EP2083428A1 - Fe-Co alloy for highly dynamic electromagnetic actuator - Google Patents

Fe-Co alloy for highly dynamic electromagnetic actuator Download PDF

Info

Publication number
EP2083428A1
EP2083428A1 EP08290057A EP08290057A EP2083428A1 EP 2083428 A1 EP2083428 A1 EP 2083428A1 EP 08290057 A EP08290057 A EP 08290057A EP 08290057 A EP08290057 A EP 08290057A EP 2083428 A1 EP2083428 A1 EP 2083428A1
Authority
EP
European Patent Office
Prior art keywords
alloy
yes
silicon
alloy according
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08290057A
Other languages
German (de)
French (fr)
Inventor
Thierry Waeckerle
Hervé FRAISSE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aperam Alloys Imphy SAS
Original Assignee
Imphy Alloys SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39427553&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2083428(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Imphy Alloys SA filed Critical Imphy Alloys SA
Priority to EP08290057A priority Critical patent/EP2083428A1/en
Priority to JP2010543537A priority patent/JP5555181B2/en
Priority to US12/863,696 priority patent/US8951364B2/en
Priority to ES09720281T priority patent/ES2372367T3/en
Priority to MX2010007524A priority patent/MX2010007524A/en
Priority to PL09720281T priority patent/PL2313895T3/en
Priority to AT09720281T priority patent/ATE527669T1/en
Priority to CN201510724997.XA priority patent/CN105525216A/en
Priority to KR1020107017332A priority patent/KR20100115752A/en
Priority to EP09720281A priority patent/EP2313895B1/en
Priority to SI200930112T priority patent/SI2313895T1/en
Priority to CN2009801028092A priority patent/CN101925969A/en
Priority to PCT/FR2009/000039 priority patent/WO2009112672A1/en
Priority to BRPI0906592-0A priority patent/BRPI0906592B1/en
Priority to TW098101500A priority patent/TWI401322B/en
Publication of EP2083428A1 publication Critical patent/EP2083428A1/en
Priority to ZA2010/04418A priority patent/ZA201004418B/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14716Fe-Ni based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust

Definitions

  • the present invention relates to a Fe-Co alloy more particularly intended for the manufacture of electromagnetic actuator with high dynamics, without being limited thereto.
  • An electromagnetic actuator is an electromagnetic device that converts electrical energy into mechanical energy with an electromagnetic conversion mode. Some of these actuators are called linear because they convert the received electrical energy into a rectilinear movement of a moving part. Such actuators are found in solenoid valves and electro-injectors.
  • a preferred application of such electro-injectors is the direct injection of fuel into combustion engines, especially diesel engines.
  • Another preferred application relates to a particular type of solenoid valve used for the electromagnetic control of valves of internal combustion engines (gasoline or diesel).
  • the electrical energy is supplied in a winding by a series of current pulses, creating a magnetic field that magnetizes a non-closed magnetic yoke, thus having a gap.
  • the geometric characteristics of the cylinder head make it possible to direct most of the magnetic field lines axially vis-à-vis the gap zone.
  • the air gap is subjected to a magnetic potential difference.
  • the actuator also comprises a core made mobile by the action of the electric current in the coil. Indeed, the magnetic potential difference introduced into the coil between the movable core resting on one of the poles of the cylinder head and the opposite pole of the cylinder head creates an electromagnetic force on the magnetized core, via a magnetic field gradient.
  • the magnetized core is thus set in motion.
  • the rest position can also be located in the middle of the air gap, thanks to two symmetrical springs, promoting by their stiffness the dynamics of the moving part, in particular for electromagnetically controlled valves.
  • the setting in motion of the mobile core occurs with a phase shift with respect to the moment of generation of the electrical pulses.
  • the metal For an optimal operation of the actuator, it is shown that it is necessary for the metal to have an electrical resistivity at 20 ° C ⁇ el high, and in particular greater than 50 ⁇ .cm and a coercive field Hc low, it is to say less than 32 Oe and preferably less than 8 Oe.
  • the core has a saturation magnetization Js high, ie greater than 1.75 T and preferably greater than 1.9 T, so as to allow a maximum force at the end of this high pulse as possible. It is indeed this force which guarantees the maintenance of the open or closed position of the actuator, which is particularly important when it is necessary to totally interrupt the flow of a fluid at high pressure or to compensate the return force of one or more springs.
  • Such saturation magnetization level thus provides a compact actuator having a high strength and power density.
  • These magnetic cores have various shapes that can be made from wires, bars, plates or rolled sheets. They must therefore have good heat-formability, and preferably good cold-forming ability when necessary.
  • these cores can be subjected to a slightly oxidizing working environment and must therefore have a good resistance to corrosion to resist this type of premature wear.
  • tensile strength Rm greater than 500 MPa and preferably, an elastic limit R 0,2 of greater than 250 MPa in the hot-rolled state at a thickness of at least 2 mm.
  • Ferrocell (Fe-Co) alloys such as those described in US Pat. EP 715,320 .
  • the materials described have 6 to 30% cobalt, 3 to 8% of one or more elements selected from chromium, molybdenum, vanadium and / or tungsten, the balance being iron. These alloys, however, have insufficient dynamics.
  • the present invention aims to provide a material suitable for the manufacture, economically, of cores for compact electromagnetic actuators with high dynamics and high saturation. This material must also allow implementation hot, and preferably, cold, improved.
  • the alloy according to the invention can be formed into a bar, wire, plate or rolled sheet.
  • electromagnetic actuator movable core manufactured from a bar or a wire or a plate or a rolled sheet.
  • Such an electromagnetic actuator comprising a movable core of Fe-Co alloy according to the invention can in particular be used in an injector for an electronically controlled combustion engine or even as an internal combustion engine valve actuator. electronic control.
  • the alloy according to the invention is an iron-cobalt alloy with a low cobalt content having moderate levels of addition elements.
  • the cobalt content is between 6 and 30% by weight in order to obtain a good saturation magnetization while maintaining a high resistivity. It is preferably less than 22% by weight to reduce the amount of expensive additive elements while maintaining good saturation.
  • the nickel content which may partially substitute cobalt, is, however, maintained at less than 4% because its presence considerably increases the coercive field of the alloy.
  • the silicon content of the alloy according to the invention is greater than or equal to 0.2% by weight. Such a minimum content makes it possible to obtain a good mechanical resistance Rm. Moreover, this element makes it possible to very effectively increase the coercive field of the alloy by lowering it significantly. However, the joint addition of aluminum and 6% silicon is limited to preserve the alloy good heat-transformability. It is furthermore preferred to limit this cumulative content to less than 4% by weight in order to keep the alloy good cold processability.
  • the aluminum content of the alloy according to the invention is less than or equal to 4% by weight.
  • This element has a role similar to that of silicon by favoring the obtaining of a weak coercive field. We limit its addition to 4% because otherwise Js would become too weak. However, it does not improve the mechanical properties of the alloy.
  • the chromium content of the alloy according to the invention is between 0.5 and 8% by weight. This essential element of the alloy makes it possible to extend the silicon addition range with respect to hot and cold transformation, while maintaining the good resistivity and saturation properties. However, it is limited because it increases the coercive force of the alloy.
  • the manganese content of the alloy according to the invention is less than or equal to 4% by weight and preferably less than or equal to 1% by weight.
  • This element may be added at least 0.1% by weight to improve the heat-transformability of the alloy. Its content is limited because it is a gamma element and the onset of the phase strongly degrades the magnetic performances.
  • the titanium content of the alloy according to the invention is less than or equal to 1% by weight and preferably less than 0.1%, because this element easily forms nitrides, either during production or during annealing. under air or under ammonia, nitrides which strongly degrade the magnetic properties and are therefore harmful.
  • the molybdenum content of the alloy according to the invention is less than or equal to 3% by weight.
  • This element can be added to improve the electrical resistivity of the alloy, in complement or partial substitution of chromium.
  • the carbon content of the alloy according to the invention is less than or equal to 1% by weight, and preferably less than or equal to 0.1% by weight.
  • the presence of carbon deteriorates the magnetic properties of the alloy and so the content is reduced to avoid such degradation.
  • the cumulative vanadium and tungsten content of the alloy according to the invention is less than or equal to 3% by weight. These elements can be added to improve the electrical resistivity of the alloy, in complement or partial substitution of chromium.
  • the cumulative content of niobium and tantalum of the alloy according to the invention is less than or equal to 1% by weight. These elements can be added to improve the ductility of the alloy and thus limit its fragility.
  • the cumulative content of oxygen, nitrogen, sulfur, phosphorus and boron is limited to 0.1% by weight, since these elements are oxidants and tend to form precipitates which are very unfavorable to the magnetic properties and to the mechanical ductility of the material.
  • Such a limitation supposes, in particular, that the alloy according to the invention is manufactured from raw materials of good purity.
  • the alloy according to the invention must also respect a number of relationships between some of these elements.
  • the following four equations must be respected: Co + Yes - Cr ⁇ 27 Yes + al + Cr + V + MB + Ti > 3 , 5 1 , 23 ⁇ al + MB + 0 , 84 ⁇ Yes + Cr + V ⁇ 1 , 3 14 , 5 ⁇ al + Cr + 12 ⁇ V + MB + 25 ⁇ Yes ⁇ 50
  • the equation (1) makes it possible, by equilibrating the silicon and the chromium, to guarantee a good aptitude for hot transformation and thus the absence of cracks or cracks during forging and rolling.
  • the relation (2) in combination with the relation (4), makes it possible to guarantee an electrical resistivity ⁇ el high, and in particular greater than 50 ⁇ .cm.
  • Relation (3) represents a saturation criterion which makes it possible to ensure that the alloy according to the invention will have saturation magnetization Js of less than 2.2T in a manner consistent with the additions of non-magnetic elements necessary for the need of high dynamics. magnetization.
  • the manufacture of the alloy according to the invention can be done conventionally for this type of alloy.
  • the various elements constituting the alloy can be melted by induction under vacuum, then cast into ingots, billets or slabs. These are then hot forged at temperatures ranging from 1000 to 1200 ° C, and then hot-rolled after reheating to a temperature greater than or equal to 1150 ° C, the end-of-rolling temperature being between 800 and 1050 ° C. .
  • the plates, bars or hot-rolled strips thus produced can be used as is or cold-rolled after pickling by dipping in one or more acid trays and annealing.
  • Such elements may for example be aluminum, silicon or chromium.
  • the raw materials necessary for producing the alloy were melted by vacuum induction and vacuum cast in a 50 kg ingot.
  • the ingots are then hot forged at 1000 to 1200 ° C and hot rolled from heating at 1150 ° C to a thickness of 4 to 5 mm for a hot rolling end temperature of at least 800 ° C.
  • the strips are either characterized in the hot-rolled state by machining tensile test specimens, washers for magnetic characterization, elongated samples for electrical resistivity measurement, or characterized after cold rolling to completion. at the thickness of 0.6mm for the same type of sampling and characterization.
  • the breaking strength Rm is measured on the tensile test piece after annealing the hot rolled at 900 ° C for 4 hours under H2.
  • the corrosion resistance Tcor is evaluated on a hot rolled rough surface, ground to have a clean surface with a very low roughness and then left at 20 ° C in a salt spray atmosphere.
  • the test for suitability for hot or cold processing was carried out by simple observation of non-weakened banks during the rolling operations (hot, cold) of the test ingots.
  • compositions of the test castings are shown in Table 1 below, it being understood that the cumulative contents of all the oxygen, nitrogen, sulfur, phosphorus and boron tests are less than 0.1% by weight and that the rest compositions consists of iron.
  • Table 1 ⁇ / u> ⁇ /b>
  • a preferred application of the alloys according to the invention is the manufacture of cores for electromagnetic actuators, whether linear or rotary.
  • Such compact, dynamic and robust actuators can advantageously be used in injectors of direct injection combustion engines, in particular for diesel engines, and in moving parts of actuators controlling the movement of the valves of internal combustion engines.

