EP1918407B1 - Iron-cobalt based soft magnetic alloy and method for its manufacture - Google Patents
Iron-cobalt based soft magnetic alloy and method for its manufacture Download PDFInfo
- Publication number
- EP1918407B1 EP1918407B1 EP07113372A EP07113372A EP1918407B1 EP 1918407 B1 EP1918407 B1 EP 1918407B1 EP 07113372 A EP07113372 A EP 07113372A EP 07113372 A EP07113372 A EP 07113372A EP 1918407 B1 EP1918407 B1 EP 1918407B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- soft magnetic
- alloy according
- magnetic alloy
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001004 magnetic alloy Inorganic materials 0.000 title claims abstract description 48
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 238000000034 method Methods 0.000 title claims description 28
- QVYYOKWPCQYKEY-UHFFFAOYSA-N [Fe].[Co] Chemical compound [Fe].[Co] QVYYOKWPCQYKEY-UHFFFAOYSA-N 0.000 title description 4
- 239000011651 chromium Substances 0.000 claims abstract description 43
- 239000011572 manganese Substances 0.000 claims abstract description 43
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 38
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 36
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 25
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 23
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 21
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000010703 silicon Substances 0.000 claims abstract description 16
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 16
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000010941 cobalt Substances 0.000 claims abstract description 11
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 11
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000012535 impurity Substances 0.000 claims abstract description 11
- 239000011733 molybdenum Substances 0.000 claims abstract description 11
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 10
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims abstract description 10
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052742 iron Inorganic materials 0.000 claims abstract description 8
- 229910045601 alloy Inorganic materials 0.000 claims description 134
- 239000000956 alloy Substances 0.000 claims description 134
- 238000000137 annealing Methods 0.000 claims description 33
- 230000035699 permeability Effects 0.000 claims description 24
- 238000002347 injection Methods 0.000 claims description 23
- 239000007924 injection Substances 0.000 claims description 23
- 239000000446 fuel Substances 0.000 claims description 22
- 238000002485 combustion reaction Methods 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 10
- 238000002844 melting Methods 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 239000011265 semifinished product Substances 0.000 claims description 5
- 238000009864 tensile test Methods 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 229910001313 Cobalt-iron alloy Inorganic materials 0.000 claims description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 239000004411 aluminium Substances 0.000 claims 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 4
- 239000001301 oxygen Substances 0.000 abstract description 4
- 229910052760 oxygen Inorganic materials 0.000 abstract description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 abstract description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052799 carbon Inorganic materials 0.000 abstract description 2
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 2
- 238000005098 hot rolling Methods 0.000 description 13
- 230000000903 blocking effect Effects 0.000 description 9
- 238000000227 grinding Methods 0.000 description 8
- 238000005275 alloying Methods 0.000 description 7
- 238000010309 melting process Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000005261 decarburization Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 229910017061 Fe Co Inorganic materials 0.000 description 2
- VVTSZOCINPYFDP-UHFFFAOYSA-N [O].[Ar] Chemical compound [O].[Ar] VVTSZOCINPYFDP-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 229910020598 Co Fe Inorganic materials 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910002519 Co-Fe Inorganic materials 0.000 description 1
- 229910003321 CoFe Inorganic materials 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- FQMNUIZEFUVPNU-UHFFFAOYSA-N cobalt iron Chemical compound [Fe].[Co].[Co] FQMNUIZEFUVPNU-UHFFFAOYSA-N 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14708—Fe-Ni based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/30—Ferrous alloys, e.g. steel alloys containing chromium with cobalt
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M51/00—Fuel-injection apparatus characterised by being operated electrically
- F02M51/06—Injectors peculiar thereto with means directly operating the valve needle
- F02M51/061—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/166—Selection of particular materials
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1272—Final recrystallisation annealing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2200/00—Details of fuel-injection apparatus, not otherwise provided for
- F02M2200/90—Selection of particular materials
- F02M2200/9053—Metals
- F02M2200/9061—Special treatments for modifying the properties of metals used for fuel injection apparatus, e.g. modifying mechanical or electromagnetic properties
Definitions
- the invention relates to a soft magnetic iron-cobalt-based alloy having a cobalt content of 10% by weight (wt .-%) to 22 wt .-%, and a method for producing the alloy and a method for producing semi-finished from this alloy , in particular of magnetic components for actuator systems.
- Soft magnetic alloys based on iron-cobalt have a high saturation magnetization and can therefore be used to form high-force and / or small-volume electromagnetic actuator systems.
- a typical application of these alloys are solenoid valves, such as solenoid valves for fuel injection in internal combustion engines.
- Soft magnetic alloys based on iron-cobalt with a cobalt content of 10 wt .-% to 22 wt .-% are for example from US 7,128,790 known.
- the switching frequency can be limited due to the resulting eddy currents. Further, improvements in the strength of the magnetic cores in continuous operation in high frequency actuator systems are desired.
- the object of the invention is therefore to provide an alloy which is better suited for use as a magnetic core in fast-switching actuators.
- a soft magnetic alloy consists of 10% by weight ⁇ Co ⁇ 22% by weight, 0% by weight ⁇ V ⁇ 4% by weight, 1.5% by weight ⁇ Cr ⁇ 5% by weight, 1 wt .-% ⁇ Mn ⁇ 2 wt .-%, 0 wt .-% ⁇ Mo ⁇ 1 wt .-%, 0.5 wt .-% ⁇ Si ⁇ 1.5 wt .-%, 0.1 wt .-% ⁇ Al ⁇ 1.0 wt .-%, balance iron and unavoidable impurities.
- the alloy has impurities such as a maximum of 200 ppm of nitrogen, a maximum of 400 ppm of carbon and a maximum of 100 ppm of oxygen.
- the alloy according to the invention has a higher specific resistance compared with the binary Co-Fe alloy, which leads to a suppression of the eddy currents, with the lowest possible lowering of the saturation polarization. This is achieved by the alloying of the non-magnetic elements. Further, the alloy has higher strength due to the content of Al and Si. This alloy is suitable for use as a magnetic core of a fast-switching actuator system, such as a fuel injection valve of an internal combustion engine.
- Al, V and Si also increase the electrical resistance while raising the annealing temperature.
- an alloy with high resistance, high saturation and high annealing temperature and thus good soft magnetic properties can be specified.
- the alloy has higher strength due to the content of Al and Si.
- the alloy is cold-workable and ductile in the final annealed condition.
- the alloy can have an elongation A L of> 2%, preferably A L > 20%.
- the elongation A L is measured during tensile tests.
- This alloy is suitable for use as a magnetic core of a fast-switching actuator system, such as a fuel injection valve of an internal combustion engine.
- the alloy should also have high electrical resistivity and good soft magnetic properties.
- This alloy thus has a cobalt content of 10% by weight ⁇ Co ⁇ 22% by weight.
- a low cobalt content reduces the raw material cost of the alloy, making it suitable for high cost pressure applications, such as in the automotive industry.
- the maximum permeability is high within this range, which leads to cheaper lower drive currents when used as an actuator.
- the alloy has a cobalt content of 14 wt% ⁇ Co ⁇ 22 wt% and 14 wt% ⁇ Co ⁇ 20 wt%.
- the soft magnetic alloy of the magnetic core has a content of chromium and manganese, which leads to a higher electrical resistivity p in the annealed state with little decrease in saturation. This higher resistivity allows smaller switching times for an actuator as eddy currents are reduced. At the same time, the alloy has a high saturation and a high permeability ⁇ max , so that good soft magnetic properties are maintained.
- the elements Si and Al of the alloy provide improved strength of the alloy without significantly degrading the soft magnetic properties.
- the strength of the alloy can be significantly increased by solid solution hardening, without a significant deterioration of the soft magnetic properties.
- the aluminum content and vanadium content according to the invention enables a higher annealing temperature, which leads to good soft magnetic properties of the coercive force H c and the maximum permeability ⁇ max leads.
- High permeability is desired, as this leads to lower drive currents when using the alloy as a magnetic core or flux guide of an actuator.
- the alloy has a silicon content of 0.5% by weight ⁇ Si ⁇ 1.0% by weight.
- the content of Mo has been kept low to prevent the formation of carbides, which may lead to deterioration of the magnetic properties.
- the content of aluminum and silicon is from 0.6% by weight ⁇ Al + Si ⁇ 1.5% by weight, so that brittleness and processing problems that may occur with higher total contents of aluminum and silicon are avoided ,
- the content of the elements is chromium and manganese and molybdenum and aluminum and silicon and vanadium 4.0 wt% ⁇ (Cr + Mn + Mo + Al + Si + V) ⁇ 9.0 wt%.
- This alloy has an even higher resistivity compared to the binary CoFe alloy, which leads to a suppression of the eddy currents, at the same time the saturation polarization is lowered as little as possible and the coercive field strength H c is even less increased.
- the content of chromium and manganese and molybdenum and aluminum and silicon and vanadium in one embodiment is 6.0% by weight ⁇ Cr + Mn + Mo + Al + Si + V ⁇ 9.0% by weight.
- the soft magnetic alloy consists of 10 wt% ⁇ Co ⁇ 22 wt%, 0 wt% ⁇ V ⁇ 1 wt%, 1.5 wt% ⁇ Cr ⁇ 3 wt. %, 1 wt% ⁇ Mn ⁇ 2 wt%, 0 wt% ⁇ Mo ⁇ 1 wt%, 0.5 wt% ⁇ Si ⁇ 1.5 wt%, 0 , 1 wt .-% ⁇ Al ⁇ 1.0 wt .-%, balance iron and unavoidable impurities.
- It can have a content of aluminum and silicon of 0.6% by weight ⁇ Al + Si ⁇ 1.5% by weight and / or a content of chromium and manganese and molybdenum and aluminum and silicon of 4.5% by weight.
- the alloy contains 0 wt% ⁇ V ⁇ 2.0 wt%, 1.6 wt% ⁇ Cr ⁇ 2.5 wt%, 1.25 wt% ⁇ Mn ⁇ 1.5 wt%, 0 wt% ⁇ Mo ⁇ 0.02 wt%, 0.6 wt% ⁇ Si ⁇ 0.9 wt%, and 0.2 wt% ⁇ Al ⁇ 0.7% by weight.
- the alloy contains 0 wt% ⁇ V ⁇ 0.01 wt%, 2.3 wt% ⁇ Cr ⁇ 3.0 wt%, 1.25 wt% ⁇ Mn ⁇ 1.5 wt%, 0.75 wt% ⁇ Mo ⁇ 1 wt%, 0.6 wt% ⁇ Si ⁇ 0.9 wt% and 0.1 wt% ⁇ Al ⁇ 0.2 wt .-%.
- the alloy contains 0.75 wt% ⁇ V ⁇ 2.75 wt%, 2.3 wt% ⁇ Cr ⁇ 3.5 wt%, 1.25 wt% ⁇ Mn ⁇ 1.5 wt%, 0 wt% ⁇ Mo ⁇ 0.01 wt%, 0.6 wt% ⁇ Si ⁇ 0.9 wt% and 0.2 wt% % ⁇ Al ⁇ 1.0 wt%.
- These three alloys have a preferred combination of high electrical resistance, high saturation, and low coercivity.
- Alloys with the abovementioned compositions have a specific electrical resistance ⁇ > 0.50 ⁇ m or ⁇ > 0.55 ⁇ m or ⁇ > 0.60 ⁇ m or ⁇ > 0.65 ⁇ m. This value provides for an alloy, so that when used as a magnetic core of an actuator system lower eddy currents. This allows the use of the alloy in actuator systems with higher switching times.
- the proportion of the elements aluminum and silicon in the alloy according to the invention leads to an alloy with a yield strength of R p0.2 > 340 MPa. This higher strength of the alloy can extend the life of the alloy when used as a magnetic core of an actuator system. This is attractive in using the alloy in high frequency actuator systems, such as fuel injection valves in internal combustion engines.
- the alloy according to the invention has good soft magnetic properties as well as good strength and high electrical resistivity.
- the alloy has a saturation of J (400A / cm)> 2.00 T or> 1.90 T, and / or a coercive force H c ⁇ 3.5 A / cm or H c ⁇ 2.0 A / cm or and / or H c ⁇ 1.0 A / cm has a maximum permeability ⁇ max > 1000 or ⁇ max > 2000.
- the inventive content of chromium and manganese and molybdenum and aluminum and silicon and vanadium is between 4.0 wt .-% and 9.0 wt .-%. This higher content allows to provide an alloy that has a higher electrical resistance of ⁇ > 0.6 ⁇ m and a low coercive force H c ⁇ 2.0 A / cm. This combination of properties is particularly suitable for use with fast switching actuators.
- the invention further provides a soft magnetic core or flux guide for an electromagnetic actuator made of an alloy according to one of the preceding embodiments.
- This soft magnetic core is in various embodiments a soft magnetic core for a solenoid valve of an internal combustion engine, a soft magnetic core for a fuel injection valve of an internal combustion engine, a soft magnetic core for a direct fuel injection valve of a gasoline engine or a diesel engine, or a soft magnetic component for electromagnetic valve timing such as intake and exhaust valves.
- the different actuator systems such as solenoid valves and fuel injection valves have different requirements for strength and magnetic properties. These requirements can be met by selecting an alloy having a composition within the ranges described above.
- the invention also provides a fuel injection valve of an internal combustion engine with a soft magnetic alloy component according to one of the preceding embodiments.
- the fuel injector is a direct fuel injection valve of a gasoline engine and a direct fuel injection valve of a diesel engine.
- the invention provides an electromagnetic actuator return member and a soft magnetic rotor and a soft magnetic stator for an electric motor and a soft magnetic component for electromagnetic valve timing on an intake valve or exhaust valve used in an engine compartment of, for example, a motor vehicle, of an alloy according to one of the preceding embodiments.
- the invention also provides a process for the production of semi-finished products from a cobalt-iron alloy, in which workpieces made of a soft magnetic alloy are first produced by melting and hot working, which consist of 10% by weight ⁇ Co ⁇ 22% by weight, 0 wt% ⁇ V ⁇ 4 wt%, 1.5 wt% ⁇ Cr ⁇ 5 wt%, 1 wt% ⁇ Mn ⁇ 2 wt%, 0 wt% ⁇ Mo ⁇ 1 wt .-%, 0.5 wt .-% ⁇ Si ⁇ 1.5 wt .-%, 0.1 wt .-% ⁇ Al ⁇ 1.0 wt .-%, balance iron and unavoidable impurities ,
- the alloy of the workpieces can also have a composition according to one of the preceding embodiments.
- the alloy can be melted by various methods. In theory, all common techniques are possible, such as air melting or VIM (vacuum induction melting). For this, e.g. the arc furnace or inductive techniques are used. Treatment with VOD (Vacuum Oxygen Decarburization) or AOD (Argon Oxygen Decarburization) or ESU (Electric Slag Remelting) improves the quality of the product.
- VIM vacuum induction melting
- the VIM method is preferred, since thus the contents of the alloying elements more exactly can be set and non-metallic inclusions in the solidified alloy can be better avoided.
- the melting process is followed by a different series of process steps, depending on the semifinished product to be produced.
- the ingot resulting from the melting process is converted by pre-blocking into a slab.
- Preblocking is understood to mean the forming of the ingot into a rectangular section slab by a hot rolling operation at a temperature of, for example, 1250 ° C. After blooming, the scale formed on the surface of the slab is removed by grinding. The grinding is followed by another hot rolling process by which the slab is formed into a strip at a temperature of, for example, 1250 ° C. Subsequently, the impurities formed on the surface of the belt during hot rolling are removed by grinding or pickling, and the strip is cold-worked to the final thickness, which may be in the range of 0.1 mm to 2 mm. Finally, the tape is subjected to a final annealing. During final annealing, the lattice defects resulting from the forming processes heal and crystalline grains are formed in the microstructure.
- the manufacturing process is when turning parts are produced.
- billets are made by pre-blocking the ingot with a square cross-section.
- the so-called pre-blocking takes place at a temperature of for example 1250 ° C.
- the scale formed during pre-blocking is removed by grinding.
