Mo has been kept low to prevent the formation of carbides, which may lead to deterioration of the magnetic properties.
  • Table 1 shows compositions of various alloys according to the invention.
  • the alloy is first melted in a melting process 1.
  • the alloy can be melted by various methods. In theory, all common techniques are possible, such as air melting or VIM (vacuum induction melting). For example, the arc furnace or inductive Techniques are used. Treatment with VOD (Vacuum Oxygen Decarburization) or AOD (Argon Oxygen Decarburization) or ESU (Electric Slag Remelting) improves the quality of the product.
  • VIM vacuum induction melting
  • AOD Aractive Oxygen Decarburization
  • ESU Electro Slag Remelting
  • the VIM method is preferred because it allows the content of the alloying elements to be adjusted more accurately and non-metallic inclusions in the solidified alloy can be better avoided.
  • the melting process 1, depending on the semifinished product to be produced, is followed by a different series of process steps.
  • the ingot resulting from the melting process 1 is converted by pre-blocking 2 into a slab.
  • Pre-blocking is understood to mean the forming of the ingot into a slab of rectangular cross-section by a hot rolling operation at a temperature of 1250 ° C.
  • the scale formed on the surface of the slab is removed by grinding 3.
  • the grinding 3 is followed by another hot rolling process 4, by which the slab is formed at a temperature of 1250 ° C in a band having a thickness of, for example, 3.5 mm.
  • the impurities formed on the surface of the strip during hot rolling are removed by grinding or pickling 5, and the strip is cold-rolled 6 to the final thickness in the range of 0.1 to 2 mm.
  • the strip is subjected to a final annealing 7 at a temperature of> 700 ° C. During final annealing, the lattice defects resulting from the forming processes heal and crystalline grains are formed in the microstructure.
  • the manufacturing process is when turning parts are produced.
  • billets are made by pre-blocking 8 of the ingot with a square cross-section.
  • the so-called pre-blocking takes place at a temperature of 1250 ° C.
  • the scale formed during pre-blocking 8 is removed by grinding 9.
  • another hot rolling operation 10 by which the billets are converted into rods or wires up to a diameter of 13 mm.
  • straightening and peeling 11 on the one hand, distortions of the material are corrected and, on the other hand, the impurities forming during the hot rolling process 10 are removed on the surface.
  • the material is also subjected to a final annealing 12 here.
  • the coercive force H c was measured as a function of the annealing temperature for the alloys of Table 1. The results are in the FIG. 3 shown. From the FIG. 3 It can be seen that as the temperature increases, the coercive field strength initially decreases and increases at even higher temperatures, which are at the boundary to the two-phase region.
  • the annealing temperature is selected according to the composition, so that the coercive force remains low.
  • the annealing was carried out at a temperature of 760 ° C.
  • FIG. 4 shows the coercive force for the alloys 1 to 4, 8, 10, 11 and 13.
  • the alloys 8, 10, 11 and 13 were also cold worked after hot rolling.
  • the alloys 1 to 4 were only hot rolled.
  • the FIG. 4 shows the influence of different alloying elements on H c at different annealing temperatures.
  • the increase of H c shows the upper limit of the ferritic phase.
  • Alloys 2, 10, 11 and 13 having a lower H c at higher annealing temperatures have an aluminum content of at least 0.68 wt%.
  • Alloys 10 and 11 have a particularly low coercive force H c of less than 1.5 A / cm at annealing temperatures above 850 ° C.
  • These alloys have an aluminum content of 0.84% by weight and 0.92% by weight and a vanadium content of 2.51% by weight and 1.00% by weight, respectively.
  • the phase transition temperature is further shifted upwards. This has the advantage that the magnetic properties can be further improved by using a higher annealing temperature.
  • the specific electrical resistance p of each alloy is above 0.5 ⁇ m. This leads to a suppression of the eddy currents, so that the alloys are suitable for actuator applications with short switching times.
  • the yield strength was measured for the alloys 1 to 7 in the magnetically final annealed condition and is above 340 MPa for each alloy. These alloys can thus be used in applications where higher mechanical loads arise.
  • An alloy according to a first embodiment consists of 18.1 wt .-% Co, 2.24 wt .-% Cr, 1.40 wt .-% Mn, 0.01 wt .-% Mo, 0.83 wt. % Si, 0.24 wt% Al, balance Fe and was prepared as described above.
  • the alloy was annealed at 760 ° C and, when annealed, has a resistivity ⁇ el of 0.542 ⁇ m, a coercive force H c of 2.34 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm) of 2.029 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.146 T, a maximum permeability ⁇ max of 2314, a yield strength R m of 623 MPa, R p0 , 2 of 411 MPa, an elongation at break AL of 29.6% and an E modulus of 220 GPa.
  • An alloy according to a second embodiment consists of 18.2 wt .-% Co, 1.67 wt .-% Cr, 1.39 wt .-% Mn, 0.01 wt .-% Mo, 0.82 wt. % Si, 0.68 wt% Al, balance Fe and was prepared as described above.
  • the alloy was annealed at 800 ° C and, when annealed, has a resistivity ⁇ el of 0.533 ⁇ m, a coercive force H c of 1.94 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), 2.019 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.151 T, a maximum permeability ⁇ max of 1815 , a yield strength R m of 661MPa, R p0.2 of 385 MPa, an elongation at break AL of 25.4% and an E modulus of 221 GPa.
  • An alloy according to a third embodiment consists of 18.3 wt .-% Co, 2.62 wt .-% Cr, 1.37 wt .-% Mn, 0.01 wt .-% Mo, 0.85 wt. % Si, 0.21 wt.% Al, balance Fe and was prepared as described above.
  • the alloy was annealed at 760 ° C and, when annealed, has a resistivity ⁇ el of 0.572 ⁇ m, a coercive force H c of 2.57 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 2.021 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), of 2.137 T, a maximum permeability ⁇ max of 1915, a yield strength R m of 632 MPa, R p0 , 2 of 402 MPa, an elongation at break AL of 28.0% and an E modulus of 217 GPa.
  • An alloy according to a fourth embodiment consists of 18.3 wt .-% Co, 2.42 wt .-% Cr, 1.45 wt .-% Mn, 0.01 wt .-% Mo, 0.67 wt. % Si, 0.23 wt% Al, balance Fe and was prepared as described above.
  • the alloy was annealed at 730 ° C and, when annealed, has a resistivity ⁇ el of 0.546 ⁇ m, a coercive force H c of 2.73 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 2.037 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.156T, a maximum permeability ⁇ max of 2046, a yield strength R m of 615 MPa, R p0.2 of 395 MPa, an elongation at break AL of 29.5% and an E modulus of 223 GPa on.
  • An alloy according to a fifth embodiment consists of 15.40 wt .-% Co, 2.34 wt .-% Cr, 1.27 wt .-% Mn, 0.85 wt .-% Si, 0.23 wt. % Al, balance Fe and was prepared as described above.
  • the alloy was annealed at 760 ° C and, when annealed, has a resistivity ⁇ el of 0.5450 ⁇ m, a coercive force H c of 1.30 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 1.986 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), of 2.105T and a maximum permeability ⁇ max of 3241.
  • An alloy according to a sixth embodiment consists of 18.10 wt .-% Co, 2.30 wt .-% Cr, 1.37 wt .-% Mn, 0.83 wt .-% Si, 0.24 wt. % Al, balance Fe and was prepared as described above.
  • the alloy was annealed at 760 ° C and, when annealed, has a resistivity ⁇ el of 0.5591 ⁇ m, a coercive force H c of 1.39 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 2.027 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), of 2.138 T and a maximum permeability ⁇ max of 2869.
  • An alloy according to a seventh embodiment consists of 21.15 wt .-% Co, 2.31 wt .-% Cr, 1.38 wt .-% Mn, 0.84 wt .-% Si, 0.23 wt. % Al, balance Fe and was prepared as described above.
  • the alloy was annealed at 760 ° C and, when annealed, has a resistivity ⁇ el of 0.5627 ⁇ m, a coercive force H c of 1.93 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 2.066 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), of 2.165 T and a maximum permeability ⁇ max of 1527.
  • the sum of the additions is slightly higher and is between 6 wt .-% and 9 wt .-%.
  • These alloys each have a specific electrical resistance ⁇ el ⁇ 0.60 ⁇ m in the annealed state.
  • An alloy according to an eighth embodiment consists of 18.0 wt% Co, 2.66 wt% Cr, 1.39 wt% Mn, ⁇ 0.01 wt% Mo, 0.87 wt. % Si, 0.17 wt% Al, 1.00 wt% V, balance Fe and was prepared as described above. This alloy was cold worked even after hot rolling.
  • the alloy was annealed at 780 ° C and, when annealed, has a resistivity ⁇ el of 0.627 ⁇ m, a coercive force H c of 1.40 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 1.977 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.088 T, a maximum permeability ⁇ max of 2862, a yield strength R m of 605 MPa, R p0.2 of 374 MPa, an elongation at break AL of 29.7% and an E modulus of 222 GPa.
  • An alloy according to a ninth embodiment consists of 18.0% by weight of Co, 2.60% by weight of Cr, 1.35% by weight of Mn, 0.99% by weight of Mo, 0.84% by weight. % Si, 0.17 wt% Al, ⁇ 0.01 wt% V, balance Fe and was prepared as described above. In addition, this alloy was cold worked.
  • the alloy was annealed at 780 ° C and, when annealed, has a resistivity ⁇ el of 0.604 ⁇ m, a coercive force H c of 2.13 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 21.969 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.092 T, a maximum permeability ⁇ max of 1656, a yield strength R m of 636 MPa, R p0 , 2 of 389 MPa, an elongation at break AL of 29.2% and an E-modulus of 222 GPa.
  • An alloy according to a tenth embodiment consists of 18.0 wt% Co, 1.85 wt% Cr, 1.33 wt% Mn, ⁇ 0.01 wt% Mo, 0.86 wt. % Si, 0.84 wt% Al, 2.51 wt% V, balance Fe and was prepared as described above. Thereafter, the alloy was cold worked.
  • the alloy was annealed at 870 ° C and, when annealed, has a resistivity ⁇ el of 0.716 ⁇ m, a coercive field strength H c of 0.95 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 1.920 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A) / cm), from 2.015 T, a maximum permeability ⁇ max of 4038.
  • This alloy of the tenth embodiment has a particularly advantageous combination of a high resistivity ⁇ el of 0.716 ⁇ m, a low coercive force H c of 0.95 A / cm, and a high saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), from 1.920 T up.
  • An alloy according to an eleventh embodiment consists of 12.0 wt% Co, 2.65 wt% Cr, 1.38 wt% Mn, ⁇ 0.01 wt% Mo, 0.85 wt. % Si, 0.92 wt.% Al, 1.00 wt.% V, remainder Fe and was prepared as described above and additionally clearly deformed.
  • the alloy was annealed at 820 ° C and, when annealed, has a resistivity ⁇ el of 0.658 ⁇ m, a coercive force H c of 0.72 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 1.880 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.008 T, a maximum permeability ⁇ max of 5590, a yield strength R m of 525 MPa, R p0 , 2 of 346 MPa, an elongation at break AL of 33.5% and an E modulus of 216 GPa.
  • the alloy according to the eleventh embodiment has a particularly advantageous combination of high resistivity ⁇ el of 0.658 ⁇ m, low coercive force H c of 0.72 A / cm, and high saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), 1.880 T on.
  • the twelfth alloy is not according to the invention since the Co content is greater than 22% by weight.
  • An alloy according to a thirteenth embodiment consists of 18.0 wt% Co, 3.00 wt% Cr, 1.32 wt% Mn, ⁇ 0.01 wt% Mo, 0.86 wt. % Si, 0.84 wt% Al, 2.01 wt% V, balance Fe and was prepared as described above and cold worked after hot rolling.
  • the alloy was annealed at 820 ° C and, when annealed, has a resistivity ⁇ el of 0.769 ⁇ m, a coercive force H c of 1.14 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 1.896 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), of 1, 985 T, a maximum permeability ⁇ max of 3499, a yield strength R m of 674 MPa, R p0.2 of 396 MPa, an elongation at break AL of 33.3% and an E-modulus of 218 GPa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

The soft magnetic alloy contains cobalt (in weight%) (10-22), vanadium (0-4), chromium (1.5-5), manganese (1-2), molybdenum (0-1), silicon (0.5-1.5), aluminum (0.1-1), and remainder of iron. The soft magnetic alloy contains cobalt (in weight%) (10-22), vanadium (0-4), chromium (1.5-5), manganese (1-2), molybdenum (0-1), silicon (0.5-1.5), aluminum (0.1-1), and remainder of iron. The sum total of silicon and aluminum content is 0.6-2 weight%. The sum total of chromium, manganese, molybdenum, silicon, aluminum and vanadium content is 4-9 weight%. The soft magnetic alloy further contains nitrogen (200 ppm or less), carbon (400 ppm or less) and oxygen (100 ppm or less) as impurities. An independent claim is included for manufacture of soft magnetic alloy.

Description

Die Erfindung betrifft eine weichmagnetische Legierung auf Eisen-Kobalt-Basis, die einen Kobaltgehalt von 10 Gewichtsprozent (Gew.-%) bis 22 Gew.-% aufweist, sowie ein Verfahren zur Herstellung der Legierung und ein Verfahren zur Herstellung von Halbzeug aus dieser Legierung, insbesondere von magnetischen Komponenten für Aktorsysteme.The invention relates to a soft magnetic iron-cobalt-based alloy having a cobalt content of 10% by weight (wt .-%) to 22 wt .-%, and a method for producing the alloy and a method for producing semi-finished from this alloy , in particular of magnetic components for actuator systems.

Weichmagnetische Legierungen auf Eisen-Kobalt-Basis weisen eine hohe Sättigungsmagnetisierung auf und können daher dazu verwendet werden, elektromagnetische Aktorsysteme mit hohen Kräften und/oder kleinen Bauvolumen auszubilden. Eine typische Anwendung dieser Legierungen sind Magnetventile, wie zum Beispiel Magnetventile zur Kraftstoffeinspritzung in Verbrennungsmotoren.Soft magnetic alloys based on iron-cobalt have a high saturation magnetization and can therefore be used to form high-force and / or small-volume electromagnetic actuator systems. A typical application of these alloys are solenoid valves, such as solenoid valves for fuel injection in internal combustion engines.

Weichmagnetische Legierungen auf Eisen-Kobalt-Basis mit einem Kobaltgehalt von 10 Gew.-% bis 22 Gew.-% sind beispielsweise aus der US 7,128,790 bekannt. Bei der Verwendung dieser Legierungen bei schnell schaltenden Aktoren kann auf Grund der entstehenden Wirbelströme die Schaltfrequenz begrenzt werden. Ferner sind Verbesserungen in der Festigkeit der Magnetkerne bei Dauerbetrieb in Hochfrequenzaktorsystemen gewünscht.Soft magnetic alloys based on iron-cobalt with a cobalt content of 10 wt .-% to 22 wt .-% are for example from US 7,128,790 known. When using these alloys in fast-switching actuators, the switching frequency can be limited due to the resulting eddy currents. Further, improvements in the strength of the magnetic cores in continuous operation in high frequency actuator systems are desired.