Abstract

Iron-cobalt alloy comprises (e.g.): cobalt (>= 6 wt.%) and nickel (= 30 wt.%); silicon (>= 0.2); chromium (0.5-8 wt.%); nickel (= 4 wt.%); manganese (= 4 wt.%); aluminum (= 4 w.%); titanium (= 1 wt.%); carbon (= 1 wt.%); molybdenum (= 3 wt.%); vanadium and tungsten (= 3 wt.%); niobium and tantalum (= 1 wt.%); silicon and aluminum (= 6 wt.%); cobalt and silicon to chromium (less than 27 wt.%); aluminum and molybdenum, and silicon, chromium and vanadium (>= 1.3 wt.%); aluminum and chromium, vanadium and molybdenum, and silicon (>= 50 wt.%); and iron and inevitable impurities (balance). Iron-cobalt alloy comprises: cobalt (>= 6 wt.%) and nickel (= 30 wt.%); silicon (>= 0.2); chromium (0.5-8 wt.%); nickel (= 4 wt.%); manganese (= 4 wt.%); aluminum (= 4 w.%); titanium (= 1 wt.%); carbon (= 1 wt.%); molybdenum (= 3 wt.%); vanadium and tungsten (= 3 wt.%); niobium and tantalum (= 1 wt.%); silicon and aluminum (= 6 wt.%); oxygen, nitrogen, sulfur, phosphorus and boron (= 0.1); cobalt and silicon to chromium (less than 27 wt.%); silicon, aluminum chromium, vanadium, molybdenum and titanium (>= 3.5 wt.%); 1.23 wt.% of aluminum and molybdenum, and 0.84 wt.% of silicon, chromium and vanadium (>= 1.3 wt.%); 14.5 wt.% of aluminum and chromium, 21 wt.% of vanadium and molybdenum, and 25 wt.% of silicon (>= 50 wt.%); and iron and inevitable impurities (balance).

Description

La présente invention concerne un alliage Fe-Co plus particulièrement destiné à la fabrication d'actionneur électromagnétique à grande dynamique, sans pour autant y être limitée.The present invention relates to a Fe-Co alloy more particularly intended for the manufacture of electromagnetic actuator with high dynamics, without being limited thereto.

Un actionneur électromagnétique est un dispositif électromagnétique convertissant une énergie électrique en une énergie mécanique avec un mode de conversion électromagnétique. Certains de ces actionneurs sont dits linéaires car ils convertissent l'énergie électrique reçue en un déplacement rectiligne d'une pièce mobile. De tels actionneurs se rencontrent dans des électrovannes et dans des électro-injecteurs.An electromagnetic actuator is an electromagnetic device that converts electrical energy into mechanical energy with an electromagnetic conversion mode. Some of these actuators are called linear because they convert the received electrical energy into a rectilinear movement of a moving part. Such actuators are found in solenoid valves and electro-injectors.

Une application privilégiée de tels électro-injecteurs est l'injection directe de carburant dans les moteurs à explosion, notamment les moteurs Diesel. Une autre application privilégiée concerne un type d'électrovanne particulier utilisé pour la commande électromagnétique des soupapes de moteurs à combustion interne (essence ou Diesel).A preferred application of such electro-injectors is the direct injection of fuel into combustion engines, especially diesel engines. Another preferred application relates to a particular type of solenoid valve used for the electromagnetic control of valves of internal combustion engines (gasoline or diesel).

Dans ces actionneurs, l'énergie électrique est apportée dans un bobinage par une série d'impulsions de courant, créant un champ magnétique qui aimante une culasse magnétique non fermée, comportant donc un entrefer. Les caractéristiques géométriques de la culasse permettent de diriger la majeure partie des lignes de champ magnétique de façon axiale vis-à-vis de la zone d'entrefer. Sous l'effet de l'impulsion électrique, l'entrefer se trouve soumis à une différence de potentiel magnétique. L'actionneur comporte également un noyau rendu mobile par l'action du courant électrique dans la bobine. En effet, la différence de potentiel magnétique introduite dans la bobine entre le noyau mobile au repos sur un des pôles de la culasse et le pôle opposé de la culasse crée une force électromagnétique sur le noyau aimanté, via un gradient de champ magnétique. Le noyau aimanté est ainsi mis en mouvement. La position de repos peut aussi bien être située au milieu de l'entrefer, grâce à deux ressorts symétriques, favorisant par leur raideur la dynamique de la pièce mobile, en particulier pour les soupapes à commande électromagnétique.In these actuators, the electrical energy is supplied in a winding by a series of current pulses, creating a magnetic field that magnetizes a non-closed magnetic yoke, thus having a gap. The geometric characteristics of the cylinder head make it possible to direct most of the magnetic field lines axially vis-à-vis the gap zone. Under the effect of the electric pulse, the air gap is subjected to a magnetic potential difference. The actuator also comprises a core made mobile by the action of the electric current in the coil. Indeed, the magnetic potential difference introduced into the coil between the movable core resting on one of the poles of the cylinder head and the opposite pole of the cylinder head creates an electromagnetic force on the magnetized core, via a magnetic field gradient. The magnetized core is thus set in motion. The rest position can also be located in the middle of the air gap, thanks to two symmetrical springs, promoting by their stiffness the dynamics of the moving part, in particular for electromagnetically controlled valves.

