EP1918407B1 - Weichmagnetische Legierung auf Eisen-Kobalt-Basis sowie Verfahren zu deren Herstellung - Google Patents

Weichmagnetische Legierung auf Eisen-Kobalt-Basis sowie Verfahren zu deren Herstellung Download PDF

Info

Publication number
EP1918407B1
EP1918407B1 EP07113372A EP07113372A EP1918407B1 EP 1918407 B1 EP1918407 B1 EP 1918407B1 EP 07113372 A EP07113372 A EP 07113372A EP 07113372 A EP07113372 A EP 07113372A EP 1918407 B1 EP1918407 B1 EP 1918407B1
Authority
EP
European Patent Office
Prior art keywords
weight
soft magnetic
alloy according
magnetic alloy
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07113372A
Other languages
English (en)
French (fr)
Other versions
EP1918407A1 (de
Inventor
Joachim Dr. Gerster
Witold Dr. Pieper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Publication of EP1918407A1 publication Critical patent/EP1918407A1/de
Application granted granted Critical
Publication of EP1918407B1 publication Critical patent/EP1918407B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9053Metals
    • F02M2200/9061Special treatments for modifying the properties of metals used for fuel injection apparatus, e.g. modifying mechanical or electromagnetic properties

Definitions

  • the invention relates to a soft magnetic iron-cobalt-based alloy having a cobalt content of 10% by weight (wt .-%) to 22 wt .-%, and a method for producing the alloy and a method for producing semi-finished from this alloy , in particular of magnetic components for actuator systems.
  • Soft magnetic alloys based on iron-cobalt have a high saturation magnetization and can therefore be used to form high-force and / or small-volume electromagnetic actuator systems.
  • a typical application of these alloys are solenoid valves, such as solenoid valves for fuel injection in internal combustion engines.
  • Soft magnetic alloys based on iron-cobalt with a cobalt content of 10 wt .-% to 22 wt .-% are for example from US 7,128,790 known.
  • the switching frequency can be limited due to the resulting eddy currents. Further, improvements in the strength of the magnetic cores in continuous operation in high frequency actuator systems are desired.
  • the object of the invention is therefore to provide an alloy which is better suited for use as a magnetic core in fast-switching actuators.
  • a soft magnetic alloy consists of 10% by weight ⁇ Co ⁇ 22% by weight, 0% by weight ⁇ V ⁇ 4% by weight, 1.5% by weight ⁇ Cr ⁇ 5% by weight, 1 wt .-% ⁇ Mn ⁇ 2 wt .-%, 0 wt .-% ⁇ Mo ⁇ 1 wt .-%, 0.5 wt .-% ⁇ Si ⁇ 1.5 wt .-%, 0.1 wt .-% ⁇ Al ⁇ 1.0 wt .-%, balance iron and unavoidable impurities.
  • the alloy has impurities such as a maximum of 200 ppm of nitrogen, a maximum of 400 ppm of carbon and a maximum of 100 ppm of oxygen.
  • the alloy according to the invention has a higher specific resistance compared with the binary Co-Fe alloy, which leads to a suppression of the eddy currents, with the lowest possible lowering of the saturation polarization. This is achieved by the alloying of the non-magnetic elements. Further, the alloy has higher strength due to the content of Al and Si. This alloy is suitable for use as a magnetic core of a fast-switching actuator system, such as a fuel injection valve of an internal combustion engine.
  • Al, V and Si also increase the electrical resistance while raising the annealing temperature.
  • an alloy with high resistance, high saturation and high annealing temperature and thus good soft magnetic properties can be specified.
  • the alloy has higher strength due to the content of Al and Si.
  • the alloy is cold-workable and ductile in the final annealed condition.
  • the alloy can have an elongation A L of> 2%, preferably A L > 20%.
  • the elongation A L is measured during tensile tests.
  • This alloy is suitable for use as a magnetic core of a fast-switching actuator system, such as a fuel injection valve of an internal combustion engine.
  • the alloy should also have high electrical resistivity and good soft magnetic properties.
  • This alloy thus has a cobalt content of 10% by weight ⁇ Co ⁇ 22% by weight.
  • a low cobalt content reduces the raw material cost of the alloy, making it suitable for high cost pressure applications, such as in the automotive industry.
  • the maximum permeability is high within this range, which leads to cheaper lower drive currents when used as an actuator.
  • the alloy has a cobalt content of 14 wt% ⁇ Co ⁇ 22 wt% and 14 wt% ⁇ Co ⁇ 20 wt%.
  • the soft magnetic alloy of the magnetic core has a content of chromium and manganese, which leads to a higher electrical resistivity p in the annealed state with little decrease in saturation. This higher resistivity allows smaller switching times for an actuator as eddy currents are reduced. At the same time, the alloy has a high saturation and a high permeability ⁇ max , so that good soft magnetic properties are maintained.
  • the elements Si and Al of the alloy provide improved strength of the alloy without significantly degrading the soft magnetic properties.
  • the strength of the alloy can be significantly increased by solid solution hardening, without a significant deterioration of the soft magnetic properties.
  • the aluminum content and vanadium content according to the invention enables a higher annealing temperature, which leads to good soft magnetic properties of the coercive force H c and the maximum permeability ⁇ max leads.
  • High permeability is desired, as this leads to lower drive currents when using the alloy as a magnetic core or flux guide of an actuator.
  • the alloy has a silicon content of 0.5% by weight ⁇ Si ⁇ 1.0% by weight.
  • the content of Mo has been kept low to prevent the formation of carbides, which may lead to deterioration of the magnetic properties.
  • the content of aluminum and silicon is from 0.6% by weight ⁇ Al + Si ⁇ 1.5% by weight, so that brittleness and processing problems that may occur with higher total contents of aluminum and silicon are avoided ,
  • the content of the elements is chromium and manganese and molybdenum and aluminum and silicon and vanadium 4.0 wt% ⁇ (Cr + Mn + Mo + Al + Si + V) ⁇ 9.0 wt%.
  • This alloy has an even higher resistivity compared to the binary CoFe alloy, which leads to a suppression of the eddy currents, at the same time the saturation polarization is lowered as little as possible and the coercive field strength H c is even less increased.
  • the content of chromium and manganese and molybdenum and aluminum and silicon and vanadium in one embodiment is 6.0% by weight ⁇ Cr + Mn + Mo + Al + Si + V ⁇ 9.0% by weight.
  • the soft magnetic alloy consists of 10 wt% ⁇ Co ⁇ 22 wt%, 0 wt% ⁇ V ⁇ 1 wt%, 1.5 wt% ⁇ Cr ⁇ 3 wt. %, 1 wt% ⁇ Mn ⁇ 2 wt%, 0 wt% ⁇ Mo ⁇ 1 wt%, 0.5 wt% ⁇ Si ⁇ 1.5 wt%, 0 , 1 wt .-% ⁇ Al ⁇ 1.0 wt .-%, balance iron and unavoidable impurities.
  • It can have a content of aluminum and silicon of 0.6% by weight ⁇ Al + Si ⁇ 1.5% by weight and / or a content of chromium and manganese and molybdenum and aluminum and silicon of 4.5% by weight.
  • the alloy contains 0 wt% ⁇ V ⁇ 2.0 wt%, 1.6 wt% ⁇ Cr ⁇ 2.5 wt%, 1.25 wt% ⁇ Mn ⁇ 1.5 wt%, 0 wt% ⁇ Mo ⁇ 0.02 wt%, 0.6 wt% ⁇ Si ⁇ 0.9 wt%, and 0.2 wt% ⁇ Al ⁇ 0.7% by weight.
  • the alloy contains 0 wt% ⁇ V ⁇ 0.01 wt%, 2.3 wt% ⁇ Cr ⁇ 3.0 wt%, 1.25 wt% ⁇ Mn ⁇ 1.5 wt%, 0.75 wt% ⁇ Mo ⁇ 1 wt%, 0.6 wt% ⁇ Si ⁇ 0.9 wt% and 0.1 wt% ⁇ Al ⁇ 0.2 wt .-%.
  • the alloy contains 0.75 wt% ⁇ V ⁇ 2.75 wt%, 2.3 wt% ⁇ Cr ⁇ 3.5 wt%, 1.25 wt% ⁇ Mn ⁇ 1.5 wt%, 0 wt% ⁇ Mo ⁇ 0.01 wt%, 0.6 wt% ⁇ Si ⁇ 0.9 wt% and 0.2 wt% % ⁇ Al ⁇ 1.0 wt%.
  • These three alloys have a preferred combination of high electrical resistance, high saturation, and low coercivity.
  • Alloys with the abovementioned compositions have a specific electrical resistance ⁇ > 0.50 ⁇ m or ⁇ > 0.55 ⁇ m or ⁇ > 0.60 ⁇ m or ⁇ > 0.65 ⁇ m. This value provides for an alloy, so that when used as a magnetic core of an actuator system lower eddy currents. This allows the use of the alloy in actuator systems with higher switching times.
  • the proportion of the elements aluminum and silicon in the alloy according to the invention leads to an alloy with a yield strength of R p0.2 > 340 MPa. This higher strength of the alloy can extend the life of the alloy when used as a magnetic core of an actuator system. This is attractive in using the alloy in high frequency actuator systems, such as fuel injection valves in internal combustion engines.
  • the alloy according to the invention has good soft magnetic properties as well as good strength and high electrical resistivity.
  • the alloy has a saturation of J (400A / cm)> 2.00 T or> 1.90 T, and / or a coercive force H c ⁇ 3.5 A / cm or H c ⁇ 2.0 A / cm or and / or H c ⁇ 1.0 A / cm has a maximum permeability ⁇ max > 1000 or ⁇ max > 2000.
  • the inventive content of chromium and manganese and molybdenum and aluminum and silicon and vanadium is between 4.0 wt .-% and 9.0 wt .-%. This higher content allows to provide an alloy that has a higher electrical resistance of ⁇ > 0.6 ⁇ m and a low coercive force H c ⁇ 2.0 A / cm. This combination of properties is particularly suitable for use with fast switching actuators.
  • the invention further provides a soft magnetic core or flux guide for an electromagnetic actuator made of an alloy according to one of the preceding embodiments.
  • This soft magnetic core is in various embodiments a soft magnetic core for a solenoid valve of an internal combustion engine, a soft magnetic core for a fuel injection valve of an internal combustion engine, a soft magnetic core for a direct fuel injection valve of a gasoline engine or a diesel engine, or a soft magnetic component for electromagnetic valve timing such as intake and exhaust valves.
  • the different actuator systems such as solenoid valves and fuel injection valves have different requirements for strength and magnetic properties. These requirements can be met by selecting an alloy having a composition within the ranges described above.
  • the invention also provides a fuel injection valve of an internal combustion engine with a soft magnetic alloy component according to one of the preceding embodiments.
  • the fuel injector is a direct fuel injection valve of a gasoline engine and a direct fuel injection valve of a diesel engine.
  • the invention provides an electromagnetic actuator return member and a soft magnetic rotor and a soft magnetic stator for an electric motor and a soft magnetic component for electromagnetic valve timing on an intake valve or exhaust valve used in an engine compartment of, for example, a motor vehicle, of an alloy according to one of the preceding embodiments.
  • the invention also provides a process for the production of semi-finished products from a cobalt-iron alloy, in which workpieces made of a soft magnetic alloy are first produced by melting and hot working, which consist of 10% by weight ⁇ Co ⁇ 22% by weight, 0 wt% ⁇ V ⁇ 4 wt%, 1.5 wt% ⁇ Cr ⁇ 5 wt%, 1 wt% ⁇ Mn ⁇ 2 wt%, 0 wt% ⁇ Mo ⁇ 1 wt .-%, 0.5 wt .-% ⁇ Si ⁇ 1.5 wt .-%, 0.1 wt .-% ⁇ Al ⁇ 1.0 wt .-%, balance iron and unavoidable impurities ,
  • the alloy of the workpieces can also have a composition according to one of the preceding embodiments.
  • the alloy can be melted by various methods. In theory, all common techniques are possible, such as air melting or VIM (vacuum induction melting). For this, e.g. the arc furnace or inductive techniques are used. Treatment with VOD (Vacuum Oxygen Decarburization) or AOD (Argon Oxygen Decarburization) or ESU (Electric Slag Remelting) improves the quality of the product.
  • VIM vacuum induction melting
  • the VIM method is preferred, since thus the contents of the alloying elements more exactly can be set and non-metallic inclusions in the solidified alloy can be better avoided.
  • the melting process is followed by a different series of process steps, depending on the semifinished product to be produced.
  • the ingot resulting from the melting process is converted by pre-blocking into a slab.
  • Preblocking is understood to mean the forming of the ingot into a rectangular section slab by a hot rolling operation at a temperature of, for example, 1250 ° C. After blooming, the scale formed on the surface of the slab is removed by grinding. The grinding is followed by another hot rolling process by which the slab is formed into a strip at a temperature of, for example, 1250 ° C. Subsequently, the impurities formed on the surface of the belt during hot rolling are removed by grinding or pickling, and the strip is cold-worked to the final thickness, which may be in the range of 0.1 mm to 2 mm. Finally, the tape is subjected to a final annealing. During final annealing, the lattice defects resulting from the forming processes heal and crystalline grains are formed in the microstructure.
  • the manufacturing process is when turning parts are produced.
  • billets are made by pre-blocking the ingot with a square cross-section.
  • the so-called pre-blocking takes place at a temperature of for example 1250 ° C.
  • the scale formed during pre-blocking is removed by grinding.
  • Another hot rolling process through which the billets in bars or wires up to a diameter of, for example 13 mm to be formed.
  • distortions of the material are corrected and, on the other hand, the impurities forming on the surface during the hot rolling process are removed.
  • the material is subjected to a final annealing.
  • the final annealing can be carried out in a temperature range of 700 ° C to 1100 ° C. In one embodiment, the final annealing is carried out in the temperature range from 750 ° C to 850 ° C.
  • the final annealing can be carried out under inert gas, hydrogen or vacuum.
  • the conditions such as temperature and duration of the final annealing can be selected so that after the final annealing the alloy has tensile strain parameters of elongation at break A L > 2% or A L > 20%.
  • the alloy is cold worked prior to final annealing.
  • a coil 22 is supplied with power from a current source 23, so that upon energization of the coil 22, a magnetic field is induced.