Änliche Legierungen sind auch in den Dokumenten DE 4444482 , EP 0715320 oder JP-A-62093342 erwähnt.Similar alloys are also in the documents DE 4444482 . EP 0715320 or JP-A-62093342 mentioned.

Aufgabe der Erfindung ist es daher, eine Legierung vorzusehen, die zur Verwendung als Magnetkern bei schnell schaltenden Aktoren besser geeignet ist.The object of the invention is therefore to provide an alloy which is better suited for use as a magnetic core in fast-switching actuators.

Gelöst wird dies erfindungsgemäß durch den Gegenstand der unabhängigen Ansprüche. Weitere vorteilhafte Weiterbildungen ergeben sich aus den abhängigen Ansprüchen.This is achieved according to the invention by the subject matter of the independent claims. Further advantageous developments emerge from the dependent claims.

Erfindungsgemäß besteht eine weichmagnetische Legierung aus 10 Gew.-% ≤ Co ≤ 22 Gew.-%, 0 Gew.-% ≤ V ≤ 4 Gew.-%, 1,5 Gew.-% ≤ Cr ≤ 5 Gew.-%, 1 Gew.-% ≤ Mn ≤ 2 Gew.-%, 0 Gew.-% ≤ Mo ≤ 1 Gew.-%, 0,5 Gew.-% ≤ Si ≤ 1,5 Gew.-%, 0,1 Gew.-% ≤ Al ≤ 1,0 Gew.-%, Rest Eisen und unvermeidbaren Verunreinigungen.According to the invention, a soft magnetic alloy consists of 10% by weight ≦ Co ≦ 22% by weight, 0% by weight ≦ V ≦ 4% by weight, 1.5% by weight ≦ Cr ≦ 5% by weight, 1 wt .-% ≤ Mn ≤ 2 wt .-%, 0 wt .-% ≤ Mo ≤ 1 wt .-%, 0.5 wt .-% ≤ Si ≤ 1.5 wt .-%, 0.1 wt .-% ≤ Al ≤ 1.0 wt .-%, balance iron and unavoidable impurities.

Vorzugsweise weist die Legierung Verunreinigungen wie maximal 200ppm von Stickstoff, maximal 400ppm von Kohlenstoff und maximal 100ppm von Sauerstoff auf.Preferably, the alloy has impurities such as a maximum of 200 ppm of nitrogen, a maximum of 400 ppm of carbon and a maximum of 100 ppm of oxygen.

Die erfindungsgemäße Legierung weist gegenüber der binären Co-Fe-Legierung einen höheren spezifischen Widerstand auf, der zu einer Unterdrückung der Wirbelströme führt, bei einer möglichst geringen Absenkung der Sättigungspolarisation. Dies wird durch die Zulegierung der nichtmagnetischen Elemente erreicht. Ferner weist die Legierung auf Grund des Gehalts von Al und Si eine höhere Festigkeit auf. Diese Legierung eignet sich zur Verwendung als Magnetkern eines schnell schaltenden Aktorsystems, wie ein Kraftstoffeinspritzventil eines Verbrennungsmotors.The alloy according to the invention has a higher specific resistance compared with the binary Co-Fe alloy, which leads to a suppression of the eddy currents, with the lowest possible lowering of the saturation polarization. This is achieved by the alloying of the non-magnetic elements. Further, the alloy has higher strength due to the content of Al and Si. This alloy is suitable for use as a magnetic core of a fast-switching actuator system, such as a fuel injection valve of an internal combustion engine.

Cr und Mn zeigen eine starke Widerstandserhöhung bei einer geringen Sättigungsabsenkung. Gleichzeitig wird die Glühtemperatur, die die Obergrenze der ferritischen Phase entspricht, abgesenkt. Dies wird jedoch nicht gewünscht, da dies zu schlechteren weichmagnetischen Eigenschaften führt.Cr and Mn show a strong resistance increase with a low saturation reduction. At the same time, the annealing temperature, which corresponds to the upper limit of the ferritic phase, is lowered. However, this is not desired because this leads to poorer soft magnetic properties.

Al, V und Si erhöhen ebenfalls den elektrischen Widerstand und heben gleichzeitig die Glühtemperatur an. So kann eine Legierung mit hohem Widerstand, hoher Sättigung sowie mit hoher Glühtemperatur und damit guten weichmagnetischen Eigenschaften angegeben werden.Al, V and Si also increase the electrical resistance while raising the annealing temperature. Thus, an alloy with high resistance, high saturation and high annealing temperature and thus good soft magnetic properties can be specified.

Ferner weist die Legierung auf Grund des Gehalts von Al und Si eine höhere Festigkeit auf. Die Legierung ist kaltverformbar und im schlussgeglühten Zustand duktil. Die Legierung kann eine Dehnung AL von > 2%, vorzugsweise AL > 20%. Die Dehnung AL wird bei Zugversuchen gemessen. Diese Legierung eignet sich zur Verwendung als Magnetkern eines schnell schaltenden Aktorsystems, wie ein Kraftstoffeinspritzventil eines Verbrennungsmotors.Further, the alloy has higher strength due to the content of Al and Si. The alloy is cold-workable and ductile in the final annealed condition. The alloy can have an elongation A L of> 2%, preferably A L > 20%. The elongation A L is measured during tensile tests. This alloy is suitable for use as a magnetic core of a fast-switching actuator system, such as a fuel injection valve of an internal combustion engine.

Die Anforderungen an eine weichmagnetische Legierung auf Kobalt-Eisen-Basis für ein Aktorsystem sind widersprüchlich. Ein höherer Kobaltgehalt führt in der binären Legierung zu einer höheren Sättigungsmagnetisierung Js von ungefähr 9 mT pro 1 Gew.-% Co (ausgehend von 17 Gew.-% Co) und ermöglicht damit ein geringeres Bauvolumen und eine höhere Systemintegration oder höhere Aktorkräfte bei gleicher Baugröße. Gleichzeitig steigen aber die Kosten der Legierung. Mit wachsendem Co-Anteil verschlechtern sich die weichmagnetischen Eigenschaften, wie zum Beispiel Permeabilität. Oberhalb eines Kobaltgehalts von 22 Gew.-% wird die Sättigungszunahme durch weitere Co-Zulegierung geringer.The requirements for a magnetically soft cobalt-iron-based alloy for an actuator system are contradictory. A higher cobalt content in the binary alloy leads to a higher saturation magnetization J s of approximately 9 mT per 1 wt% Co (starting from 17 wt% Co) and thus allows a smaller overall volume and a higher system integration or higher actuator forces for the same size. At the same time, however, the cost of the alloy increases. As the Co content increases, the soft magnetic properties, such as permeability, deteriorate. Above a cobalt content of 22% by weight, the increase in saturation is reduced by further co-alloying.

Die Legierung soll außerdem einen hohen spezifischen elektrischen Widerstand und gute weichmagnetische Eigenschaften haben.The alloy should also have high electrical resistivity and good soft magnetic properties.

Diese Legierung weist somit einen Kobaltgehalt von 10 Gew.-% ≤ Co ≤ 22 Gew.-% auf. Ein niedriger Kobaltgehalt reduziert die Rohstoffkosten der Legierung, so dass diese für Anwendungen mit hohem Kostendruck, wie zum Beispiel im Automobilbereich geeignet ist. Die Maximalpermeabilität ist innerhalb dieses Bereichs hoch, was beim Einsatz als Aktor zu günstigeren niedrigeren Ansteuerströmen führt.This alloy thus has a cobalt content of 10% by weight ≦ Co ≦ 22% by weight. A low cobalt content reduces the raw material cost of the alloy, making it suitable for high cost pressure applications, such as in the automotive industry. The maximum permeability is high within this range, which leads to cheaper lower drive currents when used as an actuator.

In weiteren Ausführungsbeispielen weist die Legierung einen Kobaltgehalt von 14 Gew.-% ≤ Co ≤ 22 Gew.-% und 14 Gew.-% ≤ Co ≤ 20 Gew.-% auf.In other embodiments, the alloy has a cobalt content of 14 wt% ≤ Co ≤ 22 wt% and 14 wt% ≤ Co ≤ 20 wt%.

Die weichmagnetische Legierung des Magnetkerns weist einen Gehalt von Chrom und Mangan auf, der zu einem höheren spezifischen elektrischen Widerstand p im geglühten Zustand bei geringer Abnahme der Sättigung führt. Dieser höhere spezifische Widerstand ermöglicht kleinere Schaltzeiten bei einem Aktor, da Wirbelströme reduziert werden. Gleichzeitig weist die Legierung eine hohe Sättigung und eine hohe Permeabilität µmax auf, so dass gute weichmagnetische Eigenschaften beibehalten werden.The soft magnetic alloy of the magnetic core has a content of chromium and manganese, which leads to a higher electrical resistivity p in the annealed state with little decrease in saturation. This higher resistivity allows smaller switching times for an actuator as eddy currents are reduced. At the same time, the alloy has a high saturation and a high permeability μ max , so that good soft magnetic properties are maintained.

Die Elemente Si und Al der Legierung sehen eine verbesserte Festigkeit der Legierung vor, ohne dass die weichmagnetischen Eigenschaften wesentlich verschlechtert werden. Durch die Zulegierung von Si und Al lässt sich die Festigkeit der Legierung durch Mischkristallhärtung deutlich erhöhen, ohne eine deutliche Verschlechterung der weichmagnetischen Eigenschaften.The elements Si and Al of the alloy provide improved strength of the alloy without significantly degrading the soft magnetic properties. By alloying Si and Al, the strength of the alloy can be significantly increased by solid solution hardening, without a significant deterioration of the soft magnetic properties.

Der erfindungsgemäße Aluminiumgehalt und Vanadiumgehalt ermöglicht eine höhere Glühtemperatur, die zu guten weichmagnetischen Eigenschaften der Koerzitivfeldstärke Hc und der Maximalpermeabilität µmax führt. Eine hohe Permeabilität wird gewünscht, da dies zu niedrigeren Ansteuerströmen beim Einsatz der Legierung als Magnetkern oder Flussleiter eines Aktors führt.The aluminum content and vanadium content according to the invention enables a higher annealing temperature, which leads to good soft magnetic properties of the coercive force H c and the maximum permeability μ max leads. High permeability is desired, as this leads to lower drive currents when using the alloy as a magnetic core or flux guide of an actuator.

In einer Ausführungsform weist die Legierung einen Siliziumgehalt von 0,5 Gew.-% ≤ Si ≤ 1,0 Gew.-% auf.In one embodiment, the alloy has a silicon content of 0.5% by weight ≦ Si ≦ 1.0% by weight.

Der Gehalt von Mo wurde niedrig gehalten, um die Bildung von Karbiden zu vermeiden, die zu einer Verschlechterung der magnetischen Eigenschaften führen können.The content of Mo has been kept low to prevent the formation of carbides, which may lead to deterioration of the magnetic properties.

Neben Cr und Mn ist ein geringer Molybdängehalt günstig, da sich dieser Gehalt von Molybdän durch ein gutes Verhältnis von Widerstandszuwachs zu Sättigungsabnahme auszeichnet.In addition to Cr and Mn, a low molybdenum content is favorable, since this content of molybdenum is characterized by a good ratio of resistance increase to saturation decrease.

In einer Ausführungsform ist der Gehalt von Aluminium und Silizium von 0,6 Gew.-% ≤ Al+Si ≤ 1,5 Gew.-%, so dass Sprödigkeit und Verarbeitungsprobleme, die bei höheren Gesamtgehalten von Aluminium und Silizium auftreten können, vermieden werden.In one embodiment, the content of aluminum and silicon is from 0.6% by weight ≦ Al + Si ≦ 1.5% by weight, so that brittleness and processing problems that may occur with higher total contents of aluminum and silicon are avoided ,

In einer Ausführungsform ist der Gehalt der Elemente Chrom und Mangan und Molybdän und Aluminium und Silizium und Vanadium 4,0 Gew.-% ≤ (Cr+Mn+Mo+Al+Si+V) ≤ 9,0 Gew.-%. Diese Legierung weist gegenüber der binären CoFe-Legierung einen noch höheren spezifischen Widerstand auf, der zu einer Unterdrückung der Wirbelströme führt, wobei gleichzeitig die Sättigungspolarisation möglichst wenig abgesenkt sowie die Koerzivfeldstärke Hc noch weniger erhöht wird.In one embodiment, the content of the elements is chromium and manganese and molybdenum and aluminum and silicon and vanadium 4.0 wt% ≤ (Cr + Mn + Mo + Al + Si + V) ≤ 9.0 wt%. This alloy has an even higher resistivity compared to the binary CoFe alloy, which leads to a suppression of the eddy currents, at the same time the saturation polarization is lowered as little as possible and the coercive field strength H c is even less increased.

Der Gehalt von Chrom und Mangan und Molybdän und Aluminium und Silizium und Vanadium ist in einer Ausführungsform 6,0 Gew.-% ≤ Cr+Mn+Mo+Al+Si+V ≤ 9,0 Gew.-%.The content of chromium and manganese and molybdenum and aluminum and silicon and vanadium in one embodiment is 6.0% by weight ≦ Cr + Mn + Mo + Al + Si + V ≦ 9.0% by weight.

In weiteren Ausführungsformen besteht die weichmagnetische Legierung, aus 10 Gew.-% ≤ Co ≤ 22 Gew.-%, 0 Gew.-% ≤ V ≤ 1 Gew.-%, 1,5 Gew.-% ≤ Cr ≤ 3 Gew.-%, 1 Gew.-% ≤ Mn ≤ 2 Gew.-%, 0 Gew.-% ≤ Mo ≤ 1 Gew.-%, 0,5 Gew.-% ≤ Si ≤ 1,5 Gew.-%, 0,1 Gew.-% ≤ Al ≤ 1,0 Gew.-%, Rest Eisen und unvermeidbaren Verunreinigungen. Sie kann einen Gehalt von Aluminium und Silizium von 0,6 Gew.-% ≤ Al+Si ≤ 1,5 Gew.-% und/oder einen Gehalt von Chrom und Mangan und Molybdän und Aluminium und Silizium von 4,5 Gew.-% ≤ Cr+Mn+Mo+A1+Si ≤ 6,0 Gew.-% aufweisen.In further embodiments, the soft magnetic alloy consists of 10 wt% ≤ Co ≤ 22 wt%, 0 wt% ≤ V ≤ 1 wt%, 1.5 wt% ≤ Cr ≤ 3 wt. %, 1 wt% ≤ Mn ≤ 2 wt%, 0 wt% ≤ Mo ≤ 1 wt%, 0.5 wt% ≤ Si ≤ 1.5 wt%, 0 , 1 wt .-% ≤ Al ≤ 1.0 wt .-%, balance iron and unavoidable impurities. It can have a content of aluminum and silicon of 0.6% by weight ≦ Al + Si ≦ 1.5% by weight and / or a content of chromium and manganese and molybdenum and aluminum and silicon of 4.5% by weight. % ≦ Cr + Mn + Mo + Al + Si ≦ 6.0 wt%.