La mise en mouvement du noyau mobile se produit avec un déphasage par rapport à l'instant de génération des impulsions électriques. Pour un fonctionnement optimal de l'actionneur, on montre qu'il est nécessaire que le métal possède une résistivité électrique à 20°C ρel élevée, et en particulier supérieure à 50 µΩ.cm et un champ coercitif Hc bas, c'est à dire inférieur à 32 Oe et de préférence inférieur à 8 Oe. Ces conditions permettent d'obtenir une excellente dynamique d'aimantation par la génération de faibles courants induits dans la culasse et le noyau magnétique, permettant d'atteindre rapidement l'aimantation minimale du noyau engendrant sa mise en mouvement. Cette excellente dynamique permet ainsi de réduire les temps d'actionnement et la consommation électrique de l'actionneur.The setting in motion of the mobile core occurs with a phase shift with respect to the moment of generation of the electrical pulses. For an optimal operation of the actuator, it is shown that it is necessary for the metal to have an electrical resistivity at 20 ° C ρ el high, and in particular greater than 50 μΩ.cm and a coercive field Hc low, it is to say less than 32 Oe and preferably less than 8 Oe. These conditions make it possible to obtain an excellent magnetization dynamic by the generation of weak currents induced in the yoke and the magnetic core, making it possible to quickly reach the minimum magnetization of the core generating its movement. This excellent dynamics thus makes it possible to reduce the actuation times and the electrical consumption of the actuator.

Il est également nécessaire que le noyau possède une aimantation à saturation Js élevée, c'est à dire supérieure à 1,75 T et de préférence supérieure à 1,9 T, de manière à autoriser une force maximale en fin d'impulsion aussi élevée que possible. C'est en effet cette force qui garantit le maintien de la position ouverte ou fermée de l'actionneur, ce qui est particulièrement important lorsqu'il s'agit d'interrompre totalement l'écoulement d'un fluide à haute pression ou de compenser la force de rappel d'un ou plusieurs ressorts. Un tel niveau d'aimantation à saturation permet ainsi d'obtenir un actionneur compact présentant une force et une puissance volumique élevées.It is also necessary that the core has a saturation magnetization Js high, ie greater than 1.75 T and preferably greater than 1.9 T, so as to allow a maximum force at the end of this high pulse as possible. It is indeed this force which guarantees the maintenance of the open or closed position of the actuator, which is particularly important when it is necessary to totally interrupt the flow of a fluid at high pressure or to compensate the return force of one or more springs. Such saturation magnetization level thus provides a compact actuator having a high strength and power density.

Ces noyaux magnétiques ont des formes diverses qui peuvent être fabriquées à partir de fils, de barres, de plaques ou de tôles laminées. Ils doivent donc présenter une bonne aptitude à la transformation à chaud, et de préférence, une bonne aptitude à la mise en forme à froid lorsque celle-ci est nécessaire.These magnetic cores have various shapes that can be made from wires, bars, plates or rolled sheets. They must therefore have good heat-formability, and preferably good cold-forming ability when necessary.

Une fois fabriqués et mis en service, ces noyaux peuvent être soumis à un environnement de travail légèrement oxydant et doivent donc présenter une bonne tenue à la corrosion pour résister à ce type d'usure prématurée.Once manufactured and put into service, these cores can be subjected to a slightly oxidizing working environment and must therefore have a good resistance to corrosion to resist this type of premature wear.

Ils sont en outre soumis à des chocs multiples lorsqu'ils terminent leurs courses en butée de façon brutale et doivent donc présenter de bonnes caractéristiques mécaniques, c'est à dire, dans la pratique, une résistance à la traction Rm supérieure à 500 MPa et , de préférence, une limite élastique R0,2 supérieure à 250MPa à l'état laminé à chaud à une épaisseur d'au moins 2 mm.They are also subjected to multiple shocks when they terminate abruptly in their abutment races and must therefore have good mechanical characteristics, that is to say, in practice, a tensile strength Rm greater than 500 MPa and preferably, an elastic limit R 0,2 of greater than 250 MPa in the hot-rolled state at a thickness of at least 2 mm.

On utilise généralement pour la fabrication d'actionneurs électromagnétiques des alliages fer-cobalt (Fe-Co) tels que ceux décrits dans EP 715 320 . Les matériaux décrits comportent de 6 à 30% de cobalt, de 3 à 8% d'un ou plusieurs éléments choisis parmi le chrome, le molybdène, le vanadium et/ou le tungstène, le reste étant du fer. Ces alliages présentent cependant une dynamique insuffisante.Ferrocell (Fe-Co) alloys such as those described in US Pat. EP 715,320 . The materials described have 6 to 30% cobalt, 3 to 8% of one or more elements selected from chromium, molybdenum, vanadium and / or tungsten, the balance being iron. These alloys, however, have insufficient dynamics.

La présente invention vise à mettre à disposition un matériau adapté à la fabrication, de manière économique, de noyaux pour actionneurs électromagnétiques compacts à grande dynamique et à saturation élevée. Ce matériau doit en outre permettre une mise en oeuvre à chaud, et de préférence, à froid, améliorée.The present invention aims to provide a material suitable for the manufacture, economically, of cores for compact electromagnetic actuators with high dynamics and high saturation. This material must also allow implementation hot, and preferably, cold, improved.

Un premier objet de l'invention est ainsi constitué par un alliage Fe-Co dont la composition comprend en % en poids :

  • 6 ≤ Co + Ni ≤ 30
  • Si ≥ 0,2
  • 0,5 ≤ Cr ≤ 8
  • Ni ≤ 4
  • Mn ≤ 4
  • Al ≤ 4
  • Ti ≤ 1
  • C ≤ 1
  • Mo ≤ 3
  • V + W ≤ 3
  • Nb + Ta ≤ 1
  • Si + Al ≤ 6
  • O + N + S + P + B ≤ 0.1
le reste de la composition étant constitué de fer et d'impuretés inévitables dues à l'élaboration,
étant entendu en outre que les teneurs en respectent les relations suivantes :
  • Co + Si -Cr ≤ 27
  • Si + Al + Cr + V +Mo + Ti ≥ 3,5
  • 1,23(Al + Mo) + 0,84(Si + Cr + V) ≥ 1,3
  • 14,5(Al + Cr) +12(V+Mo) + 25Si ≥ 50
A first object of the invention thus consists of a Fe-Co alloy whose composition comprises in% by weight:
  • 6 ≤ Co + Ni ≤ 30
  • If ≥ 0.2
  • 0.5 ≤ Cr ≤ 8
  • Ni ≤ 4
  • Mn ≤ 4
  • Al ≤ 4
  • Ti ≤ 1
  • C ≤ 1
  • Mo ≤ 3
  • V + W ≤ 3
  • Nb + Ta ≤ 1
  • If + Al ≤ 6
  • O + N + S + P + B ≤ 0.1
the remainder of the composition consisting of iron and unavoidable impurities due to the preparation,
it being further understood that the contents respect the following relations:
  • Co + Si -Cr ≤ 27
  • Si + Al + Cr + V + Mo + Ti ≥ 3.5
  • 1.23 (Al + Mo) + 0.84 (Si + Cr + V) ≥ 1.3
  • 14.5 (Al + Cr) +12 (V + Mo) + 25Si ≥ 50

Dans des modes de réalisation particuliers, considérés seuls ou en combinaison, l'alliage peut en outre comporter les caractéristiques additionnelles suivantes :

  • l'alliage Fe-Co est tel que : 10 ≤ %Co + %Ni ≤ 22
  • l'alliage Fe-Co est tel que : 1 ≤ Cr ≤ 5,5
  • l'alliage Fe-Co est tel que : Ni ≤ 1
  • l'alliage Fe-Co est tel que : 0,1 ≤ Mn ≤ 1
  • l'alliage Fe-Co est tel que : Al ≤ 2
In particular embodiments, considered alone or in combination, the alloy may further comprise the following additional features:
  • the Fe-Co alloy is such that: 10 ≤% Co +% Ni ≤ 22
  • the Fe-Co alloy is such that: 1 ≤ Cr ≤ 5.5
  • the Fe-Co alloy is such that: Ni ≤ 1
  • the Fe-Co alloy is such that: 0.1 ≤ Mn ≤ 1
  • the Fe-Co alloy is such that: Al ≤ 2

Dans un mode de réalisation plus particulièrement préféré, l'alliage selon l'invention présente une composition en % en poids qui comprend :