  • the coil 22 is disposed around the magnetic core 21 so that, due to the induced magnetic field, the magnetic core 21 moves from a first position 24 indicated by the dashed line in FIG FIG. 1 is shown to a second position 25.
  • the first position 24 is a closed position and the second position is an open position. Consequently, the current 26 is controlled by the channel 27 from the actuator system 20.
  • the actuator system 20 is a fuel injection valve of a gasoline engine or a diesel engine, or a direct fuel injection valve of a gasoline engine or a diesel engine.
  • the soft magnetic alloy of the magnetic core 21 has a content of chromium and manganese, which leads to a specific electrical resistance p in the annealed state of 0.572 ⁇ m. This higher resistivity allows for smaller shutter times on the actuator as eddy currents are reduced. At the same time, the alloy has a high saturation J (400 A / cm), measured at a magnetic field strength of 400 A / cm, of 2.137 T and a permeability ⁇ max of 1915, so that good soft magnetic properties are maintained.
  • the elements Si and Al of the alloy provide improved strength of the magnetic core 21 without significantly deteriorating the soft magnetic properties.
  • the yield strength R p0.2 of this alloy is 402 Mpa.
  • the aluminum content enables a higher annealing temperature, which leads to good soft magnetic properties of a coercive force H c of only 2.57 A / cm and a maximum permeability ⁇ max of 1915. A high permeability is desired because this leads to lower drive currents when using the alloy as the magnetic core of an actuator.
  • the content of Mo has been kept low to prevent the formation of carbides, which may lead to deterioration of the magnetic properties.
  • Table 1 shows compositions of various alloys according to the invention.
  • the alloy is first melted in a melting process 1.
  • the alloy can be melted by various methods. In theory, all common techniques are possible, such as air melting or VIM (vacuum induction melting). For example, the arc furnace or inductive Techniques are used. Treatment with VOD (Vacuum Oxygen Decarburization) or AOD (Argon Oxygen Decarburization) or ESU (Electric Slag Remelting) improves the quality of the product.
  • VIM vacuum induction melting
  • AOD Aractive Oxygen Decarburization
  • ESU Electro Slag Remelting
  • the VIM method is preferred because it allows the content of the alloying elements to be adjusted more accurately and non-metallic inclusions in the solidified alloy can be better avoided.
  • the melting process 1, depending on the semifinished product to be produced, is followed by a different series of process steps.
  • the ingot resulting from the melting process 1 is converted by pre-blocking 2 into a slab.
  • Pre-blocking is understood to mean the forming of the ingot into a slab of rectangular cross-section by a hot rolling operation at a temperature of 1250 ° C.
  • the scale formed on the surface of the slab is removed by grinding 3.
  • the grinding 3 is followed by another hot rolling process 4, by which the slab is formed at a temperature of 1250 ° C in a band having a thickness of, for example, 3.5 mm.
  • the impurities formed on the surface of the strip during hot rolling are removed by grinding or pickling 5, and the strip is cold-rolled 6 to the final thickness in the range of 0.1 to 2 mm.
  • the strip is subjected to a final annealing 7 at a temperature of> 700 ° C. During final annealing, the lattice defects resulting from the forming processes heal and crystalline grains are formed in the microstructure.
  • the manufacturing process is when turning parts are produced.
  • billets are made by pre-blocking 8 of the ingot with a square cross-section.
  • the so-called pre-blocking takes place at a temperature of 1250 ° C.
  • the scale formed during pre-blocking 8 is removed by grinding 9.
  • another hot rolling operation 10 by which the billets are converted into rods or wires up to a diameter of 13 mm.
  • straightening and peeling 11 on the one hand, distortions of the material are corrected and, on the other hand, the impurities forming during the hot rolling process 10 are removed on the surface.
  • the material is also subjected to a final annealing 12 here.
  • the coercive force H c was measured as a function of the annealing temperature for the alloys of Table 1. The results are in the FIG. 3 shown. From the FIG. 3 It can be seen that as the temperature increases, the coercive field strength initially decreases and increases at even higher temperatures, which are at the boundary to the two-phase region.
  • the annealing temperature is selected according to the composition, so that the coercive force remains low.
  • the annealing was carried out at a temperature of 760 ° C.
  • FIG. 4 shows the coercive force for the alloys 1 to 4, 8, 10, 11 and 13.
  • the alloys 8, 10, 11 and 13 were also cold worked after hot rolling.
  • the alloys 1 to 4 were only hot rolled.
  • the FIG. 4 shows the influence of different alloying elements on H c at different annealing temperatures.
  • the increase of H c shows the upper limit of the ferritic phase.
  • Alloys 2, 10, 11 and 13 having a lower H c at higher annealing temperatures have an aluminum content of at least 0.68 wt%.
  • Alloys 10 and 11 have a particularly low coercive force H c of less than 1.5 A / cm at annealing temperatures above 850 ° C.
  • These alloys have an aluminum content of 0.84% by weight and 0.92% by weight and a vanadium content of 2.51% by weight and 1.00% by weight, respectively.
  • the phase transition temperature is further shifted upwards. This has the advantage that the magnetic properties can be further improved by using a higher annealing temperature.
  • the specific electrical resistance p of each alloy is above 0.5 ⁇ m. This leads to a suppression of the eddy currents, so that the alloys are suitable for actuator applications with short switching times.
  • the yield strength was measured for the alloys 1 to 7 in the magnetically final annealed condition and is above 340 MPa for each alloy. These alloys can thus be used in applications where higher mechanical loads arise.
  • An alloy according to a first embodiment consists of 18.1 wt .-% Co, 2.24 wt .-% Cr, 1.40 wt .-% Mn, 0.01 wt .-% Mo, 0.83 wt. % Si, 0.24 wt% Al, balance Fe and was prepared as described above.
  • the alloy was annealed at 760 ° C and, when annealed, has a resistivity ⁇ el of 0.542 ⁇ m, a coercive force H c of 2.34 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm) of 2.029 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.146 T, a maximum permeability ⁇ max of 2314, a yield strength R m of 623 MPa, R p0 , 2 of 411 MPa, an elongation at break AL of 29.6% and an E modulus of 220 GPa.
  • An alloy according to a second embodiment consists of 18.2 wt .-% Co, 1.67 wt .-% Cr, 1.39 wt .-% Mn, 0.01 wt .-% Mo, 0.82 wt. % Si, 0.68 wt% Al, balance Fe and was prepared as described above.
  • the alloy was annealed at 800 ° C and, when annealed, has a resistivity ⁇ el of 0.533 ⁇ m, a coercive force H c of 1.94 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), 2.019 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.151 T, a maximum permeability ⁇ max of 1815 , a yield strength R m of 661MPa, R p0.2 of 385 MPa, an elongation at break AL of 25.4% and an E modulus of 221 GPa.
  • An alloy according to a third embodiment consists of 18.3 wt .-% Co, 2.62 wt .-% Cr, 1.37 wt .-% Mn, 0.01 wt .-% Mo, 0.85 wt. % Si, 0.21 wt.% Al, balance Fe and was prepared as described above.
  • the alloy was annealed at 760 ° C and, when annealed, has a resistivity ⁇ el of 0.572 ⁇ m, a coercive force H c of 2.57 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 2.021 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), of 2.137 T, a maximum permeability ⁇ max of 1915, a yield strength R m of 632 MPa, R p0 , 2 of 402 MPa, an elongation at break AL of 28.0% and an E modulus of 217 GPa.
  • An alloy according to a fourth embodiment consists of 18.3 wt .-% Co, 2.42 wt .-% Cr, 1.45 wt .-% Mn, 0.01 wt .-% Mo, 0.67 wt. % Si, 0.23 wt% Al, balance Fe and was prepared as described above.
  • the alloy was annealed at 730 ° C and, when annealed, has a resistivity ⁇ el of 0.546 ⁇ m, a coercive force H c of 2.73 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 2.037 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.156T, a maximum permeability ⁇ max of 2046, a yield strength R m of 615 MPa, R p0.2 of 395 MPa, an elongation at break AL of 29.5% and an E modulus of 223 GPa on.
  • An alloy according to a fifth embodiment consists of 15.40 wt .-% Co, 2.34 wt .-% Cr, 1.27 wt .-% Mn, 0.85 wt .-% Si, 0.23 wt. % Al, balance Fe and was prepared as described above.
  • the alloy was annealed at 760 ° C and, when annealed, has a resistivity ⁇ el of 0.5450 ⁇ m, a coercive force H c of 1.30 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 1.986 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), of 2.105T and a maximum permeability ⁇ max of 3241.
  • An alloy according to a sixth embodiment consists of 18.10 wt .-% Co, 2.30 wt .-% Cr, 1.37 wt .-% Mn, 0.83 wt .-% Si, 0.24 wt. % Al, balance Fe and was prepared as described above.
  • the alloy was annealed at 760 ° C and, when annealed, has a resistivity ⁇ el of 0.5591 ⁇ m, a coercive force H c of 1.39 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 2.027 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), of 2.138 T and a maximum permeability ⁇ max of 2869.
  • An alloy according to a seventh embodiment consists of 21.15 wt .-% Co, 2.31 wt .-% Cr, 1.38 wt .-% Mn, 0.84 wt .-% Si, 0.23 wt. % Al, balance Fe and was prepared as described above.
  • the alloy was annealed at 760 ° C and, when annealed, has a resistivity ⁇ el of 0.5627 ⁇ m, a coercive force H c of 1.93 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 2.066 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), of 2.165 T and a maximum permeability ⁇ max of 1527.
  • the sum of the additions is slightly higher and is between 6 wt .-% and 9 wt .-%.
  • These alloys each have a specific electrical resistance ⁇ el ⁇ 0.60 ⁇ m in the annealed state.
  • An alloy according to an eighth embodiment consists of 18.0 wt% Co, 2.66 wt% Cr, 1.39 wt% Mn, ⁇ 0.01 wt% Mo, 0.87 wt. % Si, 0.17 wt% Al, 1.00 wt% V, balance Fe and was prepared as described above. This alloy was cold worked even after hot rolling.
  • the alloy was annealed at 780 ° C and, when annealed, has a resistivity ⁇ el of 0.627 ⁇ m, a coercive force H c of 1.40 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 1.977 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.088 T, a maximum permeability ⁇ max of 2862, a yield strength R m of 605 MPa, R p0.2 of 374 MPa, an elongation at break AL of 29.7% and an E modulus of 222 GPa.
  • An alloy according to a ninth embodiment consists of 18.0% by weight of Co, 2.60% by weight of Cr, 1.35% by weight of Mn, 0.99% by weight of Mo, 0.84% by weight. % Si, 0.17 wt% Al, ⁇ 0.01 wt% V, balance Fe and was prepared as described above. In addition, this alloy was cold worked.
  • the alloy was annealed at 780 ° C and, when annealed, has a resistivity ⁇ el of 0.604 ⁇ m, a coercive force H c of 2.13 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 21.969 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.092 T, a maximum permeability ⁇ max of 1656, a yield strength R m of 636 MPa, R p0 , 2 of 389 MPa, an elongation at break AL of 29.2% and an E-modulus of 222 GPa.
  • An alloy according to a tenth embodiment consists of 18.0 wt% Co, 1.85 wt% Cr, 1.33 wt% Mn, ⁇ 0.01 wt% Mo, 0.86 wt. % Si, 0.84 wt% Al, 2.51 wt% V, balance Fe and was prepared as described above. Thereafter, the alloy was cold worked.
  • the alloy was annealed at 870 ° C and, when annealed, has a resistivity ⁇ el of 0.716 ⁇ m, a coercive field strength H c of 0.95 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 1.920 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A) / cm), from 2.015 T, a maximum permeability ⁇ max of 4038.
  • This alloy of the tenth embodiment has a particularly advantageous combination of a high resistivity ⁇ el of 0.716 ⁇ m, a low coercive force H c of 0.95 A / cm, and a high saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), from 1.920 T up.
  • An alloy according to an eleventh embodiment consists of 12.0 wt% Co, 2.65 wt% Cr, 1.38 wt% Mn, ⁇ 0.01 wt% Mo, 0.85 wt. % Si, 0.92 wt.% Al, 1.00 wt.% V, remainder Fe and was prepared as described above and additionally clearly deformed.
  • the alloy was annealed at 820 ° C and, when annealed, has a resistivity ⁇ el of 0.658 ⁇ m, a coercive force H c of 0.72 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 1.880 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), 2.008 T, a maximum permeability ⁇ max of 5590, a yield strength R m of 525 MPa, R p0 , 2 of 346 MPa, an elongation at break AL of 33.5% and an E modulus of 216 GPa.
  • the alloy according to the eleventh embodiment has a particularly advantageous combination of high resistivity ⁇ el of 0.658 ⁇ m, low coercive force H c of 0.72 A / cm, and high saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), 1.880 T on.
  • the twelfth alloy is not according to the invention since the Co content is greater than 22% by weight.
  • An alloy according to a thirteenth embodiment consists of 18.0 wt% Co, 3.00 wt% Cr, 1.32 wt% Mn, ⁇ 0.01 wt% Mo, 0.86 wt. % Si, 0.84 wt% Al, 2.01 wt% V, balance Fe and was prepared as described above and cold worked after hot rolling.
  • the alloy was annealed at 820 ° C and, when annealed, has a resistivity ⁇ el of 0.769 ⁇ m, a coercive force H c of 1.14 A / cm, a saturation J at a magnetic field strength of 160 A / cm, J (160 A / cm), of 1.896 T, a saturation J at a magnetic field strength of 400 A / cm, J (400 A / cm), of 1, 985 T, a maximum permeability ⁇ max of 3499, a yield strength R m of 674 MPa, R p0.2 of 396 MPa, an elongation at break AL of 33.3% and an E-modulus of 218 GPa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Description