In einer Ausführungsform enthält die Legierung V = 0 Gew.-%, 1,6 Gew.-% ≤ Cr ≤ 2,5 Gew.-%, 1,25 Gew.-% ≤ Mn ≤ 1,5 Gew.-%, 0 Gew.-% ≤ Mo ≤ 0,02 Gew.-%, 0,6 Gew.-% ≤ Si ≤ 0,9 Gew.-% und 0,2 Gew.-% ≤ Al ≤ 0,7 Gew.-%.In one embodiment, the alloy contains V = 0 wt%, 1.6 wt% ≤ Cr ≤ 2.5 wt%, 1.25 wt% ≤ Mn ≤ 1.5 wt%, 0 wt% ≤ Mo ≤ 0.02 wt%, 0.6 wt% ≤ Si ≤ 0.9 wt% and 0.2 wt% ≤ Al ≤ 0.7 wt% %.

In einer Ausführungsform enthält die Legierung 0 Gew.-% ≤ V ≤ 2,0 Gew.-%, 1,6 Gew.-% ≤ Cr ≤ 2,5 Gew.-%, 1,25 Gew.-% ≤ Mn ≤ 1,5 Gew.-%, 0 Gew.-% ≤ Mo ≤ 0,02 Gew.-%, 0,6 Gew.-% ≤ Si ≤ 0,9 Gew.-% und 0,2 Gew.-% ≤ Al ≤ 0,7 Gew.-%.In one embodiment, the alloy contains 0 wt% ≤ V ≤ 2.0 wt%, 1.6 wt% ≤ Cr ≤ 2.5 wt%, 1.25 wt% ≤ Mn ≤ 1.5 wt%, 0 wt% ≤ Mo ≤ 0.02 wt%, 0.6 wt% ≤ Si ≤ 0.9 wt%, and 0.2 wt% ≤ Al ≦ 0.7% by weight.

In einer Ausführungsform enthält die Legierung 0 Gew.-% ≤ V ≤ 0,01 Gew.-%, 2,3 Gew.-% ≤ Cr ≤ 3,0 Gew.-%, 1,25 Gew.-% ≤ Mn ≤ 1,5 Gew.-%, 0,75 Gew.-% ≤ Mo ≤ 1 Gew.-%, 0,6 Gew.-% ≤ Si ≤ 0,9 Gew.-% und 0,1 Gew.-% ≤ Al ≤ 0,2 Gew.-%.In one embodiment, the alloy contains 0 wt% ≤ V ≤ 0.01 wt%, 2.3 wt% ≤ Cr ≤ 3.0 wt%, 1.25 wt% ≤ Mn ≤ 1.5 wt%, 0.75 wt% ≤ Mo ≤ 1 wt%, 0.6 wt% ≤ Si ≤ 0.9 wt% and 0.1 wt% ≤ Al ≦ 0.2 wt .-%.

In einer Ausführungsform enthält die Legierung 0,75 Gew.-% ≤ V ≤ 2,75 Gew.-%, 2,3 Gew.-% ≤ Cr ≤ 3,5 Gew.-%, 1,25 Gew.-% ≤ Mn ≤ 1,5 Gew.-%, 0 Gew.-% ≤ Mo ≤ 0,01 Gew.-%, 0,6 Gew.-% ≤ Si ≤ 0,9 Gew.-% und 0,2 Gew.-% ≤ Al ≤ 1,0 Gew.-%.In one embodiment, the alloy contains 0.75 wt% ≤ V ≤ 2.75 wt%, 2.3 wt% ≤ Cr ≤ 3.5 wt%, 1.25 wt% ≤ Mn ≤ 1.5 wt%, 0 wt% ≤ Mo ≤ 0.01 wt%, 0.6 wt% ≤ Si ≤ 0.9 wt% and 0.2 wt% % ≦ Al ≦ 1.0 wt%.

Diese drei Legierungen weisen eine bevorzugte Kombination aus einem hohen elektrischen Widerstand, einer hohen Sättigung und einer niedrigen Koerzitivfeldstärke auf.These three alloys have a preferred combination of high electrical resistance, high saturation, and low coercivity.

Legierungen mit den oben genannten Zusammensetzungen weisen einen spezifischen elektrischen Widerstand ρ > 0,50 µΩm oder ρ > 0,55 µΩm oder ρ > 0,60 µΩm oder ρ > 0,65 µΩm auf. Dieser Wert sieht eine Legierung vor, so dass beim Einsatz als Magnetkern eines Aktorsystems niedrigere Wirbelströme entstehen. Dies ermöglicht die Verwendung der Legierung in Aktorsystemen mit höheren Schaltzeiten.Alloys with the abovementioned compositions have a specific electrical resistance ρ> 0.50 μΩm or ρ> 0.55 μΩm or ρ> 0.60 μΩm or ρ> 0.65 μΩm. This value provides for an alloy, so that when used as a magnetic core of an actuator system lower eddy currents. This allows the use of the alloy in actuator systems with higher switching times.

Der Anteil der Elemente Aluminium und Silizium bei der erfindungsgemäßen Legierung führt zu einer Legierung mit einer Streckgrenze von Rp0,2 > 340 MPa. Diese höhere Festigkeit der Legierung kann die Betriebsdauer der Legierung beim Einsatz als Magnetkern eines Aktorsystems verlängern. Dies ist attraktiv bei der Verwendung der Legierung in Hochfrequenzaktorsystemen, wie Kraftstoffeinspritzventilen in Verbrennungsmotoren.The proportion of the elements aluminum and silicon in the alloy according to the invention leads to an alloy with a yield strength of R p0.2 > 340 MPa. This higher strength of the alloy can extend the life of the alloy when used as a magnetic core of an actuator system. This is attractive in using the alloy in high frequency actuator systems, such as fuel injection valves in internal combustion engines.

Die erfindungsgemäße Legierung weist gute weichmagnetische Eigenschaften sowie eine gute Festigkeit und einen hohen spezifischen elektrischen Widerstand auf. In weiteren Ausführungsformen weist die Legierung eine Sättigung von J(400A/cm) > 2,00 T oder > 1,90 T, und/oder eine Koerzitivfeldstärke Hc < 3,5 A/cm oder Hc < 2,0 A/cm oder und/oder Hc < 1,0 A/cm eine Maximalpermeabilität µmax > 1000 oder µmax > 2000 auf.The alloy according to the invention has good soft magnetic properties as well as good strength and high electrical resistivity. In further embodiments, the alloy has a saturation of J (400A / cm)> 2.00 T or> 1.90 T, and / or a coercive force H c <3.5 A / cm or H c <2.0 A / cm or and / or H c <1.0 A / cm has a maximum permeability μ max > 1000 or μ max > 2000.

Der erfindungsgemäße Gehalt von Chrom und Mangan und Molybdän und Aluminium und Silizium und Vanadium liegt zwischen 4,0 Gew.-% und 9,0 Gew.-%. Dieser höhere Gehalt ermöglicht eine Legierung vorzusehen, die einen höheren elektrischen Widerstand von ρ > 0,6 µΩm sowie eine niedrige Koerzitivfeldstärke Hc < 2,0 A/cm aufweist. Diese Kombination von Eigenschaften ist besonders geeignet für Verwendung bei schnell schaltenden Aktoren.The inventive content of chromium and manganese and molybdenum and aluminum and silicon and vanadium is between 4.0 wt .-% and 9.0 wt .-%. This higher content allows to provide an alloy that has a higher electrical resistance of ρ> 0.6 μΩm and a low coercive force H c <2.0 A / cm. This combination of properties is particularly suitable for use with fast switching actuators.

Die Erfindung sieht ferner einen weichmagnetischen Kern oder Flussleiter für einen elektromagnetischen Aktor aus einer Legierung nach einem der vorhergehenden Ausführungsformen vor. Dieser weichmagnetische Kern ist in verschiedenen Ausführungsformen ein weichmagnetischer Kern für ein Magnetventil eines Verbrennungsmotors, ein weichmagnetischer Kern für ein Kraftstoffeinspritzventil eines Verbrennungsmotors, ein weichmagnetischer Kern für ein Direktkraftstoffeinspritzventil eines Ottomotors oder eines Dieselmotors oder eine weichmagnetische Komponente für elektromagnetische Ventilverstellung, wie Ein- und Auslassventile.The invention further provides a soft magnetic core or flux guide for an electromagnetic actuator made of an alloy according to one of the preceding embodiments. This soft magnetic core is in various embodiments a soft magnetic core for a solenoid valve of an internal combustion engine, a soft magnetic core for a fuel injection valve of an internal combustion engine, a soft magnetic core for a direct fuel injection valve of a gasoline engine or a diesel engine, or a soft magnetic component for electromagnetic valve timing such as intake and exhaust valves.

Die unterschiedlichen Aktorsysteme, wie Magnetventile und Kraftstoffeinspritzventile haben unterschiedliche Anforderungen an Festigkeit sowie magnetische Eigenschaften. Diese Anforderungen können durch die Auswahl einer Legierung mit einer Zusammensetzung, die innerhalb der oben beschriebenen Bereiche liegt, erfüllt werden.The different actuator systems, such as solenoid valves and fuel injection valves have different requirements for strength and magnetic properties. These requirements can be met by selecting an alloy having a composition within the ranges described above.

Die Erfindung sieht auch ein Kraftstoffeinspritzventil eines Verbrennungsmotors mit einer Komponente aus einer weichmagnetischen Legierung nach einem der vorhergehenden Ausführungsbeispiele vor. In weiteren Ausführungsformen ist das Kraftstoffeinspritzventil ein Direktkraftstoffeinspritzventil eines Ottomotors und ein Direktkraftstoffeinspritzventil eines Dieselmotors.The invention also provides a fuel injection valve of an internal combustion engine with a soft magnetic alloy component according to one of the preceding embodiments. In other embodiments, the fuel injector is a direct fuel injection valve of a gasoline engine and a direct fuel injection valve of a diesel engine.

In weiteren Ausführungsformen sieht die Erfindung ein Rückschlussteil für einen elektromagnetischen Aktor sowie einen weichmagnetischen Rotor und einen weichmagnetischen Stator für einen elektrischen Motor und eine weichmagnetische Komponente für einen elektromagnetische Ventilverstellung an einem Einlassventil oder einem Auslassventil, das in einem Motorraum von beispielsweise einem Kraftfahrzeug verwendet wird, aus einer Legierung nach einem der vorhergehenden Ausführungsbeispiele vor.In further embodiments, the invention provides an electromagnetic actuator return member and a soft magnetic rotor and a soft magnetic stator for an electric motor and a soft magnetic component for electromagnetic valve timing on an intake valve or exhaust valve used in an engine compartment of, for example, a motor vehicle, of an alloy according to one of the preceding embodiments.

Die Erfindung sieht auch ein Verfahren zur Herstellung von Halbzeug aus einer Kobalt-Eisen-Legierung vor, bei dem durch Schmelzen und Warmverformung zunächst Werkstücke aus einer weichmagnetischen Legierung hergestellt werden, die aus 10 Gew.-% ≤ Co ≤ 22 Gew.-%, 0 Gew.-% ≤ V ≤ 4 Gew.-%, 1,5 Gew.-% ≤ Cr ≤ 5 Gew.-%, 1 Gew.-% ≤ Mn ≤ 2 Gew.-%, 0 Gew.-% ≤ Mo ≤ 1 Gew.-%, 0,5 Gew.-% ≤ Si ≤ 1,5 Gew.-%, 0,1 Gew.-% ≤ Al ≤ 1,0 Gew.-%, Rest Eisen und unvermeidbaren Verunreinigungen besteht.The invention also provides a process for the production of semi-finished products from a cobalt-iron alloy, in which workpieces made of a soft magnetic alloy are first produced by melting and hot working, which consist of 10% by weight ≦ Co ≦ 22% by weight, 0 wt% ≤ V ≤ 4 wt%, 1.5 wt% ≤ Cr ≤ 5 wt%, 1 wt% ≤ Mn ≤ 2 wt%, 0 wt% ≤ Mo ≦ 1 wt .-%, 0.5 wt .-% ≤ Si ≤ 1.5 wt .-%, 0.1 wt .-% ≤ Al ≤ 1.0 wt .-%, balance iron and unavoidable impurities ,

Die Legierung der Werkstücke kann auch eine Zusammensetzung nach einem der vorhergehenden Ausführungsbeispiele aufweisen.The alloy of the workpieces can also have a composition according to one of the preceding embodiments.

Die Legierung kann mittels verschiedener Verfahren erschmolzen werden. Möglich sind theoretisch alle gängigen Techniken, wie ein Erschmelzen an Luft oder mittels VIM (Vacuum Induction Melting). Dazu können z.B. der Lichtbogenofen oder induktive Techniken genutzt werden. Eine Behandlung mit VOD (Vacuum Oxygen Decarburization) oder AOD (Argon Oxygen Decarburization) oder ESU (Elektro-Schlacke-Umschmelzverfahren) verbessert die Qualität des Produkts.The alloy can be melted by various methods. In theory, all common techniques are possible, such as air melting or VIM (vacuum induction melting). For this, e.g. the arc furnace or inductive techniques are used. Treatment with VOD (Vacuum Oxygen Decarburization) or AOD (Argon Oxygen Decarburization) or ESU (Electric Slag Remelting) improves the quality of the product.

Zur Herstellung der Legierung wird das VIM-Verfahren bevorzugt, da sich damit die Gehalte der Legierungselemente exakter einstellen lassen und nichtmetallische Einschlüsse in der erstarrten Legierung besser vermieden werden können.For the production of the alloy, the VIM method is preferred, since thus the contents of the alloying elements more exactly can be set and non-metallic inclusions in the solidified alloy can be better avoided.

Dem Schmelzvorgang folgt je nach herzustellendem Halbzeug eine unterschiedliche Reihe von Verfahrensschritten.The melting process is followed by a different series of process steps, depending on the semifinished product to be produced.

Falls Bänder hergestellt werden sollen, aus denen später Teile gestanzt werden, wird der aus dem Schmelzvorgang hervorgegangene Gussblock durch Vorblocken in eine Bramme umgeformt. Unter Vorblocken wird das Umformen des Gussblocks in eine Bramme mit rechteckigem Querschnitt durch einen Warmwalzvorgang bei einer Temperatur von beispielsweise 1250 °C verstanden. Nach dem Vorblocken wird durch Schleifen der auf der Oberfläche der Bramme ausgebildete Zunder entfernt. Dem Schleifen folgt ein weiterer Warmwalzvorgang, durch den die Bramme bei einer Temperatur von beispielsweise 1250 °C in ein Band umgeformt wird. Anschließend werden die sich beim Warmwalzen auf der Oberfläche des Bands ausbildenden Verunreinigungen durch Schleifen oder Beizen entfernt, und das Band wird durch Kaltwalzen auf die endgültige Dicke umgeformt, die im Bereich von 0,1 mm bis 2 mm sein kann. Schließlich wird das Band einer Schlussglühung unterzogen. Während der Schlussglühung heilen die durch die Umformvorgänge entstandenen Gitterfehlstellen aus und kristalline Körner werden im Gefüge gebildet.If tapes are to be produced, from which parts are later punched, the ingot resulting from the melting process is converted by pre-blocking into a slab. Preblocking is understood to mean the forming of the ingot into a rectangular section slab by a hot rolling operation at a temperature of, for example, 1250 ° C. After blooming, the scale formed on the surface of the slab is removed by grinding. The grinding is followed by another hot rolling process by which the slab is formed into a strip at a temperature of, for example, 1250 ° C. Subsequently, the impurities formed on the surface of the belt during hot rolling are removed by grinding or pickling, and the strip is cold-worked to the final thickness, which may be in the range of 0.1 mm to 2 mm. Finally, the tape is subjected to a final annealing. During final annealing, the lattice defects resulting from the forming processes heal and crystalline grains are formed in the microstructure.