  • 6 ≤ Co + Ni ≤ 22
  • Si ≥ 0,2
  • 0,5 ≤ Cr ≤ 6
  • Ni ≤ 1
  • Mn ≤ 4
  • Al ≤ 4
  • Ti ≤ 0,1
  • C ≤ 0,1
  • Mo ≤ 3
  • V + W ≤ 3
  • Nb + Ta ≤ 1
  • Si + Al ≤ 6
  • O + N + S + P + B ≤ 0.1
le reste de la composition étant constitué de fer et d'impuretés dues à l'élaboration,
étant entendu en outre que les teneurs en silicium, aluminium, cobalt, chrome, vanadium, molybdène, titane et nickel respectent les relations suivantes :
  • Co + Si -Cr ≤ 27
  • Si + Al + Cr + V + Mo + Ti > 3,5
  • 1,23(Al + Mo) + 0,84(Si + Cr + V) ≥ 1,3
  • 14,5(Al + Cr) +12(V+Mo) + 25Si ≥ 50
In a more particularly preferred embodiment, the alloy according to the invention has a composition in% by weight which comprises:
  • 6 ≤ Co + Ni ≤ 22
  • If ≥ 0.2
  • 0.5 ≤ Cr ≤ 6
  • Ni ≤ 1
  • Mn ≤ 4
  • Al ≤ 4
  • Ti ≤ 0.1
  • C ≤ 0.1
  • Mo ≤ 3
  • V + W ≤ 3
  • Nb + Ta ≤ 1
  • If + Al ≤ 6
  • O + N + S + P + B ≤ 0.1
the rest of the composition consisting of iron and impurities due to the preparation,
it being further understood that the contents of silicon, aluminum, cobalt, chromium, vanadium, molybdenum, titanium and nickel respect the following relations:
  • Co + Si -Cr ≤ 27
  • Si + Al + Cr + V + Mo + Ti> 3.5
  • 1.23 (Al + Mo) + 0.84 (Si + Cr + V) ≥ 1.3
  • 14.5 (Al + Cr) +12 (V + Mo) + 25Si ≥ 50

L'alliage selon l'invention peut être mis sous forme de barre, fil, plaque ou tôle laminée.The alloy according to the invention can be formed into a bar, wire, plate or rolled sheet.

Il peut notamment servir à la fabrication de noyau mobile d'actionneur électromagnétique fabriqué à partir d'une barre ou d'un fil ou d'une plaque ou d'une tôle laminée.It can in particular be used for manufacturing electromagnetic actuator movable core manufactured from a bar or a wire or a plate or a rolled sheet.

Un tel actionneur électromagnétique comportant un noyau mobile en alliage Fe-Co selon l'invention peut notamment être utilisé au sein d'un injecteur pour moteur à explosion à régulation électronique ou bien encore en tant qu'actionneur de soupape de moteur à combustion interne à commande électronique.Such an electromagnetic actuator comprising a movable core of Fe-Co alloy according to the invention can in particular be used in an injector for an electronically controlled combustion engine or even as an internal combustion engine valve actuator. electronic control.

Comme on l'a vu précédemment, l'alliage selon l'invention est un alliage fer-cobalt à faible teneur en cobalt comportant des teneurs modérées en éléments d'addition.As has been seen previously, the alloy according to the invention is an iron-cobalt alloy with a low cobalt content having moderate levels of addition elements.

La teneur en cobalt, éventuellement substitué partiellement par du nickel, est comprise entre 6 et 30% en poids afin d'obtenir une bonne aimantation à saturation tout en conservant une résistivité élevée. Elle est de préférence inférieure à 22% en poids pour réduire la quantité d'éléments d'addition couteux tout en conservant une bonne saturation.The cobalt content, optionally partially substituted with nickel, is between 6 and 30% by weight in order to obtain a good saturation magnetization while maintaining a high resistivity. It is preferably less than 22% by weight to reduce the amount of expensive additive elements while maintaining good saturation.

La teneur en nickel, qui peut venir en substitution partielle du cobalt, est cependant maintenue à moins de 4% car sa présence augmente considérablement le champ coercitif de l'alliage.The nickel content, which may partially substitute cobalt, is, however, maintained at less than 4% because its presence considerably increases the coercive field of the alloy.

La teneur en silicium de l'alliage selon l'invention est supérieure ou égale à 0,2% en poids. Une telle teneur minimale permet d'obtenir une bonne résistance mécanique Rm. En outre, cet élément permet d'accroître très efficacement le champ coercitif de l'alliage en le baissant significativement. On limite cependant l'addition conjointe d'aluminium et de silicium à 6% pour conserver à l'alliage une bonne aptitude à la transformation à chaud. On préfère en outre limiter cette teneur cumulée à moins de 4% en poids afin de conserver à l'alliage une bonne aptitude à la transformation à froid.The silicon content of the alloy according to the invention is greater than or equal to 0.2% by weight. Such a minimum content makes it possible to obtain a good mechanical resistance Rm. Moreover, this element makes it possible to very effectively increase the coercive field of the alloy by lowering it significantly. However, the joint addition of aluminum and 6% silicon is limited to preserve the alloy good heat-transformability. It is furthermore preferred to limit this cumulative content to less than 4% by weight in order to keep the alloy good cold processability.

La teneur en aluminium de l'alliage selon l'invention est inférieure ou égale à 4% en poids. Cet élément a un rôle similaire à celui du silicium en favorisant l'obtention d'un faible champ coercitif. On limite son ajout à 4% car sinon Js deviendrait trop faible. Il ne permet cependant pas d'améliorer les propriétés mécaniques de l'alliage.The aluminum content of the alloy according to the invention is less than or equal to 4% by weight. This element has a role similar to that of silicon by favoring the obtaining of a weak coercive field. We limit its addition to 4% because otherwise Js would become too weak. However, it does not improve the mechanical properties of the alloy.

La teneur en chrome de l'alliage selon l'invention est comprise entre 0,5 et 8% en poids. Cet élément essentiel de l'alliage permet d'étendre la plage d'addition du silicium, vis-à-vis de la transformation à chaud et à froid, tout en maintenant les bonnes propriétés de résistivité et de saturation. On limite cependant son ajout, car il augmente le champ coercitif de l'alliage.The chromium content of the alloy according to the invention is between 0.5 and 8% by weight. This essential element of the alloy makes it possible to extend the silicon addition range with respect to hot and cold transformation, while maintaining the good resistivity and saturation properties. However, it is limited because it increases the coercive force of the alloy.

La teneur en manganèse de l'alliage selon l'invention est inférieure ou égale à 4% en poids et de préférence inférieure ou égale à 1% en poids. Cet élément peut être ajouté à raison d'au moins 0,1% en poids pour améliorer l'aptitude à la transformation à chaud de l'alliage. On limite sa teneur car c'est un élément gammagène et l'apparition de la phase y dégrade fortement les performances magnétiques.The manganese content of the alloy according to the invention is less than or equal to 4% by weight and preferably less than or equal to 1% by weight. This element may be added at least 0.1% by weight to improve the heat-transformability of the alloy. Its content is limited because it is a gamma element and the onset of the phase strongly degrades the magnetic performances.

La teneur en titane de l'alliage selon l'invention est inférieure ou égale à 1% en poids et de préférence moins de 0,1%, car cet élément forme facilement des nitrures, soit lors de l'élaboration, soit lors de recuit sous air ou sous ammoniaque, nitrures qui dégradent fortement les propriétés magnétiques et sont donc néfastes.The titanium content of the alloy according to the invention is less than or equal to 1% by weight and preferably less than 0.1%, because this element easily forms nitrides, either during production or during annealing. under air or under ammonia, nitrides which strongly degrade the magnetic properties and are therefore harmful.

La teneur en molybdène de l'alliage selon l'invention est inférieure ou égale à 3% en poids. Cet élément peut être ajouté pour améliorer la résistivité électrique de l'alliage, en complément ou en substitution partielle du chrome.The molybdenum content of the alloy according to the invention is less than or equal to 3% by weight. This element can be added to improve the electrical resistivity of the alloy, in complement or partial substitution of chromium.

La teneur en carbone de l'alliage selon l'invention est inférieure ou égale à 1% en poids, et de préférence inférieure ou égale à 0,1% en poids. La présence de carbone détériore les propriétés magnétiques de l'alliage et on en réduit donc la teneur pour éviter une telle dégradation.The carbon content of the alloy according to the invention is less than or equal to 1% by weight, and preferably less than or equal to 0.1% by weight. The presence of carbon deteriorates the magnetic properties of the alloy and so the content is reduced to avoid such degradation.