  • Die Erfindung betrifft eine weichmagnetische Legierung auf Eisen-Kobalt-Basis, die einen Kobaltgehalt von 10 Gewichtsprozent (Gew.-%) bis 22 Gew.-% aufweist, sowie ein Verfahren zur Herstellung der Legierung und ein Verfahren zur Herstellung von Halbzeug aus dieser Legierung, insbesondere von magnetischen Komponenten für Aktorsysteme.
  • Weichmagnetische Legierungen auf Eisen-Kobalt-Basis weisen eine hohe Sättigungsmagnetisierung auf und können daher dazu verwendet werden, elektromagnetische Aktorsysteme mit hohen Kräften und/oder kleinen Bauvolumen auszubilden. Eine typische Anwendung dieser Legierungen sind Magnetventile, wie zum Beispiel Magnetventile zur Kraftstoffeinspritzung in Verbrennungsmotoren.
  • Weichmagnetische Legierungen auf Eisen-Kobalt-Basis mit einem Kobaltgehalt von 10 Gew.-% bis 22 Gew.-% sind beispielsweise aus der US 7,128,790 bekannt. Bei der Verwendung dieser Legierungen bei schnell schaltenden Aktoren kann auf Grund der entstehenden Wirbelströme die Schaltfrequenz begrenzt werden. Ferner sind Verbesserungen in der Festigkeit der Magnetkerne bei Dauerbetrieb in Hochfrequenzaktorsystemen gewünscht.
  • Änliche Legierungen sind auch in den Dokumenten DE 4444482 , EP 0715320 oder JP-A-62093342 erwähnt.
  • Aufgabe der Erfindung ist es daher, eine Legierung vorzusehen, die zur Verwendung als Magnetkern bei schnell schaltenden Aktoren besser geeignet ist.
  • Gelöst wird dies erfindungsgemäß durch den Gegenstand der unabhängigen Ansprüche. Weitere vorteilhafte Weiterbildungen ergeben sich aus den abhängigen Ansprüchen.
  • Erfindungsgemäß besteht eine weichmagnetische Legierung aus 10 Gew.-% ≤ Co ≤ 22 Gew.-%, 0 Gew.-% ≤ V ≤ 4 Gew.-%, 1,5 Gew.-% ≤ Cr ≤ 5 Gew.-%, 1 Gew.-% ≤ Mn ≤ 2 Gew.-%, 0 Gew.-% ≤ Mo ≤ 1 Gew.-%, 0,5 Gew.-% ≤ Si ≤ 1,5 Gew.-%, 0,1 Gew.-% ≤ Al ≤ 1,0 Gew.-%, Rest Eisen und unvermeidbaren Verunreinigungen.
  • Vorzugsweise weist die Legierung Verunreinigungen wie maximal 200ppm von Stickstoff, maximal 400ppm von Kohlenstoff und maximal 100ppm von Sauerstoff auf.
  • Die erfindungsgemäße Legierung weist gegenüber der binären Co-Fe-Legierung einen höheren spezifischen Widerstand auf, der zu einer Unterdrückung der Wirbelströme führt, bei einer möglichst geringen Absenkung der Sättigungspolarisation. Dies wird durch die Zulegierung der nichtmagnetischen Elemente erreicht. Ferner weist die Legierung auf Grund des Gehalts von Al und Si eine höhere Festigkeit auf. Diese Legierung eignet sich zur Verwendung als Magnetkern eines schnell schaltenden Aktorsystems, wie ein Kraftstoffeinspritzventil eines Verbrennungsmotors.
  • Cr und Mn zeigen eine starke Widerstandserhöhung bei einer geringen Sättigungsabsenkung. Gleichzeitig wird die Glühtemperatur, die die Obergrenze der ferritischen Phase entspricht, abgesenkt. Dies wird jedoch nicht gewünscht, da dies zu schlechteren weichmagnetischen Eigenschaften führt.
  • Al, V und Si erhöhen ebenfalls den elektrischen Widerstand und heben gleichzeitig die Glühtemperatur an. So kann eine Legierung mit hohem Widerstand, hoher Sättigung sowie mit hoher Glühtemperatur und damit guten weichmagnetischen Eigenschaften angegeben werden.
  • Ferner weist die Legierung auf Grund des Gehalts von Al und Si eine höhere Festigkeit auf. Die Legierung ist kaltverformbar und im schlussgeglühten Zustand duktil. Die Legierung kann eine Dehnung AL von > 2%, vorzugsweise AL > 20%. Die Dehnung AL wird bei Zugversuchen gemessen. Diese Legierung eignet sich zur Verwendung als Magnetkern eines schnell schaltenden Aktorsystems, wie ein Kraftstoffeinspritzventil eines Verbrennungsmotors.
  • Die Anforderungen an eine weichmagnetische Legierung auf Kobalt-Eisen-Basis für ein Aktorsystem sind widersprüchlich. Ein höherer Kobaltgehalt führt in der binären Legierung zu einer höheren Sättigungsmagnetisierung Js von ungefähr 9 mT pro 1 Gew.-% Co (ausgehend von 17 Gew.-% Co) und ermöglicht damit ein geringeres Bauvolumen und eine höhere Systemintegration oder höhere Aktorkräfte bei gleicher Baugröße. Gleichzeitig steigen aber die Kosten der Legierung. Mit wachsendem Co-Anteil verschlechtern sich die weichmagnetischen Eigenschaften, wie zum Beispiel Permeabilität. Oberhalb eines Kobaltgehalts von 22 Gew.-% wird die Sättigungszunahme durch weitere Co-Zulegierung geringer.
  • Die Legierung soll außerdem einen hohen spezifischen elektrischen Widerstand und gute weichmagnetische Eigenschaften haben.
  • Diese Legierung weist somit einen Kobaltgehalt von 10 Gew.-% ≤ Co ≤ 22 Gew.-% auf. Ein niedriger Kobaltgehalt reduziert die Rohstoffkosten der Legierung, so dass diese für Anwendungen mit hohem Kostendruck, wie zum Beispiel im Automobilbereich geeignet ist. Die Maximalpermeabilität ist innerhalb dieses Bereichs hoch, was beim Einsatz als Aktor zu günstigeren niedrigeren Ansteuerströmen führt.
  • In weiteren Ausführungsbeispielen weist die Legierung einen Kobaltgehalt von 14 Gew.-% ≤ Co ≤ 22 Gew.-% und 14 Gew.-% ≤ Co ≤ 20 Gew.-% auf.
  • Die weichmagnetische Legierung des Magnetkerns weist einen Gehalt von Chrom und Mangan auf, der zu einem höheren spezifischen elektrischen Widerstand p im geglühten Zustand bei geringer Abnahme der Sättigung führt. Dieser höhere spezifische Widerstand ermöglicht kleinere Schaltzeiten bei einem Aktor, da Wirbelströme reduziert werden. Gleichzeitig weist die Legierung eine hohe Sättigung und eine hohe Permeabilität µmax auf, so dass gute weichmagnetische Eigenschaften beibehalten werden.
  • Die Elemente Si und Al der Legierung sehen eine verbesserte Festigkeit der Legierung vor, ohne dass die weichmagnetischen Eigenschaften wesentlich verschlechtert werden. Durch die Zulegierung von Si und Al lässt sich die Festigkeit der Legierung durch Mischkristallhärtung deutlich erhöhen, ohne eine deutliche Verschlechterung der weichmagnetischen Eigenschaften.
  • Der erfindungsgemäße Aluminiumgehalt und Vanadiumgehalt ermöglicht eine höhere Glühtemperatur, die zu guten weichmagnetischen Eigenschaften der Koerzitivfeldstärke Hc und der Maximalpermeabilität µmax führt. Eine hohe Permeabilität wird gewünscht, da dies zu niedrigeren Ansteuerströmen beim Einsatz der Legierung als Magnetkern oder Flussleiter eines Aktors führt.
  • In einer Ausführungsform weist die Legierung einen Siliziumgehalt von 0,5 Gew.-% ≤ Si ≤ 1,0 Gew.-% auf.
  • Der Gehalt von Mo wurde niedrig gehalten, um die Bildung von Karbiden zu vermeiden, die zu einer Verschlechterung der magnetischen Eigenschaften führen können.
  • Neben Cr und Mn ist ein geringer Molybdängehalt günstig, da sich dieser Gehalt von Molybdän durch ein gutes Verhältnis von Widerstandszuwachs zu Sättigungsabnahme auszeichnet.
  • In einer Ausführungsform ist der Gehalt von Aluminium und Silizium von 0,6 Gew.-% ≤ Al+Si ≤ 1,5 Gew.-%, so dass Sprödigkeit und Verarbeitungsprobleme, die bei höheren Gesamtgehalten von Aluminium und Silizium auftreten können, vermieden werden.
  • In einer Ausführungsform ist der Gehalt der Elemente Chrom und Mangan und Molybdän und Aluminium und Silizium und Vanadium 4,0 Gew.-% ≤ (Cr+Mn+Mo+Al+Si+V) ≤ 9,0 Gew.-%. Diese Legierung weist gegenüber der binären CoFe-Legierung einen noch höheren spezifischen Widerstand auf, der zu einer Unterdrückung der Wirbelströme führt, wobei gleichzeitig die Sättigungspolarisation möglichst wenig abgesenkt sowie die Koerzivfeldstärke Hc noch weniger erhöht wird.
  • Der Gehalt von Chrom und Mangan und Molybdän und Aluminium und Silizium und Vanadium ist in einer Ausführungsform 6,0 Gew.-% ≤ Cr+Mn+Mo+Al+Si+V ≤ 9,0 Gew.-%.
  • In weiteren Ausführungsformen besteht die weichmagnetische Legierung, aus 10 Gew.-% ≤ Co ≤ 22 Gew.-%, 0 Gew.-% ≤ V ≤ 1 Gew.-%, 1,5 Gew.-% ≤ Cr ≤ 3 Gew.-%, 1 Gew.-% ≤ Mn ≤ 2 Gew.-%, 0 Gew.-% ≤ Mo ≤ 1 Gew.-%, 0,5 Gew.-% ≤ Si ≤ 1,5 Gew.-%, 0,1 Gew.-% ≤ Al ≤ 1,0 Gew.-%, Rest Eisen und unvermeidbaren Verunreinigungen. Sie kann einen Gehalt von Aluminium und Silizium von 0,6 Gew.-% ≤ Al+Si ≤ 1,5 Gew.-% und/oder einen Gehalt von Chrom und Mangan und Molybdän und Aluminium und Silizium von 4,5 Gew.-% ≤ Cr+Mn+Mo+A1+Si ≤ 6,0 Gew.-% aufweisen.
  • In einer Ausführungsform enthält die Legierung V = 0 Gew.-%, 1,6 Gew.-% ≤ Cr ≤ 2,5 Gew.-%, 1,25 Gew.-% ≤ Mn ≤ 1,5 Gew.-%, 0 Gew.-% ≤ Mo ≤ 0,02 Gew.-%, 0,6 Gew.-% ≤ Si ≤ 0,9 Gew.-% und 0,2 Gew.-% ≤ Al ≤ 0,7 Gew.-%.
  • In einer Ausführungsform enthält die Legierung 0 Gew.-% ≤ V ≤ 2,0 Gew.-%, 1,6 Gew.-% ≤ Cr ≤ 2,5 Gew.-%, 1,25 Gew.-% ≤ Mn ≤ 1,5 Gew.-%, 0 Gew.-% ≤ Mo ≤ 0,02 Gew.-%, 0,6 Gew.-% ≤ Si ≤ 0,9 Gew.-% und 0,2 Gew.-% ≤ Al ≤ 0,7 Gew.-%.
  • In einer Ausführungsform enthält die Legierung 0 Gew.-% ≤ V ≤ 0,01 Gew.-%, 2,3 Gew.-% ≤ Cr ≤ 3,0 Gew.-%, 1,25 Gew.-% ≤ Mn ≤ 1,5 Gew.-%, 0,75 Gew.-% ≤ Mo ≤ 1 Gew.-%, 0,6 Gew.-% ≤ Si ≤ 0,9 Gew.-% und 0,1 Gew.-% ≤ Al ≤ 0,2 Gew.-%.
  • In einer Ausführungsform enthält die Legierung 0,75 Gew.-% ≤ V ≤ 2,75 Gew.-%, 2,3 Gew.-% ≤ Cr ≤ 3,5 Gew.-%, 1,25 Gew.-% ≤ Mn ≤ 1,5 Gew.-%, 0 Gew.-% ≤ Mo ≤ 0,01 Gew.-%, 0,6 Gew.-% ≤ Si ≤ 0,9 Gew.-% und 0,2 Gew.-% ≤ Al ≤ 1,0 Gew.-%.
  • Diese drei Legierungen weisen eine bevorzugte Kombination aus einem hohen elektrischen Widerstand, einer hohen Sättigung und einer niedrigen Koerzitivfeldstärke auf.
  • Legierungen mit den oben genannten Zusammensetzungen weisen einen spezifischen elektrischen Widerstand ρ > 0,50 µΩm oder ρ > 0,55 µΩm oder ρ > 0,60 µΩm oder ρ > 0,65 µΩm auf. Dieser Wert sieht eine Legierung vor, so dass beim Einsatz als Magnetkern eines Aktorsystems niedrigere Wirbelströme entstehen. Dies ermöglicht die Verwendung der Legierung in Aktorsystemen mit höheren Schaltzeiten.
  • Der Anteil der Elemente Aluminium und Silizium bei der erfindungsgemäßen Legierung führt zu einer Legierung mit einer Streckgrenze von Rp0,2 > 340 MPa. Diese höhere Festigkeit der Legierung kann die Betriebsdauer der Legierung beim Einsatz als Magnetkern eines Aktorsystems verlängern. Dies ist attraktiv bei der Verwendung der Legierung in Hochfrequenzaktorsystemen, wie Kraftstoffeinspritzventilen in Verbrennungsmotoren.
  • Die erfindungsgemäße Legierung weist gute weichmagnetische Eigenschaften sowie eine gute Festigkeit und einen hohen spezifischen elektrischen Widerstand auf. In weiteren Ausführungsformen weist die Legierung eine Sättigung von J(400A/cm) > 2,00 T oder > 1,90 T, und/oder eine Koerzitivfeldstärke Hc < 3,5 A/cm oder Hc < 2,0 A/cm oder und/oder Hc < 1,0 A/cm eine Maximalpermeabilität µmax > 1000 oder µmax > 2000 auf.
  • Der erfindungsgemäße Gehalt von Chrom und Mangan und Molybdän und Aluminium und Silizium und Vanadium liegt zwischen 4,0 Gew.-% und 9,0 Gew.-%. Dieser höhere Gehalt ermöglicht eine Legierung vorzusehen, die einen höheren elektrischen Widerstand von ρ > 0,6 µΩm sowie eine niedrige Koerzitivfeldstärke Hc < 2,0 A/cm aufweist. Diese Kombination von Eigenschaften ist besonders geeignet für Verwendung bei schnell schaltenden Aktoren.
  • Die Erfindung sieht ferner einen weichmagnetischen Kern oder Flussleiter für einen elektromagnetischen Aktor aus einer Legierung nach einem der vorhergehenden Ausführungsformen vor. Dieser weichmagnetische Kern ist in verschiedenen Ausführungsformen ein weichmagnetischer Kern für ein Magnetventil eines Verbrennungsmotors, ein weichmagnetischer Kern für ein Kraftstoffeinspritzventil eines Verbrennungsmotors, ein weichmagnetischer Kern für ein Direktkraftstoffeinspritzventil eines Ottomotors oder eines Dieselmotors oder eine weichmagnetische Komponente für elektromagnetische Ventilverstellung, wie Ein- und Auslassventile.
  • Die unterschiedlichen Aktorsysteme, wie Magnetventile und Kraftstoffeinspritzventile haben unterschiedliche Anforderungen an Festigkeit sowie magnetische Eigenschaften. Diese Anforderungen können durch die Auswahl einer Legierung mit einer Zusammensetzung, die innerhalb der oben beschriebenen Bereiche liegt, erfüllt werden.
  • Die Erfindung sieht auch ein Kraftstoffeinspritzventil eines Verbrennungsmotors mit einer Komponente aus einer weichmagnetischen Legierung nach einem der vorhergehenden Ausführungsbeispiele vor. In weiteren Ausführungsformen ist das Kraftstoffeinspritzventil ein Direktkraftstoffeinspritzventil eines Ottomotors und ein Direktkraftstoffeinspritzventil eines Dieselmotors.