Ähnlich verläuft der Herstellungsvorgang, wenn Drehteile hergestellt werden. Auch hier werden durch Vorblocken des Gussblocks Knüppel mit einem quadratischen Querschnitt hergestellt. Das sogenannte Vorblocken erfolgt dabei bei einer Temperatur von beispielsweise 1250 °C. Anschließend wird der beim Vorblocken entstandene Zunder durch Schleifen entfernt. Dem folgt ein weiterer Warmwalzvorgang, durch den die Knüppel in Stangen oder Drähte bis zu einem Durchmesser von beispielsweise 13 mm umgeformt werden. Durch Richten und Schälen werden dann zum einen Verwerfungen des Materials korrigiert und zum anderen die sich während des Warmwalzvorgangs bildenden Verunreinigungen auf der Oberfläche entfernt. Abschließend wird auch hier das Material einer Schlussglühung unterzogen.Similarly, the manufacturing process is when turning parts are produced. Again, billets are made by pre-blocking the ingot with a square cross-section. The so-called pre-blocking takes place at a temperature of for example 1250 ° C. Subsequently, the scale formed during pre-blocking is removed by grinding. This is followed by another hot rolling process, through which the billets in bars or wires up to a diameter of, for example 13 mm to be formed. By straightening and peeling, on the one hand, distortions of the material are corrected and, on the other hand, the impurities forming on the surface during the hot rolling process are removed. Finally, here too, the material is subjected to a final annealing.

Die Schlussglühung kann in einem Temperaturbereich von 700 °C bis 1100 °C durchgeführt werden. In einer Durchführungsform wird die Schlussglühung im Temperaturbereich von 750 °C bis 850 °C durchgeführt. Die Schlussglühung kann unter Inertgas, Wasserstoff oder Vakuum durchgeführt werden.The final annealing can be carried out in a temperature range of 700 ° C to 1100 ° C. In one embodiment, the final annealing is carried out in the temperature range from 750 ° C to 850 ° C. The final annealing can be carried out under inert gas, hydrogen or vacuum.

Die Bedingungen wie Temperatur und Dauer der Schlussglühung können so ausgewählt werden, dass nach der Schlussglühung die Legierung Verformungsparameter im Zugversuch von einer Bruchdehnung AL > 2% oder AL > 20% aufweist.The conditions such as temperature and duration of the final annealing can be selected so that after the final annealing the alloy has tensile strain parameters of elongation at break A L > 2% or A L > 20%.

In einer weiteren Durchführungsform wird die Legierung vor der Schlussglühung kaltverformt.In another embodiment, the alloy is cold worked prior to final annealing.

Die Erfindung wird anhand der Zeichnungen näher erläutert.

Figur 1
zeigt ein Magnetventil mit einem Magnetkern aus einer erfindungemäßen weichmagnetischen Legierung,
Figur 2
zeigt ein Ablaufdiagramm des Herstellverfahrens für Halbzeug aus der Legierung gemäß der Erfindung, und
Figur 3
zeigt die Koerzitivfeldstärke Hc in Abhängigkeit von der Glühtemperatur für verschiedene erfindungsgemäße weichmagnetische Legierungen.
Figur 4
zeigt die Koerzitivfeldstärke Hc in Abhängigkeit von der Glühtemperatur für weitere erfindungsgemäße weichmagnetische Legierungen.
Figur 1 zeigt ein elektromagnetisches Aktorsystem 20 mit einem Magnetkern 21 aus einer erfindungsgemäßen weichmagnetischen Legierung, die in einer ersten Ausführungsform aus 18,3 Gew.-% Co, 2,62 Gew.-% Cr, 1,37 Gew.-% Mn, 0,85 Gew.-% Si, 0,01 Gew.-% Mo, 0,21 Gew.-% Al, Rest Eisen besteht. In einem weiteren nicht gezeigten Ausführungsbeispiel ist ein Rückschluss aus dieser Legierung angegeben.The invention will be explained in more detail with reference to the drawings.
FIG. 1
shows a solenoid valve with a magnetic core made of a soft magnetic alloy according to the invention,
FIG. 2
shows a flow chart of the manufacturing process for semi-finished alloy of the invention, and
FIG. 3
shows the coercive force H c as a function of the annealing temperature for various soft magnetic alloys according to the invention.
FIG. 4
shows the coercive force H c as a function of the annealing temperature for further soft magnetic alloys according to the invention.
FIG. 1 shows an electromagnetic actuator system 20 with a magnetic core 21 of a soft magnetic alloy according to the invention, which in a first embodiment of 18.3 wt .-% Co, 2.62 wt .-% Cr, 1.37 wt .-% Mn, 0, 85 wt .-% Si, 0.01 wt .-% Mo, 0.21 wt .-% Al, balance iron. In another embodiment, not shown, a conclusion from this alloy is given.

Eine Spule 22 wird mit Strom von einer Stromquelle 23 versorgt, so dass bei der Erregung der Spule 22 ein Magnetfeld induziert wird. Die Spule 22 ist um den Magnetkern 21 so angeordnet, dass auf Grund des induzierten Magnetfelds sich der Magnetkern 21 von einer ersten Position 24 bewegt, die mit der gestrichelten Linie in der Figur 1 gezeigt ist, zu einer zweiten Position 25. In dieser Ausführungsform ist die erste Position 24 eine geschlossene Position und die zweite Position eine offene Position. Folglich ist der Strom 26 durch den Kanal 27 vom Aktorsystem 20 gesteuert.A coil 22 is supplied with power from a current source 23, so that upon energization of the coil 22, a magnetic field is induced. The coil 22 is disposed around the magnetic core 21 so that, due to the induced magnetic field, the magnetic core 21 moves from a first position 24 indicated by the dashed line in FIG FIG. 1 is shown to a second position 25. In this embodiment, the first position 24 is a closed position and the second position is an open position. Consequently, the current 26 is controlled by the channel 27 from the actuator system 20.

In weiteren Ausführungsformen ist das Aktorsystem 20 ein Kraftstoffeinspritzventil eines Ottomotors oder eines Dieselmotors, oder ein Direktkraftstoffeinspritzventil eines Ottomotors oder eines Dieselmotors.In other embodiments, the actuator system 20 is a fuel injection valve of a gasoline engine or a diesel engine, or a direct fuel injection valve of a gasoline engine or a diesel engine.

Die weichmagnetische Legierung des Magnetkerns 21 weist einen Gehalt von Chrom und Mangan auf, der zu einem spezifischen elektrischen Widerstand p im geglühten Zustand von 0,572 µΩm führt. Dieser höhere spezifische Widerstand ermöglicht kleinere Schalzeiten bei dem Aktor, da Wirbelströme reduziert werden. Gleichzeitig weist die Legierung eine hohe Sättigung J(400 A/cm), gemessen bei einer Magnetfeldstärke von 400 A/cm, von 2,137 T und eine Permeabilität µmax von 1915 auf, so dass gute weichmagnetische Eigenschaften beibehalten werden.The soft magnetic alloy of the magnetic core 21 has a content of chromium and manganese, which leads to a specific electrical resistance p in the annealed state of 0.572 μΩm. This higher resistivity allows for smaller shutter times on the actuator as eddy currents are reduced. At the same time, the alloy has a high saturation J (400 A / cm), measured at a magnetic field strength of 400 A / cm, of 2.137 T and a permeability μ max of 1915, so that good soft magnetic properties are maintained.

Die Elemente Si und Al der Legierung sehen eine verbesserte Festigkeit des Magnetkerns 21 vor, ohne dass die weichmagnetischen Eigenschaften wesentlich verschlechtert werden. Die Streckgrenze Rp0,2 dieser Legierung ist 402 Mpa. Der Aluminiumgehalt ermöglicht eine höhere Glühtemperatur, die zu guten weichmagnetischen Eigenschaften einer Koerzitivfeldstärke Hc von nur 2,57 A/cm und einer Maximalpermeabilität µmax von 1915 führt. Eine hohe Permeabilität wird gewünscht, da diese zu niedrigeren Ansteuerströmen beim Einsatz der Legierung als Magnetkern eines Aktors führt.The elements Si and Al of the alloy provide improved strength of the magnetic core 21 without significantly deteriorating the soft magnetic properties. The yield strength R p0.2 of this alloy is 402 Mpa. The aluminum content enables a higher annealing temperature, which leads to good soft magnetic properties of a coercive force H c of only 2.57 A / cm and a maximum permeability μ max of 1915. A high permeability is desired because this leads to lower drive currents when using the alloy as the magnetic core of an actuator.

Der Gehalt von Mo wurde niedrig gehalten, um die Bildung von Karbiden zu vermeiden, die zu einer Verschlechterung der magnetischen Eigenschaften führen können.The content of Mo has been kept low to prevent the formation of carbides, which may lead to deterioration of the magnetic properties.

Tabelle 1 zeigt Zusammensetzungen von verschieden Legierungen entsprechend der Erfindung.Table 1 shows compositions of various alloys according to the invention.

Halbzeuge wurden aus diesen Legierungen durch ein Verfahren hergestellt, dessen Ablauf in der Figur 2 dargestellt ist.Semi-finished products were produced from these alloys by a process whose course in the FIG. 2 is shown.

In dem in Fig. 2 dargestellten Ablaufdiagramm wird zunächst in einem Schmelzvorgang 1 die Legierung erschmolzen.In the in Fig. 2 shown flow diagram, the alloy is first melted in a melting process 1.

Die Legierung kann mittels verschiedener Verfahren erschmolzen werden. Möglich sind theoretisch alle gängigen Techniken, wie ein Erschmelzen an Luft oder mittels VIM (Vacuum Induction Melting). Dazu können z.B. der Lichtbogenofen oder induktive Techniken genutzt werden. Eine Behandlung mit VOD (Vacuum Oxygen Decarburization) oder AOD (Argon Oxygen Decarburization) oder ESU (Elektro-Schlacke-Umschmelzverfahren) verbessert die Qualität des Produkts.The alloy can be melted by various methods. In theory, all common techniques are possible, such as air melting or VIM (vacuum induction melting). For example, the arc furnace or inductive Techniques are used. Treatment with VOD (Vacuum Oxygen Decarburization) or AOD (Argon Oxygen Decarburization) or ESU (Electric Slag Remelting) improves the quality of the product.

Zur Herstellung der Legierung wird das VIM-Verfahren bevorzugt, da sich damit der Gehalt der Legierungselemente exakter einstellen lässt und nichtmetallische Einschlüsse in der erstarrten Legierung besser vermieden werden können.For the preparation of the alloy, the VIM method is preferred because it allows the content of the alloying elements to be adjusted more accurately and non-metallic inclusions in the solidified alloy can be better avoided.

Dem Schmelzvorgang 1 folgen je nach herzustellendem Halbzeug eine unterschiedliche Reihe von Verfahrensschritten.The melting process 1, depending on the semifinished product to be produced, is followed by a different series of process steps.

Falls Bänder hergestellt werden sollen, aus denen später Teile gestanzt werden, wird der aus dem Schmelzvorgang 1 hervorgegangene Gussblock durch Vorblocken 2 in eine Bramme umgeformt. Unter Vorblocken wird das Umformen des Gussblocks in eine Bramme mit rechteckigem Querschnitt durch einen Warmwalzvorgang bei einer Temperatur von 1250 °C verstanden. Nach dem Vorblocken wird durch Schleifen 3 der auf der Oberfläche der Bramme ausgebildete Zunder entfernt. Dem Schleifen 3 folgt ein weiterer Warmwalzvorgang 4, durch den die Bramme bei einer Temperatur von 1250 °C in ein Band mit einer Dicke von beispielsweise 3,5 mm umgeformt wird. Anschließend werden die sich beim Warmwalzen auf der Oberfläche des Bandes ausbildenden Verunreinigungen durch Schleifen oder Beizen 5 entfernt, und das Band wird durch Kaltwalzen 6 auf die endgültige Dicke im Bereich von 0,1 bis 2 mm umgeformt. Schließlich wird das Band einer Schlussglühung 7 bei einer Temperatur von > 700 °C unterzogen. Während der Schlussglühung heilen die durch die Umformvorgänge entstandenen Gitterfehlstellen aus und kristalline Körner werden im Gefüge gebildet.If tapes are to be produced from which parts are later punched, the ingot resulting from the melting process 1 is converted by pre-blocking 2 into a slab. Pre-blocking is understood to mean the forming of the ingot into a slab of rectangular cross-section by a hot rolling operation at a temperature of 1250 ° C. After pre-blocking, the scale formed on the surface of the slab is removed by grinding 3. The grinding 3 is followed by another hot rolling process 4, by which the slab is formed at a temperature of 1250 ° C in a band having a thickness of, for example, 3.5 mm. Subsequently, the impurities formed on the surface of the strip during hot rolling are removed by grinding or pickling 5, and the strip is cold-rolled 6 to the final thickness in the range of 0.1 to 2 mm. Finally, the strip is subjected to a final annealing 7 at a temperature of> 700 ° C. During final annealing, the lattice defects resulting from the forming processes heal and crystalline grains are formed in the microstructure.

Ähnlich verläuft der Herstellungsvorgang, wenn Drehteile hergestellt werden. Auch hier werden durch Vorblocken 8 des Gussblocks Knüppel mit einem quadratischen Querschnitt hergestellt. Das sogenannte Vorblocken erfolgt dabei bei einer Temperatur von 1250 °C. Anschließend wird der beim Vorblocken 8 entstandene Zunder durch Schleifen 9 entfernt. Dem folgt ein weiterer Warmwalzvorgang 10, durch den die Knüppel in Stangen oder Drähte bis zu einem Durchmesser von 13 mm umgeformt werden. Durch Richten und Schälen 11 werden dann zum einen Verwerfungen des Materials korrigiert und zum anderen die sich während des Warmwalzvorgangs 10 bildenden Verunreinigungen auf der Oberfläche entfernt. Abschließend wird auch hier das Material einer Schlussglühung 12 unterzogen.Similarly, the manufacturing process is when turning parts are produced. Again, billets are made by pre-blocking 8 of the ingot with a square cross-section. The so-called pre-blocking takes place at a temperature of 1250 ° C. Subsequently, the scale formed during pre-blocking 8 is removed by grinding 9. This is followed by another hot rolling operation 10, by which the billets are converted into rods or wires up to a diameter of 13 mm. By straightening and peeling 11, on the one hand, distortions of the material are corrected and, on the other hand, the impurities forming during the hot rolling process 10 are removed on the surface. Finally, the material is also subjected to a final annealing 12 here.

Die Koerzitivfeldstärke Hc wurde in Abhängigkeit von der Glühtemperatur für die Legierungen der Tabelle 1 gemessen. Die Ergebnisse sind in der Figur 3 dargestellt. Aus der Figur 3 ist zu entnehmen, dass bei steigender Temperatur die Koerzitivfeldstärke zunächst sinkt und bei noch höheren Temperaturen, die an der Grenze zum Zweiphasengebiet liegen, steigt.The coercive force H c was measured as a function of the annealing temperature for the alloys of Table 1. The results are in the FIG. 3 shown. From the FIG. 3 It can be seen that as the temperature increases, the coercive field strength initially decreases and increases at even higher temperatures, which are at the boundary to the two-phase region.