- Another hot rolling process through which the billets in bars or wires up to a diameter of, for example 13 mm to be formed.
- distortions of the material are corrected and, on the other hand, the impurities forming on the surface during the hot rolling process are removed.
- the material is subjected to a final annealing.
- the final annealing can be carried out in a temperature range of 700 ° C to 1100 ° C. In one embodiment, the final annealing is carried out in the temperature range from 750 ° C to 850 ° C.
- the final annealing can be carried out under inert gas, hydrogen or vacuum.
- the conditions such as temperature and duration of the final annealing can be selected so that after the final annealing the alloy has tensile strain parameters of elongation at break A L > 2% or A L > 20%.
- the alloy is cold worked prior to final annealing.
- a coil 22 is supplied with power from a current source 23, so that upon energization of the coil 22, a magnetic field is induced.
- the coil 22 is disposed around the magnetic core 21 so that, due to the induced magnetic field, the magnetic core 21 moves from a first position 24 indicated by the dashed line in FIG FIG. 1 is shown to a second position 25.
- the first position 24 is a closed position and the second position is an open position. Consequently, the current 26 is controlled by the channel 27 from the actuator system 20.
- the actuator system 20 is a fuel injection valve of a gasoline engine or a diesel engine, or a direct fuel injection valve of a gasoline engine or a diesel engine.
- the soft magnetic alloy of the magnetic core 21 has a content of chromium and manganese, which leads to a specific electrical resistance p in the annealed state of 0.572 ⁇ m. This higher resistivity allows for smaller shutter times on the actuator as eddy currents are reduced. At the same time, the alloy has a high saturation J (400 A / cm), measured at a magnetic field strength of 400 A / cm, of 2.137 T and a permeability ⁇ max of 1915, so that good soft magnetic properties are maintained.
- the elements Si and Al of the alloy provide improved strength of the magnetic core 21 without significantly deteriorating the soft magnetic properties.
- the yield strength R p0.2 of this alloy is 402 Mpa.
- the aluminum content enables a higher annealing temperature, which leads to good soft magnetic properties of a coercive force H c of only 2.57 A / cm and a maximum permeability ⁇ max of 1915. A high permeability is desired because this leads to lower drive currents when using the alloy as the magnetic core of an actuator.
- the content of Mo has been kept low to prevent the formation of carbides, which may lead to deterioration of the magnetic properties.
- Table 1 shows compositions of various alloys according to the invention.
- the alloy is first melted in a melting process 1.
- the alloy can be melted by various methods. In theory, all common techniques are possible, such as air melting or VIM (vacuum induction melting). For example, the arc furnace or inductive Techniques are used. Treatment with VOD (Vacuum Oxygen Decarburization) or AOD (Argon Oxygen Decarburization) or ESU (Electric Slag Remelting) improves the quality of the product.
- VIM vacuum induction melting
- AOD Aractive Oxygen Decarburization
- ESU Electro Slag Remelting
- the VIM method is preferred because it allows the content of the alloying elements to be adjusted more accurately and non-metallic inclusions in the solidified alloy can be better avoided.
- the melting process 1, depending on the semifinished product to be produced, is followed by a different series of process steps.
- the ingot resulting from the melting process 1 is converted by pre-blocking 2 into a slab.
- Pre-blocking is understood to mean the forming of the ingot into a slab of rectangular cross-section by a hot rolling operation at a temperature of 1250 ° C.
- the scale formed on the surface of the slab is removed by grinding 3.
- the grinding 3 is followed by another hot rolling process 4, by which the slab is formed at a temperature of 1250 ° C in a band having a thickness of, for example, 3.5 mm.
- the impurities formed on the surface of the strip during hot rolling are removed by grinding or pickling 5, and the strip is cold-rolled 6 to the final thickness in the range of 0.1 to 2 mm.
- the strip is subjected to a final annealing 7 at a temperature of> 700 ° C. During final annealing, the lattice defects resulting from the forming processes heal and crystalline grains are formed in the microstructure.
- the manufacturing process is when turning parts are produced.
- billets are made by pre-blocking 8 of the ingot with a square cross-section.
- the so-called pre-blocking takes place at a temperature of 1250 ° C.
- the scale formed during pre-blocking 8 is removed by grinding 9.
- another hot rolling operation 10 by which the billets are converted into rods or wires up to a diameter of 13 mm.
- straightening and peeling 11 on the one hand, distortions of the material are corrected and, on the other hand, the impurities forming during the hot rolling process 10 are removed on the surface.
- the material is also subjected to a final annealing 12 here.
- the coercive force H c was measured as a function of the annealing temperature for the alloys of Table 1. The results are in the FIG. 3 shown. From the FIG. 3 It can be seen that as the temperature increases, the coercive field strength initially decreases and increases at even higher temperatures, which are at the boundary to the two-phase region.
- the annealing temperature is selected according to the composition, so that the coercive force remains low.
- the annealing was carried out at a temperature of 760 ° C.
- FIG. 4 shows the coercive force for the alloys 1 to 4, 8, 10, 11 and 13.
- the alloys 8, 10, 11 and 13 were also cold worked after hot rolling.
- the alloys 1 to 4 were only hot rolled.
- the FIG. 4 shows the influence of different alloying elements on H c at different annealing temperatures.
- the increase of H c shows the upper limit of the ferritic phase.
- Alloys 2, 10, 11 and 13 having a lower H c at higher annealing temperatures have an aluminum content of at least 0.68 wt%.
- Alloys 10 and 11 have a particularly low coercive force H c of less than 1.5 A / cm at annealing temperatures above 850 ° C.
- These alloys have an aluminum content of 0.84% by weight and 0.92% by weight and a vanadium content of 2.51% by weight and 1.00% by weight, respectively.
- the phase transition temperature is further shifted upwards. This has the advantage that the magnetic properties can be further improved by using a higher annealing temperature.
- the specific electrical resistance p of each alloy is above 0.5 ⁇ m. This leads to a suppression of the eddy currents, so that the alloys are suitable for actuator applications with short switching times.
- the yield strength was measured for the alloys 1 to 7 in the magnetically final annealed condition and is above 340 MPa for each alloy. These alloys can thus be used in applications where higher mechanical loads arise.
- An alloy according to a first embodiment consists of 18.1 wt .-% Co, 2.24 wt .-% Cr, 1.40 wt .-% Mn, 0.01 wt .-% Mo, 0.83 wt. % Si, 0.24 wt% Al, balance Fe and was prepared as described above.
- the alloy was annealed at 760 ° C and, when annealed, has a resistivity ⁇ el of 0.542 ⁇ m, a coercive force H c of 2.34 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm) of 2.029 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.146 T, a maximum permeability ⁇ max of 2314, a yield strength R m of 623 MPa, R p0 , 2 of 411 MPa, an elongation at break AL of 29.6% and an E modulus of 220 GPa.
- An alloy according to a second embodiment consists of 18.2 wt .-% Co, 1.67 wt .-% Cr, 1.39 wt .-% Mn, 0.01 wt .-% Mo, 0.82 wt. % Si, 0.68 wt% Al, balance Fe and was prepared as described above.
- the alloy was annealed at 800 ° C and, when annealed, has a resistivity ⁇ el of 0.533 ⁇ m, a coercive force H c of 1.94 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), 2.019 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.151 T, a maximum permeability ⁇ max of 1815 , a yield strength R m of 661MPa, R p0.2 of 385 MPa, an elongation at break AL of 25.4% and an E modulus of 221 GPa.
- An alloy according to a third embodiment consists of 18.3 wt .-% Co, 2.62 wt .-% Cr, 1.37 wt .-% Mn, 0.01 wt .-% Mo, 0.85 wt. % Si, 0.21 wt.% Al, balance Fe and was prepared as described above.
- the alloy was annealed at 760 ° C and, when annealed, has a resistivity ⁇ el of 0.572 ⁇ m, a coercive force H c of 2.57 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 2.021 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), of 2.137 T, a maximum permeability ⁇ max of 1915, a yield strength R m of 632 MPa, R p0 , 2 of 402 MPa, an elongation at break AL of 28.0% and an E modulus of 217 GPa.
- An alloy according to a fourth embodiment consists of 18.3 wt .-% Co, 2.42 wt .-% Cr, 1.45 wt .-% Mn, 0.01 wt .-% Mo, 0.67 wt. % Si, 0.23 wt% Al, balance Fe and was prepared as described above.
- the alloy was annealed at 730 ° C and, when annealed, has a resistivity ⁇ el of 0.546 ⁇ m, a coercive force H c of 2.73 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 2.037 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.156T, a maximum permeability ⁇ max of 2046, a yield strength R m of 615 MPa, R p0.2 of 395 MPa, an elongation at break AL of 29.5% and an E modulus of 223 GPa on.
- An alloy according to a fifth embodiment consists of 15.40 wt .-% Co, 2.34 wt .-% Cr, 1.27 wt .-% Mn, 0.85 wt .-% Si, 0.23 wt. % Al, balance Fe and was prepared as described above.
- the alloy was annealed at 760 ° C and, when annealed, has a resistivity ⁇ el of 0.5450 ⁇ m, a coercive force H c of 1.30 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 1.986 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), of 2.105T and a maximum permeability ⁇ max of 3241.
- An alloy according to a sixth embodiment consists of 18.10 wt .-% Co, 2.30 wt .-% Cr, 1.37 wt .-% Mn, 0.83 wt .-% Si, 0.24 wt. % Al, balance Fe and was prepared as described above.
- the alloy was annealed at 760 ° C and, when annealed, has a resistivity ⁇ el of 0.5591 ⁇ m, a coercive force H c of 1.39 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 2.027 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), of 2.138 T and a maximum permeability ⁇ max of 2869.
- An alloy according to a seventh embodiment consists of 21.15 wt .-% Co, 2.31 wt .-% Cr, 1.38 wt .-% Mn, 0.84 wt .-% Si, 0.23 wt. % Al, balance Fe and was prepared as described above.
- the alloy was annealed at 760 ° C and, when annealed, has a resistivity ⁇ el of 0.5627 ⁇ m, a coercive force H c of 1.93 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 2.066 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), of 2.165 T and a maximum permeability ⁇ max of 1527.
- the sum of the additions is slightly higher and is between 6 wt .-% and 9 wt .-%.
- These alloys each have a specific electrical resistance ⁇ el ⁇ 0.60 ⁇ m in the annealed state.
- An alloy according to an eighth embodiment consists of 18.0 wt% Co, 2.66 wt% Cr, 1.39 wt% Mn, ⁇ 0.01 wt% Mo, 0.87 wt. % Si, 0.17 wt% Al, 1.00 wt% V, balance Fe and was prepared as described above. This alloy was cold worked even after hot rolling.
- the alloy was annealed at 780 ° C and, when annealed, has a resistivity ⁇ el of 0.627 ⁇ m, a coercive force H c of 1.40 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 1.977 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.088 T, a maximum permeability ⁇ max of 2862, a yield strength R m of 605 MPa, R p0.2 of 374 MPa, an elongation at break AL of 29.7% and an E modulus of 222 GPa.
- An alloy according to a ninth embodiment consists of 18.0% by weight of Co, 2.60% by weight of Cr, 1.35% by weight of Mn, 0.99% by weight of Mo, 0.84% by weight. % Si, 0.17 wt% Al, ⁇ 0.01 wt% V, balance Fe and was prepared as described above. In addition, this alloy was cold worked.
- the alloy was annealed at 780 ° C and, when annealed, has a resistivity ⁇ el of 0.604 ⁇ m, a coercive force H c of 2.13 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 21.969 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.092 T, a maximum permeability ⁇ max of 1656, a yield strength R m of 636 MPa, R p0 , 2 of 389 MPa, an elongation at break AL of 29.2% and an E-modulus of 222 GPa.
- An alloy according to a tenth embodiment consists of 18.0 wt% Co, 1.85 wt% Cr, 1.33 wt% Mn, ⁇ 0.01 wt% Mo, 0.86 wt. % Si, 0.84 wt% Al, 2.51 wt% V, balance Fe and was prepared as described above. Thereafter, the alloy was cold worked.
- the alloy was annealed at 870 ° C and, when annealed, has a resistivity ⁇ el of 0.716 ⁇ m, a coercive field strength H c of 0.95 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 1.920 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A) / cm), from 2.015 T, a maximum permeability ⁇ max of 4038.
- This alloy of the tenth embodiment has a particularly advantageous combination of a high resistivity ⁇ el of 0.716 ⁇ m, a low coercive force H c of 0.95 A / cm, and a high saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), from 1.920 T up.
- An alloy according to an eleventh embodiment consists of 12.0 wt% Co, 2.65 wt% Cr, 1.38 wt% Mn, ⁇ 0.01 wt% Mo, 0.85 wt. % Si, 0.92 wt.% Al, 1.00 wt.% V, remainder Fe and was prepared as described above and additionally clearly deformed.
- the alloy was annealed at 820 ° C and, when annealed, has a resistivity ⁇ el of 0.658 ⁇ m, a coercive force H c of 0.72 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 1.880 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.008 T, a maximum permeability ⁇ max of 5590, a yield strength R m of 525 MPa, R p0 , 2 of 346 MPa, an elongation at break AL of 33.5% and an E modulus of 216 GPa.
- the alloy according to the eleventh embodiment has a particularly advantageous combination of high resistivity ⁇ el of 0.658 ⁇ m, low coercive force H c of 0.72 A / cm, and high saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), 1.880 T on.
- the twelfth alloy is not according to the invention since the Co content is greater than 22% by weight.
- An alloy according to a thirteenth embodiment consists of 18.0 wt% Co, 3.00 wt% Cr, 1.32 wt% Mn, ⁇ 0.01 wt% Mo, 0.86 wt. % Si, 0.84 wt% Al, 2.01 wt% V, balance Fe and was prepared as described above and cold worked after hot rolling.
- the alloy was annealed at 820 ° C and, when annealed, has a resistivity ⁇ el of 0.769 ⁇ m, a coercive force H c of 1.14 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 1.896 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), of 1, 985 T, a maximum permeability ⁇ max of 3499, a yield strength R m of 674 MPa, R p0.2 of 396 MPa, an elongation at break AL of 33.3% and an E-modulus of 218 GPa.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Electromagnetism (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
Die Erfindung betrifft eine weichmagnetische Legierung auf Eisen-Kobalt-Basis, die einen Kobaltgehalt von 10 Gewichtsprozent (Gew.-%) bis 22 Gew.-% aufweist, sowie ein Verfahren zur Herstellung der Legierung und ein Verfahren zur Herstellung von Halbzeug aus dieser Legierung, insbesondere von magnetischen Komponenten für Aktorsysteme.The invention relates to a soft magnetic iron-cobalt-based alloy having a cobalt content of 10% by weight (wt .-%) to 22 wt .-%, and a method for producing the alloy and a method for producing semi-finished from this alloy , in particular of magnetic components for actuator systems.
Weichmagnetische Legierungen auf Eisen-Kobalt-Basis weisen eine hohe Sättigungsmagnetisierung auf und können daher dazu verwendet werden, elektromagnetische Aktorsysteme mit hohen Kräften und/oder kleinen Bauvolumen auszubilden. Eine typische Anwendung dieser Legierungen sind Magnetventile, wie zum Beispiel Magnetventile zur Kraftstoffeinspritzung in Verbrennungsmotoren.Soft magnetic alloys based on iron-cobalt have a high saturation magnetization and can therefore be used to form high-force and / or small-volume electromagnetic actuator systems. A typical application of these alloys are solenoid valves, such as solenoid valves for fuel injection in internal combustion engines.
Weichmagnetische Legierungen auf Eisen-Kobalt-Basis mit einem Kobaltgehalt von 10 Gew.-% bis 22 Gew.-% sind beispielsweise aus der
Änliche Legierungen sind auch in den Dokumenten
Aufgabe der Erfindung ist es daher, eine Legierung vorzusehen, die zur Verwendung als Magnetkern bei schnell schaltenden Aktoren besser geeignet ist.The object of the invention is therefore to provide an alloy which is better suited for use as a magnetic core in fast-switching actuators.