La teneur cumulée en vanadium et tungstène de l'alliage selon l'invention est inférieure ou égale à 3% en poids. Ces éléments peuvent être ajoutés pour améliorer la résistivité électrique de l'alliage, en complément ou en substitution partielle du chrome.The cumulative vanadium and tungsten content of the alloy according to the invention is less than or equal to 3% by weight. These elements can be added to improve the electrical resistivity of the alloy, in complement or partial substitution of chromium.

La teneur cumulée en niobium et tantale de l'alliage selon l'invention est inférieure ou égale à 1% en poids. Ces éléments peuvent être ajouter pour améliorer la ductilité de l'alliage et limiter ainsi sa fragilité.The cumulative content of niobium and tantalum of the alloy according to the invention is less than or equal to 1% by weight. These elements can be added to improve the ductility of the alloy and thus limit its fragility.

Enfin, la teneur cumulée en oxygène, azote, soufre, phosphore et bore est limitée à 0,1% en poids, car ces éléments sont des oxydants et tendent à former des précipités très défavorables aux propriétés magnétiques et à la ductilité mécanique du matériau. Une telle limitation suppose notamment que l'on fabrique l'alliage selon l'invention à partir de matières premières de bonne pureté.Finally, the cumulative content of oxygen, nitrogen, sulfur, phosphorus and boron is limited to 0.1% by weight, since these elements are oxidants and tend to form precipitates which are very unfavorable to the magnetic properties and to the mechanical ductility of the material. Such a limitation supposes, in particular, that the alloy according to the invention is manufactured from raw materials of good purity.

Par ailleurs, l'alliage selon l'invention doit également respecter un certain nombre de relations entre certains de ces éléments. Ainsi les quatre équations suivantes doivent être respectées : Co + Si - Cr 27

Figure imgb0001
Si + Al + Cr + V + Mo + Ti > 3 , 5
Figure imgb0002
1 , 23 Al + Mo + 0 , 84 Si + Cr + V 1 , 3
Figure imgb0003
14 , 5 Al + Cr + 12 V + Mo + 25 Si 50
Figure imgb0004
Moreover, the alloy according to the invention must also respect a number of relationships between some of these elements. Thus the following four equations must be respected: Co + Yes - Cr 27
Figure imgb0001
Yes + al + Cr + V + MB + Ti > 3 , 5
Figure imgb0002
1 , 23 al + MB + 0 , 84 Yes + Cr + V 1 , 3
Figure imgb0003
14 , 5 al + Cr + 12 V + MB + 25 Yes 50
Figure imgb0004

La relation (1) permet, en équilibrant le silicium et le chrome, de garantir une bonne aptitude à la transformation à chaud et donc l'absence de criques ou de fissures lors du forgeage et du laminage.The equation (1) makes it possible, by equilibrating the silicon and the chromium, to guarantee a good aptitude for hot transformation and thus the absence of cracks or cracks during forging and rolling.

La relation (2), en combinaison avec la relation (4), permet de garantir une résistivité électrique ρel élevée, et en particulier supérieure à 50 µΩ.cm.The relation (2), in combination with the relation (4), makes it possible to guarantee an electrical resistivity ρ el high, and in particular greater than 50 μΩ.cm.

La relation (3) représente un critère de saturation qui permet d'assurer que l'alliage selon l'invention présentera une aimantation à saturation Js inférieure à 2.2T de façon cohérente avec les additions d'éléments non magnétiques nécessaires au besoin de forte dynamique d'aimantation.Relation (3) represents a saturation criterion which makes it possible to ensure that the alloy according to the invention will have saturation magnetization Js of less than 2.2T in a manner consistent with the additions of non-magnetic elements necessary for the need of high dynamics. magnetization.

La relation (4), en combinaison avec la relation (2), permet de garantir une résistivité électrique ρel élevée, et en particulier supérieure à 50 µΩ.cm.The relationship (4), in combination with the relation (2), makes it possible to guarantee an electrical resistivity ρ el high, and in particular greater than 50 μΩ.cm.

La fabrication de l'alliage selon l'invention peut se faire de façon classique pour ce type d'alliage. Ainsi, les différents éléments constituant l'alliage peuvent être fondus par induction sous vide, puis coulés en lingots, billettes ou brames. Ceux-ci sont ensuite forgés à chaud à des températures allant de 1000 à 1200°C, puis laminées à chaud après réchauffage à une température supérieure ou égale à 1150°C, la température de fin de laminage étant comprise entre 800 et 1050°C.The manufacture of the alloy according to the invention can be done conventionally for this type of alloy. Thus, the various elements constituting the alloy can be melted by induction under vacuum, then cast into ingots, billets or slabs. These are then hot forged at temperatures ranging from 1000 to 1200 ° C, and then hot-rolled after reheating to a temperature greater than or equal to 1150 ° C, the end-of-rolling temperature being between 800 and 1050 ° C. .

Les plaques, barres ou bandes laminées à chaud ainsi produites peuvent être utilisées en l'état ou bien encore laminées à froid après décapage par trempé dans un ou plusieurs bacs d'acide et recuites.The plates, bars or hot-rolled strips thus produced can be used as is or cold-rolled after pickling by dipping in one or more acid trays and annealing.

Il est également possible, afin d'améliorer encore la dynamique d'aimantation de l'alliage selon l'invention, de faire diffuser en sous surface des éléments déposés par tout procédé adapté à la surface de la pièce fabriquée. De tels éléments peuvent par exemple être l'aluminium, le silicium ou le chrome.It is also possible, in order to further improve the magnetization dynamics of the alloy according to the invention, to diffuse under the surface of the deposited elements by any method adapted to the surface of the manufactured part. Such elements may for example be aluminum, silicon or chromium.

Essaistesting

Les matières premières nécessaires à l'élaboration de l'alliage ont été fondues par induction sous vide et coulées sous vide en lingot de 50kg. Les lingots sont ensuite forgés à chaud entre 1000 et 1200°C puis laminés à chaud depuis un réchauffage à 1150°C jusqu'à une épaisseur de 4 à 5mm pour une température de fin de laminage à chaud d'au moins 800°C. Après décapage chimique acide, les bandes sont soit caractérisées dans l'état laminé à chaud par usinage d'éprouvette de traction, de rondelles pour caractérisation magnétique, d'échantillons allongés pour mesure de résistivité électrique, ou bien caractérisées après laminage à froid jusqu'à l'épaisseur de 0,6mm pour le même type de prélèvement et de caractérisation.The raw materials necessary for producing the alloy were melted by vacuum induction and vacuum cast in a 50 kg ingot. The ingots are then hot forged at 1000 to 1200 ° C and hot rolled from heating at 1150 ° C to a thickness of 4 to 5 mm for a hot rolling end temperature of at least 800 ° C. After acidic etching, the strips are either characterized in the hot-rolled state by machining tensile test specimens, washers for magnetic characterization, elongated samples for electrical resistivity measurement, or characterized after cold rolling to completion. at the thickness of 0.6mm for the same type of sampling and characterization.

Selon les cas, ces deux types d'état métallurgique (état laminé à chaud : LAC et laminé à froid : LAF) peuvent être caractérisés en l'état ou après recuit à 900°C pendant 4 heures sous H2 et refroidissement rapide. Sauf indication contraire toutes les données qui suivent ont été obtenues après laminage à froid et recuit.Depending on the case, these two types of metallurgical state (hot rolled state: LAC and cold rolled: LAF) can be characterized in the state or after annealing at 900 ° C for 4 hours under H2 and rapid cooling. Unless otherwise indicated all the following data were obtained after cold rolling and annealing.

La résistance mécanique à rupture Rm est mesurée sur éprouvette de traction après recuit du laminé à chaud à 900°C pendant 4 heures sous H2.The breaking strength Rm is measured on the tensile test piece after annealing the hot rolled at 900 ° C for 4 hours under H2.

La tenue à la corrosion Tcor est évaluée sur surface brut de laminé à chaud, rectifiée afin d'avoir une surface propre et à très faible rugosité, puis laissée à 20°C en atmosphère de brouillard salin.The corrosion resistance Tcor is evaluated on a hot rolled rough surface, ground to have a clean surface with a very low roughness and then left at 20 ° C in a salt spray atmosphere.

Le test d'aptitude à la transformation à chaud ou à froid a été réalisé par simple observation de rives non fragilisées lors des opérations de laminage (à chaud, à froid) des lingots d'essai.The test for suitability for hot or cold processing was carried out by simple observation of non-weakened banks during the rolling operations (hot, cold) of the test ingots.