Die Glühtemperatur wird je nach Zusammensetzung ausgewählt, so dass die Koerzitivfeldstärke niedrig bleibt. Für die Legierung 3, die in Zusammenhang mit der Figur 1 beschrieben wird, wurde die Glühung bei einer Temperatur von 760 °C durchgeführt.The annealing temperature is selected according to the composition, so that the coercive force remains low. For the alloy 3, which in connection with the FIG. 1 described, the annealing was carried out at a temperature of 760 ° C.

Figur 4 zeigt die Koerzitivfelstärke für die Legierungen 1 bis 4, 8, 10, 11 und 13. Die Legierungen 8, 10, 11 und 13 wurden nach Warmwalzen auch kaltverformt. Die Legierungen 1 bis 4 wurden nur warmgewalzt. Die Figur 4 zeigt den Einfluss verschiedener Zulegierungselemente auf Hc bei verschiedenen Glühtemperaturen. Der Anstieg von Hc zeigt die Obergrenze der ferritischen Phase. FIG. 4 shows the coercive force for the alloys 1 to 4, 8, 10, 11 and 13. The alloys 8, 10, 11 and 13 were also cold worked after hot rolling. The alloys 1 to 4 were only hot rolled. The FIG. 4 shows the influence of different alloying elements on H c at different annealing temperatures. The increase of H c shows the upper limit of the ferritic phase.

Die Legierungen 2, 10, 11 und 13 mit einen niedrigeren Hc bei höheren Glühtemperaturen weisen einen Gehalt von Aluminium von mindestens 0,68 Gew.-% auf. Die Legierungen 10 und 11 weisen eine besonders niedrige Koerzitivfeldstärke Hc von weniger als 1,5 A/cm bei Glühtemperaturen oberhalb von 850°C auf. Diese Legierungen weisen einen Gehalt von Aluminium von 0,84 Gew.-% bzw. 0,92 Gew.-% sowie einen Vanadiumgehalt von 2,51 Gew.-% bzw. 1,00 Gew.-% auf.Alloys 2, 10, 11 and 13 having a lower H c at higher annealing temperatures have an aluminum content of at least 0.68 wt%. Alloys 10 and 11 have a particularly low coercive force H c of less than 1.5 A / cm at annealing temperatures above 850 ° C. These alloys have an aluminum content of 0.84% by weight and 0.92% by weight and a vanadium content of 2.51% by weight and 1.00% by weight, respectively.

Bei diesen Legierungen ist die Phasenüberganstemperatur noch weiter nach oben verschoben. Dies hat den Vorteil, dass die magnetischen Eigenschaften durch die Verwendung einer höheren Glühtemperatur weiter verbessert werden können.In these alloys, the phase transition temperature is further shifted upwards. This has the advantage that the magnetic properties can be further improved by using a higher annealing temperature.

Die Eigenschaften des spezifischen elektrischen Widerstands im geglühten Zustand, ρel, der Koerzitivfeldstärke Hc, der Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), sowie bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), der Maximalpermeabilität µmax, der Streckgrenze Rm, Rp0,2, der Bruchdehnung AL sowie des E-Moduls wurden für die Legierungen der Tabelle 1 gemessen und sind in der Tabelle 2 zusammengefasst.The properties of the specific electrical resistance in the annealed state, ρ el , the coercive force H c , the saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), and at a magnetic field strength of 400 A / cm, J ( 400 A / cm), the maximum permeability μ max , the yield strength R m , R p0.2 , the elongation at rupture AL and the modulus of elasticity were measured for the alloys of Table 1 and are summarized in Table 2.

Der spezifische elektrische Widerstand p jeder Legierung liegt oberhalb 0,5 µΩm. Dies führt zu einer Unterdrückung der Wirbelströme, so dass die Legierungen sich für Aktoranwendungen mit kurzen Schaltzeiten eignen. Die Streckgrenze wurde für die Legierungen 1 bis 7 im magnetisch schlussgeglühten Zustand gemessen und liegt für jede Legierung oberhalb 340 MPa. Diese Legierungen können somit bei Anwendungen eingesetzt werden, bei denen höhere mechanische Belastungen entstehen.The specific electrical resistance p of each alloy is above 0.5 μΩm. This leads to a suppression of the eddy currents, so that the alloys are suitable for actuator applications with short switching times. The yield strength was measured for the alloys 1 to 7 in the magnetically final annealed condition and is above 340 MPa for each alloy. These alloys can thus be used in applications where higher mechanical loads arise.

Aus der Tabelle 2 ist zu entnehmen, dass trotz des hohen Zulegierungsanteils an nicht magnetischen Elementen die Legierungen eine hohe Sättigung J(400 A/cm) > 2,0 T, einen hohen spezifischen elektrischen Widerstand ρ > 0,5 µΩm sowie eine hohe Streckgrenze Rp0,2 > 340 MPa aufweisen. Folglich sind diese Legierungen besonders geeignet für Magnetkerne in schnell schaltenden Aktorsystemen, wie Kraftstoffeinspritzventilen.It can be seen from Table 2 that, in spite of the high alloying content of non-magnetic elements, the alloys have a high saturation J (400 A / cm)> 2.0 T, a high electrical resistivity ρ> 0.5 μΩm and a high yield strength R p0.2 > 340 MPa. Consequently, these alloys are particularly suitable for magnetic cores in fast-switching actuator systems, such as fuel injection valves.

1. Ausführungsbeispiel1st embodiment

Eine Legierung nach einem ersten Ausführungsbeispiel besteht aus 18,1 Gew.-% Co, 2,24 Gew.-% Cr, 1,40 Gew.-% Mn, 0,01 Gew.-% Mo, 0,83 Gew.-%Si, 0,24 Gew.-% Al, Rest Fe und wurde wie oben beschrieben hergestellt. Die Legierung wurde bei 760 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,542 µΩm, eine Koerzitivfeldstärke Hc von 2,34 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 2,029 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,146 T, eine Maximalpermeabilität µmax von 2314, eine Streckgrenze Rm von 623 MPa, Rp0,2 von 411 MPa, eine Bruchdehnung AL von 29,6% und ein E-Modul von 220 GPa auf.An alloy according to a first embodiment consists of 18.1 wt .-% Co, 2.24 wt .-% Cr, 1.40 wt .-% Mn, 0.01 wt .-% Mo, 0.83 wt. % Si, 0.24 wt% Al, balance Fe and was prepared as described above. The alloy was annealed at 760 ° C and, when annealed, has a resistivity ρ el of 0.542 μΩm, a coercive force H c of 2.34 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm) of 2.029 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.146 T, a maximum permeability μ max of 2314, a yield strength R m of 623 MPa, R p0 , 2 of 411 MPa, an elongation at break AL of 29.6% and an E modulus of 220 GPa.

2. Ausführungsbeispiel2nd embodiment

Eine Legierung nach einem zweiten Ausführungsbeispiel besteht aus 18,2 Gew.-% Co, 1,67 Gew.-% Cr, 1,39 Gew.-% Mn, 0,01 Gew.-% Mo, 0,82 Gew.-%Si, 0,68 Gew.-% Al, Rest Fe und wurde wie oben beschrieben hergestellt. Die Legierung wurde bei 800 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,533 µΩm, eine Koerzitivfeldstärke Hc von 1,94 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 2,019 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,151 T, eine Maximalpermeabilität µmax von 1815, eine Streckgrenze Rm von 661MPa, Rp0,2 von 385 MPa, eine Bruchdehnung AL von 25,4% und ein E-Modul von 221 GPa auf.An alloy according to a second embodiment consists of 18.2 wt .-% Co, 1.67 wt .-% Cr, 1.39 wt .-% Mn, 0.01 wt .-% Mo, 0.82 wt. % Si, 0.68 wt% Al, balance Fe and was prepared as described above. The alloy was annealed at 800 ° C and, when annealed, has a resistivity ρ el of 0.533 μΩm, a coercive force H c of 1.94 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), 2.019 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.151 T, a maximum permeability μ max of 1815 , a yield strength R m of 661MPa, R p0.2 of 385 MPa, an elongation at break AL of 25.4% and an E modulus of 221 GPa.

3. Ausführungsbeispiel3rd embodiment

Eine Legierung nach einem dritten Ausführungsbeispiel besteht aus 18,3 Gew.-% Co, 2,62 Gew.-% Cr, 1,37 Gew.-% Mn, 0,01 Gew.-% Mo, 0,85 Gew.-%Si, 0,21 Gew.-% Al, Rest Fe und wurde wie oben beschrieben hergestellt. Die Legierung wurde bei 760 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,572 µΩm, eine Koerzitivfeldstärke Hc von 2,57 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 2,021 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,137 T, eine Maximalpermeabilität µmax von 1915, eine Streckgrenze Rm von 632 MPa, Rp0,2von 402 MPa, eine Bruchdehnung AL von 28,0% und ein E-Modul von 217 GPa auf.An alloy according to a third embodiment consists of 18.3 wt .-% Co, 2.62 wt .-% Cr, 1.37 wt .-% Mn, 0.01 wt .-% Mo, 0.85 wt. % Si, 0.21 wt.% Al, balance Fe and was prepared as described above. The alloy was annealed at 760 ° C and, when annealed, has a resistivity ρ el of 0.572 μΩm, a coercive force H c of 2.57 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 2.021 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), of 2.137 T, a maximum permeability μ max of 1915, a yield strength R m of 632 MPa, R p0 , 2 of 402 MPa, an elongation at break AL of 28.0% and an E modulus of 217 GPa.

4. Ausführungsbeispiel4th embodiment

Eine Legierung nach einem vierten Ausführungsbeispiel besteht aus 18,3 Gew.-% Co, 2,42 Gew.-% Cr, 1,45 Gew.-% Mn, 0,01 Gew.-% Mo, 0,67 Gew.-%Si, 0,23 Gew.-%Al, Rest Fe und wurde wie oben beschrieben hergestellt. Die Legierung wurde bei 730 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,546 µΩm, eine Koerzitivfeldstärke Hc von 2,73 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 2,037 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,156T, eine Maximalpermeabilität µmax von 2046, eine Streckgrenze Rm von 615 MPa, Rp0,2 von 395 MPa, eine Bruchdehnung AL von 29,5% und ein E-Modul von 223 GPa auf.An alloy according to a fourth embodiment consists of 18.3 wt .-% Co, 2.42 wt .-% Cr, 1.45 wt .-% Mn, 0.01 wt .-% Mo, 0.67 wt. % Si, 0.23 wt% Al, balance Fe and was prepared as described above. The alloy was annealed at 730 ° C and, when annealed, has a resistivity ρ el of 0.546 μΩm, a coercive force H c of 2.73 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 2.037 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.156T, a maximum permeability μ max of 2046, a yield strength R m of 615 MPa, R p0.2 of 395 MPa, an elongation at break AL of 29.5% and an E modulus of 223 GPa on.

5. Ausführungsbeispiel5th embodiment

Eine Legierung nach einem fünften Ausführungsbeispiel besteht aus 15,40 Gew.-% Co, 2,34 Gew.-% Cr, 1,27 Gew.-% Mn, 0,85 Gew.-% Si, 0,23 Gew.-% Al, Rest Fe und wurde wie oben beschrieben hergestellt. Die Legierung wurde bei 760 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,5450 µΩm, eine Koerzitivfeldstärke Hc von 1,30 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 1,986 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,105T und eine Maximalpermeabilität µmax von 3241 auf.An alloy according to a fifth embodiment consists of 15.40 wt .-% Co, 2.34 wt .-% Cr, 1.27 wt .-% Mn, 0.85 wt .-% Si, 0.23 wt. % Al, balance Fe and was prepared as described above. The alloy was annealed at 760 ° C and, when annealed, has a resistivity ρ el of 0.5450 μΩm, a coercive force H c of 1.30 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 1.986 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), of 2.105T and a maximum permeability μ max of 3241.

6. Ausführungsbeispiel6th embodiment

Eine Legierung nach einem sechsten Ausführungsbeispiel besteht aus 18,10 Gew.-% Co, 2,30 Gew.-% Cr, 1,37 Gew.-% Mn, 0,83 Gew.-% Si, 0,24 Gew.-% Al, Rest Fe und wurde wie oben beschrieben hergestellt. Die Legierung wurde bei 760 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,5591 µΩm, eine Koerzitivfeldstärke Hc von 1,39 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 2,027 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,138 T und eine Maximalpermeabilität µmax von 2869 auf.An alloy according to a sixth embodiment consists of 18.10 wt .-% Co, 2.30 wt .-% Cr, 1.37 wt .-% Mn, 0.83 wt .-% Si, 0.24 wt. % Al, balance Fe and was prepared as described above. The alloy was annealed at 760 ° C and, when annealed, has a resistivity ρ el of 0.5591 μΩm, a coercive force H c of 1.39 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 2.027 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), of 2.138 T and a maximum permeability μ max of 2869.

7. Ausführungsbeispiel7th embodiment

Eine Legierung nach einem siebten Ausführungsbeispiel besteht aus 21,15 Gew.-% Co, 2,31 Gew.-% Cr, 1,38 Gew.-% Mn, 0,84 Gew.-% Si, 0,23 Gew.-% Al, Rest Fe und wurde wie oben beschrieben hergestellt. Die Legierung wurde bei 760 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,5627 µΩm, eine Koerzitivfeldstärke Hc von 1,93 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 2,066 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,165 T und eine Maximalpermeabilität µmax von 1527 auf.An alloy according to a seventh embodiment consists of 21.15 wt .-% Co, 2.31 wt .-% Cr, 1.38 wt .-% Mn, 0.84 wt .-% Si, 0.23 wt. % Al, balance Fe and was prepared as described above. The alloy was annealed at 760 ° C and, when annealed, has a resistivity ρ el of 0.5627 μΩm, a coercive force H c of 1.93 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 2.066 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), of 2.165 T and a maximum permeability μ max of 1527.

Bei dem achten bis dreizehnten Ausführungsbeispiele ist die Summe der Zulegierungen etwas höher und liegt zwischen 6 Gew.-% und 9 Gew.-%. Diese Legierungen weisen jeweils im geglühten Zustand einen spezifischen elektrischen Widerstand ρel ≥ 0,60 µΩm auf.In the eighth to thirteenth embodiments, the sum of the additions is slightly higher and is between 6 wt .-% and 9 wt .-%. These alloys each have a specific electrical resistance ρ el ≥ 0.60 μΩm in the annealed state.