  • In weiteren Ausführungsformen sieht die Erfindung ein Rückschlussteil für einen elektromagnetischen Aktor sowie einen weichmagnetischen Rotor und einen weichmagnetischen Stator für einen elektrischen Motor und eine weichmagnetische Komponente für einen elektromagnetische Ventilverstellung an einem Einlassventil oder einem Auslassventil, das in einem Motorraum von beispielsweise einem Kraftfahrzeug verwendet wird, aus einer Legierung nach einem der vorhergehenden Ausführungsbeispiele vor.
  • Die Erfindung sieht auch ein Verfahren zur Herstellung von Halbzeug aus einer Kobalt-Eisen-Legierung vor, bei dem durch Schmelzen und Warmverformung zunächst Werkstücke aus einer weichmagnetischen Legierung hergestellt werden, die aus 10 Gew.-% ≤ Co ≤ 22 Gew.-%, 0 Gew.-% ≤ V ≤ 4 Gew.-%, 1,5 Gew.-% ≤ Cr ≤ 5 Gew.-%, 1 Gew.-% ≤ Mn ≤ 2 Gew.-%, 0 Gew.-% ≤ Mo ≤ 1 Gew.-%, 0,5 Gew.-% ≤ Si ≤ 1,5 Gew.-%, 0,1 Gew.-% ≤ Al ≤ 1,0 Gew.-%, Rest Eisen und unvermeidbaren Verunreinigungen besteht.
  • Die Legierung der Werkstücke kann auch eine Zusammensetzung nach einem der vorhergehenden Ausführungsbeispiele aufweisen.
  • Die Legierung kann mittels verschiedener Verfahren erschmolzen werden. Möglich sind theoretisch alle gängigen Techniken, wie ein Erschmelzen an Luft oder mittels VIM (Vacuum Induction Melting). Dazu können z.B. der Lichtbogenofen oder induktive Techniken genutzt werden. Eine Behandlung mit VOD (Vacuum Oxygen Decarburization) oder AOD (Argon Oxygen Decarburization) oder ESU (Elektro-Schlacke-Umschmelzverfahren) verbessert die Qualität des Produkts.
  • Zur Herstellung der Legierung wird das VIM-Verfahren bevorzugt, da sich damit die Gehalte der Legierungselemente exakter einstellen lassen und nichtmetallische Einschlüsse in der erstarrten Legierung besser vermieden werden können.
  • Dem Schmelzvorgang folgt je nach herzustellendem Halbzeug eine unterschiedliche Reihe von Verfahrensschritten.
  • Falls Bänder hergestellt werden sollen, aus denen später Teile gestanzt werden, wird der aus dem Schmelzvorgang hervorgegangene Gussblock durch Vorblocken in eine Bramme umgeformt. Unter Vorblocken wird das Umformen des Gussblocks in eine Bramme mit rechteckigem Querschnitt durch einen Warmwalzvorgang bei einer Temperatur von beispielsweise 1250 °C verstanden. Nach dem Vorblocken wird durch Schleifen der auf der Oberfläche der Bramme ausgebildete Zunder entfernt. Dem Schleifen folgt ein weiterer Warmwalzvorgang, durch den die Bramme bei einer Temperatur von beispielsweise 1250 °C in ein Band umgeformt wird. Anschließend werden die sich beim Warmwalzen auf der Oberfläche des Bands ausbildenden Verunreinigungen durch Schleifen oder Beizen entfernt, und das Band wird durch Kaltwalzen auf die endgültige Dicke umgeformt, die im Bereich von 0,1 mm bis 2 mm sein kann. Schließlich wird das Band einer Schlussglühung unterzogen. Während der Schlussglühung heilen die durch die Umformvorgänge entstandenen Gitterfehlstellen aus und kristalline Körner werden im Gefüge gebildet.
  • Ähnlich verläuft der Herstellungsvorgang, wenn Drehteile hergestellt werden. Auch hier werden durch Vorblocken des Gussblocks Knüppel mit einem quadratischen Querschnitt hergestellt. Das sogenannte Vorblocken erfolgt dabei bei einer Temperatur von beispielsweise 1250 °C. Anschließend wird der beim Vorblocken entstandene Zunder durch Schleifen entfernt. Dem folgt ein weiterer Warmwalzvorgang, durch den die Knüppel in Stangen oder Drähte bis zu einem Durchmesser von beispielsweise 13 mm umgeformt werden. Durch Richten und Schälen werden dann zum einen Verwerfungen des Materials korrigiert und zum anderen die sich während des Warmwalzvorgangs bildenden Verunreinigungen auf der Oberfläche entfernt. Abschließend wird auch hier das Material einer Schlussglühung unterzogen.
  • Die Schlussglühung kann in einem Temperaturbereich von 700 °C bis 1100 °C durchgeführt werden. In einer Durchführungsform wird die Schlussglühung im Temperaturbereich von 750 °C bis 850 °C durchgeführt. Die Schlussglühung kann unter Inertgas, Wasserstoff oder Vakuum durchgeführt werden.
  • Die Bedingungen wie Temperatur und Dauer der Schlussglühung können so ausgewählt werden, dass nach der Schlussglühung die Legierung Verformungsparameter im Zugversuch von einer Bruchdehnung AL > 2% oder AL > 20% aufweist.
  • In einer weiteren Durchführungsform wird die Legierung vor der Schlussglühung kaltverformt.
  • Die Erfindung wird anhand der Zeichnungen näher erläutert.
  • Figur 1
    zeigt ein Magnetventil mit einem Magnetkern aus einer erfindungemäßen weichmagnetischen Legierung,
    Figur 2
    zeigt ein Ablaufdiagramm des Herstellverfahrens für Halbzeug aus der Legierung gemäß der Erfindung, und
    Figur 3
    zeigt die Koerzitivfeldstärke Hc in Abhängigkeit von der Glühtemperatur für verschiedene erfindungsgemäße weichmagnetische Legierungen.
    Figur 4
    zeigt die Koerzitivfeldstärke Hc in Abhängigkeit von der Glühtemperatur für weitere erfindungsgemäße weichmagnetische Legierungen.
    Figur 1 zeigt ein elektromagnetisches Aktorsystem 20 mit einem Magnetkern 21 aus einer erfindungsgemäßen weichmagnetischen Legierung, die in einer ersten Ausführungsform aus 18,3 Gew.-% Co, 2,62 Gew.-% Cr, 1,37 Gew.-% Mn, 0,85 Gew.-% Si, 0,01 Gew.-% Mo, 0,21 Gew.-% Al, Rest Eisen besteht. In einem weiteren nicht gezeigten Ausführungsbeispiel ist ein Rückschluss aus dieser Legierung angegeben.
  • Eine Spule 22 wird mit Strom von einer Stromquelle 23 versorgt, so dass bei der Erregung der Spule 22 ein Magnetfeld induziert wird. Die Spule 22 ist um den Magnetkern 21 so angeordnet, dass auf Grund des induzierten Magnetfelds sich der Magnetkern 21 von einer ersten Position 24 bewegt, die mit der gestrichelten Linie in der Figur 1 gezeigt ist, zu einer zweiten Position 25. In dieser Ausführungsform ist die erste Position 24 eine geschlossene Position und die zweite Position eine offene Position. Folglich ist der Strom 26 durch den Kanal 27 vom Aktorsystem 20 gesteuert.
  • In weiteren Ausführungsformen ist das Aktorsystem 20 ein Kraftstoffeinspritzventil eines Ottomotors oder eines Dieselmotors, oder ein Direktkraftstoffeinspritzventil eines Ottomotors oder eines Dieselmotors.
  • Die weichmagnetische Legierung des Magnetkerns 21 weist einen Gehalt von Chrom und Mangan auf, der zu einem spezifischen elektrischen Widerstand p im geglühten Zustand von 0,572 µΩm führt. Dieser höhere spezifische Widerstand ermöglicht kleinere Schalzeiten bei dem Aktor, da Wirbelströme reduziert werden. Gleichzeitig weist die Legierung eine hohe Sättigung J(400 A/cm), gemessen bei einer Magnetfeldstärke von 400 A/cm, von 2,137 T und eine Permeabilität µmax von 1915 auf, so dass gute weichmagnetische Eigenschaften beibehalten werden.
  • Die Elemente Si und Al der Legierung sehen eine verbesserte Festigkeit des Magnetkerns 21 vor, ohne dass die weichmagnetischen Eigenschaften wesentlich verschlechtert werden. Die Streckgrenze Rp0,2 dieser Legierung ist 402 Mpa. Der Aluminiumgehalt ermöglicht eine höhere Glühtemperatur, die zu guten weichmagnetischen Eigenschaften einer Koerzitivfeldstärke Hc von nur 2,57 A/cm und einer Maximalpermeabilität µmax von 1915 führt. Eine hohe Permeabilität wird gewünscht, da diese zu niedrigeren Ansteuerströmen beim Einsatz der Legierung als Magnetkern eines Aktors führt.
  • Der Gehalt von Mo wurde niedrig gehalten, um die Bildung von Karbiden zu vermeiden, die zu einer Verschlechterung der magnetischen Eigenschaften führen können.
  • Tabelle 1 zeigt Zusammensetzungen von verschieden Legierungen entsprechend der Erfindung.
  • Halbzeuge wurden aus diesen Legierungen durch ein Verfahren hergestellt, dessen Ablauf in der Figur 2 dargestellt ist.
  • In dem in Fig. 2 dargestellten Ablaufdiagramm wird zunächst in einem Schmelzvorgang 1 die Legierung erschmolzen.
  • Die Legierung kann mittels verschiedener Verfahren erschmolzen werden. Möglich sind theoretisch alle gängigen Techniken, wie ein Erschmelzen an Luft oder mittels VIM (Vacuum Induction Melting). Dazu können z.B. der Lichtbogenofen oder induktive Techniken genutzt werden. Eine Behandlung mit VOD (Vacuum Oxygen Decarburization) oder AOD (Argon Oxygen Decarburization) oder ESU (Elektro-Schlacke-Umschmelzverfahren) verbessert die Qualität des Produkts.
  • Zur Herstellung der Legierung wird das VIM-Verfahren bevorzugt, da sich damit der Gehalt der Legierungselemente exakter einstellen lässt und nichtmetallische Einschlüsse in der erstarrten Legierung besser vermieden werden können.
  • Dem Schmelzvorgang 1 folgen je nach herzustellendem Halbzeug eine unterschiedliche Reihe von Verfahrensschritten.
  • Falls Bänder hergestellt werden sollen, aus denen später Teile gestanzt werden, wird der aus dem Schmelzvorgang 1 hervorgegangene Gussblock durch Vorblocken 2 in eine Bramme umgeformt. Unter Vorblocken wird das Umformen des Gussblocks in eine Bramme mit rechteckigem Querschnitt durch einen Warmwalzvorgang bei einer Temperatur von 1250 °C verstanden. Nach dem Vorblocken wird durch Schleifen 3 der auf der Oberfläche der Bramme ausgebildete Zunder entfernt. Dem Schleifen 3 folgt ein weiterer Warmwalzvorgang 4, durch den die Bramme bei einer Temperatur von 1250 °C in ein Band mit einer Dicke von beispielsweise 3,5 mm umgeformt wird. Anschließend werden die sich beim Warmwalzen auf der Oberfläche des Bandes ausbildenden Verunreinigungen durch Schleifen oder Beizen 5 entfernt, und das Band wird durch Kaltwalzen 6 auf die endgültige Dicke im Bereich von 0,1 bis 2 mm umgeformt. Schließlich wird das Band einer Schlussglühung 7 bei einer Temperatur von > 700 °C unterzogen. Während der Schlussglühung heilen die durch die Umformvorgänge entstandenen Gitterfehlstellen aus und kristalline Körner werden im Gefüge gebildet.
  • Ähnlich verläuft der Herstellungsvorgang, wenn Drehteile hergestellt werden. Auch hier werden durch Vorblocken 8 des Gussblocks Knüppel mit einem quadratischen Querschnitt hergestellt. Das sogenannte Vorblocken erfolgt dabei bei einer Temperatur von 1250 °C. Anschließend wird der beim Vorblocken 8 entstandene Zunder durch Schleifen 9 entfernt. Dem folgt ein weiterer Warmwalzvorgang 10, durch den die Knüppel in Stangen oder Drähte bis zu einem Durchmesser von 13 mm umgeformt werden. Durch Richten und Schälen 11 werden dann zum einen Verwerfungen des Materials korrigiert und zum anderen die sich während des Warmwalzvorgangs 10 bildenden Verunreinigungen auf der Oberfläche entfernt. Abschließend wird auch hier das Material einer Schlussglühung 12 unterzogen.
  • Die Koerzitivfeldstärke Hc wurde in Abhängigkeit von der Glühtemperatur für die Legierungen der Tabelle 1 gemessen. Die Ergebnisse sind in der Figur 3 dargestellt. Aus der Figur 3 ist zu entnehmen, dass bei steigender Temperatur die Koerzitivfeldstärke zunächst sinkt und bei noch höheren Temperaturen, die an der Grenze zum Zweiphasengebiet liegen, steigt.
  • Die Glühtemperatur wird je nach Zusammensetzung ausgewählt, so dass die Koerzitivfeldstärke niedrig bleibt. Für die Legierung 3, die in Zusammenhang mit der Figur 1 beschrieben wird, wurde die Glühung bei einer Temperatur von 760 °C durchgeführt.
  • Figur 4 zeigt die Koerzitivfelstärke für die Legierungen 1 bis 4, 8, 10, 11 und 13. Die Legierungen 8, 10, 11 und 13 wurden nach Warmwalzen auch kaltverformt. Die Legierungen 1 bis 4 wurden nur warmgewalzt. Die Figur 4 zeigt den Einfluss verschiedener Zulegierungselemente auf Hc bei verschiedenen Glühtemperaturen. Der Anstieg von Hc zeigt die Obergrenze der ferritischen Phase.
  • Die Legierungen 2, 10, 11 und 13 mit einen niedrigeren Hc bei höheren Glühtemperaturen weisen einen Gehalt von Aluminium von mindestens 0,68 Gew.-% auf. Die Legierungen 10 und 11 weisen eine besonders niedrige Koerzitivfeldstärke Hc von weniger als 1,5 A/cm bei Glühtemperaturen oberhalb von 850°C auf. Diese Legierungen weisen einen Gehalt von Aluminium von 0,84 Gew.-% bzw. 0,92 Gew.-% sowie einen Vanadiumgehalt von 2,51 Gew.-% bzw. 1,00 Gew.-% auf.