Gelöst wird dies erfindungsgemäß durch den Gegenstand der unabhängigen Ansprüche. Weitere vorteilhafte Weiterbildungen ergeben sich aus den abhängigen Ansprüchen.This is achieved according to the invention by the subject matter of the independent claims. Further advantageous developments emerge from the dependent claims.
Erfindungsgemäß besteht eine weichmagnetische Legierung aus 10 Gew.-% ≤ Co ≤ 22 Gew.-%, 0 Gew.-% ≤ V ≤ 4 Gew.-%, 1,5 Gew.-% ≤ Cr ≤ 5 Gew.-%, 1 Gew.-% ≤ Mn ≤ 2 Gew.-%, 0 Gew.-% ≤ Mo ≤ 1 Gew.-%, 0,5 Gew.-% ≤ Si ≤ 1,5 Gew.-%, 0,1 Gew.-% ≤ Al ≤ 1,0 Gew.-%, Rest Eisen und unvermeidbaren Verunreinigungen.According to the invention, a soft magnetic alloy consists of 10% by weight ≦ Co ≦ 22% by weight, 0% by weight ≦ V ≦ 4% by weight, 1.5% by weight ≦ Cr ≦ 5% by weight, 1 wt .-% ≤ Mn ≤ 2 wt .-%, 0 wt .-% ≤ Mo ≤ 1 wt .-%, 0.5 wt .-% ≤ Si ≤ 1.5 wt .-%, 0.1 wt .-% ≤ Al ≤ 1.0 wt .-%, balance iron and unavoidable impurities.
Vorzugsweise weist die Legierung Verunreinigungen wie maximal 200ppm von Stickstoff, maximal 400ppm von Kohlenstoff und maximal 100ppm von Sauerstoff auf.Preferably, the alloy has impurities such as a maximum of 200 ppm of nitrogen, a maximum of 400 ppm of carbon and a maximum of 100 ppm of oxygen.
Die erfindungsgemäße Legierung weist gegenüber der binären Co-Fe-Legierung einen höheren spezifischen Widerstand auf, der zu einer Unterdrückung der Wirbelströme führt, bei einer möglichst geringen Absenkung der Sättigungspolarisation. Dies wird durch die Zulegierung der nichtmagnetischen Elemente erreicht. Ferner weist die Legierung auf Grund des Gehalts von Al und Si eine höhere Festigkeit auf. Diese Legierung eignet sich zur Verwendung als Magnetkern eines schnell schaltenden Aktorsystems, wie ein Kraftstoffeinspritzventil eines Verbrennungsmotors.The alloy according to the invention has a higher specific resistance compared with the binary Co-Fe alloy, which leads to a suppression of the eddy currents, with the lowest possible lowering of the saturation polarization. This is achieved by the alloying of the non-magnetic elements. Further, the alloy has higher strength due to the content of Al and Si. This alloy is suitable for use as a magnetic core of a fast-switching actuator system, such as a fuel injection valve of an internal combustion engine.
Cr und Mn zeigen eine starke Widerstandserhöhung bei einer geringen Sättigungsabsenkung. Gleichzeitig wird die Glühtemperatur, die die Obergrenze der ferritischen Phase entspricht, abgesenkt. Dies wird jedoch nicht gewünscht, da dies zu schlechteren weichmagnetischen Eigenschaften führt.Cr and Mn show a strong resistance increase with a low saturation reduction. At the same time, the annealing temperature, which corresponds to the upper limit of the ferritic phase, is lowered. However, this is not desired because this leads to poorer soft magnetic properties.
Al, V und Si erhöhen ebenfalls den elektrischen Widerstand und heben gleichzeitig die Glühtemperatur an. So kann eine Legierung mit hohem Widerstand, hoher Sättigung sowie mit hoher Glühtemperatur und damit guten weichmagnetischen Eigenschaften angegeben werden.Al, V and Si also increase the electrical resistance while raising the annealing temperature. Thus, an alloy with high resistance, high saturation and high annealing temperature and thus good soft magnetic properties can be specified.
Ferner weist die Legierung auf Grund des Gehalts von Al und Si eine höhere Festigkeit auf. Die Legierung ist kaltverformbar und im schlussgeglühten Zustand duktil. Die Legierung kann eine Dehnung AL von > 2%, vorzugsweise AL > 20%. Die Dehnung AL wird bei Zugversuchen gemessen. Diese Legierung eignet sich zur Verwendung als Magnetkern eines schnell schaltenden Aktorsystems, wie ein Kraftstoffeinspritzventil eines Verbrennungsmotors.Further, the alloy has higher strength due to the content of Al and Si. The alloy is cold-workable and ductile in the final annealed condition. The alloy can have an elongation A L of> 2%, preferably A L > 20%. The elongation A L is measured during tensile tests. This alloy is suitable for use as a magnetic core of a fast-switching actuator system, such as a fuel injection valve of an internal combustion engine.
Die Anforderungen an eine weichmagnetische Legierung auf Kobalt-Eisen-Basis für ein Aktorsystem sind widersprüchlich. Ein höherer Kobaltgehalt führt in der binären Legierung zu einer höheren Sättigungsmagnetisierung Js von ungefähr 9 mT pro 1 Gew.-% Co (ausgehend von 17 Gew.-% Co) und ermöglicht damit ein geringeres Bauvolumen und eine höhere Systemintegration oder höhere Aktorkräfte bei gleicher Baugröße. Gleichzeitig steigen aber die Kosten der Legierung. Mit wachsendem Co-Anteil verschlechtern sich die weichmagnetischen Eigenschaften, wie zum Beispiel Permeabilität. Oberhalb eines Kobaltgehalts von 22 Gew.-% wird die Sättigungszunahme durch weitere Co-Zulegierung geringer.The requirements for a magnetically soft cobalt-iron-based alloy for an actuator system are contradictory. A higher cobalt content in the binary alloy leads to a higher saturation magnetization J s of approximately 9 mT per 1 wt% Co (starting from 17 wt% Co) and thus allows a smaller overall volume and a higher system integration or higher actuator forces for the same size. At the same time, however, the cost of the alloy increases. As the Co content increases, the soft magnetic properties, such as permeability, deteriorate. Above a cobalt content of 22% by weight, the increase in saturation is reduced by further co-alloying.
Die Legierung soll außerdem einen hohen spezifischen elektrischen Widerstand und gute weichmagnetische Eigenschaften haben.The alloy should also have high electrical resistivity and good soft magnetic properties.
Diese Legierung weist somit einen Kobaltgehalt von 10 Gew.-% ≤ Co ≤ 22 Gew.-% auf. Ein niedriger Kobaltgehalt reduziert die Rohstoffkosten der Legierung, so dass diese für Anwendungen mit hohem Kostendruck, wie zum Beispiel im Automobilbereich geeignet ist. Die Maximalpermeabilität ist innerhalb dieses Bereichs hoch, was beim Einsatz als Aktor zu günstigeren niedrigeren Ansteuerströmen führt.This alloy thus has a cobalt content of 10% by weight ≦ Co ≦ 22% by weight. A low cobalt content reduces the raw material cost of the alloy, making it suitable for high cost pressure applications, such as in the automotive industry. The maximum permeability is high within this range, which leads to cheaper lower drive currents when used as an actuator.
In weiteren Ausführungsbeispielen weist die Legierung einen Kobaltgehalt von 14 Gew.-% ≤ Co ≤ 22 Gew.-% und 14 Gew.-% ≤ Co ≤ 20 Gew.-% auf.In other embodiments, the alloy has a cobalt content of 14 wt% ≤ Co ≤ 22 wt% and 14 wt% ≤ Co ≤ 20 wt%.
Die weichmagnetische Legierung des Magnetkerns weist einen Gehalt von Chrom und Mangan auf, der zu einem höheren spezifischen elektrischen Widerstand p im geglühten Zustand bei geringer Abnahme der Sättigung führt. Dieser höhere spezifische Widerstand ermöglicht kleinere Schaltzeiten bei einem Aktor, da Wirbelströme reduziert werden. Gleichzeitig weist die Legierung eine hohe Sättigung und eine hohe Permeabilität µmax auf, so dass gute weichmagnetische Eigenschaften beibehalten werden.The soft magnetic alloy of the magnetic core has a content of chromium and manganese, which leads to a higher electrical resistivity p in the annealed state with little decrease in saturation. This higher resistivity allows smaller switching times for an actuator as eddy currents are reduced. At the same time, the alloy has a high saturation and a high permeability μ max , so that good soft magnetic properties are maintained.
Die Elemente Si und Al der Legierung sehen eine verbesserte Festigkeit der Legierung vor, ohne dass die weichmagnetischen Eigenschaften wesentlich verschlechtert werden. Durch die Zulegierung von Si und Al lässt sich die Festigkeit der Legierung durch Mischkristallhärtung deutlich erhöhen, ohne eine deutliche Verschlechterung der weichmagnetischen Eigenschaften.The elements Si and Al of the alloy provide improved strength of the alloy without significantly degrading the soft magnetic properties. By alloying Si and Al, the strength of the alloy can be significantly increased by solid solution hardening, without a significant deterioration of the soft magnetic properties.
Der erfindungsgemäße Aluminiumgehalt und Vanadiumgehalt ermöglicht eine höhere Glühtemperatur, die zu guten weichmagnetischen Eigenschaften der Koerzitivfeldstärke Hc und der Maximalpermeabilität µmax führt. Eine hohe Permeabilität wird gewünscht, da dies zu niedrigeren Ansteuerströmen beim Einsatz der Legierung als Magnetkern oder Flussleiter eines Aktors führt.The aluminum content and vanadium content according to the invention enables a higher annealing temperature, which leads to good soft magnetic properties of the coercive force H c and the maximum permeability μ max leads. High permeability is desired, as this leads to lower drive currents when using the alloy as a magnetic core or flux guide of an actuator.
In einer Ausführungsform weist die Legierung einen Siliziumgehalt von 0,5 Gew.-% ≤ Si ≤ 1,0 Gew.-% auf.In one embodiment, the alloy has a silicon content of 0.5% by weight ≦ Si ≦ 1.0% by weight.
Der Gehalt von Mo wurde niedrig gehalten, um die Bildung von Karbiden zu vermeiden, die zu einer Verschlechterung der magnetischen Eigenschaften führen können.The content of Mo has been kept low to prevent the formation of carbides, which may lead to deterioration of the magnetic properties.
Neben Cr und Mn ist ein geringer Molybdängehalt günstig, da sich dieser Gehalt von Molybdän durch ein gutes Verhältnis von Widerstandszuwachs zu Sättigungsabnahme auszeichnet.In addition to Cr and Mn, a low molybdenum content is favorable, since this content of molybdenum is characterized by a good ratio of resistance increase to saturation decrease.
In einer Ausführungsform ist der Gehalt von Aluminium und Silizium von 0,6 Gew.-% ≤ Al+Si ≤ 1,5 Gew.-%, so dass Sprödigkeit und Verarbeitungsprobleme, die bei höheren Gesamtgehalten von Aluminium und Silizium auftreten können, vermieden werden.In one embodiment, the content of aluminum and silicon is from 0.6% by weight ≦ Al + Si ≦ 1.5% by weight, so that brittleness and processing problems that may occur with higher total contents of aluminum and silicon are avoided ,
In einer Ausführungsform ist der Gehalt der Elemente Chrom und Mangan und Molybdän und Aluminium und Silizium und Vanadium 4,0 Gew.-% ≤ (Cr+Mn+Mo+Al+Si+V) ≤ 9,0 Gew.-%. Diese Legierung weist gegenüber der binären CoFe-Legierung einen noch höheren spezifischen Widerstand auf, der zu einer Unterdrückung der Wirbelströme führt, wobei gleichzeitig die Sättigungspolarisation möglichst wenig abgesenkt sowie die Koerzivfeldstärke Hc noch weniger erhöht wird.In one embodiment, the content of the elements is chromium and manganese and molybdenum and aluminum and silicon and vanadium 4.0 wt% ≤ (Cr + Mn + Mo + Al + Si + V) ≤ 9.0 wt%. This alloy has an even higher resistivity compared to the binary CoFe alloy, which leads to a suppression of the eddy currents, at the same time the saturation polarization is lowered as little as possible and the coercive field strength H c is even less increased.
Der Gehalt von Chrom und Mangan und Molybdän und Aluminium und Silizium und Vanadium ist in einer Ausführungsform 6,0 Gew.-% ≤ Cr+Mn+Mo+Al+Si+V ≤ 9,0 Gew.-%.The content of chromium and manganese and molybdenum and aluminum and silicon and vanadium in one embodiment is 6.0% by weight ≦ Cr + Mn + Mo + Al + Si + V ≦ 9.0% by weight.
In weiteren Ausführungsformen besteht die weichmagnetische Legierung, aus 10 Gew.-% ≤ Co ≤ 22 Gew.-%, 0 Gew.-% ≤ V ≤ 1 Gew.-%, 1,5 Gew.-% ≤ Cr ≤ 3 Gew.-%, 1 Gew.-% ≤ Mn ≤ 2 Gew.-%, 0 Gew.-% ≤ Mo ≤ 1 Gew.-%, 0,5 Gew.-% ≤ Si ≤ 1,5 Gew.-%, 0,1 Gew.-% ≤ Al ≤ 1,0 Gew.-%, Rest Eisen und unvermeidbaren Verunreinigungen. Sie kann einen Gehalt von Aluminium und Silizium von 0,6 Gew.-% ≤ Al+Si ≤ 1,5 Gew.-% und/oder einen Gehalt von Chrom und Mangan und Molybdän und Aluminium und Silizium von 4,5 Gew.-% ≤ Cr+Mn+Mo+A1+Si ≤ 6,0 Gew.-% aufweisen.In further embodiments, the soft magnetic alloy consists of 10 wt% ≤ Co ≤ 22 wt%, 0 wt% ≤ V ≤ 1 wt%, 1.5 wt% ≤ Cr ≤ 3 wt. %, 1 wt% ≤ Mn ≤ 2 wt%, 0 wt% ≤ Mo ≤ 1 wt%, 0.5 wt% ≤ Si ≤ 1.5 wt%, 0 , 1 wt .-% ≤ Al ≤ 1.0 wt .-%, balance iron and unavoidable impurities. It can have a content of aluminum and silicon of 0.6% by weight ≦ Al + Si ≦ 1.5% by weight and / or a content of chromium and manganese and molybdenum and aluminum and silicon of 4.5% by weight. % ≦ Cr + Mn + Mo + Al + Si ≦ 6.0 wt%.
In einer Ausführungsform enthält die Legierung V = 0 Gew.-%, 1,6 Gew.-% ≤ Cr ≤ 2,5 Gew.-%, 1,25 Gew.-% ≤ Mn ≤ 1,5 Gew.-%, 0 Gew.-% ≤ Mo ≤ 0,02 Gew.-%, 0,6 Gew.-% ≤ Si ≤ 0,9 Gew.-% und 0,2 Gew.-% ≤ Al ≤ 0,7 Gew.-%.In one embodiment, the alloy contains V = 0 wt%, 1.6 wt% ≤ Cr ≤ 2.5 wt%, 1.25 wt% ≤ Mn ≤ 1.5 wt%, 0 wt% ≤ Mo ≤ 0.02 wt%, 0.6 wt% ≤ Si ≤ 0.9 wt% and 0.2 wt% ≤ Al ≤ 0.7 wt% %.
In einer Ausführungsform enthält die Legierung 0 Gew.-% ≤ V ≤ 2,0 Gew.-%, 1,6 Gew.-% ≤ Cr ≤ 2,5 Gew.-%, 1,25 Gew.-% ≤ Mn ≤ 1,5 Gew.-%, 0 Gew.-% ≤ Mo ≤ 0,02 Gew.-%, 0,6 Gew.-% ≤ Si ≤ 0,9 Gew.-% und 0,2 Gew.-% ≤ Al ≤ 0,7 Gew.-%.In one embodiment, the alloy contains 0 wt% ≤ V ≤ 2.0 wt%, 1.6 wt% ≤ Cr ≤ 2.5 wt%, 1.25 wt% ≤ Mn ≤ 1.5 wt%, 0 wt% ≤ Mo ≤ 0.02 wt%, 0.6 wt% ≤ Si ≤ 0.9 wt%, and 0.2 wt% ≤ Al ≦ 0.7% by weight.