Les compositions des coulées d'essai sont reprises dans le tableau 1 ci-après, étant entendu que les teneurs cumulées de tous les essais en oxygène, azote, soufre, phosphore et bore sont inférieures à 0,1% en poids et que le reste des compositions est constitué de fer. Tableau 1 Essai %Co %Ni %Si %Cr %Mn %Al %Ti %Mo %V %W %Nb %Ta 1 18 - - 5 0,2 1 - - - - - - 2* 18 - 0,5 5 0,2 0,5 0,02 - - - - - 3* 18 1 0,3 4,7 0,2 - - 0,1 - - - - 4* 18 2 0,3 4,7 0,2 - - - 0,15 - - - 5* 18 3 0,3 4,7 0,2 - - - - 0,2 - - 6 18 - 0,5 2,7 0,2 - - - - - - - 7* 18 - 1 3 0,2 - - - - - 0,03 - 8* 18 - 2 3 0,2 - - - - - - - 9* 18 - 3 3 0,2 - - - - - - - 10* 18 - 1 7 0,2 - - - - - - - 11* 18 - 2 7 0,2 - - - - - - - 12* 18 - 3 7 0,2 - - - - - - - 13* 18 - 4 7 0,2 - - - - - - - 14 18 - 3,46 - 0,2 - - - - - - - 15 18 - 3,5 0,2 0,2 - - - - - - - 16 18 - 0,55 2,87 0,2 - - - - - - - 17 18 - 1,04 2,11 0,2 - - - - - - - 18* 18 - 0,99 4,98 0,2 - - - - - - - 19* 18 - 2,05 5,18 0,2 - - - - - - - 20* 18 - 2,99 4,97 0,2 - - - - - - - 21* 18 - 3,96 4,9 0,2 - - - - - - - 22* 18 - 1 4 0,2 - - - 1 - - - 23* 18 - 3 4 0,2 - - - 1 - - - 24* 18 - 5 4 0,2 - - - 1 - - - 25 18 - 7 4 0,2 - - - 1 - - - 26* 18 - 4 5 0,2 - - - - - - 0,2 27 27 - - 3 0,2 - - - - - - - 28* 27 - 1 3 0,2 - - - - - - - 29* 27 - 2 3 0,2 - - - - - - - 30 27 - 4 3 0,2 - - - - - - - 31 27 - - 5 0,2 - - - - - - - 32* 27 - 1 5 0,2 - - - - - - - 33* 27 - 2 5 0,2 - - - - - - - 34* 27 - 4 5 0,2 - - - - - - - *: essais selon l'invention The compositions of the test castings are shown in Table 1 below, it being understood that the cumulative contents of all the oxygen, nitrogen, sulfur, phosphorus and boron tests are less than 0.1% by weight and that the rest compositions consists of iron. <b><u> Table 1 </ u></b> Trial %Co %Or %Yes % Cr % Mn Al% % Ti % Mo V% % W % Nb %Your 1 18 - - 5 0.2 1 - - - - - - 2 * 18 - 0.5 5 0.2 0.5 0.02 - - - - - 3 * 18 1 0.3 4.7 0.2 - - 0.1 - - - - 4 * 18 2 0.3 4.7 0.2 - - - 0.15 - - - 5 * 18 3 0.3 4.7 0.2 - - - - 0.2 - - 6 18 - 0.5 2.7 0.2 - - - - - - - 7 * 18 - 1 3 0.2 - - - - - 0.03 - 8 * 18 - 2 3 0.2 - - - - - - - 9 * 18 - 3 3 0.2 - - - - - - - * 10 18 - 1 7 0.2 - - - - - - - * 11 18 - 2 7 0.2 - - - - - - - * 12 18 - 3 7 0.2 - - - - - - - * 13 18 - 4 7 0.2 - - - - - - - 14 18 - 3.46 - 0.2 - - - - - - - 15 18 - 3.5 0.2 0.2 - - - - - - - 16 18 - 0.55 2.87 0.2 - - - - - - - 17 18 - 1.04 2.11 0.2 - - - - - - - * 18 18 - 0.99 4.98 0.2 - - - - - - - * 19 18 - 2.05 5.18 0.2 - - - - - - - * 20 18 - 2.99 4.97 0.2 - - - - - - - * 21 18 - 3.96 4.9 0.2 - - - - - - - * 22 18 - 1 4 0.2 - - - 1 - - - * 23 18 - 3 4 0.2 - - - 1 - - - 24 * 18 - 5 4 0.2 - - - 1 - - - 25 18 - 7 4 0.2 - - - 1 - - - 26 * 18 - 4 5 0.2 - - - - - - 0.2 27 27 - - 3 0.2 - - - - - - - * 28 27 - 1 3 0.2 - - - - - - - * 29 27 - 2 3 0.2 - - - - - - - 30 27 - 4 3 0.2 - - - - - - - 31 27 - - 5 0.2 - - - - - - - * 32 27 - 1 5 0.2 - - - - - - - 33 * 27 - 2 5 0.2 - - - - - - - 34 * 27 - 4 5 0.2 - - - - - - - *: tests according to the invention

Les résultats des essais sont repris dans le tableau 2 ci-dessous : Tableau 2 Essai Js
(T)
ρel
(µΩ. cm)
Hc
(Oe)
Apte
au LAC
Apte
au LAF
Rm
(MPa)
Tcor
1 2,06 63,5 3,79 Oui Oui 480 ++ 2* 2,07 65 3,6 Oui Oui 522 ++ 3* 2,11 56,4 16,6 Oui Oui 505 ++ 4* 2,09 61,1 17,3 Oui Oui 505 ++ 5* 2,07 61,7 22,2 Oui Oui 506 ++ 6 2,17 46,8 0,91 Oui Oui 520 ++ 7* 2,13 53,7 1,22 Oui Oui 564 ++ 8* 2,08 63,4 0,8 Oui Oui 648 ++ 9* 2,01 68,9 0,6 Oui Non 732 ++ 10* 2 71 18,7 Oui Oui 563 ++ 11* 1,94 80,5 20,5 Oui Oui 642 ++ 12* 1,88 90,4 15,7 Oui Non 730 ++ 13* 1,82 96,6 12,3 Oui Non 798 ++ 14 2,04 48,4 0,5 Oui Non 760 0 15 2,02 51 0,4 Oui Non 752 0 16 2,14 48 2,6 Oui Oui 522 ++ 17 2,13 47 2,2 Oui Oui 565 + 18* 2,01 68 5,15 Oui Oui 567 ++ 19* 1,92 80,5 4,95 Oui Oui 644 ++ 20* 1,88 86 3,15 Oui Oui 730 ++ 21* 1,80 96,5 2,13 Oui Oui 792 ++ 22* 2,11 52 3,51 Oui Oui 566 ++ 23* 2,06 63,5 3,58 Oui Oui 733 ++ 24* 2 75,7 2,59 Oui Oui 850 ++ 25 1,85 98 1,7 Non NE NE NE 26* 1,81 88,7 3 Oui Non 797 ++ 27 2,21 47,2 6,86 Oui Oui 482 ++ 28* 2,15 56,5 10,2 Oui Oui 563 ++ 29* 2,08 64,4 15 Oui Non 642 ++ 30 1,93 82 17,5 NON NON 798 ++ 31 2,14 53,7 21,3 OUI OUI 480 ++ 32* 2,07 66,5 28,4 OUI OUI 560 ++ 33* 2,00 77,4 30,5 OUI NON 640 ++ 34* 1,83 92,1 31,8 OUI NON 795 ++
*: essais selon l'invention, NE : non évalué
The results of the tests are shown in Table 2 below: <b><u> Table 2 </ u></b> Trial js
(T)
ρel
(μΩ.cm)
hc
(Oe)
Apt
to the lake
Apt
at LAF
R m
(MPa)
Tcor
1 2.06 63.5 3.79 Yes Yes 480 ++ 2 * 2.07 65 3.6 Yes Yes 522 ++ 3 * 2.11 56.4 16.6 Yes Yes 505 ++ 4 * 2.09 61.1 17.3 Yes Yes 505 ++ 5 * 2.07 61.7 22.2 Yes Yes 506 ++ 6 2.17 46.8 0.91 Yes Yes 520 ++ 7 * 2.13 53.7 1.22 Yes Yes 564 ++ 8 * 2.08 63.4 0.8 Yes Yes 648 ++ 9 * 2.01 68.9 0.6 Yes No 732 ++ * 10 2 71 18.7 Yes Yes 563 ++ * 11 1.94 80.5 20.5 Yes Yes 642 ++ * 12 1.88 90.4 15.7 Yes No 730 ++ * 13 1.82 96.6 12.3 Yes No 798 ++ 14 2.04 48.4 0.5 Yes No 760 0 15 2.02 51 0.4 Yes No 752 0 16 2.14 48 2.6 Yes Yes 522 ++ 17 2.13 47 2.2 Yes Yes 565 + * 18 2.01 68 5.15 Yes Yes 567 ++ * 19 1.92 80.5 4.95 Yes Yes 644 ++ * 20 1.88 86 3.15 Yes Yes 730 ++ * 21 1.80 96.5 2.13 Yes Yes 792 ++ * 22 2.11 52 3.51 Yes Yes 566 ++ * 23 2.06 63.5 3.58 Yes Yes 733 ++ 24 * 2 75.7 2.59 Yes Yes 850 ++ 25 1.85 98 1.7 No BORN BORN BORN 26 * 1.81 88.7 3 Yes No 797 ++ 27 2.21 47.2 6.86 Yes Yes 482 ++ * 28 2.15 56.5 10.2 Yes Yes 563 ++ * 29 2.08 64.4 15 Yes No 642 ++ 30 1.93 82 17.5 NO NO 798 ++ 31 2.14 53.7 21.3 YES YES 480 ++ * 32 2.07 66.5 28.4 YES YES 560 ++ 33 * 2.00 77.4 30.5 YES NO 640 ++ 34 * 1.83 92.1 31.8 YES NO 795 ++
*: tests according to the invention, NE: not evaluated