  • Bei diesen Legierungen ist die Phasenüberganstemperatur noch weiter nach oben verschoben. Dies hat den Vorteil, dass die magnetischen Eigenschaften durch die Verwendung einer höheren Glühtemperatur weiter verbessert werden können.
  • Die Eigenschaften des spezifischen elektrischen Widerstands im geglühten Zustand, ρel, der Koerzitivfeldstärke Hc, der Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), sowie bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), der Maximalpermeabilität µmax, der Streckgrenze Rm, Rp0,2, der Bruchdehnung AL sowie des E-Moduls wurden für die Legierungen der Tabelle 1 gemessen und sind in der Tabelle 2 zusammengefasst.
  • Der spezifische elektrische Widerstand p jeder Legierung liegt oberhalb 0,5 µΩm. Dies führt zu einer Unterdrückung der Wirbelströme, so dass die Legierungen sich für Aktoranwendungen mit kurzen Schaltzeiten eignen. Die Streckgrenze wurde für die Legierungen 1 bis 7 im magnetisch schlussgeglühten Zustand gemessen und liegt für jede Legierung oberhalb 340 MPa. Diese Legierungen können somit bei Anwendungen eingesetzt werden, bei denen höhere mechanische Belastungen entstehen.
  • Aus der Tabelle 2 ist zu entnehmen, dass trotz des hohen Zulegierungsanteils an nicht magnetischen Elementen die Legierungen eine hohe Sättigung J(400 A/cm) > 2,0 T, einen hohen spezifischen elektrischen Widerstand ρ > 0,5 µΩm sowie eine hohe Streckgrenze Rp0,2 > 340 MPa aufweisen. Folglich sind diese Legierungen besonders geeignet für Magnetkerne in schnell schaltenden Aktorsystemen, wie Kraftstoffeinspritzventilen.
  • 1. Ausführungsbeispiel
  • Eine Legierung nach einem ersten Ausführungsbeispiel besteht aus 18,1 Gew.-% Co, 2,24 Gew.-% Cr, 1,40 Gew.-% Mn, 0,01 Gew.-% Mo, 0,83 Gew.-%Si, 0,24 Gew.-% Al, Rest Fe und wurde wie oben beschrieben hergestellt. Die Legierung wurde bei 760 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,542 µΩm, eine Koerzitivfeldstärke Hc von 2,34 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 2,029 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,146 T, eine Maximalpermeabilität µmax von 2314, eine Streckgrenze Rm von 623 MPa, Rp0,2 von 411 MPa, eine Bruchdehnung AL von 29,6% und ein E-Modul von 220 GPa auf.
  • 2. Ausführungsbeispiel
  • Eine Legierung nach einem zweiten Ausführungsbeispiel besteht aus 18,2 Gew.-% Co, 1,67 Gew.-% Cr, 1,39 Gew.-% Mn, 0,01 Gew.-% Mo, 0,82 Gew.-%Si, 0,68 Gew.-% Al, Rest Fe und wurde wie oben beschrieben hergestellt. Die Legierung wurde bei 800 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,533 µΩm, eine Koerzitivfeldstärke Hc von 1,94 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 2,019 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,151 T, eine Maximalpermeabilität µmax von 1815, eine Streckgrenze Rm von 661MPa, Rp0,2 von 385 MPa, eine Bruchdehnung AL von 25,4% und ein E-Modul von 221 GPa auf.
  • 3. Ausführungsbeispiel
  • Eine Legierung nach einem dritten Ausführungsbeispiel besteht aus 18,3 Gew.-% Co, 2,62 Gew.-% Cr, 1,37 Gew.-% Mn, 0,01 Gew.-% Mo, 0,85 Gew.-%Si, 0,21 Gew.-% Al, Rest Fe und wurde wie oben beschrieben hergestellt. Die Legierung wurde bei 760 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,572 µΩm, eine Koerzitivfeldstärke Hc von 2,57 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 2,021 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,137 T, eine Maximalpermeabilität µmax von 1915, eine Streckgrenze Rm von 632 MPa, Rp0,2von 402 MPa, eine Bruchdehnung AL von 28,0% und ein E-Modul von 217 GPa auf.
  • 4. Ausführungsbeispiel
  • Eine Legierung nach einem vierten Ausführungsbeispiel besteht aus 18,3 Gew.-% Co, 2,42 Gew.-% Cr, 1,45 Gew.-% Mn, 0,01 Gew.-% Mo, 0,67 Gew.-%Si, 0,23 Gew.-%Al, Rest Fe und wurde wie oben beschrieben hergestellt. Die Legierung wurde bei 730 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,546 µΩm, eine Koerzitivfeldstärke Hc von 2,73 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 2,037 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,156T, eine Maximalpermeabilität µmax von 2046, eine Streckgrenze Rm von 615 MPa, Rp0,2 von 395 MPa, eine Bruchdehnung AL von 29,5% und ein E-Modul von 223 GPa auf.
  • 5. Ausführungsbeispiel
  • Eine Legierung nach einem fünften Ausführungsbeispiel besteht aus 15,40 Gew.-% Co, 2,34 Gew.-% Cr, 1,27 Gew.-% Mn, 0,85 Gew.-% Si, 0,23 Gew.-% Al, Rest Fe und wurde wie oben beschrieben hergestellt. Die Legierung wurde bei 760 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,5450 µΩm, eine Koerzitivfeldstärke Hc von 1,30 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 1,986 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,105T und eine Maximalpermeabilität µmax von 3241 auf.
  • 6. Ausführungsbeispiel
  • Eine Legierung nach einem sechsten Ausführungsbeispiel besteht aus 18,10 Gew.-% Co, 2,30 Gew.-% Cr, 1,37 Gew.-% Mn, 0,83 Gew.-% Si, 0,24 Gew.-% Al, Rest Fe und wurde wie oben beschrieben hergestellt. Die Legierung wurde bei 760 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,5591 µΩm, eine Koerzitivfeldstärke Hc von 1,39 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 2,027 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,138 T und eine Maximalpermeabilität µmax von 2869 auf.
  • 7. Ausführungsbeispiel
  • Eine Legierung nach einem siebten Ausführungsbeispiel besteht aus 21,15 Gew.-% Co, 2,31 Gew.-% Cr, 1,38 Gew.-% Mn, 0,84 Gew.-% Si, 0,23 Gew.-% Al, Rest Fe und wurde wie oben beschrieben hergestellt. Die Legierung wurde bei 760 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,5627 µΩm, eine Koerzitivfeldstärke Hc von 1,93 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 2,066 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,165 T und eine Maximalpermeabilität µmax von 1527 auf.
  • Bei dem achten bis dreizehnten Ausführungsbeispiele ist die Summe der Zulegierungen etwas höher und liegt zwischen 6 Gew.-% und 9 Gew.-%. Diese Legierungen weisen jeweils im geglühten Zustand einen spezifischen elektrischen Widerstand ρel ≥ 0,60 µΩm auf.
  • 8. Ausführungsbeispiel
  • Eine Legierung nach einem achten Ausführungsbeispiel besteht aus 18,0 Gew.-% Co, 2,66 Gew.-% Cr, 1,39 Gew.-% Mn, < 0,01 Gew.-% Mo, 0,87 Gew.-%Si, 0,17 Gew.-% Al, 1,00 Gew.% V, Rest Fe und wurde wie oben beschrieben hergestellt. Diese Legierung wurde auch nach dem Warmwalzen kaltverformt. Die Legierung wurde bei 780 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,627 µΩm, eine Koerzitivfeldstärke Hc von 1,40 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 1,977 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,088 T, eine Maximalpermeabilität µmax von 2862, eine Streckgrenze Rm von 605 MPa, Rp0,2 von 374 MPa, eine Bruchdehnung AL von 29,7% und ein E-Modul von 222 GPa auf.
  • 9. Ausführungsbeispiel
  • Eine Legierung nach einem neunten Ausführungsbeispiel besteht aus 18,0 Gew.-% Co, 2,60 Gew.-% Cr, 1,35 Gew.-% Mn, 0,99 Gew.-% Mo, 0,84 Gew.-%Si, 0,17 Gew.-% Al, <0,01 Gew.-% V, Rest Fe und wurde wie oben beschrieben hergestellt. Zusäzlich wurde diese Legierung kaltverformt. Die Legierung wurde bei 780 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,604 µΩm, eine Koerzitivfeldstärke Hc von 2,13 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 21,969 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,092 T, eine Maximalpermeabilität µmax von 1656, eine Streckgrenze Rm von 636 MPa, Rp0,2 von 389 MPa, eine Bruchdehnung AL von 29,2% und ein E-Modul von 222 GPa auf.
  • 10. Ausführungsbeispiel
  • Eine Legierung nach einem zehnten Ausführungsbeispiel besteht aus 18,0 Gew.-% Co, 1,85 Gew.-% Cr, 1,33 Gew.-% Mn, <0,01 Gew.-% Mo, 0,86 Gew.-%Si, 0,84 Gew.-% Al, 2,51 Gew.-% V, Rest Fe und wurde wie oben beschrieben hergestellt. Danach wurde die Legierung kaltverformt. Die Legierung wurde bei 870 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,716 µΩm, eine Koerzitivfeldstärke Hc von 0,95 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 1,920 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,015 T, eine Maximalpermeabilität µmax von 4038 auf. Diese Legierung des zehnten Ausführungsbeispiel weist eine besonders vorteilhafte Kombination von einem hohen spezifischen elektrischen Widerstand ρel von 0,716 µΩm, einer niedrigen Koerzitivfeldstärke Hc von 0,95 A/cm, und einer hohen Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 1,920 T auf.
  • 11. Ausführungsform
  • Eine Legierung nach einem elften Ausführungsbeispiel besteht aus 12,0 Gew.-% Co, 2,65 Gew.-% Cr, 1,38 Gew.-% Mn, < 0,01 Gew.-% Mo, 0,85 Gew.-%Si, 0,92 Gew.-% Al, 1,00 Gew.-% V,Rest Fe und wurde wie oben beschrieben hergestellt und zusätzlich klarverformt. Die Legierung wurde bei 820 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,658 µΩm, eine Koerzitivfeldstärke Hc von 0,72 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 1,880 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J(400 A/cm), von 2,008 T, eine Maximalpermeabilität µmax von 5590, eine Streckgrenze Rm von 525 MPa, Rp0,2 von 346 MPa, eine Bruchdehnung AL von 33,5 % und ein E-Modul von 216 GPa auf.
  • Die Legierung nach dem elften Ausführungsbeispiel weist eine besonders vorteilhafte Kombination von einem hohen spezifischen elektrischen Widerstand ρel von 0,658 µΩm, einer niedrigen Koerzitivfeldstärke Hc von 0,72 A/cm, und einer hohen Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 1,880 T auf.
  • 12. Ausführungsbeispiel
  • Die zwölfte Legierung ist nicht erfindungsgemäß, da der Co-Gehalt größer als 22 Gew.-% ist.
  • 13. Ausführungsbeispiel
  • Eine Legierung nach einem dreizehnten Ausführungsbeispiel besteht aus 18,0 Gew.-% Co, 3,00 Gew.-% Cr, 1,32 Gew.-% Mn, < 0,01 Gew.-% Mo, 0,86 Gew.-%Si, 0,84 Gew.-% Al, 2,01 Gew.-% V, Rest Fe und wurde wie oben beschrieben hergestellt und nach dem Warmwalzen kaltverformt. Die Legierung wurde bei 820 °C geglüht und weist im geglühten Zustand einen spezifischen elektrischen Widerstand ρel von 0,769 µΩm, eine Koerzitivfeldstärke Hc von 1,14 A/cm, eine Sättigung J bei einer Magnetfeldstärke von 160 A/cm, J(160 A/cm), von 1,896 T, eine Sättigung J bei einer Magnetfeldstärke von 400 A/cm, J (400 A/cm), von 1, 985 T, eine Maximalpermeabilität µmax von 3499, eine Streckgrenze Rm von 674 MPa, Rp0,2 von 396 MPa, eine Bruchdehnung AL von 33,3% und ein E-Modul von 218 GPa auf.
  • Bezugszeichenliste
  • 20
    Aktorsystem
    21
    Magnetkern
    22
    Spule
    23
    Stromquelle
    24
    erste Position des Magnetkerns
    25
    zweite Position des Magnetkerns
    26
    Strom
    27
    Kanal
    Tabelle 1
    Legierung Fe Co (Gew.-%) Summe Zulegierungen Cr (Gew.-%) Mn (Gew.-%) Si (Gew.-%) Mo (Gew.-%) Al (Gew.-%) V (Gew.-%)
    1 Rest 18,1 4,73 2,24 1,40 0,83 0,01 0,24 <0,01
    2 Rest 18,2 4,58 1,67 1,39 0,82 0,01 0,68 <0,01
    3 Rest 18,3 5,09 2,62 1,37 0,85 0,01 0,21 <0,01
    4 Rest 18,3 4,78 2,42 1,45 0,67 0,01 0,23 <0,01
    5 Rest 15,40 4,69 2,34 1,27 0,85 0,001 0,23 <0,01
    6 Rest 18,10 4,74 2,30 1,37 0,83 0,001 0,24 <0,01
    7 Rest 21,15 4,76 2,31 1,38 0,84 0,001 0,23 <0,01
    8 Rest 18,0 6,18 2,66 1,39 0,87 <0,01 0,17 1,00
    9 Rest 18,0 6,18 2,60 1,35 0,84 0,99 0,17 <0,01
    10 Rest 18,0 7,38 1,85 1,33 0,86 <0,01 0,84 2,51
    11 Rest 12,0 6,78 2,65 1,38 0,85 <0,01 0,92 1,00
    12* Rest 25,0 5,58 1,57 0,96 0,93 <0,01 1,02 1,00
    13 Rest 18,0 8,18 3,00 1,32 0,86 <0,01 0,84 2,01
    *nicht erfindungsgemäß
    Tabelle 2
    Legierung Glühtemperatur (°C) ρ (µΩm) Hc (A/cm) J(160) (T) J(400) (T) µmax Rm (Mpa) Rp0,2 (Mpa) AL (%) E-Modul (Gpa)
    1 760 0,542 2,34 2,029 2,146 2314 623 411 29,6 220
    2 800 0,533 1,94 2,019 2,151 1815 661 385 25,4 221
    3 760 0,572 2,57 2,021 2,137 1915 632 402 28,0 217
    4 730 0,546 2,73 2,037 2,156 2046 615 395 29,5 223
    5 760 0,545 1,30 1,986 2,105 3241 - - - -
    6 760 0,559 1,39 2,027 2,138 2869 - - - -
    7 760 0,563 1,93 2,066 2,165 1527 - - - -
    8 780 0,627 1,40 1,977 2,088 2862 605 374 29,7 222
    9 780 0,604 2,13 1,969 2,092 1656 636 389 29,2 222
    10 870 0,716 0,95 1,920 2,015 4038 - - - -
    11 820 0,658 0,72 1,880 2,008 5590 525 346 33,5 216
    12* 870 0,628 1,25 1,989 2,075 1793 - - - -
    13 820 0,769 1,14 1,896 1,985 3499 674 396 33,3 218
    *nicht erfindungsgemäß