In einer Ausführungsform enthält die Legierung 0 Gew.-% ≤ V ≤ 0,01 Gew.-%, 2,3 Gew.-% ≤ Cr ≤ 3,0 Gew.-%, 1,25 Gew.-% ≤ Mn ≤ 1,5 Gew.-%, 0,75 Gew.-% ≤ Mo ≤ 1 Gew.-%, 0,6 Gew.-% ≤ Si ≤ 0,9 Gew.-% und 0,1 Gew.-% ≤ Al ≤ 0,2 Gew.-%.In one embodiment, the alloy contains 0 wt% ≤ V ≤ 0.01 wt%, 2.3 wt% ≤ Cr ≤ 3.0 wt%, 1.25 wt% ≤ Mn ≤ 1.5 wt%, 0.75 wt% ≤ Mo ≤ 1 wt%, 0.6 wt% ≤ Si ≤ 0.9 wt% and 0.1 wt% ≤ Al ≦ 0.2 wt .-%.
In einer Ausführungsform enthält die Legierung 0,75 Gew.-% ≤ V ≤ 2,75 Gew.-%, 2,3 Gew.-% ≤ Cr ≤ 3,5 Gew.-%, 1,25 Gew.-% ≤ Mn ≤ 1,5 Gew.-%, 0 Gew.-% ≤ Mo ≤ 0,01 Gew.-%, 0,6 Gew.-% ≤ Si ≤ 0,9 Gew.-% und 0,2 Gew.-% ≤ Al ≤ 1,0 Gew.-%.In one embodiment, the alloy contains 0.75 wt% ≤ V ≤ 2.75 wt%, 2.3 wt% ≤ Cr ≤ 3.5 wt%, 1.25 wt% ≤ Mn ≤ 1.5 wt%, 0 wt% ≤ Mo ≤ 0.01 wt%, 0.6 wt% ≤ Si ≤ 0.9 wt% and 0.2 wt% % ≦ Al ≦ 1.0 wt%.
Diese drei Legierungen weisen eine bevorzugte Kombination aus einem hohen elektrischen Widerstand, einer hohen Sättigung und einer niedrigen Koerzitivfeldstärke auf.These three alloys have a preferred combination of high electrical resistance, high saturation, and low coercivity.
Legierungen mit den oben genannten Zusammensetzungen weisen einen spezifischen elektrischen Widerstand ρ > 0,50 µΩm oder ρ > 0,55 µΩm oder ρ > 0,60 µΩm oder ρ > 0,65 µΩm auf. Dieser Wert sieht eine Legierung vor, so dass beim Einsatz als Magnetkern eines Aktorsystems niedrigere Wirbelströme entstehen. Dies ermöglicht die Verwendung der Legierung in Aktorsystemen mit höheren Schaltzeiten.Alloys with the abovementioned compositions have a specific electrical resistance ρ> 0.50 μΩm or ρ> 0.55 μΩm or ρ> 0.60 μΩm or ρ> 0.65 μΩm. This value provides for an alloy, so that when used as a magnetic core of an actuator system lower eddy currents. This allows the use of the alloy in actuator systems with higher switching times.
Der Anteil der Elemente Aluminium und Silizium bei der erfindungsgemäßen Legierung führt zu einer Legierung mit einer Streckgrenze von Rp0,2 > 340 MPa. Diese höhere Festigkeit der Legierung kann die Betriebsdauer der Legierung beim Einsatz als Magnetkern eines Aktorsystems verlängern. Dies ist attraktiv bei der Verwendung der Legierung in Hochfrequenzaktorsystemen, wie Kraftstoffeinspritzventilen in Verbrennungsmotoren.The proportion of the elements aluminum and silicon in the alloy according to the invention leads to an alloy with a yield strength of R p0.2 > 340 MPa. This higher strength of the alloy can extend the life of the alloy when used as a magnetic core of an actuator system. This is attractive in using the alloy in high frequency actuator systems, such as fuel injection valves in internal combustion engines.
Die erfindungsgemäße Legierung weist gute weichmagnetische Eigenschaften sowie eine gute Festigkeit und einen hohen spezifischen elektrischen Widerstand auf. In weiteren Ausführungsformen weist die Legierung eine Sättigung von J(400A/cm) > 2,00 T oder > 1,90 T, und/oder eine Koerzitivfeldstärke Hc < 3,5 A/cm oder Hc < 2,0 A/cm oder und/oder Hc < 1,0 A/cm eine Maximalpermeabilität µmax > 1000 oder µmax > 2000 auf.The alloy according to the invention has good soft magnetic properties as well as good strength and high electrical resistivity. In further embodiments, the alloy has a saturation of J (400A / cm)> 2.00 T or> 1.90 T, and / or a coercive force H c <3.5 A / cm or H c <2.0 A / cm or and / or H c <1.0 A / cm has a maximum permeability μ max > 1000 or μ max > 2000.
Der erfindungsgemäße Gehalt von Chrom und Mangan und Molybdän und Aluminium und Silizium und Vanadium liegt zwischen 4,0 Gew.-% und 9,0 Gew.-%. Dieser höhere Gehalt ermöglicht eine Legierung vorzusehen, die einen höheren elektrischen Widerstand von ρ > 0,6 µΩm sowie eine niedrige Koerzitivfeldstärke Hc < 2,0 A/cm aufweist. Diese Kombination von Eigenschaften ist besonders geeignet für Verwendung bei schnell schaltenden Aktoren.The inventive content of chromium and manganese and molybdenum and aluminum and silicon and vanadium is between 4.0 wt .-% and 9.0 wt .-%. This higher content allows to provide an alloy that has a higher electrical resistance of ρ> 0.6 μΩm and a low coercive force H c <2.0 A / cm. This combination of properties is particularly suitable for use with fast switching actuators.
Die Erfindung sieht ferner einen weichmagnetischen Kern oder Flussleiter für einen elektromagnetischen Aktor aus einer Legierung nach einem der vorhergehenden Ausführungsformen vor. Dieser weichmagnetische Kern ist in verschiedenen Ausführungsformen ein weichmagnetischer Kern für ein Magnetventil eines Verbrennungsmotors, ein weichmagnetischer Kern für ein Kraftstoffeinspritzventil eines Verbrennungsmotors, ein weichmagnetischer Kern für ein Direktkraftstoffeinspritzventil eines Ottomotors oder eines Dieselmotors oder eine weichmagnetische Komponente für elektromagnetische Ventilverstellung, wie Ein- und Auslassventile.The invention further provides a soft magnetic core or flux guide for an electromagnetic actuator made of an alloy according to one of the preceding embodiments. This soft magnetic core is in various embodiments a soft magnetic core for a solenoid valve of an internal combustion engine, a soft magnetic core for a fuel injection valve of an internal combustion engine, a soft magnetic core for a direct fuel injection valve of a gasoline engine or a diesel engine, or a soft magnetic component for electromagnetic valve timing such as intake and exhaust valves.
Die unterschiedlichen Aktorsysteme, wie Magnetventile und Kraftstoffeinspritzventile haben unterschiedliche Anforderungen an Festigkeit sowie magnetische Eigenschaften. Diese Anforderungen können durch die Auswahl einer Legierung mit einer Zusammensetzung, die innerhalb der oben beschriebenen Bereiche liegt, erfüllt werden.The different actuator systems, such as solenoid valves and fuel injection valves have different requirements for strength and magnetic properties. These requirements can be met by selecting an alloy having a composition within the ranges described above.
Die Erfindung sieht auch ein Kraftstoffeinspritzventil eines Verbrennungsmotors mit einer Komponente aus einer weichmagnetischen Legierung nach einem der vorhergehenden Ausführungsbeispiele vor. In weiteren Ausführungsformen ist das Kraftstoffeinspritzventil ein Direktkraftstoffeinspritzventil eines Ottomotors und ein Direktkraftstoffeinspritzventil eines Dieselmotors.The invention also provides a fuel injection valve of an internal combustion engine with a soft magnetic alloy component according to one of the preceding embodiments. In other embodiments, the fuel injector is a direct fuel injection valve of a gasoline engine and a direct fuel injection valve of a diesel engine.
In weiteren Ausführungsformen sieht die Erfindung ein Rückschlussteil für einen elektromagnetischen Aktor sowie einen weichmagnetischen Rotor und einen weichmagnetischen Stator für einen elektrischen Motor und eine weichmagnetische Komponente für einen elektromagnetische Ventilverstellung an einem Einlassventil oder einem Auslassventil, das in einem Motorraum von beispielsweise einem Kraftfahrzeug verwendet wird, aus einer Legierung nach einem der vorhergehenden Ausführungsbeispiele vor.In further embodiments, the invention provides an electromagnetic actuator return member and a soft magnetic rotor and a soft magnetic stator for an electric motor and a soft magnetic component for electromagnetic valve timing on an intake valve or exhaust valve used in an engine compartment of, for example, a motor vehicle, of an alloy according to one of the preceding embodiments.
Die Erfindung sieht auch ein Verfahren zur Herstellung von Halbzeug aus einer Kobalt-Eisen-Legierung vor, bei dem durch Schmelzen und Warmverformung zunächst Werkstücke aus einer weichmagnetischen Legierung hergestellt werden, die aus 10 Gew.-% ≤ Co ≤ 22 Gew.-%, 0 Gew.-% ≤ V ≤ 4 Gew.-%, 1,5 Gew.-% ≤ Cr ≤ 5 Gew.-%, 1 Gew.-% ≤ Mn ≤ 2 Gew.-%, 0 Gew.-% ≤ Mo ≤ 1 Gew.-%, 0,5 Gew.-% ≤ Si ≤ 1,5 Gew.-%, 0,1 Gew.-% ≤ Al ≤ 1,0 Gew.-%, Rest Eisen und unvermeidbaren Verunreinigungen besteht.The invention also provides a process for the production of semi-finished products from a cobalt-iron alloy, in which workpieces made of a soft magnetic alloy are first produced by melting and hot working, which consist of 10% by weight ≦ Co ≦ 22% by weight, 0 wt% ≤ V ≤ 4 wt%, 1.5 wt% ≤ Cr ≤ 5 wt%, 1 wt% ≤ Mn ≤ 2 wt%, 0 wt% ≤ Mo ≦ 1 wt .-%, 0.5 wt .-% ≤ Si ≤ 1.5 wt .-%, 0.1 wt .-% ≤ Al ≤ 1.0 wt .-%, balance iron and unavoidable impurities ,
Die Legierung der Werkstücke kann auch eine Zusammensetzung nach einem der vorhergehenden Ausführungsbeispiele aufweisen.The alloy of the workpieces can also have a composition according to one of the preceding embodiments.
Die Legierung kann mittels verschiedener Verfahren erschmolzen werden. Möglich sind theoretisch alle gängigen Techniken, wie ein Erschmelzen an Luft oder mittels VIM (Vacuum Induction Melting). Dazu können z.B. der Lichtbogenofen oder induktive Techniken genutzt werden. Eine Behandlung mit VOD (Vacuum Oxygen Decarburization) oder AOD (Argon Oxygen Decarburization) oder ESU (Elektro-Schlacke-Umschmelzverfahren) verbessert die Qualität des Produkts.The alloy can be melted by various methods. In theory, all common techniques are possible, such as air melting or VIM (vacuum induction melting). For this, e.g. the arc furnace or inductive techniques are used. Treatment with VOD (Vacuum Oxygen Decarburization) or AOD (Argon Oxygen Decarburization) or ESU (Electric Slag Remelting) improves the quality of the product.
Zur Herstellung der Legierung wird das VIM-Verfahren bevorzugt, da sich damit die Gehalte der Legierungselemente exakter einstellen lassen und nichtmetallische Einschlüsse in der erstarrten Legierung besser vermieden werden können.For the production of the alloy, the VIM method is preferred, since thus the contents of the alloying elements more exactly can be set and non-metallic inclusions in the solidified alloy can be better avoided.
Dem Schmelzvorgang folgt je nach herzustellendem Halbzeug eine unterschiedliche Reihe von Verfahrensschritten.The melting process is followed by a different series of process steps, depending on the semifinished product to be produced.
Falls Bänder hergestellt werden sollen, aus denen später Teile gestanzt werden, wird der aus dem Schmelzvorgang hervorgegangene Gussblock durch Vorblocken in eine Bramme umgeformt. Unter Vorblocken wird das Umformen des Gussblocks in eine Bramme mit rechteckigem Querschnitt durch einen Warmwalzvorgang bei einer Temperatur von beispielsweise 1250 °C verstanden. Nach dem Vorblocken wird durch Schleifen der auf der Oberfläche der Bramme ausgebildete Zunder entfernt. Dem Schleifen folgt ein weiterer Warmwalzvorgang, durch den die Bramme bei einer Temperatur von beispielsweise 1250 °C in ein Band umgeformt wird. Anschließend werden die sich beim Warmwalzen auf der Oberfläche des Bands ausbildenden Verunreinigungen durch Schleifen oder Beizen entfernt, und das Band wird durch Kaltwalzen auf die endgültige Dicke umgeformt, die im Bereich von 0,1 mm bis 2 mm sein kann. Schließlich wird das Band einer Schlussglühung unterzogen. Während der Schlussglühung heilen die durch die Umformvorgänge entstandenen Gitterfehlstellen aus und kristalline Körner werden im Gefüge gebildet.If tapes are to be produced, from which parts are later punched, the ingot resulting from the melting process is converted by pre-blocking into a slab. Preblocking is understood to mean the forming of the ingot into a rectangular section slab by a hot rolling operation at a temperature of, for example, 1250 ° C. After blooming, the scale formed on the surface of the slab is removed by grinding. The grinding is followed by another hot rolling process by which the slab is formed into a strip at a temperature of, for example, 1250 ° C. Subsequently, the impurities formed on the surface of the belt during hot rolling are removed by grinding or pickling, and the strip is cold-worked to the final thickness, which may be in the range of 0.1 mm to 2 mm. Finally, the tape is subjected to a final annealing. During final annealing, the lattice defects resulting from the forming processes heal and crystalline grains are formed in the microstructure.
Ähnlich verläuft der Herstellungsvorgang, wenn Drehteile hergestellt werden. Auch hier werden durch Vorblocken des Gussblocks Knüppel mit einem quadratischen Querschnitt hergestellt. Das sogenannte Vorblocken erfolgt dabei bei einer Temperatur von beispielsweise 1250 °C. Anschließend wird der beim Vorblocken entstandene Zunder durch Schleifen entfernt. Dem folgt ein weiterer Warmwalzvorgang, durch den die Knüppel in Stangen oder Drähte bis zu einem Durchmesser von beispielsweise 13 mm umgeformt werden. Durch Richten und Schälen werden dann zum einen Verwerfungen des Materials korrigiert und zum anderen die sich während des Warmwalzvorgangs bildenden Verunreinigungen auf der Oberfläche entfernt. Abschließend wird auch hier das Material einer Schlussglühung unterzogen.Similarly, the manufacturing process is when turning parts are produced. Again, billets are made by pre-blocking the ingot with a square cross-section. The so-called pre-blocking takes place at a temperature of for example 1250 ° C. Subsequently, the scale formed during pre-blocking is removed by grinding. This is followed by another hot rolling process, through which the billets in bars or wires up to a diameter of, for example 13 mm to be formed. By straightening and peeling, on the one hand, distortions of the material are corrected and, on the other hand, the impurities forming on the surface during the hot rolling process are removed. Finally, here too, the material is subjected to a final annealing.
Die Schlussglühung kann in einem Temperaturbereich von 700 °C bis 1100 °C durchgeführt werden. In einer Durchführungsform wird die Schlussglühung im Temperaturbereich von 750 °C bis 850 °C durchgeführt. Die Schlussglühung kann unter Inertgas, Wasserstoff oder Vakuum durchgeführt werden.The final annealing can be carried out in a temperature range of 700 ° C to 1100 ° C. In one embodiment, the final annealing is carried out in the temperature range from 750 ° C to 850 ° C. The final annealing can be carried out under inert gas, hydrogen or vacuum.