Comme on peut le voir à partir de ces essais, l'alliage selon l'invention permet de réunir un ensemble de propriétés qui n'étaient pas accessible à l'art antérieur:

  • un champ coercitif Hc à 20°C modéré à faible sur des états métallurgiques aussi bien massifs (plaque LAC de quelques mm d'épaisseur) que mince (laminé à froid de 0,1 à 2mm d'épaisseur),
  • une excellente ductilité en transformation à chaud ou à froid du matériau,
  • une résistivité électrique à 20°C élevée, typiquement > 50µΩ.cm, tout en conservant une aimantation à saturation à 20°C élevée à très élevée, typiquement >1,75T et de préférence >1,9T, et ne pouvant excéder 2,2T du fait des additions nécessaires à la grande dynamique d'aimantation de l'alliage.
  • une résistance à la traction d'au moins 500MPa dans l'état laminé à chaud à une épaisseur d'au moins 2mm,
  • une tenue à la corrosion satisfaisante,
  • un coût du matériau limité.
As can be seen from these tests, the alloy according to the invention makes it possible to combine a set of properties that were not accessible to the prior art:
  • a coercive field Hc at 20 ° C moderate to low on metallurgical states both massive (LAC plate a few mm thick) and thin (cold rolled from 0.1 to 2mm thick),
  • excellent ductility in hot or cold transformation of the material,
  • an electrical resistivity at 20 ° C high, typically> 50μΩ.cm, while maintaining saturation magnetization at 20 ° C high to very high, typically> 1.75T and preferably> 1.9T, and not exceeding 2, 2T because of the additions necessary for the great dynamics of magnetization of the alloy.
  • a tensile strength of at least 500 MPa in the hot-rolled state to a thickness of at least 2 mm,
  • a satisfactory resistance to corrosion,
  • a limited material cost.

Comme on l'a vu précédemment, une application privilégiée des alliages selon l'invention est la fabrication de noyaux pour actionneurs électromagnétiques, qu'ils soient linéaires ou rotatifs. De tels actionneurs compacts, dynamiques et robustes peuvent avantageusement être utilisés dans des injecteurs de moteurs à explosion à injection directe, notamment pour moteurs Diesel, et dans des pièces mobiles d'actionneurs commandant le mouvement des soupapes de moteurs à combustion interne.As has been seen above, a preferred application of the alloys according to the invention is the manufacture of cores for electromagnetic actuators, whether linear or rotary. Such compact, dynamic and robust actuators can advantageously be used in injectors of direct injection combustion engines, in particular for diesel engines, and in moving parts of actuators controlling the movement of the valves of internal combustion engines.

Claims (12)

Alliage Fe-Co dont la composition comprend en % en poids : 6 ≤ Co + Ni ≤ 30 Si ≥ 0,2 0,5 ≤ Cr ≤ 8 Ni ≤ 4 Mn ≤ 4 Al ≤ 4 Ti ≤ 1 C ≤ 1 Mo ≤ 3 V + W ≤ 3 Nb + Ta ≤ 1 Si + Al ≤ 6 O + N + S + P + B ≤ 0,1 le reste de la composition étant constitué de fer et d'impuretés inévitables dues à l'élaboration,
étant entendu en outre que les teneurs en respectent les relations suivantes : Co + Si -Cr ≤ 27 Si + Al + Cr + V +Mo + Ti ≥ 3,5 1,23(Al + Mo) + 0,84(Si + Cr + V) ≥ 1,3 14,5(Al + Cr) +12(V+Mo) + 25Si ≥ 50
Fe-Co alloy whose composition comprises in% by weight: 6 ≤ Co + Ni ≤ 30 If ≥ 0.2 0.5 ≤ Cr ≤ 8 Ni ≤ 4 Mn ≤ 4 Al ≤ 4 Ti ≤ 1 C ≤ 1 Mo ≤ 3 V + W ≤ 3 Nb + Ta ≤ 1 If + Al ≤ 6 O + N + S + P + B ≤ 0.1 the remainder of the composition consisting of iron and unavoidable impurities due to the preparation,
it being further understood that the contents respect the following relations: Co + Si -Cr ≤ 27 Si + Al + Cr + V + Mo + Ti ≥ 3.5 1.23 (Al + Mo) + 0.84 (Si + Cr + V) ≥ 1.3 14.5 (Al + Cr) +12 (V + Mo) + 25Si ≥ 50
Alliage Fe-Co selon la revendication 1, dans lequel : 10 % Co + % Ni 22
Figure imgb0005
Fe-Co alloy according to claim 1, wherein: 10 % Co + % Or 22
Figure imgb0005
Alliage Fe-Co selon l'une ou l'autre des revendications 1 ou 2, dans lequel : 1 Cr 5 , 5
Figure imgb0006
Fe-Co alloy according to either of Claims 1 or 2, in which: 1 Cr 5 , 5
Figure imgb0006
Alliage Fe-Co selon l'une quelconque des revendications 1 à 3, dans lequel : Ni 1
Figure imgb0007
Fe-Co alloy according to any one of claims 1 to 3, wherein: Or 1
Figure imgb0007
Alliage Fe-Co selon l'une quelconque des revendications 1 à 4, dans lequel : 0 , 1 Mn 1
Figure imgb0008
Fe-Co alloy according to any one of claims 1 to 4, wherein: 0 , 1 mn 1
Figure imgb0008
Alliage Fe-Co selon l'une quelconque des revendications 1 à 5, dans lequel : Al 2
Figure imgb0009
Fe-Co alloy according to any one of claims 1 to 5, wherein: al 2
Figure imgb0009
Alliage selon la revendication 1, dont la composition en % en poids comprend : 6 ≤ Co + Ni ≤ 22 Si ≥ 0,2 0,5 ≤ Cr ≤ 6 Ni ≤ 1 Mn ≤ 4 Al ≤ 4 Ti ≤ 0,1 C ≤ 0,1 Mo ≤ 3 V + W ≤ 3 Nb + Ta ≤ 1 Si + Al ≤ 6 O + N + S + P + B ≤ 0,1 le reste de la composition étant constitué de fer et d'impuretés dues à l'élaboration,
étant entendu en outre que les teneurs en silicium, aluminium, cobalt, chrome, vanadium, molybdène, titane et nickel respectent les relations suivantes : Co + Si -Cr ≤ 27 Si + Al + Cr + V +Mo + Ti > 3,5 1,23(Al + Mo) + 0,84(Si + Cr + V) ≥ 1,3 14,5(Al + Cr) +12(V+Mo) + 25Si ≥ 50
An alloy according to claim 1, whose composition in% by weight comprises: 6 ≤ Co + Ni ≤ 22 If ≥ 0.2 0.5 ≤ Cr ≤ 6 Ni ≤ 1 Mn ≤ 4 Al ≤ 4 Ti ≤ 0.1 C ≤ 0.1 Mo ≤ 3 V + W ≤ 3 Nb + Ta ≤ 1 If + Al ≤ 6 O + N + S + P + B ≤ 0.1 the rest of the composition consisting of iron and impurities due to the preparation,
it being further understood that the contents of silicon, aluminum, cobalt, chromium, vanadium, molybdenum, titanium and nickel respect the following relations: Co + Si -Cr ≤ 27 Si + Al + Cr + V + Mo + Ti> 3.5 1.23 (Al + Mo) + 0.84 (Si + Cr + V) ≥ 1.3 14.5 (Al + Cr) +12 (V + Mo) + 25Si ≥ 50
Barre, fil, plaque ou tôle laminée en alliage Fe-Co selon l'une quelconque des revendications 1 à 7.A bar, wire, plate or rolled sheet of Fe-Co alloy according to any one of claims 1 to 7. Noyau mobile d'actionneur électromagnétique fabriqué à partir d'une barre ou d'un fil ou d'une plaque ou d'une tôle laminée selon la revendication 8.An electromagnetic actuator movable core made from a bar or wire or plate or rolled sheet according to claim 8. Actionneur électromagnétique comportant un noyau mobile en alliage Fe-Co selon la revendication 9.An electromagnetic actuator having a mobile Fe-Co alloy core according to claim 9. Injecteur pour moteur à explosion à régulation électronique comportant un actionneur électromagnétique selon la revendication 10.An electronically controlled combustion engine injector comprising an electromagnetic actuator according to claim 10. Actionneur électromagnétique de soupape de moteur à combustion interne à commande électronique du type selon la revendication 10.An electronically controlled electromagnetic combustion engine valve actuator of the type according to claim 10.
EP08290057A 2008-01-22 2008-01-22 Fe-Co alloy for highly dynamic electromagnetic actuator Withdrawn EP2083428A1 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
EP08290057A EP2083428A1 (en) 2008-01-22 2008-01-22 Fe-Co alloy for highly dynamic electromagnetic actuator
BRPI0906592-0A BRPI0906592B1 (en) 2008-01-22 2009-01-14 FE-CO ALLOY FOR LARGE DYNAMIC ELECTROMAGNETIC ACTIVATION
KR1020107017332A KR20100115752A (en) 2008-01-22 2009-01-14 Fe-co alloy for high dynamic electromagnetic actuator
SI200930112T SI2313895T1 (en) 2008-01-22 2009-01-14 Fe-co alloy for high dynamic electromagnetic actuator
ES09720281T ES2372367T3 (en) 2008-01-22 2009-01-14 FE-CO ALLOY FOR LARGE DYNAMIC ELECTROMAGNETIC ACTUATOR.
MX2010007524A MX2010007524A (en) 2008-01-22 2009-01-14 Fe-co alloy for high dynamic electromagnetic actuator.
PL09720281T PL2313895T3 (en) 2008-01-22 2009-01-14 Fe-co alloy for high dynamic electromagnetic actuator
AT09720281T ATE527669T1 (en) 2008-01-22 2009-01-14 FE-CO ALLOY FOR A HIGHLY DYNAMIC ELECTROMAGNETIC ACTUATOR
CN201510724997.XA CN105525216A (en) 2008-01-22 2009-01-14 Fe-Co alloy for highly dynamic electromagnetic actuator
JP2010543537A JP5555181B2 (en) 2008-01-22 2009-01-14 Fe-Co alloy for electromagnetic actuator with large dynamic range
EP09720281A EP2313895B1 (en) 2008-01-22 2009-01-14 Fe-co alloy for high dynamic electromagnetic actuator
US12/863,696 US8951364B2 (en) 2008-01-22 2009-01-14 Highly dynamic electromagnetic actuator comprising a movable core made from an Fe-Co alloy
CN2009801028092A CN101925969A (en) 2008-01-22 2009-01-14 The Fe-Co alloy that is used for high dynamic electromagnetic actuators
PCT/FR2009/000039 WO2009112672A1 (en) 2008-01-22 2009-01-14 Fe-co alloy for high dynamic electromagnetic actuator
TW098101500A TWI401322B (en) 2008-01-22 2009-01-16 Fe-co alloy for an electromagnetic actuator having a large dynamic range
ZA2010/04418A ZA201004418B (en) 2008-01-22 2010-06-23 Fe-co alloy for high dynamic electromagnetic actualtor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08290057A EP2083428A1 (en) 2008-01-22 2008-01-22 Fe-Co alloy for highly dynamic electromagnetic actuator