8. Ausführungsbeispiel8th embodiment

Eine Legierung nach einem achten Ausführungsbeispiel besteht aus 18,0 Gew.-% Co, 2,66 Gew.-% Cr, 1,39 Gew.-% Mn, < 0,01 Gew.-% Mo, 0,87 Gew.-%Si, 0,17 Gew.-% Al, 1,00 Gew.% V, Rest Fe und wurde wie oben beschrieben hergestellt. Diese Legierung wurde auch nach dem Warmwalzen kaltverformt. Die Legierung wurde bei 780 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,627 µΩm, eine Koerzitivfeldstärke Hc von 1,40 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 1,977 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,088 T, eine Maximalpermeabilität µmax von 2862, eine Streckgrenze Rm von 605 MPa, Rp0,2 von 374 MPa, eine Bruchdehnung AL von 29,7% und ein E-Modul von 222 GPa auf.An alloy according to an eighth embodiment consists of 18.0 wt% Co, 2.66 wt% Cr, 1.39 wt% Mn, <0.01 wt% Mo, 0.87 wt. % Si, 0.17 wt% Al, 1.00 wt% V, balance Fe and was prepared as described above. This alloy was cold worked even after hot rolling. The alloy was annealed at 780 ° C and, when annealed, has a resistivity ρ el of 0.627 μΩm, a coercive force H c of 1.40 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 1.977 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.088 T, a maximum permeability μ max of 2862, a yield strength R m of 605 MPa, R p0.2 of 374 MPa, an elongation at break AL of 29.7% and an E modulus of 222 GPa.

9. Ausführungsbeispiel9th embodiment

Eine Legierung nach einem neunten Ausführungsbeispiel besteht aus 18,0 Gew.-% Co, 2,60 Gew.-% Cr, 1,35 Gew.-% Mn, 0,99 Gew.-% Mo, 0,84 Gew.-%Si, 0,17 Gew.-% Al, <0,01 Gew.-% V, Rest Fe und wurde wie oben beschrieben hergestellt. Zusäzlich wurde diese Legierung kaltverformt. Die Legierung wurde bei 780 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,604 µΩm, eine Koerzitivfeldstärke Hc von 2,13 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 21,969 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,092 T, eine Maximalpermeabilität µmax von 1656, eine Streckgrenze Rm von 636 MPa, Rp0,2 von 389 MPa, eine Bruchdehnung AL von 29,2% und ein E-Modul von 222 GPa auf.An alloy according to a ninth embodiment consists of 18.0% by weight of Co, 2.60% by weight of Cr, 1.35% by weight of Mn, 0.99% by weight of Mo, 0.84% by weight. % Si, 0.17 wt% Al, <0.01 wt% V, balance Fe and was prepared as described above. In addition, this alloy was cold worked. The alloy was annealed at 780 ° C and, when annealed, has a resistivity ρ el of 0.604 μΩm, a coercive force H c of 2.13 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 21.969 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.092 T, a maximum permeability μ max of 1656, a yield strength R m of 636 MPa, R p0 , 2 of 389 MPa, an elongation at break AL of 29.2% and an E-modulus of 222 GPa.

10. Ausführungsbeispiel10th embodiment

Eine Legierung nach einem zehnten Ausführungsbeispiel besteht aus 18,0 Gew.-% Co, 1,85 Gew.-% Cr, 1,33 Gew.-% Mn, <0,01 Gew.-% Mo, 0,86 Gew.-%Si, 0,84 Gew.-% Al, 2,51 Gew.-% V, Rest Fe und wurde wie oben beschrieben hergestellt. Danach wurde die Legierung kaltverformt. Die Legierung wurde bei 870 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,716 µΩm, eine Koerzitivfeldstärke Hc von 0,95 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 1,920 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,015 T, eine Maximalpermeabilität µmax von 4038 auf. Diese Legierung des zehnten Ausführungsbeispiel weist eine besonders vorteilhafte Kombination von einem hohen spezifischen elektrischen Widerstand ρel von 0,716 µΩm, einer niedrigen Koerzitivfeldstärke Hc von 0,95 A/cm, und einer hohen Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 1,920 T auf.An alloy according to a tenth embodiment consists of 18.0 wt% Co, 1.85 wt% Cr, 1.33 wt% Mn, <0.01 wt% Mo, 0.86 wt. % Si, 0.84 wt% Al, 2.51 wt% V, balance Fe and was prepared as described above. Thereafter, the alloy was cold worked. The alloy was annealed at 870 ° C and, when annealed, has a resistivity ρ el of 0.716 μΩm, a coercive field strength H c of 0.95 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 1.920 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A) / cm), from 2.015 T, a maximum permeability μ max of 4038. This alloy of the tenth embodiment has a particularly advantageous combination of a high resistivity ρ el of 0.716 μΩm, a low coercive force H c of 0.95 A / cm, and a high saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), from 1.920 T up.

11. Ausführungsform11th embodiment

Eine Legierung nach einem elften Ausführungsbeispiel besteht aus 12,0 Gew.-% Co, 2,65 Gew.-% Cr, 1,38 Gew.-% Mn, < 0,01 Gew.-% Mo, 0,85 Gew.-%Si, 0,92 Gew.-% Al, 1,00 Gew.-% V,Rest Fe und wurde wie oben beschrieben hergestellt und zusätzlich klarverformt. Die Legierung wurde bei 820 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,658 µΩm, eine Koerzitivfeldstärke Hc von 0,72 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 1,880 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,008 T, eine Maximalpermeabilität µmax von 5590, eine Streckgrenze Rm von 525 MPa, Rp0,2 von 346 MPa, eine Bruchdehnung AL von 33,5 % und ein E-Modul von 216 GPa auf.An alloy according to an eleventh embodiment consists of 12.0 wt% Co, 2.65 wt% Cr, 1.38 wt% Mn, <0.01 wt% Mo, 0.85 wt. % Si, 0.92 wt.% Al, 1.00 wt.% V, remainder Fe and was prepared as described above and additionally clearly deformed. The alloy was annealed at 820 ° C and, when annealed, has a resistivity ρ el of 0.658 μΩm, a coercive force H c of 0.72 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 1.880 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.008 T, a maximum permeability μ max of 5590, a yield strength R m of 525 MPa, R p0 , 2 of 346 MPa, an elongation at break AL of 33.5% and an E modulus of 216 GPa.

Die Legierung nach dem elften Ausführungsbeispiel weist eine besonders vorteilhafte Kombination von einem hohen spezifischen elektrischen Widerstand ρel von 0,658 µΩm, einer niedrigen Koerzitivfeldstärke Hc von 0,72 A/cm, und einer hohen Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 1,880 T auf.The alloy according to the eleventh embodiment has a particularly advantageous combination of high resistivity ρ el of 0.658 μΩm, low coercive force H c of 0.72 A / cm, and high saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), 1.880 T on.

12. Ausführungsbeispiel12th embodiment

Die zwölfte Legierung ist nicht erfindungsgemäß, da der Co-Gehalt größer als 22 Gew.-% ist.The twelfth alloy is not according to the invention since the Co content is greater than 22% by weight.

13. Ausführungsbeispiel13th embodiment

Eine Legierung nach einem dreizehnten Ausführungsbeispiel besteht aus 18,0 Gew.-% Co, 3,00 Gew.-% Cr, 1,32 Gew.-% Mn, < 0,01 Gew.-% Mo, 0,86 Gew.-%Si, 0,84 Gew.-% Al, 2,01 Gew.-% V, Rest Fe und wurde wie oben beschrieben hergestellt und nach dem Warmwalzen kaltverformt. Die Legierung wurde bei 820 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,769 µΩm, eine Koerzitivfeldstärke Hc von 1,14 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 1,896 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J (400 A/cm), von 1, 985 T, eine Maximalpermeabilität µmax von 3499, eine Streckgrenze Rm von 674 MPa, Rp0,2 von 396 MPa, eine Bruchdehnung AL von 33,3% und ein E-Modul von 218 GPa auf.An alloy according to a thirteenth embodiment consists of 18.0 wt% Co, 3.00 wt% Cr, 1.32 wt% Mn, <0.01 wt% Mo, 0.86 wt. % Si, 0.84 wt% Al, 2.01 wt% V, balance Fe and was prepared as described above and cold worked after hot rolling. The alloy was annealed at 820 ° C and, when annealed, has a resistivity ρ el of 0.769 μΩm, a coercive force H c of 1.14 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 1.896 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), of 1, 985 T, a maximum permeability μ max of 3499, a yield strength R m of 674 MPa, R p0.2 of 396 MPa, an elongation at break AL of 33.3% and an E-modulus of 218 GPa.

Bezugszeichenliste

20
Aktorsystem
21
Magnetkern
22
Spule
23
Stromquelle
24
erste Position des Magnetkerns
25
zweite Position des Magnetkerns
26
Strom
27
Kanal
Tabelle 1 Legierung Fe Co (Gew.-%) Summe Zulegierungen Cr (Gew.-%) Mn (Gew.-%) Si (Gew.-%) Mo (Gew.-%) Al (Gew.-%) V (Gew.-%) 1 Rest 18,1 4,73 2,24 1,40 0,83 0,01 0,24 <0,01 2 Rest 18,2 4,58 1,67 1,39 0,82 0,01 0,68 <0,01 3 Rest 18,3 5,09 2,62 1,37 0,85 0,01 0,21 <0,01 4 Rest 18,3 4,78 2,42 1,45 0,67 0,01 0,23 <0,01 5 Rest 15,40 4,69 2,34 1,27 0,85 0,001 0,23 <0,01 6 Rest 18,10 4,74 2,30 1,37 0,83 0,001 0,24 <0,01 7 Rest 21,15 4,76 2,31 1,38 0,84 0,001 0,23 <0,01 8 Rest 18,0 6,18 2,66 1,39 0,87 <0,01 0,17 1,00 9 Rest 18,0 6,18 2,60 1,35 0,84 0,99 0,17 <0,01 10 Rest 18,0 7,38 1,85 1,33 0,86 <0,01 0,84 2,51 11 Rest 12,0 6,78 2,65 1,38 0,85 <0,01 0,92 1,00 12* Rest 25,0 5,58 1,57 0,96 0,93 <0,01 1,02 1,00 13 Rest 18,0 8,18 3,00 1,32 0,86 <0,01 0,84 2,01 *nicht erfindungsgemäß Tabelle 2 Legierung Glühtemperatur (°C) ρ (µΩm) Hc (A/cm) J(160) (T) J(400) (T) µmax Rm (Mpa) Rp0,2 (Mpa) AL (%) E-Modul (Gpa) 1 760 0,542 2,34 2,029 2,146 2314 623 411 29,6 220 2 800 0,533 1,94 2,019 2,151 1815 661 385 25,4 221 3 760 0,572 2,57 2,021 2,137 1915 632 402 28,0 217 4 730 0,546 2,73 2,037 2,156 2046 615 395 29,5 223 5 760 0,545 1,30 1,986 2,105 3241 - - - - 6 760 0,559 1,39 2,027 2,138 2869 - - - - 7 760 0,563 1,93 2,066 2,165 1527 - - - - 8 780 0,627 1,40 1,977 2,088 2862 605 374 29,7 222 9 780 0,604 2,13 1,969 2,092 1656 636 389 29,2 222 10 870 0,716 0,95 1,920 2,015 4038 - - - - 11 820 0,658 0,72 1,880 2,008 5590 525 346 33,5 216 12* 870 0,628 1,25 1,989 2,075 1793 - - - - 13 820 0,769 1,14 1,896 1,985 3499 674 396 33,3 218 *nicht erfindungsgemäß LIST OF REFERENCE NUMBERS
20
actuator systems
21
magnetic core
22
Kitchen sink
23
power source
24
first position of the magnetic core
25
second position of the magnetic core
26
electricity
27
channel
Table 1 alloy Fe Co (% by weight) Total allowances Cr (wt.%) Mn (wt%) Si (wt.%) Mo (wt.%) Al (wt.%) V (% by weight) 1 rest 18.1 4.73 2.24 1.40 0.83 0.01 0.24 <0.01 2 rest 18.2 4.58 1.67 1.39 0.82 0.01 0.68 <0.01 3 rest 18.3 5.09 2.62 1.37 0.85 0.01 0.21 <0.01 4 rest 18.3 4.78 2.42 1.45 0.67 0.01 0.23 <0.01 5 rest 15.40 4.69 2.34 1.27 0.85 0.001 0.23 <0.01 6 rest 18,10 4.74 2.30 1.37 0.83 0.001 0.24 <0.01 7 rest 21.15 4.76 2.31 1.38 0.84 0.001 0.23 <0.01 8th rest 18.0 6.18 2.66 1.39 0.87 <0.01 0.17 1.00 9 rest 18.0 6.18 2.60 1.35 0.84 0.99 0.17 <0.01 10 rest 18.0 7.38 1.85 1.33 0.86 <0.01 0.84 2.51 11 rest 12.0 6.78 2.65 1.38 0.85 <0.01 0.92 1.00 12 * rest 25.0 5.58 1.57 0.96 0.93 <0.01 1.02 1.00 13 rest 18.0 8.18 3.00 1.32 0.86 <0.01 0.84 2.01 * not according to the invention alloy Annealing temperature (° C) ρ (μΩm) Hc (A / cm) J (160) (T) J (400) (T) μ max R m (Mpa) Rp 0.2 (Mpa) AL (%) Modulus of elasticity (Gpa) 1 760 0.542 2.34 2,029 2,146 2314 623 411 29.6 220 2 800 0.533 1.94 2,019 2,151 1815 661 385 25.4 221 3 760 0.572 2.57 2,021 2,137 1915 632 402 28.0 217 4 730 0.546 2.73 2.037 2,156 2046 615 395 29.5 223 5 760 0.545 1.30 1,986 2,105 3241 - - - - 6 760 0,559 1.39 2,027 2,138 2869 - - - - 7 760 0.563 1.93 2,066 2,165 1527 - - - - 8th 780 0.627 1.40 1,977 2,088 2862 605 374 29.7 222 9 780 0.604 2.13 1,969 2,092 1656 636 389 29.2 222 10 870 0.716 0.95 1,920 2,015 4038 - - - - 11 820 0,658 0.72 1,880 2,008 5590 525 346 33.5 216 12 * 870 0.628 1.25 1,989 2,075 1793 - - - - 13 820 0.769 1.14 1,896 1,985 3499 674 396 33.3 218 * not according to the invention

Claims (46)