Die Bedingungen wie Temperatur und Dauer der Schlussglühung können so ausgewählt werden, dass nach der Schlussglühung die Legierung Verformungsparameter im Zugversuch von einer Bruchdehnung AL > 2% oder AL > 20% aufweist.The conditions such as temperature and duration of the final annealing can be selected so that after the final annealing the alloy has tensile strain parameters of elongation at break A L > 2% or A L > 20%.
In einer weiteren Durchführungsform wird die Legierung vor der Schlussglühung kaltverformt.In another embodiment, the alloy is cold worked prior to final annealing.
Die Erfindung wird anhand der Zeichnungen näher erläutert.
Figur 1- zeigt ein Magnetventil mit einem Magnetkern aus einer erfindungemäßen weichmagnetischen Legierung,
Figur 2- zeigt ein Ablaufdiagramm des Herstellverfahrens für Halbzeug aus der Legierung gemäß der Erfindung, und
Figur 3- zeigt die Koerzitivfeldstärke Hc in Abhängigkeit von der Glühtemperatur für verschiedene erfindungsgemäße weichmagnetische Legierungen.
Figur 4- zeigt die Koerzitivfeldstärke Hc in Abhängigkeit von der Glühtemperatur für weitere erfindungsgemäße weichmagnetische Legierungen.
- FIG. 1
- shows a solenoid valve with a magnetic core made of a soft magnetic alloy according to the invention,
- FIG. 2
- shows a flow chart of the manufacturing process for semi-finished alloy of the invention, and
- FIG. 3
- shows the coercive force H c as a function of the annealing temperature for various soft magnetic alloys according to the invention.
- FIG. 4
- shows the coercive force H c as a function of the annealing temperature for further soft magnetic alloys according to the invention.
Eine Spule 22 wird mit Strom von einer Stromquelle 23 versorgt, so dass bei der Erregung der Spule 22 ein Magnetfeld induziert wird. Die Spule 22 ist um den Magnetkern 21 so angeordnet, dass auf Grund des induzierten Magnetfelds sich der Magnetkern 21 von einer ersten Position 24 bewegt, die mit der gestrichelten Linie in der
In weiteren Ausführungsformen ist das Aktorsystem 20 ein Kraftstoffeinspritzventil eines Ottomotors oder eines Dieselmotors, oder ein Direktkraftstoffeinspritzventil eines Ottomotors oder eines Dieselmotors.In other embodiments, the
Die weichmagnetische Legierung des Magnetkerns 21 weist einen Gehalt von Chrom und Mangan auf, der zu einem spezifischen elektrischen Widerstand p im geglühten Zustand von 0,572 µΩm führt. Dieser höhere spezifische Widerstand ermöglicht kleinere Schalzeiten bei dem Aktor, da Wirbelströme reduziert werden. Gleichzeitig weist die Legierung eine hohe Sättigung J(400 A/cm), gemessen bei einer Magnetfeldstärke von 400 A/cm, von 2,137 T und eine Permeabilität µmax von 1915 auf, so dass gute weichmagnetische Eigenschaften beibehalten werden.The soft magnetic alloy of the
Die Elemente Si und Al der Legierung sehen eine verbesserte Festigkeit des Magnetkerns 21 vor, ohne dass die weichmagnetischen Eigenschaften wesentlich verschlechtert werden. Die Streckgrenze Rp0,2 dieser Legierung ist 402 Mpa. Der Aluminiumgehalt ermöglicht eine höhere Glühtemperatur, die zu guten weichmagnetischen Eigenschaften einer Koerzitivfeldstärke Hc von nur 2,57 A/cm und einer Maximalpermeabilität µmax von 1915 führt. Eine hohe Permeabilität wird gewünscht, da diese zu niedrigeren Ansteuerströmen beim Einsatz der Legierung als Magnetkern eines Aktors führt.The elements Si and Al of the alloy provide improved strength of the
Der Gehalt von Mo wurde niedrig gehalten, um die Bildung von Karbiden zu vermeiden, die zu einer Verschlechterung der magnetischen Eigenschaften führen können.The content of Mo has been kept low to prevent the formation of carbides, which may lead to deterioration of the magnetic properties.
Tabelle 1 zeigt Zusammensetzungen von verschieden Legierungen entsprechend der Erfindung.Table 1 shows compositions of various alloys according to the invention.
Halbzeuge wurden aus diesen Legierungen durch ein Verfahren hergestellt, dessen Ablauf in der
In dem in
Die Legierung kann mittels verschiedener Verfahren erschmolzen werden. Möglich sind theoretisch alle gängigen Techniken, wie ein Erschmelzen an Luft oder mittels VIM (Vacuum Induction Melting). Dazu können z.B. der Lichtbogenofen oder induktive Techniken genutzt werden. Eine Behandlung mit VOD (Vacuum Oxygen Decarburization) oder AOD (Argon Oxygen Decarburization) oder ESU (Elektro-Schlacke-Umschmelzverfahren) verbessert die Qualität des Produkts.The alloy can be melted by various methods. In theory, all common techniques are possible, such as air melting or VIM (vacuum induction melting). For example, the arc furnace or inductive Techniques are used. Treatment with VOD (Vacuum Oxygen Decarburization) or AOD (Argon Oxygen Decarburization) or ESU (Electric Slag Remelting) improves the quality of the product.
Zur Herstellung der Legierung wird das VIM-Verfahren bevorzugt, da sich damit der Gehalt der Legierungselemente exakter einstellen lässt und nichtmetallische Einschlüsse in der erstarrten Legierung besser vermieden werden können.For the preparation of the alloy, the VIM method is preferred because it allows the content of the alloying elements to be adjusted more accurately and non-metallic inclusions in the solidified alloy can be better avoided.
Dem Schmelzvorgang 1 folgen je nach herzustellendem Halbzeug eine unterschiedliche Reihe von Verfahrensschritten.The
Falls Bänder hergestellt werden sollen, aus denen später Teile gestanzt werden, wird der aus dem Schmelzvorgang 1 hervorgegangene Gussblock durch Vorblocken 2 in eine Bramme umgeformt. Unter Vorblocken wird das Umformen des Gussblocks in eine Bramme mit rechteckigem Querschnitt durch einen Warmwalzvorgang bei einer Temperatur von 1250 °C verstanden. Nach dem Vorblocken wird durch Schleifen 3 der auf der Oberfläche der Bramme ausgebildete Zunder entfernt. Dem Schleifen 3 folgt ein weiterer Warmwalzvorgang 4, durch den die Bramme bei einer Temperatur von 1250 °C in ein Band mit einer Dicke von beispielsweise 3,5 mm umgeformt wird. Anschließend werden die sich beim Warmwalzen auf der Oberfläche des Bandes ausbildenden Verunreinigungen durch Schleifen oder Beizen 5 entfernt, und das Band wird durch Kaltwalzen 6 auf die endgültige Dicke im Bereich von 0,1 bis 2 mm umgeformt. Schließlich wird das Band einer Schlussglühung 7 bei einer Temperatur von > 700 °C unterzogen. Während der Schlussglühung heilen die durch die Umformvorgänge entstandenen Gitterfehlstellen aus und kristalline Körner werden im Gefüge gebildet.If tapes are to be produced from which parts are later punched, the ingot resulting from the
Ähnlich verläuft der Herstellungsvorgang, wenn Drehteile hergestellt werden. Auch hier werden durch Vorblocken 8 des Gussblocks Knüppel mit einem quadratischen Querschnitt hergestellt. Das sogenannte Vorblocken erfolgt dabei bei einer Temperatur von 1250 °C. Anschließend wird der beim Vorblocken 8 entstandene Zunder durch Schleifen 9 entfernt. Dem folgt ein weiterer Warmwalzvorgang 10, durch den die Knüppel in Stangen oder Drähte bis zu einem Durchmesser von 13 mm umgeformt werden. Durch Richten und Schälen 11 werden dann zum einen Verwerfungen des Materials korrigiert und zum anderen die sich während des Warmwalzvorgangs 10 bildenden Verunreinigungen auf der Oberfläche entfernt. Abschließend wird auch hier das Material einer Schlussglühung 12 unterzogen.Similarly, the manufacturing process is when turning parts are produced. Again, billets are made by pre-blocking 8 of the ingot with a square cross-section. The so-called pre-blocking takes place at a temperature of 1250 ° C. Subsequently, the scale formed during pre-blocking 8 is removed by grinding 9. This is followed by another hot rolling
Die Koerzitivfeldstärke Hc wurde in Abhängigkeit von der Glühtemperatur für die Legierungen der Tabelle 1 gemessen. Die Ergebnisse sind in der
Die Glühtemperatur wird je nach Zusammensetzung ausgewählt, so dass die Koerzitivfeldstärke niedrig bleibt. Für die Legierung 3, die in Zusammenhang mit der
Die Legierungen 2, 10, 11 und 13 mit einen niedrigeren Hc bei höheren Glühtemperaturen weisen einen Gehalt von Aluminium von mindestens 0,68 Gew.-% auf. Die Legierungen 10 und 11 weisen eine besonders niedrige Koerzitivfeldstärke Hc von weniger als 1,5 A/cm bei Glühtemperaturen oberhalb von 850°C auf. Diese Legierungen weisen einen Gehalt von Aluminium von 0,84 Gew.-% bzw. 0,92 Gew.-% sowie einen Vanadiumgehalt von 2,51 Gew.-% bzw. 1,00 Gew.-% auf.
Bei diesen Legierungen ist die Phasenüberganstemperatur noch weiter nach oben verschoben. Dies hat den Vorteil, dass die magnetischen Eigenschaften durch die Verwendung einer höheren Glühtemperatur weiter verbessert werden können.In these alloys, the phase transition temperature is further shifted upwards. This has the advantage that the magnetic properties can be further improved by using a higher annealing temperature.
Die Eigenschaften des spezifischen elektrischen Widerstands im geglühten Zustand, ρel, der Koerzitivfeldstärke Hc, der Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), sowie bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), der Maximalpermeabilität µmax, der Streckgrenze Rm, Rp0,2, der Bruchdehnung AL sowie des E-Moduls wurden für die Legierungen der Tabelle 1 gemessen und sind in der Tabelle 2 zusammengefasst.The properties of the specific electrical resistance in the annealed state, ρ el , the coercive force H c , the saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), and at a magnetic field strength of 400 A / cm, J ( 400 A / cm), the maximum permeability μ max , the yield strength R m , R p0.2 , the elongation at rupture AL and the modulus of elasticity were measured for the alloys of Table 1 and are summarized in Table 2.
Der spezifische elektrische Widerstand p jeder Legierung liegt oberhalb 0,5 µΩm. Dies führt zu einer Unterdrückung der Wirbelströme, so dass die Legierungen sich für Aktoranwendungen mit kurzen Schaltzeiten eignen. Die Streckgrenze wurde für die Legierungen 1 bis 7 im magnetisch schlussgeglühten Zustand gemessen und liegt für jede Legierung oberhalb 340 MPa. Diese Legierungen können somit bei Anwendungen eingesetzt werden, bei denen höhere mechanische Belastungen entstehen.The specific electrical resistance p of each alloy is above 0.5 μΩm. This leads to a suppression of the eddy currents, so that the alloys are suitable for actuator applications with short switching times. The yield strength was measured for the
Aus der Tabelle 2 ist zu entnehmen, dass trotz des hohen Zulegierungsanteils an nicht magnetischen Elementen die Legierungen eine hohe Sättigung J(400 A/cm) > 2,0 T, einen hohen spezifischen elektrischen Widerstand ρ > 0,5 µΩm sowie eine hohe Streckgrenze Rp0,2 > 340 MPa aufweisen. Folglich sind diese Legierungen besonders geeignet für Magnetkerne in schnell schaltenden Aktorsystemen, wie Kraftstoffeinspritzventilen.It can be seen from Table 2 that, in spite of the high alloying content of non-magnetic elements, the alloys have a high saturation J (400 A / cm)> 2.0 T, a high electrical resistivity ρ> 0.5 μΩm and a high yield strength R p0.2 > 340 MPa. Consequently, these alloys are particularly suitable for magnetic cores in fast-switching actuator systems, such as fuel injection valves.
Eine Legierung nach einem ersten Ausführungsbeispiel besteht aus 18,1 Gew.-% Co, 2,24 Gew.-% Cr, 1,40 Gew.-% Mn, 0,01 Gew.-% Mo, 0,83 Gew.-%Si, 0,24 Gew.-% Al, Rest Fe und wurde wie oben beschrieben hergestellt. Die Legierung wurde bei 760 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,542 µΩm, eine Koerzitivfeldstärke Hc von 2,34 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 2,029 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,146 T, eine Maximalpermeabilität µmax von 2314, eine Streckgrenze Rm von 623 MPa, Rp0,2 von 411 MPa, eine Bruchdehnung AL von 29,6% und ein E-Modul von 220 GPa auf.An alloy according to a first embodiment consists of 18.1 wt .-% Co, 2.24 wt .-% Cr, 1.40 wt .-% Mn, 0.01 wt .-% Mo, 0.83 wt. % Si, 0.24 wt% Al, balance Fe and was prepared as described above. The alloy was annealed at 760 ° C and, when annealed, has a resistivity ρ el of 0.542 μΩm, a coercive force H c of 2.34 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm) of 2.029 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.146 T, a maximum permeability μ max of 2314, a yield strength R m of 623 MPa, R p0 , 2 of 411 MPa, an elongation at break AL of 29.6% and an E modulus of 220 GPa.
Eine Legierung nach einem zweiten Ausführungsbeispiel besteht aus 18,2 Gew.-% Co, 1,67 Gew.-% Cr, 1,39 Gew.-% Mn, 0,01 Gew.-% Mo, 0,82 Gew.-%Si, 0,68 Gew.-% Al, Rest Fe und wurde wie oben beschrieben hergestellt. Die Legierung wurde bei 800 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,533 µΩm, eine Koerzitivfeldstärke Hc von 1,94 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 2,019 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,151 T, eine Maximalpermeabilität µmax von 1815, eine Streckgrenze Rm von 661MPa, Rp0,2 von 385 MPa, eine Bruchdehnung AL von 25,4% und ein E-Modul von 221 GPa auf.An alloy according to a second embodiment consists of 18.2 wt .-% Co, 1.67 wt .-% Cr, 1.39 wt .-% Mn, 0.01 wt .-% Mo, 0.82 wt. % Si, 0.68 wt% Al, balance Fe and was prepared as described above. The alloy was annealed at 800 ° C and, when annealed, has a resistivity ρ el of 0.533 μΩm, a coercive force H c of 1.94 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), 2.019 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.151 T, a maximum permeability μ max of 1815 , a yield strength R m of 661MPa, R p0.2 of 385 MPa, an elongation at break AL of 25.4% and an E modulus of 221 GPa.
Eine Legierung nach einem dritten Ausführungsbeispiel besteht aus 18,3 Gew.-% Co, 2,62 Gew.-% Cr, 1,37 Gew.-% Mn, 0,01 Gew.-% Mo, 0,85 Gew.-%Si, 0,21 Gew.-% Al, Rest Fe und wurde wie oben beschrieben hergestellt. Die Legierung wurde bei 760 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,572 µΩm, eine Koerzitivfeldstärke Hc von 2,57 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 2,021 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,137 T, eine Maximalpermeabilität µmax von 1915, eine Streckgrenze Rm von 632 MPa, Rp0,2von 402 MPa, eine Bruchdehnung AL von 28,0% und ein E-Modul von 217 GPa auf.An alloy according to a third embodiment consists of 18.3 wt .-% Co, 2.62 wt .-% Cr, 1.37 wt .-% Mn, 0.01 wt .-% Mo, 0.85 wt. % Si, 0.21 wt.% Al, balance Fe and was prepared as described above. The alloy was annealed at 760 ° C and, when annealed, has a resistivity ρ el of 0.572 μΩm, a coercive force H c of 2.57 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 2.021 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), of 2.137 T, a maximum permeability μ max of 1915, a yield strength R m of 632 MPa, R p0 , 2 of 402 MPa, an elongation at break AL of 28.0% and an E modulus of 217 GPa.