Claims (46)

  1. Weichmagnetische Legierung, die aus 10 Gew.-% ≤ Co ≤ 22 Gew.-%, 0 Gew.-% ≤ V ≤ 4 Gew.-%, 1,5 Gew.-% ≤ Cr ≤ 5 Gew.-%, 1 Gew.-% ≤ Mn ≤ 2 Gew.-%, 0 Gew.- % ≤ Mo ≤ 1 Gew.-%, 0,5 Gew.-% ≤ Si ≤ 1,5 Gew.-%, 0,1 Gew.-% ≤ Al ≤ 1,0 Gew.-%, Rest Eisen und unvermeidbaren Verunreinigungen besteht.
  2. Weichmagnetische Legierung nach Anspruch 1,
    gekennzeichnet durch
    einen Kobaltgehalt von 14 Gew.-% ≤ Co ≤ 22 Gew.-%.
  3. Weichmagnetische Legierung nach Anspruch 2,
    gekennzeichnet durch
    einen Kobaltgehalt von 14 Gew.-% ≤ Co ≤ 20 Gew.-%.
  4. Weichmagnetische Legierung nach einem der vorhergehenden Ansprüche,
    gekennzeichnet durch
    einen Vanadiumgehalt von 0 Gew.-% ≤ V ≤ 2 Gew.-%.
  5. Weichmagnetische Legierung nach einem der vorhergehenden Ansprüche,
    gekennzeichnet durch
    einen Molybdängehalt von 0 Gew.-% < Mo ≤ 0,5 Gew.-%.
  6. Weichmagnetische Legierung nach einem der vorhergehenden Ansprüche,
    gekennzeichnet durch
    einen Mangangehalt von 1,25 Gew.-% ≤ Mn ≤ 1,5 Gew.-%.
  7. Weichmagnetische Legierung nach einem der vorhergehenden Ansprüche,
    gekennzeichnet durch
    einen Siliziumgehalt von 0,5 Gew.-% ≤ Si ≤ 1,0 Gew.-%.
  8. Weichmagnetische Legierung nach einem der vorhergehenden Ansprüche,
    gekennzeichnet durch
    einen Gehalt von Aluminium und Silizium von 0,6 Gew.-% ≤ Al+Si ≤ 2 Gew.-%.
  9. Weichmagnetische Legierung nach einem der vorhergehenden Ansprüche,
    gekennzeichnet durch
    einen Gehalt von Chrom und Mangan und Molybdän und Aluminium Silizium und Vanadium von 4,0 Gew.-% ≤ Cr+Mn+Mo+Al+Si+V ≤ 9,0 Gew.-%.
  10. Weichmagnetische Legierung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    0 Gew.-% ≤ V ≤ 2,0 Gew.-%, 1,6 Gew.-% ≤ Cr ≤ 2,5 Gew.-%, 1,25 Gew.-% ≤ Mn ≤ 1,5 Gew.-%, 0 Gew.-% ≤ Mo ≤ 0,02 Gew.- %, 0,6 Gew.-% ≤ Si ≤ 0,9 Gew.-% und 0,2 Gew.-% ≤ Al ≤ 0,7 Gew.-% ist.
  11. Weichmagnetische Legierung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    0 Gew.-% ≤ V ≤ 0.01 Gew.-%, 2,3 Gew.-% ≤ Cr ≤ 3,0 Gew.-%, 1,25 Gew.-% ≤ Mn ≤ 1,5 Gew.-%, 0,75 Gew.-% ≤ Mo ≤ 1 Gew.- %, 0,6 Gew.-% ≤ Si ≤ 0,9 Gew.-% und 0,1 Gew.-% ≤ Al ≤ 0,2 Gew.-% ist.
  12. Weichmagnetische Legierung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    0,75 Gew.-% ≤ V ≤ 2,75 Gew.-%, 2,3 Gew.-% ≤ Cr ≤ 3,5 Gew.-%, 1,25 Gew.-% ≤ Mn ≤ 1,5 Gew.-%, 0 Gew.-% ≤ Mo ≤ 0,01 Gew.-%, 0,6 Gew.-% ≤ Si ≤ 0,9 Gew.-% und 0,7 Gew.-% ≤ Al ≤ 1,0 Gew.-% ist.
  13. Weichmagnetische Legierung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet dass
    im schlussgeglühten Zustand die Legierung im Zugversuch eine Bruchdehnung AL > 2 % aufweist.
  14. Weichmagnetische Legierung nach Anspruch 13,
    dadurch gekennzeichnet dass
    im schlussgeglühten Zustand die Legierung im Zugversuch eine Bruchdehnung AL > 20% aufweist.
  15. Weichmagnetische Legierung nach einem der vorhergehenden Ansprüche,
    gekennzeichnet durch
    einen spezifischen elektrischen Widerstand ρ > 0,50 µΩm.
  16. Weichmagnetische Legierung nach Anspruch 15,
    gekennzeichnet durch
    einen spezifischen elektrischen Widerstand ρ > 0,55 µΩm.
  17. Weichmagnetische Legierung nach Anspruch 16,
    gekennzeichnet durch
    einen spezifischen elektrischen Widerstand ρ > 0,60 µΩm.
  18. Weichmagnetische Legierung nach Anspruch 17,
    gekennzeichnet durch
    einen spezifischen elektrischen Widerstand p > 0,65 µΩm.
  19. Weichmagnetische Legierung nach einem der vorhergehenden Ansprüche,
    gekennzeichnet durch
    eine Streckgrenze Rp0,2 > 340 MPa.
  20. Weichmagnetische Legierung nach einem der vorhergehenden Ansprüche,
    gekennzeichnet durch
    eine Sättigung mit J(400A/cm) > 1,90 T.
  21. Weichmagnetische Legierung nach Anspruch 20,
    gekennzeichnet durch
    eine Sättigung mit J(400A/cm) > 2,00 T.
  22. Weichmagnetische Legierung nach einem der vorhergehenden Ansprüche,
    gekennzeichnet durch
    eine Koerzitivfeldstärke Hc < 3,5 A/cm.
  23. Weichmagnetische Legierung nach Anspruch 22,
    gekennzeichnet durch
    eine Koerzitivfeldstärke Hc < 2,0 A/cm.
  24. Weichmagnetische Legierung nach einem der vorhergehenden Ansprüche,
    gekennzeichnet durch
    eine Maximalpermeabilität µmax > 1000.
  25. Weichmagnetische Legierung nach Anspruch 24,
    gekennzeichnet durch
    eine Maximalpermeabilität µmax > 2000.
  26. Weichmagnetischer Kern für einen elektromagnetischen Aktor aus einer Legierung nach einem der Ansprüche 1 bis 25.
  27. Weichmagnetischer Kern für ein Magnetventil eines Verbrennungsmotors aus einer Legierung nach einem der Ansprüche 1 bis 25.
  28. Weichmagnetischer Kern für ein Kraftstoffeinspritzventil eines Verbrennungsmotors aus einer Legierung nach einem der Ansprüche 1 bis 25.
  29. Weichmagnetischer Kern für ein Direktkraftstoffeinspritzventil eines Ottomotors aus einer Legierung nach einem der Ansprüche 1 bis 25.
  30. Weichmagnetischer Kern für ein Direktkraftstoffeinspritzventil eines Dieselmotors aus einer Legierung nach einem der Ansprüche 1 bis 25.
  31. Kraftstoffeinspritzventil eines Verbrennungsmotors mit einer Komponente aus einer weichmagnetischen Legierung nach einem der Ansprüche 1 bis 25.
  32. Kraftstoffeinspritzventil nach Anspruch 31,
    dadurch gekennzeichnet, dass
    das Kraftstoffeinspritzventil ein Direktkraftstoffeinspritzventil eines Ottomotors ist.
  33. Kraftstoffeinspritzventil nach Anspruch 31,
    dadurch gekennzeichnet, dass
    das Kraftstoffeinspritzventil ein Direktkraftstoffeinspritzventil eines Dieselmotors ist.
  34. Weichmagnetischer Rotor für einen elektrischen Motor aus einer Legierung nach einem der Ansprüche 1 bis 25.
  35. Weichmagnetischer Stator für einen elektrischen Motor aus einer Legierung nach einem der Ansprüche 1 bis 25.
  36. Weichmagnetischer Rotor für einen elektrischen Motor aus einer Legierung nach einem der Ansprüche 1 bis 25.
  37. Weichmagnetische Komponente für einen elektromagnetische Ventilverstellung an einem Einlassventil oder einem Auslassventil, das in einem Motorraum verwendet wird, aus einer Legierung nach einem der Ansprüche 1 bis 25.
  38. Rückschlussteil für einen elektromagnetischen Aktor aus einer Legierung nach einem der Ansprüche 1 bis 25.
  39. Rückschlussteil für ein Magnetventil aus einer Legierung nach einem der Ansprüche 1 bis 25.
  40. Verfahren zur Herstellung von Halbzeug aus einer Kobalt-Eisen-Legierung, bei dem durch Schmelzen (1) und Warmverformung (4, 10) zunächst Werkstücke aus einer weichmagnetischen Legierung hergestellt werden, die aus 10 Gew.-% ≤ Co ≤ 22 Gew.-%, 0 Gew.-% ≤ V ≤ 4 Gew.-%, 1,5 Gew.-% ≤ Cr ≤ 5 Gew.-%, 1 Gew.-% ≤ Mn ≤ 2 Gew.-%, 0 Gew.-% ≤ Mo ≤ 1 Gew.-%, 0,5 Gew.-% ≤ Si ≤ 1,5 Gew.-%, 0,1 Gew.-% ≤ Al ≤ 1,0 Gew.-%, Rest Eisen und unvermeidbaren Verunreinigungen besteht, wobei eine Schlussglühung (7, 12) durchgeführt wird.
  41. Verfahren nach Anspruch 40,
    dadurch gekennzeichnet, dass
    die Schlussglühung (7, 12) im Temperaturbereich von 700 °C bis 1100 °C durchgeführt wird.
  42. Verfahren nach Anspruch 41,
    dadurch gekennzeichnet, dass
    die Schlussglühung (7, 12) im Temperaturbereich von 750 °C bis 850 °C durchgeführt wird.
  43. Verfahren nach einem der Ansprüche 40 bis 42,
    dadurch gekennzeichnet, dass
    die Schlussglühung so durchgeführt wird, dass nach der Schlussglühung die Legierung Verformungsparameter im Zugversuch von einer Bruchdehnung AL > 2% aufweist.
  44. Verfahren nach Anspruch 43,
    dadurch gekennzeichnet, dass
    die Schlussglühung so durchgeführt wird, dass nach der Schlussglühung die Legierung Verformungsparameter im Zugversuch von einer Bruchdehnung AL > 20% aufweist.
  45. Verfahren nach einem der Ansprüche 40 bis 44,
    dadurch gekennzeichnet, dass
    die Legierung vor der Schlussglühung (7, 12) kaltverformt wird.
  46. Verfahren nach einem der Ansprüche 40 bis 45,
    dadurch gekennzeichnet, dass
    die Legierung unter Inertgas, Wasserstoff oder Vakuum schlussgeglüht wird.
EP07113372A 2006-10-30 2007-07-27 Weichmagnetische Legierung auf Eisen-Kobalt-Basis sowie Verfahren zu deren Herstellung Active EP1918407B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006051715 2006-10-30