  1. Soft magnetic alloy, consisting of 10 % by weight ≤ Co ≤ 22 % by weight, 0 % by weight ≤ V ≤ 4 % by weight, 1.5 % by weight ≤ Cr ≤ 5 % by weight, 1 % by weight ≤ Mn ≤ 2 % by weight, 0 % by weight ≤ Mo ≤ 1 % by weight, 0.5 % by weight ≤ Si ≤ 1.5 % by weight, 0.1 % by weight ≤ Al ≤ 1.0 % by weight, rest iron plus unavoidable impurities.
  2. Soft magnetic alloy according to claim 1,
    characterised by
    a cobalt content of 14 % by weight ≤ Co ≤ 22 % by weight.
  3. Soft magnetic alloy according to claim 2,
    characterised by
    a cobalt content of 14 % by weight ≤ Co ≤ 20 % by weight.
  4. Soft magnetic alloy according to any of the preceding claims,
    characterised by
    a vanadium content of 0 % by weight ≤ V ≤ 2 % by weight.
  5. Soft magnetic alloy according to any of the preceding claims,
    characterised by
    a molybdenum content of 0 % by weight < Mo ≤ 0.5 % by weight.
  6. Soft magnetic alloy according to any of the preceding claims,
    characterised by
    a manganese content of 1.25 % by weight ≤ Mn ≤ 1.5 % by weight.
  7. Soft magnetic alloy according to any of the preceding claims,
    characterised by
    a silicon content of 0.5 % by weight ≤ Si ≤ 1.0 % by weight.
  8. Soft magnetic alloy according to any of the preceding claims,
    characterised by
    an aluminium plus silicon content of 0.6 % by weight ≤ Al+Si ≤ 2 % by weight.
  9. Soft magnetic alloy according to any of the preceding claims,
    characterised by
    a chromium plus manganese plus molybdenum plus aluminium plus silicon plus vanadium content of 4.0 % by weight ≤ Cr+Mn+Mo+Al+Si+V ≤ 9.0 % by weight.
  10. Soft magnetic alloy according to any of the preceding claims,
    characterised in that
    0 % by weight ≤ V ≤ 2.0 % by weight, 1.6 % by weight ≤ Cr ≤ 2.5 % by weight, 1.25 % by weight ≤ Mn ≤ 1.5 % by weight, 0 % by weight ≤ Mo ≤ 0.02 % by weight, 0.6 % by weight ≤ Si ≤ 0.9 % by weight and 0.2 % by weight ≤ Al ≤ 0.7 % by weight.
  11. Soft magnetic alloy according to any of the preceding claims;
    characterised in that
    0 % by weight ≤ V ≤ 0.01 % by weight, 2.3 % by weight ≤ Cr ≤ 3.0 % by weight, 1.25 % by weight ≤ Mn ≤ 1.5 % by weight, 0.75 % by weight ≤ Mo ≤ 1 % by weight, 0.6 % by weight ≤ Si ≤ 0.9 % by weight and 0.1 % by weight ≤ Al ≤ 0.2 % by weight.
  12. Soft magnetic alloy according to any of the preceding claims,
    characterised in that
    0.75 % by weight ≤ V ≤ 2.75 % by weight, 2.3 % by weight ≤ Cr ≤ 3.5 % by weight, 1.25 % by weight ≤ Mn ≤ 1.5 % by weight, 0 % by weight ≤ Mo ≤ 0.01 % by weight, 0.6 % by weight ≤ Si ≤ 0.9 % by weight and 0.7 % by weight ≤ Al ≤ 1.0 % by weight.
  13. Soft magnetic alloy according to any of the preceding claims,
    characterised in that
    the finish-annealed alloy has an elongation AL > 2% in a tensile test.
  14. Soft magnetic alloy according to claim 13,
    characterised in that
    the finish-annealed alloy has an elongation AL > 20% in a tensile test.
  15. Soft magnetic alloy according to any of the preceding claims,
    characterised by
    a resistivity ρ > 0.50 µΩm.
  16. Soft magnetic alloy according claim 15,
    characterised by
    a resistivity ρ > 0.55 µΩm.
  17. Soft magnetic alloy according to claim 16,
    characterised by
    a resistivity ρ > 0.60 µΩm.
  18. Soft magnetic alloy according to claim 17,
    characterised by
    a resistivity ρ > 0.65 µΩm.
  19. Soft magnetic alloy according to any of the preceding claims,
    characterised by
    a yield point Rp0.2 > 340 MPa.
  20. Soft magnetic alloy according to any of the preceding claims,
    characterised by
    a saturation with J(400 A/cm) > 1.90 T.
  21. Soft magnetic alloy according to any of the preceding claims,
    characterised by
    a saturation with J(400 A/cm) > 2.00 T.
  22. Soft magnetic alloy according to any of the preceding claims,
    characterised by
    a coercitive field strength Hc < 3.5 A/cm.
  23. Soft magnetic alloy according to claim 22,
    characterised by
    a coercitive field strength Hc < 2.0 A/cm.
  24. Soft magnetic alloy according to any of the preceding claims,
    characterised by
    a maximum permeability µmax > 1000.
  25. Soft magnetic alloy according to claim 24,
    characterised by
    a maximum permeability µmax > 2000.
  26. Soft magnetic core for an electromagnetic actuator, made of an alloy according to any of claims 1 to 25.
  27. Soft magnetic alloy for a magnetic valve of an internal combustion engine, made of an alloy according to any of claims 1 to 25.
  28. Soft magnetic alloy for a fuel injection valve of an internal combustion engine, made of an alloy according to any of claims 1 to 25.
  29. Soft magnetic alloy for a direct injection valve of a spark ignition engine, made of an alloy according to any of claims 1 to 25.
  30. Soft magnetic alloy for a direct injection valve of a diesel engine, made of an alloy according to any of claims 1 to 25.
  31. Fuel injection valve of an internal combustion engine, with a component made of a soft magnetic alloy according to any of claims 1 to 25.
  32. Fuel injection valve according to claim 31,
    characterised in that
    the fuel injection valve is a direct fuel injection valve of a spark ignition engine.
  33. Fuel injection valve according to claim 31,
    characterised in that
    the fuel injection valve is a direct fuel injection valve of a diesel engine.
  34. Soft magnetic rotor for an electric motor, made of an alloy according to any of claims 1 to 25.
  35. Soft magnetic stator for an electric motor, made of an alloy according to any of claims 1 to 25.
  36. Soft magnetic rotor for an electric motor, made of an alloy according to any of claims 1 to 25.
  37. Soft magnetic component for an electromagnetic valve control on an inlet valve or an outlet valve used in an engine compartment, made of an alloy according to any of claims 1 to 25.
  38. Yoke part for an electromagnetic actuator, made of an alloy according to any of claims 1 to 25.
  39. Yoke part for a solenoid valve, made of an alloy according to any of claims 1 to 25.
  40. Method for the production of semi-finished product of a cobalt-iron alloy,
    wherein workpieces are first produced by melting (1) and hot forming (4, 10) from a soft magnetic alloy consisting of 10 % by weight ≤ Co ≤ 22 % by weight, 0 % by weight ≤ V ≤ 4 % by weight, 1.5 % by weight ≤ Cr ≤ 5 % by weight, 1 % by weight ≤ Mn ≤ 2 % by weight, 0 % by weight ≤ Mo ≤ 1 % by weight, 0.5 % by weight ≤ Si ≤ 1.5 % by weight, 0.1 % by weight ≤ Al ≤ 1.0 % by weight, rest iron plus unavoidable impurities,
    wherein a finish-annealing process (7, 12) is carried out.
  41. Method according to claim 40,
    characterised in that
    the finish-annealing process (7, 12) is carried out within a temperature range between 700°C and 1100°C.
  42. Method according to claim 41,
    characterised in that
    the finish-annealing process (7, 12) is carried out within a temperature range between 750°C and 850°C.
  43. Method according to any of claims 40 to 42,
    characterised in that
    the finish-annealing process is carried out such that the finish-annealed alloy has deformation parameters of an elongation AL > 2% in a tensile test.
  44. Method according to claim 43,
    characterised in that
    the finish-annealing process is carried out such that the finish-annealed alloy has deformation parameters of an elongation AL > 20% in a tensile test.
  45. Method according to any of claims 40 to 44,
    characterised in that
    the alloy is cold-formed before the finish-annealing process (7, 12).
  46. Method according to any of claims 40 to 45,
    characterised in that
    the alloy is finish-annealed in the presence of an inert gas or hydrogen or in a vacuum.
EP07113372A 2006-10-30 2007-07-27 Iron-cobalt based soft magnetic alloy and method for its manufacture Active EP1918407B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006051715 2006-10-30

Publications (2)

Publication Number Publication Date
EP1918407A1 EP1918407A1 (en) 2008-05-07
EP1918407B1 true EP1918407B1 (en) 2008-12-24

Family

ID=39050410

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07113372A Active EP1918407B1 (en) 2006-10-30 2007-07-27 Iron-cobalt based soft magnetic alloy and method for its manufacture

Country Status (4)

Country Link
US (1) US7909945B2 (en)
EP (1) EP1918407B1 (en)
AT (1) ATE418625T1 (en)
DE (1) DE502007000329D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3971919B1 (en) * 2017-10-27 2023-12-20 Vacuumschmelze GmbH & Co. KG Method for producing high permeability soft magnetic alloy

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10134056B8 (en) * 2001-07-13 2014-05-28 Vacuumschmelze Gmbh & Co. Kg Process for the production of nanocrystalline magnetic cores and apparatus for carrying out the process
DE102005034486A1 (en) * 2005-07-20 2007-02-01 Vacuumschmelze Gmbh & Co. Kg Process for the production of a soft magnetic core for generators and generator with such a core
US8029627B2 (en) * 2006-01-31 2011-10-04 Vacuumschmelze Gmbh & Co. Kg Corrosion resistant magnetic component for a fuel injection valve
US20070176025A1 (en) * 2006-01-31 2007-08-02 Joachim Gerster Corrosion resistant magnetic component for a fuel injection valve
US7909945B2 (en) * 2006-10-30 2011-03-22 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and method for its production
US9057115B2 (en) * 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
DE102007035774B9 (en) * 2007-07-27 2013-03-14 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt based alloy and process for its preparation
US8012270B2 (en) * 2007-07-27 2011-09-06 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it
EP2083428A1 (en) * 2008-01-22 2009-07-29 Imphy Alloys Fe-Co alloy for highly dynamic electromagnetic actuator
DE102008053310A1 (en) * 2008-10-27 2010-04-29 Vacuumschmelze Gmbh & Co. Kg Soft-magnetic workpiece with wear-resistant layer, used to make fuel injection- or solenoid valve, includes core of crystalline iron-cobalt alloy
US20160329139A1 (en) 2015-05-04 2016-11-10 Carpenter Technology Corporation Ultra-low cobalt iron-cobalt magnetic alloys
DE102019110872A1 (en) * 2019-04-26 2020-11-12 Vacuumschmelze Gmbh & Co. Kg Laminated core and method for producing a highly permeable soft magnetic alloy
JPWO2021182518A1 (en) * 2020-03-10 2021-09-16