Eine Legierung nach einem vierten Ausführungsbeispiel besteht aus 18,3 Gew.-% Co, 2,42 Gew.-% Cr, 1,45 Gew.-% Mn, 0,01 Gew.-% Mo, 0,67 Gew.-%Si, 0,23 Gew.-%Al, Rest Fe und wurde wie oben beschrieben hergestellt. Die Legierung wurde bei 730 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,546 µΩm, eine Koerzitivfeldstärke Hc von 2,73 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 2,037 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,156T, eine Maximalpermeabilität µmax von 2046, eine Streckgrenze Rm von 615 MPa, Rp0,2 von 395 MPa, eine Bruchdehnung AL von 29,5% und ein E-Modul von 223 GPa auf.An alloy according to a fourth embodiment consists of 18.3 wt .-% Co, 2.42 wt .-% Cr, 1.45 wt .-% Mn, 0.01 wt .-% Mo, 0.67 wt. % Si, 0.23 wt% Al, balance Fe and was prepared as described above. The alloy was annealed at 730 ° C and, when annealed, has a resistivity ρ el of 0.546 μΩm, a coercive force H c of 2.73 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 2.037 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.156T, a maximum permeability μ max of 2046, a yield strength R m of 615 MPa, R p0.2 of 395 MPa, an elongation at break AL of 29.5% and an E modulus of 223 GPa on.
Eine Legierung nach einem fünften Ausführungsbeispiel besteht aus 15,40 Gew.-% Co, 2,34 Gew.-% Cr, 1,27 Gew.-% Mn, 0,85 Gew.-% Si, 0,23 Gew.-% Al, Rest Fe und wurde wie oben beschrieben hergestellt. Die Legierung wurde bei 760 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,5450 µΩm, eine Koerzitivfeldstärke Hc von 1,30 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 1,986 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,105T und eine Maximalpermeabilität µmax von 3241 auf.An alloy according to a fifth embodiment consists of 15.40 wt .-% Co, 2.34 wt .-% Cr, 1.27 wt .-% Mn, 0.85 wt .-% Si, 0.23 wt. % Al, balance Fe and was prepared as described above. The alloy was annealed at 760 ° C and, when annealed, has a resistivity ρ el of 0.5450 μΩm, a coercive force H c of 1.30 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 1.986 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), of 2.105T and a maximum permeability μ max of 3241.
Eine Legierung nach einem sechsten Ausführungsbeispiel besteht aus 18,10 Gew.-% Co, 2,30 Gew.-% Cr, 1,37 Gew.-% Mn, 0,83 Gew.-% Si, 0,24 Gew.-% Al, Rest Fe und wurde wie oben beschrieben hergestellt. Die Legierung wurde bei 760 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,5591 µΩm, eine Koerzitivfeldstärke Hc von 1,39 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 2,027 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,138 T und eine Maximalpermeabilität µmax von 2869 auf.An alloy according to a sixth embodiment consists of 18.10 wt .-% Co, 2.30 wt .-% Cr, 1.37 wt .-% Mn, 0.83 wt .-% Si, 0.24 wt. % Al, balance Fe and was prepared as described above. The alloy was annealed at 760 ° C and, when annealed, has a resistivity ρ el of 0.5591 μΩm, a coercive force H c of 1.39 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 2.027 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), of 2.138 T and a maximum permeability μ max of 2869.
Eine Legierung nach einem siebten Ausführungsbeispiel besteht aus 21,15 Gew.-% Co, 2,31 Gew.-% Cr, 1,38 Gew.-% Mn, 0,84 Gew.-% Si, 0,23 Gew.-% Al, Rest Fe und wurde wie oben beschrieben hergestellt. Die Legierung wurde bei 760 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,5627 µΩm, eine Koerzitivfeldstärke Hc von 1,93 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 2,066 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,165 T und eine Maximalpermeabilität µmax von 1527 auf.An alloy according to a seventh embodiment consists of 21.15 wt .-% Co, 2.31 wt .-% Cr, 1.38 wt .-% Mn, 0.84 wt .-% Si, 0.23 wt. % Al, balance Fe and was prepared as described above. The alloy was annealed at 760 ° C and, when annealed, has a resistivity ρ el of 0.5627 μΩm, a coercive force H c of 1.93 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 2.066 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), of 2.165 T and a maximum permeability μ max of 1527.
Bei dem achten bis dreizehnten Ausführungsbeispiele ist die Summe der Zulegierungen etwas höher und liegt zwischen 6 Gew.-% und 9 Gew.-%. Diese Legierungen weisen jeweils im geglühten Zustand einen spezifischen elektrischen Widerstand ρel ≥ 0,60 µΩm auf.In the eighth to thirteenth embodiments, the sum of the additions is slightly higher and is between 6 wt .-% and 9 wt .-%. These alloys each have a specific electrical resistance ρ el ≥ 0.60 μΩm in the annealed state.
Eine Legierung nach einem achten Ausführungsbeispiel besteht aus 18,0 Gew.-% Co, 2,66 Gew.-% Cr, 1,39 Gew.-% Mn, < 0,01 Gew.-% Mo, 0,87 Gew.-%Si, 0,17 Gew.-% Al, 1,00 Gew.% V, Rest Fe und wurde wie oben beschrieben hergestellt. Diese Legierung wurde auch nach dem Warmwalzen kaltverformt. Die Legierung wurde bei 780 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,627 µΩm, eine Koerzitivfeldstärke Hc von 1,40 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 1,977 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,088 T, eine Maximalpermeabilität µmax von 2862, eine Streckgrenze Rm von 605 MPa, Rp0,2 von 374 MPa, eine Bruchdehnung AL von 29,7% und ein E-Modul von 222 GPa auf.An alloy according to an eighth embodiment consists of 18.0 wt% Co, 2.66 wt% Cr, 1.39 wt% Mn, <0.01 wt% Mo, 0.87 wt. % Si, 0.17 wt% Al, 1.00 wt% V, balance Fe and was prepared as described above. This alloy was cold worked even after hot rolling. The alloy was annealed at 780 ° C and, when annealed, has a resistivity ρ el of 0.627 μΩm, a coercive force H c of 1.40 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 1.977 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.088 T, a maximum permeability μ max of 2862, a yield strength R m of 605 MPa, R p0.2 of 374 MPa, an elongation at break AL of 29.7% and an E modulus of 222 GPa.
Eine Legierung nach einem neunten Ausführungsbeispiel besteht aus 18,0 Gew.-% Co, 2,60 Gew.-% Cr, 1,35 Gew.-% Mn, 0,99 Gew.-% Mo, 0,84 Gew.-%Si, 0,17 Gew.-% Al, <0,01 Gew.-% V, Rest Fe und wurde wie oben beschrieben hergestellt. Zusäzlich wurde diese Legierung kaltverformt. Die Legierung wurde bei 780 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,604 µΩm, eine Koerzitivfeldstärke Hc von 2,13 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 21,969 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,092 T, eine Maximalpermeabilität µmax von 1656, eine Streckgrenze Rm von 636 MPa, Rp0,2 von 389 MPa, eine Bruchdehnung AL von 29,2% und ein E-Modul von 222 GPa auf.An alloy according to a ninth embodiment consists of 18.0% by weight of Co, 2.60% by weight of Cr, 1.35% by weight of Mn, 0.99% by weight of Mo, 0.84% by weight. % Si, 0.17 wt% Al, <0.01 wt% V, balance Fe and was prepared as described above. In addition, this alloy was cold worked. The alloy was annealed at 780 ° C and, when annealed, has a resistivity ρ el of 0.604 μΩm, a coercive force H c of 2.13 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 21.969 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.092 T, a maximum permeability μ max of 1656, a yield strength R m of 636 MPa, R p0 , 2 of 389 MPa, an elongation at break AL of 29.2% and an E-modulus of 222 GPa.
Eine Legierung nach einem zehnten Ausführungsbeispiel besteht aus 18,0 Gew.-% Co, 1,85 Gew.-% Cr, 1,33 Gew.-% Mn, <0,01 Gew.-% Mo, 0,86 Gew.-%Si, 0,84 Gew.-% Al, 2,51 Gew.-% V, Rest Fe und wurde wie oben beschrieben hergestellt. Danach wurde die Legierung kaltverformt. Die Legierung wurde bei 870 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,716 µΩm, eine Koerzitivfeldstärke Hc von 0,95 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 1,920 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,015 T, eine Maximalpermeabilität µmax von 4038 auf. Diese Legierung des zehnten Ausführungsbeispiel weist eine besonders vorteilhafte Kombination von einem hohen spezifischen elektrischen Widerstand ρel von 0,716 µΩm, einer niedrigen Koerzitivfeldstärke Hc von 0,95 A/cm, und einer hohen Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 1,920 T auf.An alloy according to a tenth embodiment consists of 18.0 wt% Co, 1.85 wt% Cr, 1.33 wt% Mn, <0.01 wt% Mo, 0.86 wt. % Si, 0.84 wt% Al, 2.51 wt% V, balance Fe and was prepared as described above. Thereafter, the alloy was cold worked. The alloy was annealed at 870 ° C and, when annealed, has a resistivity ρ el of 0.716 μΩm, a coercive field strength H c of 0.95 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 1.920 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A) / cm), from 2.015 T, a maximum permeability μ max of 4038. This alloy of the tenth embodiment has a particularly advantageous combination of a high resistivity ρ el of 0.716 μΩm, a low coercive force H c of 0.95 A / cm, and a high saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), from 1.920 T up.
Eine Legierung nach einem elften Ausführungsbeispiel besteht aus 12,0 Gew.-% Co, 2,65 Gew.-% Cr, 1,38 Gew.-% Mn, < 0,01 Gew.-% Mo, 0,85 Gew.-%Si, 0,92 Gew.-% Al, 1,00 Gew.-% V,Rest Fe und wurde wie oben beschrieben hergestellt und zusätzlich klarverformt. Die Legierung wurde bei 820 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,658 µΩm, eine Koerzitivfeldstärke Hc von 0,72 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 1,880 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,008 T, eine Maximalpermeabilität µmax von 5590, eine Streckgrenze Rm von 525 MPa, Rp0,2 von 346 MPa, eine Bruchdehnung AL von 33,5 % und ein E-Modul von 216 GPa auf.An alloy according to an eleventh embodiment consists of 12.0 wt% Co, 2.65 wt% Cr, 1.38 wt% Mn, <0.01 wt% Mo, 0.85 wt. % Si, 0.92 wt.% Al, 1.00 wt.% V, remainder Fe and was prepared as described above and additionally clearly deformed. The alloy was annealed at 820 ° C and, when annealed, has a resistivity ρ el of 0.658 μΩm, a coercive force H c of 0.72 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 1.880 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.008 T, a maximum permeability μ max of 5590, a yield strength R m of 525 MPa, R p0 , 2 of 346 MPa, an elongation at break AL of 33.5% and an E modulus of 216 GPa.
Die Legierung nach dem elften Ausführungsbeispiel weist eine besonders vorteilhafte Kombination von einem hohen spezifischen elektrischen Widerstand ρel von 0,658 µΩm, einer niedrigen Koerzitivfeldstärke Hc von 0,72 A/cm, und einer hohen Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 1,880 T auf.The alloy according to the eleventh embodiment has a particularly advantageous combination of high resistivity ρ el of 0.658 μΩm, low coercive force H c of 0.72 A / cm, and high saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), 1.880 T on.
Die zwölfte Legierung ist nicht erfindungsgemäß, da der Co-Gehalt größer als 22 Gew.-% ist.The twelfth alloy is not according to the invention since the Co content is greater than 22% by weight.
Eine Legierung nach einem dreizehnten Ausführungsbeispiel besteht aus 18,0 Gew.-% Co, 3,00 Gew.-% Cr, 1,32 Gew.-% Mn, < 0,01 Gew.-% Mo, 0,86 Gew.-%Si, 0,84 Gew.-% Al, 2,01 Gew.-% V, Rest Fe und wurde wie oben beschrieben hergestellt und nach dem Warmwalzen kaltverformt. Die Legierung wurde bei 820 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,769 µΩm, eine Koerzitivfeldstärke Hc von 1,14 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 1,896 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J (400 A/cm), von 1, 985 T, eine Maximalpermeabilität µmax von 3499, eine Streckgrenze Rm von 674 MPa, Rp0,2 von 396 MPa, eine Bruchdehnung AL von 33,3% und ein E-Modul von 218 GPa auf.An alloy according to a thirteenth embodiment consists of 18.0 wt% Co, 3.00 wt% Cr, 1.32 wt% Mn, <0.01 wt% Mo, 0.86 wt. % Si, 0.84 wt% Al, 2.01 wt% V, balance Fe and was prepared as described above and cold worked after hot rolling. The alloy was annealed at 820 ° C and, when annealed, has a resistivity ρ el of 0.769 μΩm, a coercive force H c of 1.14 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 1.896 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), of 1, 985 T, a maximum permeability μ max of 3499, a yield strength R m of 674 MPa, R p0.2 of 396 MPa, an elongation at break AL of 33.3% and an E-modulus of 218 GPa.
Bezugszeichenliste
- 20
- Aktorsystem
- 21
- Magnetkern
- 22
- Spule
- 23
- Stromquelle
- 24
- erste Position des Magnetkerns
- 25
- zweite Position des Magnetkerns
- 26
- Strom
- 27
- Kanal
- 20
- actuator systems
- 21
- magnetic core
- 22
- Kitchen sink
- 23
- power source
- 24
- first position of the magnetic core
- 25
- second position of the magnetic core
- 26
- electricity
- 27
- channel
Claims (46)
- Soft magnetic alloy, consisting of 10 % by weight ≤ Co ≤ 22 % by weight, 0 % by weight ≤ V ≤ 4 % by weight, 1.5 % by weight ≤ Cr ≤ 5 % by weight, 1 % by weight ≤ Mn ≤ 2 % by weight, 0 % by weight ≤ Mo ≤ 1 % by weight, 0.5 % by weight ≤ Si ≤ 1.5 % by weight, 0.1 % by weight ≤ Al ≤ 1.0 % by weight, rest iron plus unavoidable impurities.