Publications (2)

Publication Number Publication Date
EP1918407A1 EP1918407A1 (de) 2008-05-07
EP1918407B1 true EP1918407B1 (de) 2008-12-24

Family

ID=39050410

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07113372A Active EP1918407B1 (de) 2006-10-30 2007-07-27 Weichmagnetische Legierung auf Eisen-Kobalt-Basis sowie Verfahren zu deren Herstellung

Country Status (4)

Country Link
US (1) US7909945B2 (de)
EP (1) EP1918407B1 (de)
AT (1) ATE418625T1 (de)
DE (1) DE502007000329D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3971919B1 (de) * 2017-10-27 2023-12-20 Vacuumschmelze GmbH & Co. KG Verfahren zum herstellen einer hochpermeablen weichmagnetischen legierung

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10134056B8 (de) * 2001-07-13 2014-05-28 Vacuumschmelze Gmbh & Co. Kg Verfahren zur Herstellung von nanokristallinen Magnetkernen sowie Vorrichtung zur Durchführung des Verfahrens
DE102005034486A1 (de) * 2005-07-20 2007-02-01 Vacuumschmelze Gmbh & Co. Kg Verfahren zur Herstellung eines weichmagnetischen Kerns für Generatoren sowie Generator mit einem derartigen Kern
US20070176025A1 (en) * 2006-01-31 2007-08-02 Joachim Gerster Corrosion resistant magnetic component for a fuel injection valve
US8029627B2 (en) * 2006-01-31 2011-10-04 Vacuumschmelze Gmbh & Co. Kg Corrosion resistant magnetic component for a fuel injection valve
US7909945B2 (en) * 2006-10-30 2011-03-22 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and method for its production
US9057115B2 (en) * 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
DE102007035774B9 (de) * 2007-07-27 2013-03-14 Vacuumschmelze Gmbh & Co. Kg Weichmagnetische Legierung auf Eisen-Kobalt-Basis sowie Verfahren zu deren Herstellung
US8012270B2 (en) * 2007-07-27 2011-09-06 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it
EP2083428A1 (de) * 2008-01-22 2009-07-29 Imphy Alloys Fe-Co-Legierung für hochdynamische elektromagnetische Stellglieder
DE102008053310A1 (de) * 2008-10-27 2010-04-29 Vacuumschmelze Gmbh & Co. Kg Werkstück aus weichmagnetischem Werkstoff mit verschleißfester Beschichtung und Verfahren zur Herstellung des Werkstücks
US20160329139A1 (en) 2015-05-04 2016-11-10 Carpenter Technology Corporation Ultra-low cobalt iron-cobalt magnetic alloys
DE102019110872A1 (de) * 2019-04-26 2020-11-12 Vacuumschmelze Gmbh & Co. Kg Blechpaket und Verfahren zum Herstellen einer hochpermeablen weichmagnetischen Legierung
US20230349028A1 (en) * 2020-03-10 2023-11-02 Proterial, Ltd. METHOD FOR MANUFACTURING Fe-Co-BASED ALLOY BAR, AND Fe-Co-BASED ALLOY BAR