Family Cites Families (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE694374C (en) 1939-02-04 1940-07-31 Brown Boveri & Cie Akt Ges Process for the continuous operation of a single-channel rotary hearth furnace provided with a glow and heat exchange zone
US2225730A (en) 1939-08-15 1940-12-24 Percy A E Armstrong Corrosion resistant steel article comprising silicon and columbium
US2926008A (en) 1956-04-12 1960-02-23 Foundry Equipment Company Vertical oven
GB833446A (en) 1956-05-23 1960-04-27 Kanthal Ab Improved iron, chromium, aluminium alloys
US2960744A (en) 1957-10-08 1960-11-22 Gen Electric Equilibrium atmosphere tunnel kilns for ferrite manufacture
US3255512A (en) 1962-08-17 1966-06-14 Trident Engineering Associates Molding a ferromagnetic casing upon an electrical component
US3502462A (en) 1965-11-29 1970-03-24 United States Steel Corp Nickel,cobalt,chromium steel
US3337373A (en) 1966-08-19 1967-08-22 Westinghouse Electric Corp Doubly oriented cube-on-face magnetic sheet containing chromium
US3401035A (en) 1967-12-07 1968-09-10 Crucible Steel Co America Free-machining stainless steels
US3634072A (en) 1970-05-21 1972-01-11 Carpenter Technology Corp Magnetic alloy
DE2045015A1 (en) 1970-09-11 1972-03-16 Siemens Ag Energy supply system, especially for aircraft, with an asynchronous generator driven by an engine with variable speed
US3624568A (en) 1970-10-26 1971-11-30 Bell Telephone Labor Inc Magnetically actuated switching devices
US3977919A (en) 1973-09-28 1976-08-31 Westinghouse Electric Corporation Method of producing doubly oriented cobalt iron alloys
US4059462A (en) * 1974-12-26 1977-11-22 The Foundation: The Research Institute Of Electric And Magnetic Alloys Niobium-iron rectangular hysteresis magnetic alloy
JPS5180998A (en) 1975-01-14 1976-07-15 Fuji Photo Film Co Ltd
JPS5192097A (en) 1975-02-10 1976-08-12
US4076525A (en) 1976-07-29 1978-02-28 General Dynamics Corporation High strength fracture resistant weldable steels
US4120704A (en) 1977-04-21 1978-10-17 The Arnold Engineering Company Magnetic alloy and processing therefor
JPS546808A (en) 1977-06-20 1979-01-19 Toshiba Corp Magnetic alloy of iron-chromium-cobalt base
US4160066A (en) 1977-10-11 1979-07-03 Teledyne Industries, Inc. Age-hardenable weld deposit
DE2816173C2 (en) 1978-04-14 1982-07-29 Vacuumschmelze Gmbh, 6450 Hanau Method of manufacturing tape cores
US4201837A (en) 1978-11-16 1980-05-06 General Electric Company Bonded amorphous metal electromagnetic components
DE2924280A1 (en) 1979-06-15 1981-01-08 Vacuumschmelze Gmbh AMORPHE SOFT MAGNETIC ALLOY
JPS57164935A (en) 1981-04-04 1982-10-09 Nippon Steel Corp Unidirectionally inclined heating method for metallic strip or metallic plate
JPS599157A (en) 1982-07-08 1984-01-18 Sony Corp Heat treatment of amorphous magnetic alloy
SU1062298A1 (en) 1982-07-28 1983-12-23 Центральный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Черной Металлургии Им.И.П.Бардина Magnetically soft alloy
JPS5958813A (en) 1982-09-29 1984-04-04 Toshiba Corp Manufacture of amorphous metal core
US4601765A (en) 1983-05-05 1986-07-22 General Electric Company Powdered iron core magnetic devices
DE3427716C1 (en) 1984-07-27 1985-11-14 Daimler-Benz Ag, 7000 Stuttgart Rotary hearth furnace in ring design for heat treatment of workpieces
JP2615543B2 (en) * 1985-05-04 1997-05-28 大同特殊鋼株式会社 Soft magnetic material
EP0216457A1 (en) 1985-09-18 1987-04-01 Kawasaki Steel Corporation Method of producing two-phase separation type Fe-Cr-Co series permanent magnets
JPS6293342A (en) * 1985-10-17 1987-04-28 Daido Steel Co Ltd Soft magnetic material
CH668331A5 (en) 1985-11-11 1988-12-15 Studer Willi Ag Magnetic head core mfr. from stack of laminations - involves linear machining of patterns from adhesively bonded and rolled sandwich of permeable and non-permeable layers
DE3542257A1 (en) 1985-11-29 1987-06-04 Standard Elektrik Lorenz Ag Device for tempering in a magnetic field
US4706525A (en) * 1986-01-07 1987-11-17 Cornell Research Foundation, Inc. Vehicle door unlocking device
US4881989A (en) 1986-12-15 1989-11-21 Hitachi Metals, Ltd. Fe-base soft magnetic alloy and method of producing same
DE3884491T2 (en) 1987-07-14 1994-02-17 Hitachi Metals Ltd Magnetic core and manufacturing method.
US4923533A (en) 1987-07-31 1990-05-08 Tdk Corporation Magnetic shield-forming magnetically soft powder, composition thereof, and process of making
KR910009974B1 (en) 1988-01-14 1991-12-07 알프스 덴기 가부시기가이샤 High saturated magnetic flux density alloy
JP2698369B2 (en) 1988-03-23 1998-01-19 日立金属株式会社 Low frequency transformer alloy and low frequency transformer using the same
JP2710949B2 (en) 1988-03-30 1998-02-10 日立金属株式会社 Manufacturing method of ultra-microcrystalline soft magnetic alloy
JPH0215143A (en) 1988-06-30 1990-01-18 Aichi Steel Works Ltd Soft magnetic stainless steel for cold forging
DE3824075A1 (en) 1988-07-15 1990-01-18 Vacuumschmelze Gmbh COMPOSITE BODY FOR GENERATING VOLTAGE PULSES
US4994122A (en) 1989-07-13 1991-02-19 Carpenter Technology Corporation Corrosion resistant, magnetic alloy article
US5091024A (en) 1989-07-13 1992-02-25 Carpenter Technology Corporation Corrosion resistant, magnetic alloy article
EP0429022B1 (en) 1989-11-17 1994-10-26 Hitachi Metals, Ltd. Magnetic alloy with ulrafine crystal grains and method of producing same
JPH03223444A (en) 1990-01-26 1991-10-02 Alps Electric Co Ltd High saturation magnetic flux density alloy
US5268044A (en) 1990-02-06 1993-12-07 Carpenter Technology Corporation High strength, high fracture toughness alloy
JPH0559498A (en) 1990-12-28 1993-03-09 Toyota Motor Corp Ferritic heat resistant cast steel and its manufacture
JP2975142B2 (en) 1991-03-29 1999-11-10 株式会社日立製作所 Amorphous iron core manufacturing method and apparatus
US5622768A (en) * 1992-01-13 1997-04-22 Kabushiki Kaishi Toshiba Magnetic core
JPH0633199A (en) 1992-07-16 1994-02-08 Hitachi Metal Precision Ltd Yoke core for printer head
US5534081A (en) 1993-05-11 1996-07-09 Honda Giken Kogyo Kabushiki Kaisha Fuel injector component
JP3688732B2 (en) 1993-06-29 2005-08-31 株式会社東芝 Planar magnetic element and amorphous magnetic thin film
JP3233313B2 (en) 1993-07-21 2001-11-26 日立金属株式会社 Manufacturing method of nanocrystalline alloy with excellent pulse attenuation characteristics
DE69408916T2 (en) 1993-07-30 1998-11-12 Hitachi Metals Ltd Magnetic core for pulse transmitters and pulse transmitters
AUPM644394A0 (en) 1994-06-24 1994-07-21 Electro Research International Pty Ltd Bulk metallic glass motor and transformer parts and method of manufacture
US5611871A (en) 1994-07-20 1997-03-18 Hitachi Metals, Ltd. Method of producing nanocrystalline alloy having high permeability
US5594397A (en) 1994-09-02 1997-01-14 Tdk Corporation Electronic filtering part using a material with microwave absorbing properties
US5817191A (en) 1994-11-29 1998-10-06 Vacuumschmelze Gmbh Iron-based soft magnetic alloy containing cobalt for use as a solenoid core
DE4442420A1 (en) 1994-11-29 1996-05-30 Vacuumschmelze Gmbh Soft magnetic iron-based alloy with cobalt for magnetic circuits or excitation circuits
DE4444482A1 (en) * 1994-12-14 1996-06-27 Bosch Gmbh Robert Soft magnetic material
DE19514612A1 (en) * 1995-04-25 1996-10-31 Fritz Dr Kueke Process for the preparation of an aqueous chlorine dioxide solution
EP0741191B1 (en) 1995-05-02 2003-01-22 Sumitomo Metal Industries, Ltd. A magnetic steel sheet having excellent magnetic characteristics and blanking performance
US5501747A (en) 1995-05-12 1996-03-26 Crs Holdings, Inc. High strength iron-cobalt-vanadium alloy article
DE29514508U1 (en) 1995-09-09 1995-11-02 Vacuumschmelze Gmbh, 63450 Hanau Sheet package for magnetic cores for use in inductive components with a longitudinal opening
DE19635257C1 (en) 1996-08-30 1998-03-12 Franz Hillingrathner Compact orbital heat treatment furnace
US6118365A (en) 1996-09-17 2000-09-12 Vacuumschmelze Gmbh Pulse transformer for a u-interface operating according to the echo compensation principle, and method for the manufacture of a toroidal tape core contained in a U-interface pulse transformer
FR2755292B1 (en) 1996-10-25 1998-11-20 Mecagis PROCESS FOR MANUFACTURING A MAGNETIC CORE IN NANOCRYSTALLINE SOFT MAGNETIC MATERIAL
FR2756966B1 (en) 1996-12-11 1998-12-31 Mecagis METHOD FOR MANUFACTURING A MAGNETIC COMPONENT MADE OF SOFT MAGNETIC ALLOY IRON BASED HAVING A NANOCRYSTALLINE STRUCTURE
DE19653428C1 (en) 1996-12-20 1998-03-26 Vacuumschmelze Gmbh Producing amorphous ferromagnetic cobalt alloy strip for wound cores
US5976274A (en) 1997-01-23 1999-11-02 Akihisa Inoue Soft magnetic amorphous alloy and high hardness amorphous alloy and high hardness tool using the same
US5769974A (en) 1997-02-03 1998-06-23 Crs Holdings, Inc. Process for improving magnetic performance in a free-machining ferritic stainless steel
US5741374A (en) 1997-05-14 1998-04-21 Crs Holdings, Inc. High strength, ductile, Co-Fe-C soft magnetic alloy
US5914088A (en) 1997-08-21 1999-06-22 Vijai Electricals Limited Apparatus for continuously annealing amorphous alloy cores with closed magnetic path
DE19741364C2 (en) 1997-09-19 2000-05-25 Vacuumschmelze Gmbh Method and device for producing packages for magnetic cores consisting of sheet metal lamellae
JPH11102827A (en) 1997-09-26 1999-04-13 Hitachi Metals Ltd Saturable reactor core and magnetic amplifier mode high output switching regulator using the same, and computer using the same
IL128067A (en) 1998-02-05 2001-10-31 Imphy Ugine Precision Iron-cobalt alloy
DE19818198A1 (en) 1998-04-23 1999-10-28 Bosch Gmbh Robert Producing rotor or stator from sheet metal blank
DE59907740D1 (en) 1998-09-17 2003-12-18 Vacuumschmelze Gmbh CURRENT TRANSFORMER WITH DC CURRENT TOLERANCE
US6462456B1 (en) 1998-11-06 2002-10-08 Honeywell International Inc. Bulk amorphous metal magnetic components for electric motors
KR100606515B1 (en) 1998-11-13 2006-07-31 바쿰슈멜체 게엠베하 운트 코. 카게 Magnetic core that is suitable for use in a current transformer, method for the production of a magnetic core and current transformer with a magnetic core
JP2000182845A (en) 1998-12-21 2000-06-30 Hitachi Ferrite Electronics Ltd Composite core
JP2000277357A (en) 1999-03-23 2000-10-06 Hitachi Metals Ltd Saturatable magnetic core and power supply apparatus using the same
US6181509B1 (en) 1999-04-23 2001-01-30 International Business Machines Corporation Low sulfur outgassing free machining stainless steel disk drive components
DE19928764B4 (en) 1999-06-23 2005-03-17 Vacuumschmelze Gmbh Low coercivity iron-cobalt alloy and process for producing iron-cobalt alloy semi-finished product
JP2001068324A (en) 1999-08-30 2001-03-16 Hitachi Ferrite Electronics Ltd Powder molding core
JP3617426B2 (en) 1999-09-16 2005-02-02 株式会社村田製作所 Inductor and manufacturing method thereof
FR2808806B1 (en) * 2000-05-12 2002-08-30 Imphy Ugine Precision IRON-COBALT ALLOY, IN PARTICULAR FOR A MOBILE CORE OF ELECTROMAGNETIC ACTUATOR, AND ITS MANUFACTURING METHOD
DE10024824A1 (en) 2000-05-19 2001-11-29 Vacuumschmelze Gmbh Inductive component and method for its production
DE10031923A1 (en) 2000-06-30 2002-01-17 Bosch Gmbh Robert Soft magnetic material with a heterogeneous structure and process for its production
DE10045705A1 (en) 2000-09-15 2002-04-04 Vacuumschmelze Gmbh & Co Kg Magnetic core for a transducer regulator and use of transducer regulators as well as method for producing magnetic cores for transducer regulators
AU2002226875A1 (en) 2000-10-10 2002-04-22 Crs Holdings, Inc. Co-Mn-Fe soft magnetic alloys
US6737784B2 (en) 2000-10-16 2004-05-18 Scott M. Lindquist Laminated amorphous metal component for an electric machine
US6685882B2 (en) 2001-01-11 2004-02-03 Chrysalis Technologies Incorporated Iron-cobalt-vanadium alloy
JP3593986B2 (en) 2001-02-19 2004-11-24 株式会社村田製作所 Coil component and method of manufacturing the same
JP4284004B2 (en) 2001-03-21 2009-06-24 株式会社神戸製鋼所 Powder for high-strength dust core, manufacturing method for high-strength dust core
JP2002294408A (en) 2001-03-30 2002-10-09 Nippon Steel Corp Iron-based vibration damping alloy and manufacturing method therefor
DE10119982A1 (en) 2001-04-24 2002-10-31 Bosch Gmbh Robert Fuel injection device for an internal combustion engine
DE10128004A1 (en) 2001-06-08 2002-12-19 Vacuumschmelze Gmbh Wound inductive device has soft magnetic core of ferromagnetic powder composite of amorphous or nanocrystalline ferromagnetic alloy powder, ferromagnetic dielectric powder and polymer
US6616125B2 (en) 2001-06-14 2003-09-09 Crs Holdings, Inc. Corrosion resistant magnetic alloy an article made therefrom and a method of using same
DE10134056B8 (en) 2001-07-13 2014-05-28 Vacuumschmelze Gmbh & Co. Kg Process for the production of nanocrystalline magnetic cores and apparatus for carrying out the process
JP3748055B2 (en) 2001-08-07 2006-02-22 信越化学工業株式会社 Iron alloy plate material for voice coil motor magnetic circuit yoke and yoke for voice coil motor magnetic circuit
DE10211511B4 (en) 2002-03-12 2004-07-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for joining planar laminates arranged one above the other to form laminate packages or laminate components by laser beam welding
DE10216098A1 (en) 2002-04-12 2003-10-23 Bosch Gmbh Robert Rotor for electrical machine, especially motor, has lamella with at least one fixing element made in one piece with lamella, and permanent magnet held between two fixing elements of one or more lamellas
DE10320350B3 (en) 2003-05-07 2004-09-30 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-based alloy used as a material for magnetic bearings and rotors, e.g. in electric motors and in aircraft construction contains alloying additions of cobalt, vanadium and zirconium
EP1503486B1 (en) 2003-07-29 2009-09-09 Fanuc Ltd Motor and motor manufacturing apparatus
JP2006193779A (en) 2005-01-13 2006-07-27 Hitachi Metals Ltd Soft magnetic material
JP2006322057A (en) 2005-05-20 2006-11-30 Daido Steel Co Ltd Soft magnetic material
DE102005034486A1 (en) 2005-07-20 2007-02-01 Vacuumschmelze Gmbh & Co. Kg Process for the production of a soft magnetic core for generators and generator with such a core
JP4764134B2 (en) 2005-10-21 2011-08-31 日本グラスファイバー工業株式会社 Conductive nonwoven fabric
US20070176025A1 (en) 2006-01-31 2007-08-02 Joachim Gerster Corrosion resistant magnetic component for a fuel injection valve
US8029627B2 (en) 2006-01-31 2011-10-04 Vacuumschmelze Gmbh & Co. Kg Corrosion resistant magnetic component for a fuel injection valve
US7909945B2 (en) 2006-10-30 2011-03-22 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and method for its production
US8012270B2 (en) 2007-07-27 2011-09-06 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it
US9057115B2 (en) 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3971919B1 (en) * 2017-10-27 2023-12-20 Vacuumschmelze GmbH & Co. KG Method for producing high permeability soft magnetic alloy

Also Published As

Publication number Publication date
DE502007000329D1 (en) 2009-02-05
US20080099106A1 (en) 2008-05-01
US7909945B2 (en) 2011-03-22
ATE418625T1 (en) 2009-01-15
US20090145522A9 (en) 2009-06-11
EP1918407A1 (en) 2008-05-07

Similar Documents

Publication Publication Date Title
EP1918407B1 (en) Iron-cobalt based soft magnetic alloy and method for its manufacture
US8012270B2 (en) Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it
EP2612942B1 (en) Non-grain oriented electrical steel or sheet metal, component produced from same and method for producing non-grain oriented electrical steel or sheet metal
DE102011053722B3 (en) Process for producing a high-strength electrical steel, electrical steel and its use
DE102007035774B9 (en) Soft magnetic iron-cobalt based alloy and process for its preparation
EP1051714B2 (en) Soft magnetic nickel-iron alloy with low coercive field strength, high permeability and improved resistance to corrosion
EP3712283B1 (en) Method of manufacturing a cobalt-iron alloy strip
EP3730286A1 (en) Laminated core and method for producing high permeability soft magnetic alloy
EP2756106A1 (en) Non-grain-oriented higher-strength electrical strip with high polarisation and method for the production thereof
EP2840157B1 (en) Method for producing a non-grain oriented electrical steel strip or sheet and a non-grain oriented electrical steel strip or sheet produced according to this method
DE102018127918A1 (en) Method of manufacturing a soft magnetic alloy part
EP3541969B1 (en) Method for producing a strip of a co-fe alloy, strip of a co-fe alloy and sheet metal stack
DE102008053310A1 (en) Soft-magnetic workpiece with wear-resistant layer, used to make fuel injection- or solenoid valve, includes core of crystalline iron-cobalt alloy
US20090039994A1 (en) Soft magnetic iron-cobalt-based alloy and process for manufacturing it
DE10320350B3 (en) Soft magnetic iron-based alloy used as a material for magnetic bearings and rotors, e.g. in electric motors and in aircraft construction contains alloying additions of cobalt, vanadium and zirconium
DE19928764B4 (en) Low coercivity iron-cobalt alloy and process for producing iron-cobalt alloy semi-finished product
DE4336882C2 (en) Method for preventing Mo precipitates in magnetic Ni-Fe alloys
DE102007035773B9 (en) Soft magnetic alloy based on iron-cobalt-chromium and process for its preparation
DE102019105215A1 (en) Alloy and method of making a magnetic core
EP1217087A1 (en) Iron-cobalt alloy with a low coercitive field intensity and method for the production of semi-finished products made of an iron-cobalt alloy
DE102019133493A1 (en) Electrical steel strip or sheet, method for producing this and component made from it
EP4027357A1 (en) Fecov alloy and method for producing a fecov alloy strip
EP0557689A2 (en) Method for manufacturing a magnetic pulse generator
DE102009043462A1 (en) Magnetic strip, sensor comprising a magnetic strip and method of making a magnetic strip
DE3103000A1 (en) &#34;MAGNETIC ELEMENT FOR MAGNETICALLY ACTUATED DEVICES AND METHOD FOR THE PRODUCTION THEREOF&#34;

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20080410

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

AKX Designation fees paid

Designated state(s): AT DE FR GB

REF Corresponds to:

Ref document number: 502007000329

Country of ref document: DE

Date of ref document: 20090205

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090925

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007000329

Country of ref document: DE

Representative=s name: SCHWEIGER, MARTIN, DIPL.-ING. UNIV., DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230718

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240730

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240724

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240725

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240718

Year of fee payment: 18