- Soft magnetic alloy according to claim 1,
characterised by
a cobalt content of 14 % by weight ≤ Co ≤ 22 % by weight. - Soft magnetic alloy according to claim 2,
characterised by
a cobalt content of 14 % by weight ≤ Co ≤ 20 % by weight. - Soft magnetic alloy according to any of the preceding claims,
characterised by
a vanadium content of 0 % by weight ≤ V ≤ 2 % by weight. - Soft magnetic alloy according to any of the preceding claims,
characterised by
a molybdenum content of 0 % by weight < Mo ≤ 0.5 % by weight. - Soft magnetic alloy according to any of the preceding claims,
characterised by
a manganese content of 1.25 % by weight ≤ Mn ≤ 1.5 % by weight. - Soft magnetic alloy according to any of the preceding claims,
characterised by
a silicon content of 0.5 % by weight ≤ Si ≤ 1.0 % by weight. - Soft magnetic alloy according to any of the preceding claims,
characterised by
an aluminium plus silicon content of 0.6 % by weight ≤ Al+Si ≤ 2 % by weight. - Soft magnetic alloy according to any of the preceding claims,
characterised by
a chromium plus manganese plus molybdenum plus aluminium plus silicon plus vanadium content of 4.0 % by weight ≤ Cr+Mn+Mo+Al+Si+V ≤ 9.0 % by weight. - Soft magnetic alloy according to any of the preceding claims,
characterised in that
0 % by weight ≤ V ≤ 2.0 % by weight, 1.6 % by weight ≤ Cr ≤ 2.5 % by weight, 1.25 % by weight ≤ Mn ≤ 1.5 % by weight, 0 % by weight ≤ Mo ≤ 0.02 % by weight, 0.6 % by weight ≤ Si ≤ 0.9 % by weight and 0.2 % by weight ≤ Al ≤ 0.7 % by weight. - Soft magnetic alloy according to any of the preceding claims;
characterised in that
0 % by weight ≤ V ≤ 0.01 % by weight, 2.3 % by weight ≤ Cr ≤ 3.0 % by weight, 1.25 % by weight ≤ Mn ≤ 1.5 % by weight, 0.75 % by weight ≤ Mo ≤ 1 % by weight, 0.6 % by weight ≤ Si ≤ 0.9 % by weight and 0.1 % by weight ≤ Al ≤ 0.2 % by weight. - Soft magnetic alloy according to any of the preceding claims,
characterised in that
0.75 % by weight ≤ V ≤ 2.75 % by weight, 2.3 % by weight ≤ Cr ≤ 3.5 % by weight, 1.25 % by weight ≤ Mn ≤ 1.5 % by weight, 0 % by weight ≤ Mo ≤ 0.01 % by weight, 0.6 % by weight ≤ Si ≤ 0.9 % by weight and 0.7 % by weight ≤ Al ≤ 1.0 % by weight. - Soft magnetic alloy according to any of the preceding claims,
characterised in that
the finish-annealed alloy has an elongation AL > 2% in a tensile test. - Soft magnetic alloy according to claim 13,
characterised in that
the finish-annealed alloy has an elongation AL > 20% in a tensile test. - Soft magnetic alloy according to any of the preceding claims,
characterised by
a resistivity ρ > 0.50 µΩm. - Soft magnetic alloy according claim 15,
characterised by
a resistivity ρ > 0.55 µΩm. - Soft magnetic alloy according to claim 16,
characterised by
a resistivity ρ > 0.60 µΩm. - Soft magnetic alloy according to claim 17,
characterised by
a resistivity ρ > 0.65 µΩm. - Soft magnetic alloy according to any of the preceding claims,
characterised by
a yield point Rp0.2 > 340 MPa. - Soft magnetic alloy according to any of the preceding claims,
characterised by
a saturation with J(400 A/cm) > 1.90 T. - Soft magnetic alloy according to any of the preceding claims,
characterised by
a saturation with J(400 A/cm) > 2.00 T. - Soft magnetic alloy according to any of the preceding claims,
characterised by
a coercitive field strength Hc < 3.5 A/cm. - Soft magnetic alloy according to claim 22,
characterised by
a coercitive field strength Hc < 2.0 A/cm. - Soft magnetic alloy according to any of the preceding claims,
characterised by
a maximum permeability µmax > 1000. - Soft magnetic alloy according to claim 24,
characterised by
a maximum permeability µmax > 2000. - Soft magnetic core for an electromagnetic actuator, made of an alloy according to any of claims 1 to 25.
- Soft magnetic alloy for a magnetic valve of an internal combustion engine, made of an alloy according to any of claims 1 to 25.
- Soft magnetic alloy for a fuel injection valve of an internal combustion engine, made of an alloy according to any of claims 1 to 25.
- Soft magnetic alloy for a direct injection valve of a spark ignition engine, made of an alloy according to any of claims 1 to 25.
- Soft magnetic alloy for a direct injection valve of a diesel engine, made of an alloy according to any of claims 1 to 25.
- Fuel injection valve of an internal combustion engine, with a component made of a soft magnetic alloy according to any of claims 1 to 25.
- Fuel injection valve according to claim 31,
characterised in that
the fuel injection valve is a direct fuel injection valve of a spark ignition engine. - Fuel injection valve according to claim 31,
characterised in that
the fuel injection valve is a direct fuel injection valve of a diesel engine. - Soft magnetic rotor for an electric motor, made of an alloy according to any of claims 1 to 25.
- Soft magnetic stator for an electric motor, made of an alloy according to any of claims 1 to 25.
- Soft magnetic rotor for an electric motor, made of an alloy according to any of claims 1 to 25.
- Soft magnetic component for an electromagnetic valve control on an inlet valve or an outlet valve used in an engine compartment, made of an alloy according to any of claims 1 to 25.
- Yoke part for an electromagnetic actuator, made of an alloy according to any of claims 1 to 25.
- Yoke part for a solenoid valve, made of an alloy according to any of claims 1 to 25.
- Method for the production of semi-finished product of a cobalt-iron alloy,
wherein workpieces are first produced by melting (1) and hot forming (4, 10) from a soft magnetic alloy consisting of 10 % by weight ≤ Co ≤ 22 % by weight, 0 % by weight ≤ V ≤ 4 % by weight, 1.5 % by weight ≤ Cr ≤ 5 % by weight, 1 % by weight ≤ Mn ≤ 2 % by weight, 0 % by weight ≤ Mo ≤ 1 % by weight, 0.5 % by weight ≤ Si ≤ 1.5 % by weight, 0.1 % by weight ≤ Al ≤ 1.0 % by weight, rest iron plus unavoidable impurities,
wherein a finish-annealing process (7, 12) is carried out. - Method according to claim 40,
characterised in that
the finish-annealing process (7, 12) is carried out within a temperature range between 700°C and 1100°C. - Method according to claim 41,
characterised in that
the finish-annealing process (7, 12) is carried out within a temperature range between 750°C and 850°C. - Method according to any of claims 40 to 42,
characterised in that
the finish-annealing process is carried out such that the finish-annealed alloy has deformation parameters of an elongation AL > 2% in a tensile test. - Method according to claim 43,
characterised in that
the finish-annealing process is carried out such that the finish-annealed alloy has deformation parameters of an elongation AL > 20% in a tensile test. - Method according to any of claims 40 to 44,
characterised in that
the alloy is cold-formed before the finish-annealing process (7, 12). - Method according to any of claims 40 to 45,
characterised in that
the alloy is finish-annealed in the presence of an inert gas or hydrogen or in a vacuum.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006051715 | 2006-10-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1918407A1 EP1918407A1 (en) | 2008-05-07 |
EP1918407B1 true EP1918407B1 (en) | 2008-12-24 |
Family
ID=39050410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07113372A Active EP1918407B1 (en) | 2006-10-30 | 2007-07-27 | Iron-cobalt based soft magnetic alloy and method for its manufacture |
Country Status (4)
Country | Link |
---|---|
US (1) | US7909945B2 (en) |
EP (1) | EP1918407B1 (en) |
AT (1) | ATE418625T1 (en) |
DE (1) | DE502007000329D1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3971919B1 (en) * | 2017-10-27 | 2023-12-20 | Vacuumschmelze GmbH & Co. KG | Method for producing high permeability soft magnetic alloy |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10134056B8 (en) * | 2001-07-13 | 2014-05-28 | Vacuumschmelze Gmbh & Co. Kg | Process for the production of nanocrystalline magnetic cores and apparatus for carrying out the process |
DE102005034486A1 (en) * | 2005-07-20 | 2007-02-01 | Vacuumschmelze Gmbh & Co. Kg | Process for the production of a soft magnetic core for generators and generator with such a core |
US8029627B2 (en) * | 2006-01-31 | 2011-10-04 | Vacuumschmelze Gmbh & Co. Kg | Corrosion resistant magnetic component for a fuel injection valve |
US20070176025A1 (en) * | 2006-01-31 | 2007-08-02 | Joachim Gerster | Corrosion resistant magnetic component for a fuel injection valve |
US7909945B2 (en) * | 2006-10-30 | 2011-03-22 | Vacuumschmelze Gmbh & Co. Kg | Soft magnetic iron-cobalt-based alloy and method for its production |
US9057115B2 (en) * | 2007-07-27 | 2015-06-16 | Vacuumschmelze Gmbh & Co. Kg | Soft magnetic iron-cobalt-based alloy and process for manufacturing it |
DE102007035774B9 (en) * | 2007-07-27 | 2013-03-14 | Vacuumschmelze Gmbh & Co. Kg | Soft magnetic iron-cobalt based alloy and process for its preparation |
US8012270B2 (en) * | 2007-07-27 | 2011-09-06 | Vacuumschmelze Gmbh & Co. Kg | Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it |
EP2083428A1 (en) * | 2008-01-22 | 2009-07-29 | Imphy Alloys | Fe-Co alloy for highly dynamic electromagnetic actuator |
DE102008053310A1 (en) * | 2008-10-27 | 2010-04-29 | Vacuumschmelze Gmbh & Co. Kg | Soft-magnetic workpiece with wear-resistant layer, used to make fuel injection- or solenoid valve, includes core of crystalline iron-cobalt alloy |
US20160329139A1 (en) | 2015-05-04 | 2016-11-10 | Carpenter Technology Corporation | Ultra-low cobalt iron-cobalt magnetic alloys |
DE102019110872A1 (en) * | 2019-04-26 | 2020-11-12 | Vacuumschmelze Gmbh & Co. Kg | Laminated core and method for producing a highly permeable soft magnetic alloy |
JPWO2021182518A1 (en) * | 2020-03-10 | 2021-09-16 |
Family Cites Families (116)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE694374C (en) | 1939-02-04 | 1940-07-31 | Brown Boveri & Cie Akt Ges | Process for the continuous operation of a single-channel rotary hearth furnace provided with a glow and heat exchange zone |
US2225730A (en) | 1939-08-15 | 1940-12-24 | Percy A E Armstrong | Corrosion resistant steel article comprising silicon and columbium |
US2926008A (en) | 1956-04-12 | 1960-02-23 | Foundry Equipment Company | Vertical oven |
GB833446A (en) | 1956-05-23 | 1960-04-27 | Kanthal Ab | Improved iron, chromium, aluminium alloys |
US2960744A (en) | 1957-10-08 | 1960-11-22 | Gen Electric | Equilibrium atmosphere tunnel kilns for ferrite manufacture |
US3255512A (en) | 1962-08-17 | 1966-06-14 | Trident Engineering Associates | Molding a ferromagnetic casing upon an electrical component |
US3502462A (en) | 1965-11-29 | 1970-03-24 | United States Steel Corp | Nickel,cobalt,chromium steel |
US3337373A (en) | 1966-08-19 | 1967-08-22 | Westinghouse Electric Corp | Doubly oriented cube-on-face magnetic sheet containing chromium |
US3401035A (en) | 1967-12-07 | 1968-09-10 | Crucible Steel Co America | Free-machining stainless steels |
US3634072A (en) | 1970-05-21 | 1972-01-11 | Carpenter Technology Corp | Magnetic alloy |
DE2045015A1 (en) | 1970-09-11 | 1972-03-16 | Siemens Ag | Energy supply system, especially for aircraft, with an asynchronous generator driven by an engine with variable speed |
US3624568A (en) | 1970-10-26 | 1971-11-30 | Bell Telephone Labor Inc | Magnetically actuated switching devices |
US3977919A (en) | 1973-09-28 | 1976-08-31 | Westinghouse Electric Corporation | Method of producing doubly oriented cobalt iron alloys |
US4059462A (en) * | 1974-12-26 | 1977-11-22 | The Foundation: The Research Institute Of Electric And Magnetic Alloys | Niobium-iron rectangular hysteresis magnetic alloy |
JPS5180998A (en) | 1975-01-14 | 1976-07-15 | Fuji Photo Film Co Ltd | |
JPS5192097A (en) | 1975-02-10 | 1976-08-12 | ||
US4076525A (en) | 1976-07-29 | 1978-02-28 | General Dynamics Corporation | High strength fracture resistant weldable steels |
US4120704A (en) | 1977-04-21 | 1978-10-17 | The Arnold Engineering Company | Magnetic alloy and processing therefor |
JPS546808A (en) | 1977-06-20 | 1979-01-19 | Toshiba Corp | Magnetic alloy of iron-chromium-cobalt base |
US4160066A (en) | 1977-10-11 | 1979-07-03 | Teledyne Industries, Inc. | Age-hardenable weld deposit |
DE2816173C2 (en) | 1978-04-14 | 1982-07-29 | Vacuumschmelze Gmbh, 6450 Hanau | Method of manufacturing tape cores |
US4201837A (en) | 1978-11-16 | 1980-05-06 | General Electric Company | Bonded amorphous metal electromagnetic components |
DE2924280A1 (en) | 1979-06-15 | 1981-01-08 | Vacuumschmelze Gmbh | AMORPHE SOFT MAGNETIC ALLOY |
JPS57164935A (en) | 1981-04-04 | 1982-10-09 | Nippon Steel Corp | Unidirectionally inclined heating method for metallic strip or metallic plate |
JPS599157A (en) | 1982-07-08 | 1984-01-18 | Sony Corp | Heat treatment of amorphous magnetic alloy |
SU1062298A1 (en) | 1982-07-28 | 1983-12-23 | Центральный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Черной Металлургии Им.И.П.Бардина | Magnetically soft alloy |
JPS5958813A (en) | 1982-09-29 | 1984-04-04 | Toshiba Corp | Manufacture of amorphous metal core |
US4601765A (en) | 1983-05-05 | 1986-07-22 | General Electric Company | Powdered iron core magnetic devices |
DE3427716C1 (en) | 1984-07-27 | 1985-11-14 | Daimler-Benz Ag, 7000 Stuttgart | Rotary hearth furnace in ring design for heat treatment of workpieces |
JP2615543B2 (en) * | 1985-05-04 | 1997-05-28 | 大同特殊鋼株式会社 | Soft magnetic material |
EP0216457A1 (en) | 1985-09-18 | 1987-04-01 | Kawasaki Steel Corporation | Method of producing two-phase separation type Fe-Cr-Co series permanent magnets |
JPS6293342A (en) * | 1985-10-17 | 1987-04-28 | Daido Steel Co Ltd | Soft magnetic material |
CH668331A5 (en) | 1985-11-11 | 1988-12-15 | Studer Willi Ag | Magnetic head core mfr. from stack of laminations - involves linear machining of patterns from adhesively bonded and rolled sandwich of permeable and non-permeable layers |
DE3542257A1 (en) | 1985-11-29 | 1987-06-04 | Standard Elektrik Lorenz Ag | Device for tempering in a magnetic field |
US4706525A (en) * | 1986-01-07 | 1987-11-17 | Cornell Research Foundation, Inc. | Vehicle door unlocking device |
US4881989A (en) | 1986-12-15 | 1989-11-21 | Hitachi Metals, Ltd. | Fe-base soft magnetic alloy and method of producing same |
DE3884491T2 (en) | 1987-07-14 | 1994-02-17 | Hitachi Metals Ltd | Magnetic core and manufacturing method. |
US4923533A (en) | 1987-07-31 | 1990-05-08 | Tdk Corporation | Magnetic shield-forming magnetically soft powder, composition thereof, and process of making |
KR910009974B1 (en) | 1988-01-14 | 1991-12-07 | 알프스 덴기 가부시기가이샤 | High saturated magnetic flux density alloy |
JP2698369B2 (en) | 1988-03-23 | 1998-01-19 | 日立金属株式会社 | Low frequency transformer alloy and low frequency transformer using the same |
JP2710949B2 (en) | 1988-03-30 | 1998-02-10 | 日立金属株式会社 | Manufacturing method of ultra-microcrystalline soft magnetic alloy |
JPH0215143A (en) | 1988-06-30 | 1990-01-18 | Aichi Steel Works Ltd | Soft magnetic stainless steel for cold forging |
DE3824075A1 (en) | 1988-07-15 | 1990-01-18 | Vacuumschmelze Gmbh | COMPOSITE BODY FOR GENERATING VOLTAGE PULSES |