Family Cites Families (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE694374C (de) 1939-02-04 1940-07-31 Brown Boveri & Cie Akt Ges Verfahren zum fortlaufenden Betrieb eines mit einer Glueh- und Waermeaustauschzone versehenen Einkanaldrehherdofens
US2225730A (en) 1939-08-15 1940-12-24 Percy A E Armstrong Corrosion resistant steel article comprising silicon and columbium
US2926008A (en) 1956-04-12 1960-02-23 Foundry Equipment Company Vertical oven
GB833446A (en) 1956-05-23 1960-04-27 Kanthal Ab Improved iron, chromium, aluminium alloys
US2960744A (en) 1957-10-08 1960-11-22 Gen Electric Equilibrium atmosphere tunnel kilns for ferrite manufacture
US3255512A (en) 1962-08-17 1966-06-14 Trident Engineering Associates Molding a ferromagnetic casing upon an electrical component
US3502462A (en) 1965-11-29 1970-03-24 United States Steel Corp Nickel,cobalt,chromium steel
US3337373A (en) 1966-08-19 1967-08-22 Westinghouse Electric Corp Doubly oriented cube-on-face magnetic sheet containing chromium
US3401035A (en) 1967-12-07 1968-09-10 Crucible Steel Co America Free-machining stainless steels
US3634072A (en) 1970-05-21 1972-01-11 Carpenter Technology Corp Magnetic alloy
DE2045015A1 (de) 1970-09-11 1972-03-16 Siemens Ag Energieversorgungsanlage, insbes. für Flugzeuge, mit einem durch eine Kraftmaschine mit veränderlicher Drehzahl angetriebnen Asynchrongenerator
US3624568A (en) 1970-10-26 1971-11-30 Bell Telephone Labor Inc Magnetically actuated switching devices
US3977919A (en) 1973-09-28 1976-08-31 Westinghouse Electric Corporation Method of producing doubly oriented cobalt iron alloys
US4059462A (en) * 1974-12-26 1977-11-22 The Foundation: The Research Institute Of Electric And Magnetic Alloys Niobium-iron rectangular hysteresis magnetic alloy
JPS5180998A (de) 1975-01-14 1976-07-15 Fuji Photo Film Co Ltd
JPS5192097A (de) 1975-02-10 1976-08-12
US4076525A (en) 1976-07-29 1978-02-28 General Dynamics Corporation High strength fracture resistant weldable steels
US4120704A (en) 1977-04-21 1978-10-17 The Arnold Engineering Company Magnetic alloy and processing therefor
JPS546808A (en) 1977-06-20 1979-01-19 Toshiba Corp Magnetic alloy of iron-chromium-cobalt base
US4160066A (en) 1977-10-11 1979-07-03 Teledyne Industries, Inc. Age-hardenable weld deposit
DE2816173C2 (de) 1978-04-14 1982-07-29 Vacuumschmelze Gmbh, 6450 Hanau Verfahren zum Herstellen von Bandkernen
US4201837A (en) 1978-11-16 1980-05-06 General Electric Company Bonded amorphous metal electromagnetic components
DE2924280A1 (de) 1979-06-15 1981-01-08 Vacuumschmelze Gmbh Amorphe weichmagnetische legierung
JPS57164935A (en) 1981-04-04 1982-10-09 Nippon Steel Corp Unidirectionally inclined heating method for metallic strip or metallic plate
JPS599157A (ja) 1982-07-08 1984-01-18 Sony Corp 非晶質磁性合金の熱処理方法
SU1062298A1 (ru) 1982-07-28 1983-12-23 Центральный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Черной Металлургии Им.И.П.Бардина Магнитом гкий сплав
JPS5958813A (ja) 1982-09-29 1984-04-04 Toshiba Corp 非晶質金属コアの製造方法
US4601765A (en) 1983-05-05 1986-07-22 General Electric Company Powdered iron core magnetic devices
DE3427716C1 (de) 1984-07-27 1985-11-14 Daimler-Benz Ag, 7000 Stuttgart Drehherdofen in Ringbauart zur Waermebehandlung von Werkstuecken
JP2615543B2 (ja) * 1985-05-04 1997-05-28 大同特殊鋼株式会社 軟質磁性材料
EP0216457A1 (de) 1985-09-18 1987-04-01 Kawasaki Steel Corporation Verfahren zur Herstellung von Permanentmagneten der Zweiphasen-Trennungsserie des Fe-Cr-Co-Typs
JPS6293342A (ja) * 1985-10-17 1987-04-28 Daido Steel Co Ltd 軟質磁性材料
CH668331A5 (en) 1985-11-11 1988-12-15 Studer Willi Ag Magnetic head core mfr. from stack of laminations - involves linear machining of patterns from adhesively bonded and rolled sandwich of permeable and non-permeable layers
DE3542257A1 (de) 1985-11-29 1987-06-04 Standard Elektrik Lorenz Ag Vorrichtung zum tempern in einem magnetfeld
US4706525A (en) * 1986-01-07 1987-11-17 Cornell Research Foundation, Inc. Vehicle door unlocking device
US4881989A (en) 1986-12-15 1989-11-21 Hitachi Metals, Ltd. Fe-base soft magnetic alloy and method of producing same
KR910002375B1 (ko) 1987-07-14 1991-04-20 히다찌 긴조꾸 가부시끼가이샤 자성코어 및 그 제조방법
DE3876529T2 (de) 1987-07-31 1993-06-24 Tdk Corp Magnetisches weicheisenpulver zur formung magnetischer abschirmung, verbindung und verfahren zur herstellung.
KR910009974B1 (ko) 1988-01-14 1991-12-07 알프스 덴기 가부시기가이샤 고포화 자속밀도 합금
JP2698369B2 (ja) 1988-03-23 1998-01-19 日立金属株式会社 低周波トランス用合金並びにこれを用いた低周波トランス
JP2710949B2 (ja) 1988-03-30 1998-02-10 日立金属株式会社 超微結晶軟磁性合金の製造方法
JPH0215143A (ja) 1988-06-30 1990-01-18 Aichi Steel Works Ltd 冷間鍛造用軟磁性ステンレス鋼
DE3824075A1 (de) 1988-07-15 1990-01-18 Vacuumschmelze Gmbh Verbundkoerper zur erzeugung von spannungsimpulsen
US4994122A (en) 1989-07-13 1991-02-19 Carpenter Technology Corporation Corrosion resistant, magnetic alloy article
US5091024A (en) 1989-07-13 1992-02-25 Carpenter Technology Corporation Corrosion resistant, magnetic alloy article
US5151137A (en) 1989-11-17 1992-09-29 Hitachi Metals Ltd. Soft magnetic alloy with ultrafine crystal grains and method of producing same
JPH03223444A (ja) 1990-01-26 1991-10-02 Alps Electric Co Ltd 高飽和磁束密度合金
US5268044A (en) 1990-02-06 1993-12-07 Carpenter Technology Corporation High strength, high fracture toughness alloy
JPH0559498A (ja) 1990-12-28 1993-03-09 Toyota Motor Corp フエライト系耐熱鋳鋼およびその製造方法
JP2975142B2 (ja) 1991-03-29 1999-11-10 株式会社日立製作所 アモルファス鉄心製造方法及びその装置
US5622768A (en) * 1992-01-13 1997-04-22 Kabushiki Kaishi Toshiba Magnetic core
JPH0633199A (ja) 1992-07-16 1994-02-08 Hitachi Metal Precision Ltd プリンタヘッド用ヨークコア
US5534081A (en) 1993-05-11 1996-07-09 Honda Giken Kogyo Kabushiki Kaisha Fuel injector component
JP3688732B2 (ja) 1993-06-29 2005-08-31 株式会社東芝 平面型磁気素子および非晶質磁性薄膜
JP3233313B2 (ja) 1993-07-21 2001-11-26 日立金属株式会社 パルス減衰特性に優れたナノ結晶合金の製造方法
DE69408916T2 (de) 1993-07-30 1998-11-12 Hitachi Metals Ltd Magnetkern für Impulsübertrager und Impulsübertrager
AUPM644394A0 (en) 1994-06-24 1994-07-21 Electro Research International Pty Ltd Bulk metallic glass motor and transformer parts and method of manufacture
US5611871A (en) 1994-07-20 1997-03-18 Hitachi Metals, Ltd. Method of producing nanocrystalline alloy having high permeability
US5594397A (en) 1994-09-02 1997-01-14 Tdk Corporation Electronic filtering part using a material with microwave absorbing properties
US5817191A (en) 1994-11-29 1998-10-06 Vacuumschmelze Gmbh Iron-based soft magnetic alloy containing cobalt for use as a solenoid core
DE4442420A1 (de) * 1994-11-29 1996-05-30 Vacuumschmelze Gmbh Weichmagnetische Legierung auf Eisenbasis mit Kobalt für magnetische Schalt- oder Erregerkreise
DE4444482A1 (de) 1994-12-14 1996-06-27 Bosch Gmbh Robert Weichmagnetischer Werkstoff
DE19514612A1 (de) * 1995-04-25 1996-10-31 Fritz Dr Kueke Verfahren zur Herstellung einer wässrigen Chlordioxid-Lösung
CA2175401C (en) 1995-05-02 1999-08-31 Toshiro Tomida Magnetic steel sheet having excellent magnetic characteristics and blanking performance
US5501747A (en) 1995-05-12 1996-03-26 Crs Holdings, Inc. High strength iron-cobalt-vanadium alloy article
DE29514508U1 (de) 1995-09-09 1995-11-02 Vacuumschmelze Gmbh Blechpaket für Magnetkerne zum Einsatz in induktiven Bauelementen mit einer Längsöffnung
DE19635257C1 (de) 1996-08-30 1998-03-12 Franz Hillingrathner Rundtaktofen zum Behandeln von Werkstücken
CN1134949C (zh) 1996-09-17 2004-01-14 真空融化股份有限公司 回波补偿u型接口脉冲变压器和环行带状磁芯的制造方法
FR2755292B1 (fr) 1996-10-25 1998-11-20 Mecagis Procede de fabrication d'un noyau magnetique en materiau magnetique doux nanocristallin
FR2756966B1 (fr) 1996-12-11 1998-12-31 Mecagis Procede de fabrication d'un composant magnetique en alliage magnetique doux a base de fer ayant une structure nanocristalline
DE19653428C1 (de) 1996-12-20 1998-03-26 Vacuumschmelze Gmbh Verfahren zum Herstellen von Bandkernbändern sowie induktives Bauelement mit Bandkern
US5976274A (en) 1997-01-23 1999-11-02 Akihisa Inoue Soft magnetic amorphous alloy and high hardness amorphous alloy and high hardness tool using the same
US5769974A (en) 1997-02-03 1998-06-23 Crs Holdings, Inc. Process for improving magnetic performance in a free-machining ferritic stainless steel
US5741374A (en) 1997-05-14 1998-04-21 Crs Holdings, Inc. High strength, ductile, Co-Fe-C soft magnetic alloy
US5914088A (en) 1997-08-21 1999-06-22 Vijai Electricals Limited Apparatus for continuously annealing amorphous alloy cores with closed magnetic path
DE19741364C2 (de) 1997-09-19 2000-05-25 Vacuumschmelze Gmbh Verfahren und Vorrichtung zur Herstellung von aus Blechlamellen bestehenden Paketen für Magnetkerne
JPH11102827A (ja) 1997-09-26 1999-04-13 Hitachi Metals Ltd 可飽和リアクトル用コア、およびこれを用いた磁気増幅器方式多出力スイッチングレギュレータ、並びにこれを用いたコンピュータ
IL128067A (en) 1998-02-05 2001-10-31 Imphy Ugine Precision Iron-cobalt alloy
DE19818198A1 (de) 1998-04-23 1999-10-28 Bosch Gmbh Robert Verfahren zum Herstellen eines Läufers oder Ständers einer elektrischen Maschine aus Blechzuschnitten
JP4755340B2 (ja) 1998-09-17 2011-08-24 ヴァキュームシュメルツェ ゲーエムベーハー ウント コンパニー カーゲー 直流電流公差を有する変流器
US6462456B1 (en) 1998-11-06 2002-10-08 Honeywell International Inc. Bulk amorphous metal magnetic components for electric motors
US6507262B1 (en) 1998-11-13 2003-01-14 Vacuumschmelze Gmbh Magnetic core that is suitable for use in a current transformer, method for the production of a magnetic core and current transformer with a magnetic core
JP2000182845A (ja) 1998-12-21 2000-06-30 Hitachi Ferrite Electronics Ltd 複合磁心
JP2000277357A (ja) 1999-03-23 2000-10-06 Hitachi Metals Ltd 可飽和磁心ならびにそれを用いた電源装置
US6181509B1 (en) 1999-04-23 2001-01-30 International Business Machines Corporation Low sulfur outgassing free machining stainless steel disk drive components
DE19928764B4 (de) 1999-06-23 2005-03-17 Vacuumschmelze Gmbh Eisen-Kobalt-Legierung mit geringer Koerzitivfeldstärke und Verfahren zur Herstellung von Halbzeug aus einer Eisen-Kobalt-Legierung
JP2001068324A (ja) 1999-08-30 2001-03-16 Hitachi Ferrite Electronics Ltd 粉末成形磁芯
JP3617426B2 (ja) 1999-09-16 2005-02-02 株式会社村田製作所 インダクタ及びその製造方法
FR2808806B1 (fr) * 2000-05-12 2002-08-30 Imphy Ugine Precision Alliage fer-cobalt, notamment pour noyau mobile d'actionneur electromagnetique, et son procede de fabrication
DE10024824A1 (de) 2000-05-19 2001-11-29 Vacuumschmelze Gmbh Induktives Bauelement und Verfahren zu seiner Herstellung
DE10031923A1 (de) 2000-06-30 2002-01-17 Bosch Gmbh Robert Weichmagnetischer Werkstoff mit heterogenem Gefügebau und Verfahren zu dessen Herstellung
DE10045705A1 (de) 2000-09-15 2002-04-04 Vacuumschmelze Gmbh & Co Kg Magnetkern für einen Transduktorregler und Verwendung von Transduktorreglern sowie Verfahren zur Herstellung von Magnetkernen für Transduktorregler
EP1330830A2 (de) 2000-10-10 2003-07-30 Crs Holdings, Inc. Weichmagnetische legierungen aus co-mn-fe
US6737784B2 (en) 2000-10-16 2004-05-18 Scott M. Lindquist Laminated amorphous metal component for an electric machine
US6685882B2 (en) 2001-01-11 2004-02-03 Chrysalis Technologies Incorporated Iron-cobalt-vanadium alloy
JP3593986B2 (ja) 2001-02-19 2004-11-24 株式会社村田製作所 コイル部品及びその製造方法
JP4284004B2 (ja) 2001-03-21 2009-06-24 株式会社神戸製鋼所 高強度圧粉磁心用粉末、高強度圧粉磁心の製造方法
JP2002294408A (ja) 2001-03-30 2002-10-09 Nippon Steel Corp 鉄系制振合金およびその製造方法
DE10119982A1 (de) 2001-04-24 2002-10-31 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
DE10128004A1 (de) 2001-06-08 2002-12-19 Vacuumschmelze Gmbh Induktives Bauelement und Verfahren zu seiner Herstellung
US6616125B2 (en) 2001-06-14 2003-09-09 Crs Holdings, Inc. Corrosion resistant magnetic alloy an article made therefrom and a method of using same
DE10134056B8 (de) 2001-07-13 2014-05-28 Vacuumschmelze Gmbh & Co. Kg Verfahren zur Herstellung von nanokristallinen Magnetkernen sowie Vorrichtung zur Durchführung des Verfahrens
JP3748055B2 (ja) 2001-08-07 2006-02-22 信越化学工業株式会社 ボイスコイルモータ磁気回路ヨーク用鉄合金板材およびボイスコイルモータ磁気回路用ヨーク
DE10211511B4 (de) 2002-03-12 2004-07-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Fügen von planaren übereinander angeordneten Laminaten zu Laminatpaketen oder Laminatbauteilen durch Laserstrahlschweißen
DE10216098A1 (de) 2002-04-12 2003-10-23 Bosch Gmbh Robert Rotor für eine elektrische Maschine
DE10320350B3 (de) 2003-05-07 2004-09-30 Vacuumschmelze Gmbh & Co. Kg Hochfeste weichmagnetische Eisen-Kobalt-Vanadium-Legierung
EP1503486B1 (de) 2003-07-29 2009-09-09 Fanuc Ltd Motor und Motor-Fertigungseinrichtung
JP2006193779A (ja) 2005-01-13 2006-07-27 Hitachi Metals Ltd 軟磁性材料
JP2006322057A (ja) 2005-05-20 2006-11-30 Daido Steel Co Ltd 軟質磁性材料
DE102005034486A1 (de) 2005-07-20 2007-02-01 Vacuumschmelze Gmbh & Co. Kg Verfahren zur Herstellung eines weichmagnetischen Kerns für Generatoren sowie Generator mit einem derartigen Kern
JP4764134B2 (ja) 2005-10-21 2011-08-31 日本グラスファイバー工業株式会社 導電性不織布
US20070176025A1 (en) 2006-01-31 2007-08-02 Joachim Gerster Corrosion resistant magnetic component for a fuel injection valve
US8029627B2 (en) 2006-01-31 2011-10-04 Vacuumschmelze Gmbh & Co. Kg Corrosion resistant magnetic component for a fuel injection valve
US7909945B2 (en) 2006-10-30 2011-03-22 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and method for its production
US9057115B2 (en) 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
US8012270B2 (en) 2007-07-27 2011-09-06 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3971919B1 (de) * 2017-10-27 2023-12-20 Vacuumschmelze GmbH & Co. KG Verfahren zum herstellen einer hochpermeablen weichmagnetischen legierung

Also Published As

Publication number Publication date
EP1918407A1 (de) 2008-05-07
US20090145522A9 (en) 2009-06-11
DE502007000329D1 (de) 2009-02-05
ATE418625T1 (de) 2009-01-15
US20080099106A1 (en) 2008-05-01
US7909945B2 (en) 2011-03-22

Similar Documents

Publication Publication Date Title
EP1918407B1 (de) Weichmagnetische Legierung auf Eisen-Kobalt-Basis sowie Verfahren zu deren Herstellung
US8012270B2 (en) Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it
EP2612942B1 (de) Nicht kornorientiertes Elektroband oder -blech, daraus hergestelltes Bauteil und Verfahren zur Erzeugung eines nicht kornorientierten Elektrobands oder -blechs
DE102011053722B3 (de) Verfahren zum Herstellen eines höherfesten Elektrobandes, Elektroband und dessen Verwendung
DE102007035774B9 (de) Weichmagnetische Legierung auf Eisen-Kobalt-Basis sowie Verfahren zu deren Herstellung
EP3712283B1 (de) Verfahren zum herstellen eines bands aus einer kobalt-eisen-legierung
EP3730286A1 (de) Blechpaket und verfahren zum herstellen einer hochpermeablen weichmagnetischen legierung
EP2756106A1 (de) Nichtkornorientiertes höherfester elektroband mit hoher polarisation und verfahren zu seiner herstellung
EP2840157B1 (de) Nicht kornorientiertes Elektroband oder -blech und Verfahren zur Erzeugung eines nicht kornorientierten Elektrobands oder -blechs
DE102008053310A1 (de) Werkstück aus weichmagnetischem Werkstoff mit verschleißfester Beschichtung und Verfahren zur Herstellung des Werkstücks
US20090039994A1 (en) Soft magnetic iron-cobalt-based alloy and process for manufacturing it
DE102018127918A1 (de) Verfahren zum Herstellen eines Teils aus einer weichmagnetischen Legierung
DE10320350B3 (de) Hochfeste weichmagnetische Eisen-Kobalt-Vanadium-Legierung
EP3541969B1 (de) Verfahren zum herstellen eines bandes aus einer co-fe-legierung, band aus einer co-fe-legierung und blechpaket
DE19928764B4 (de) Eisen-Kobalt-Legierung mit geringer Koerzitivfeldstärke und Verfahren zur Herstellung von Halbzeug aus einer Eisen-Kobalt-Legierung
DE4336882C2 (de) Verfahren zur Vermeidung von Mo-Ausscheidungen in magnetischen Ni-Fe-Legierungen
DE102007035773B9 (de) Weichmagnetische Legierung auf Eisen-Kobalt-Chrom-Basis sowie Verfahren zu deren Herstellung
EP1217087A1 (de) Eisen-Kobalt-Legierung mit geringer Koerzitivfeldstärke und Verfahren zur Herstellung von Halbzeug aus einer Eisen-Kobalt-Legierung
DE102019133493A1 (de) Elektroband oder -blech, Verfahren zur Erzeugung hierzu und daraus hergestelltes Bauteil
EP4027357A1 (de) Fecov-legierung und verfahren zum herstellen eines bands aus einer fecov-legierung
EP0557689A2 (de) Verfahren zur Herstellung eines magnetischen Impulsgebers
DE102019105215A1 (de) Legierung und Verfahren zur Herstellung eines Magnetkerns
DE102009043462A1 (de) Magnetischer Streifen, Sensor aufweisend einen magnetischen Streifen und Verfahren zur Herstellung eines magnetischen Streifens
DE3103000A1 (de) &#34;magnetisches element fuer magnetisch betaetigte geraete und verfahren zu seiner herstellung&#34;

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20080410

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

AKX Designation fees paid

Designated state(s): AT DE FR GB

REF Corresponds to:

Ref document number: 502007000329

Country of ref document: DE

Date of ref document: 20090205

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090925

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007000329

Country of ref document: DE

Representative=s name: SCHWEIGER, MARTIN, DIPL.-ING. UNIV., DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230725

Year of fee payment: 17

Ref country code: AT

Payment date: 20230718

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 17

Ref country code: DE

Payment date: 20230726

Year of fee payment: 17