US4994122A (en) | 1989-07-13 | 1991-02-19 | Carpenter Technology Corporation | Corrosion resistant, magnetic alloy article |
US5091024A (en) | 1989-07-13 | 1992-02-25 | Carpenter Technology Corporation | Corrosion resistant, magnetic alloy article |
EP0429022B1 (en) | 1989-11-17 | 1994-10-26 | Hitachi Metals, Ltd. | Magnetic alloy with ulrafine crystal grains and method of producing same |
JPH03223444A (en) | 1990-01-26 | 1991-10-02 | Alps Electric Co Ltd | High saturation magnetic flux density alloy |
US5268044A (en) | 1990-02-06 | 1993-12-07 | Carpenter Technology Corporation | High strength, high fracture toughness alloy |
JPH0559498A (en) | 1990-12-28 | 1993-03-09 | Toyota Motor Corp | Ferritic heat resistant cast steel and its manufacture |
JP2975142B2 (en) | 1991-03-29 | 1999-11-10 | 株式会社日立製作所 | Amorphous iron core manufacturing method and apparatus |
US5622768A (en) * | 1992-01-13 | 1997-04-22 | Kabushiki Kaishi Toshiba | Magnetic core |
JPH0633199A (en) | 1992-07-16 | 1994-02-08 | Hitachi Metal Precision Ltd | Yoke core for printer head |
US5534081A (en) | 1993-05-11 | 1996-07-09 | Honda Giken Kogyo Kabushiki Kaisha | Fuel injector component |
JP3688732B2 (en) | 1993-06-29 | 2005-08-31 | 株式会社東芝 | Planar magnetic element and amorphous magnetic thin film |
JP3233313B2 (en) | 1993-07-21 | 2001-11-26 | 日立金属株式会社 | Manufacturing method of nanocrystalline alloy with excellent pulse attenuation characteristics |
DE69408916T2 (en) | 1993-07-30 | 1998-11-12 | Hitachi Metals Ltd | Magnetic core for pulse transmitters and pulse transmitters |
AUPM644394A0 (en) | 1994-06-24 | 1994-07-21 | Electro Research International Pty Ltd | Bulk metallic glass motor and transformer parts and method of manufacture |
US5611871A (en) | 1994-07-20 | 1997-03-18 | Hitachi Metals, Ltd. | Method of producing nanocrystalline alloy having high permeability |
US5594397A (en) | 1994-09-02 | 1997-01-14 | Tdk Corporation | Electronic filtering part using a material with microwave absorbing properties |
US5817191A (en) | 1994-11-29 | 1998-10-06 | Vacuumschmelze Gmbh | Iron-based soft magnetic alloy containing cobalt for use as a solenoid core |
DE4442420A1 (en) | 1994-11-29 | 1996-05-30 | Vacuumschmelze Gmbh | Soft magnetic iron-based alloy with cobalt for magnetic circuits or excitation circuits |
DE4444482A1 (en) * | 1994-12-14 | 1996-06-27 | Bosch Gmbh Robert | Soft magnetic material |
DE19514612A1 (en) * | 1995-04-25 | 1996-10-31 | Fritz Dr Kueke | Process for the preparation of an aqueous chlorine dioxide solution |
EP0741191B1 (en) | 1995-05-02 | 2003-01-22 | Sumitomo Metal Industries, Ltd. | A magnetic steel sheet having excellent magnetic characteristics and blanking performance |
US5501747A (en) | 1995-05-12 | 1996-03-26 | Crs Holdings, Inc. | High strength iron-cobalt-vanadium alloy article |
DE29514508U1 (en) | 1995-09-09 | 1995-11-02 | Vacuumschmelze Gmbh, 63450 Hanau | Sheet package for magnetic cores for use in inductive components with a longitudinal opening |
DE19635257C1 (en) | 1996-08-30 | 1998-03-12 | Franz Hillingrathner | Compact orbital heat treatment furnace |
US6118365A (en) | 1996-09-17 | 2000-09-12 | Vacuumschmelze Gmbh | Pulse transformer for a u-interface operating according to the echo compensation principle, and method for the manufacture of a toroidal tape core contained in a U-interface pulse transformer |
FR2755292B1 (en) | 1996-10-25 | 1998-11-20 | Mecagis | PROCESS FOR MANUFACTURING A MAGNETIC CORE IN NANOCRYSTALLINE SOFT MAGNETIC MATERIAL |
FR2756966B1 (en) | 1996-12-11 | 1998-12-31 | Mecagis | METHOD FOR MANUFACTURING A MAGNETIC COMPONENT MADE OF SOFT MAGNETIC ALLOY IRON BASED HAVING A NANOCRYSTALLINE STRUCTURE |
DE19653428C1 (en) | 1996-12-20 | 1998-03-26 | Vacuumschmelze Gmbh | Producing amorphous ferromagnetic cobalt alloy strip for wound cores |
US5976274A (en) | 1997-01-23 | 1999-11-02 | Akihisa Inoue | Soft magnetic amorphous alloy and high hardness amorphous alloy and high hardness tool using the same |
US5769974A (en) | 1997-02-03 | 1998-06-23 | Crs Holdings, Inc. | Process for improving magnetic performance in a free-machining ferritic stainless steel |
US5741374A (en) | 1997-05-14 | 1998-04-21 | Crs Holdings, Inc. | High strength, ductile, Co-Fe-C soft magnetic alloy |
US5914088A (en) | 1997-08-21 | 1999-06-22 | Vijai Electricals Limited | Apparatus for continuously annealing amorphous alloy cores with closed magnetic path |
DE19741364C2 (en) | 1997-09-19 | 2000-05-25 | Vacuumschmelze Gmbh | Method and device for producing packages for magnetic cores consisting of sheet metal lamellae |
JPH11102827A (en) | 1997-09-26 | 1999-04-13 | Hitachi Metals Ltd | Saturable reactor core and magnetic amplifier mode high output switching regulator using the same, and computer using the same |
IL128067A (en) | 1998-02-05 | 2001-10-31 | Imphy Ugine Precision | Iron-cobalt alloy |
DE19818198A1 (en) | 1998-04-23 | 1999-10-28 | Bosch Gmbh Robert | Producing rotor or stator from sheet metal blank |
DE59907740D1 (en) | 1998-09-17 | 2003-12-18 | Vacuumschmelze Gmbh | CURRENT TRANSFORMER WITH DC CURRENT TOLERANCE |
US6462456B1 (en) | 1998-11-06 | 2002-10-08 | Honeywell International Inc. | Bulk amorphous metal magnetic components for electric motors |
KR100606515B1 (en) | 1998-11-13 | 2006-07-31 | 바쿰슈멜체 게엠베하 운트 코. 카게 | Magnetic core that is suitable for use in a current transformer, method for the production of a magnetic core and current transformer with a magnetic core |
JP2000182845A (en) | 1998-12-21 | 2000-06-30 | Hitachi Ferrite Electronics Ltd | Composite core |
JP2000277357A (en) | 1999-03-23 | 2000-10-06 | Hitachi Metals Ltd | Saturatable magnetic core and power supply apparatus using the same |
US6181509B1 (en) | 1999-04-23 | 2001-01-30 | International Business Machines Corporation | Low sulfur outgassing free machining stainless steel disk drive components |
DE19928764B4 (en) | 1999-06-23 | 2005-03-17 | Vacuumschmelze Gmbh | Low coercivity iron-cobalt alloy and process for producing iron-cobalt alloy semi-finished product |
JP2001068324A (en) | 1999-08-30 | 2001-03-16 | Hitachi Ferrite Electronics Ltd | Powder molding core |
JP3617426B2 (en) | 1999-09-16 | 2005-02-02 | 株式会社村田製作所 | Inductor and manufacturing method thereof |
FR2808806B1 (en) * | 2000-05-12 | 2002-08-30 | Imphy Ugine Precision | IRON-COBALT ALLOY, IN PARTICULAR FOR A MOBILE CORE OF ELECTROMAGNETIC ACTUATOR, AND ITS MANUFACTURING METHOD |
DE10024824A1 (en) | 2000-05-19 | 2001-11-29 | Vacuumschmelze Gmbh | Inductive component and method for its production |
DE10031923A1 (en) | 2000-06-30 | 2002-01-17 | Bosch Gmbh Robert | Soft magnetic material with a heterogeneous structure and process for its production |
DE10045705A1 (en) | 2000-09-15 | 2002-04-04 | Vacuumschmelze Gmbh & Co Kg | Magnetic core for a transducer regulator and use of transducer regulators as well as method for producing magnetic cores for transducer regulators |
AU2002226875A1 (en) | 2000-10-10 | 2002-04-22 | Crs Holdings, Inc. | Co-Mn-Fe soft magnetic alloys |
US6737784B2 (en) | 2000-10-16 | 2004-05-18 | Scott M. Lindquist | Laminated amorphous metal component for an electric machine |
US6685882B2 (en) | 2001-01-11 | 2004-02-03 | Chrysalis Technologies Incorporated | Iron-cobalt-vanadium alloy |
JP3593986B2 (en) | 2001-02-19 | 2004-11-24 | 株式会社村田製作所 | Coil component and method of manufacturing the same |
JP4284004B2 (en) | 2001-03-21 | 2009-06-24 | 株式会社神戸製鋼所 | Powder for high-strength dust core, manufacturing method for high-strength dust core |
JP2002294408A (en) | 2001-03-30 | 2002-10-09 | Nippon Steel Corp | Iron-based vibration damping alloy and manufacturing method therefor |
DE10119982A1 (en) | 2001-04-24 | 2002-10-31 | Bosch Gmbh Robert | Fuel injection device for an internal combustion engine |
DE10128004A1 (en) | 2001-06-08 | 2002-12-19 | Vacuumschmelze Gmbh | Wound inductive device has soft magnetic core of ferromagnetic powder composite of amorphous or nanocrystalline ferromagnetic alloy powder, ferromagnetic dielectric powder and polymer |
US6616125B2 (en) | 2001-06-14 | 2003-09-09 | Crs Holdings, Inc. | Corrosion resistant magnetic alloy an article made therefrom and a method of using same |
DE10134056B8 (en) | 2001-07-13 | 2014-05-28 | Vacuumschmelze Gmbh & Co. Kg | Process for the production of nanocrystalline magnetic cores and apparatus for carrying out the process |
JP3748055B2 (en) | 2001-08-07 | 2006-02-22 | 信越化学工業株式会社 | Iron alloy plate material for voice coil motor magnetic circuit yoke and yoke for voice coil motor magnetic circuit |
DE10211511B4 (en) | 2002-03-12 | 2004-07-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for joining planar laminates arranged one above the other to form laminate packages or laminate components by laser beam welding |
DE10216098A1 (en) | 2002-04-12 | 2003-10-23 | Bosch Gmbh Robert | Rotor for electrical machine, especially motor, has lamella with at least one fixing element made in one piece with lamella, and permanent magnet held between two fixing elements of one or more lamellas |
DE10320350B3 (en) | 2003-05-07 | 2004-09-30 | Vacuumschmelze Gmbh & Co. Kg | Soft magnetic iron-based alloy used as a material for magnetic bearings and rotors, e.g. in electric motors and in aircraft construction contains alloying additions of cobalt, vanadium and zirconium |
EP1503486B1 (en) | 2003-07-29 | 2009-09-09 | Fanuc Ltd | Motor and motor manufacturing apparatus |
JP2006193779A (en) | 2005-01-13 | 2006-07-27 | Hitachi Metals Ltd | Soft magnetic material |
JP2006322057A (en) | 2005-05-20 | 2006-11-30 | Daido Steel Co Ltd | Soft magnetic material |
DE102005034486A1 (en) | 2005-07-20 | 2007-02-01 | Vacuumschmelze Gmbh & Co. Kg | Process for the production of a soft magnetic core for generators and generator with such a core |
JP4764134B2 (en) | 2005-10-21 | 2011-08-31 | 日本グラスファイバー工業株式会社 | Conductive nonwoven fabric |
US20070176025A1 (en) | 2006-01-31 | 2007-08-02 | Joachim Gerster | Corrosion resistant magnetic component for a fuel injection valve |
US8029627B2 (en) | 2006-01-31 | 2011-10-04 | Vacuumschmelze Gmbh & Co. Kg | Corrosion resistant magnetic component for a fuel injection valve |
US7909945B2 (en) | 2006-10-30 | 2011-03-22 | Vacuumschmelze Gmbh & Co. Kg | Soft magnetic iron-cobalt-based alloy and method for its production |
US8012270B2 (en) | 2007-07-27 | 2011-09-06 | Vacuumschmelze Gmbh & Co. Kg | Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it |
US9057115B2 (en) | 2007-07-27 | 2015-06-16 | Vacuumschmelze Gmbh & Co. Kg | Soft magnetic iron-cobalt-based alloy and process for manufacturing it |
-
2007
- 2007-07-27 US US11/878,856 patent/US7909945B2/en active Active
- 2007-07-27 AT AT07113372T patent/ATE418625T1/en active
- 2007-07-27 EP EP07113372A patent/EP1918407B1/en active Active
- 2007-07-27 DE DE502007000329T patent/DE502007000329D1/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3971919B1 (en) * | 2017-10-27 | 2023-12-20 | Vacuumschmelze GmbH & Co. KG | Method for producing high permeability soft magnetic alloy |
Also Published As
Publication number | Publication date |
---|---|
DE502007000329D1 (en) | 2009-02-05 |
US20080099106A1 (en) | 2008-05-01 |
US7909945B2 (en) | 2011-03-22 |
ATE418625T1 (en) | 2009-01-15 |
US20090145522A9 (en) | 2009-06-11 |
EP1918407A1 (en) | 2008-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1918407B1 (en) | Iron-cobalt based soft magnetic alloy and method for its manufacture | |
US8012270B2 (en) | Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it | |
EP2612942B1 (en) | Non-grain oriented electrical steel or sheet metal, component produced from same and method for producing non-grain oriented electrical steel or sheet metal | |
DE102011053722B3 (en) | Process for producing a high-strength electrical steel, electrical steel and its use | |
DE102007035774B9 (en) | Soft magnetic iron-cobalt based alloy and process for its preparation | |
EP1051714B2 (en) | Soft magnetic nickel-iron alloy with low coercive field strength, high permeability and improved resistance to corrosion | |
EP3712283B1 (en) | Method of manufacturing a cobalt-iron alloy strip | |
EP3730286A1 (en) | Laminated core and method for producing high permeability soft magnetic alloy | |
EP2756106A1 (en) | Non-grain-oriented higher-strength electrical strip with high polarisation and method for the production thereof | |
EP2840157B1 (en) | Method for producing a non-grain oriented electrical steel strip or sheet and a non-grain oriented electrical steel strip or sheet produced according to this method | |
DE102018127918A1 (en) | Method of manufacturing a soft magnetic alloy part | |
EP3541969B1 (en) | Method for producing a strip of a co-fe alloy, strip of a co-fe alloy and sheet metal stack | |
DE102008053310A1 (en) | Soft-magnetic workpiece with wear-resistant layer, used to make fuel injection- or solenoid valve, includes core of crystalline iron-cobalt alloy | |
US20090039994A1 (en) | Soft magnetic iron-cobalt-based alloy and process for manufacturing it | |
DE10320350B3 (en) | Soft magnetic iron-based alloy used as a material for magnetic bearings and rotors, e.g. in electric motors and in aircraft construction contains alloying additions of cobalt, vanadium and zirconium | |
DE19928764B4 (en) | Low coercivity iron-cobalt alloy and process for producing iron-cobalt alloy semi-finished product | |
DE4336882C2 (en) | Method for preventing Mo precipitates in magnetic Ni-Fe alloys | |
DE102007035773B9 (en) | Soft magnetic alloy based on iron-cobalt-chromium and process for its preparation | |
DE102019105215A1 (en) | Alloy and method of making a magnetic core | |
EP1217087A1 (en) | Iron-cobalt alloy with a low coercitive field intensity and method for the production of semi-finished products made of an iron-cobalt alloy | |
DE102019133493A1 (en) | Electrical steel strip or sheet, method for producing this and component made from it | |
EP4027357A1 (en) | Fecov alloy and method for producing a fecov alloy strip | |
EP0557689A2 (en) | Method for manufacturing a magnetic pulse generator | |
DE102009043462A1 (en) | Magnetic strip, sensor comprising a magnetic strip and method of making a magnetic strip | |
DE3103000A1 (en) | "MAGNETIC ELEMENT FOR MAGNETICALLY ACTUATED DEVICES AND METHOD FOR THE PRODUCTION THEREOF" |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
17P | Request for examination filed |
Effective date: 20080410 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
AKX | Designation fees paid |
Designated state(s): AT DE FR GB |
|
REF | Corresponds to: |
Ref document number: 502007000329 Country of ref document: DE Date of ref document: 20090205 Kind code of ref document: P |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20090925 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502007000329 Country of ref document: DE Representative=s name: SCHWEIGER, MARTIN, DIPL.-ING. UNIV., DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20230718 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240730 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240724 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240725 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240718 Year of fee payment: 18 |