Publications (1)

Publication Number Publication Date
EP2083428A1 true EP2083428A1 (en) 2009-07-29

Family

ID=39427553

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08290057A Withdrawn EP2083428A1 (en) 2008-01-22 2008-01-22 Fe-Co alloy for highly dynamic electromagnetic actuator
EP09720281A Active EP2313895B1 (en) 2008-01-22 2009-01-14 Fe-co alloy for high dynamic electromagnetic actuator

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP09720281A Active EP2313895B1 (en) 2008-01-22 2009-01-14 Fe-co alloy for high dynamic electromagnetic actuator

Country Status (14)

Country Link
US (1) US8951364B2 (en)
EP (2) EP2083428A1 (en)
JP (1) JP5555181B2 (en)
KR (1) KR20100115752A (en)
CN (2) CN105525216A (en)
AT (1) ATE527669T1 (en)
BR (1) BRPI0906592B1 (en)
ES (1) ES2372367T3 (en)
MX (1) MX2010007524A (en)
PL (1) PL2313895T3 (en)
SI (1) SI2313895T1 (en)
TW (1) TWI401322B (en)
WO (1) WO2009112672A1 (en)
ZA (1) ZA201004418B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103111811B (en) * 2013-03-07 2015-09-23 茂名市兴丽高岭土有限公司 A kind of manufacture method of kaolin iron removal filter screen
RU2663953C1 (en) * 2018-02-13 2018-08-13 Юлия Алексеевна Щепочкина Iron-based alloy
CN113564465A (en) * 2021-07-05 2021-10-29 北京科技大学 Forging FeCo alloy with stretching and impact toughness and preparation method thereof
CN113604643A (en) * 2021-07-05 2021-11-05 北京科技大学 Preparation method of high-saturation magnetic induction FeCo alloy with high impact toughness

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5192097A (en) * 1975-02-10 1976-08-12
WO2001086665A1 (en) * 2000-05-12 2001-11-15 Imphy Ugine Precision Iron-cobalt alloy, in particular for electromagnetic actuator mobile core and method for making same
JP2006336061A (en) * 2005-06-01 2006-12-14 Hitachi Metals Ltd Soft magnetic member
US20070221297A1 (en) * 2006-03-27 2007-09-27 Tdk Corporation Flaky soft magnetic metal powder and magnetic core member for rfid antenna
EP1918407A1 (en) * 2006-10-30 2008-05-07 Vacuumschmelze GmbH & Co. KG Iron-cobalt based soft magnetic alloy and method for its manufacture

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644751A (en) * 1979-09-21 1981-04-24 Hitachi Metals Ltd Amorphous magnetic material
JPH0699722B2 (en) * 1989-03-22 1994-12-07 株式会社神戸製鋼所 Magnetic powder for electromagnetic clutch
JPH0633199A (en) * 1992-07-16 1994-02-08 Hitachi Metal Precision Ltd Yoke core for printer head
DE4419996C2 (en) * 1993-10-18 1996-10-17 Gfe Ges Fuer Fertigungstechnik Tool cutting, in particular of technical knives, with a wear-resistant composite layer and a method for producing the tool cutting
JPH0841604A (en) 1994-08-03 1996-02-13 Mitsubishi Steel Mfg Co Ltd High sensitivity corrosion resistant torque sensor detecting shaft material
DE4442420A1 (en) * 1994-11-29 1996-05-30 Vacuumschmelze Gmbh Soft magnetic iron-based alloy with cobalt for magnetic circuits or excitation circuits
JP3957234B2 (en) * 1997-06-30 2007-08-15 日本ピストンリング株式会社 Wear-resistant iron-based sintered alloy material
JP2002038912A (en) * 1999-12-09 2002-02-06 Sumitomo Electric Ind Ltd Opening/closing mechanism of valve for internal combustion engine
JP4346780B2 (en) * 2000-03-06 2009-10-21 新日鉄マテリアルズ株式会社 Heat-resistant and wear-resistant composite structural member and manufacturing method thereof
JP3748055B2 (en) * 2001-08-07 2006-02-22 信越化学工業株式会社 Iron alloy plate material for voice coil motor magnetic circuit yoke and yoke for voice coil motor magnetic circuit
AT411905B (en) * 2003-02-10 2004-07-26 Boehler Edelstahl Gmbh & Co Kg Iron-based alloy for producing a hot working steel object contains alloying additions of silicon, manganese, chromium, molybdenum, nickel, vanadium, cobalt and aluminum

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5192097A (en) * 1975-02-10 1976-08-12
WO2001086665A1 (en) * 2000-05-12 2001-11-15 Imphy Ugine Precision Iron-cobalt alloy, in particular for electromagnetic actuator mobile core and method for making same
JP2006336061A (en) * 2005-06-01 2006-12-14 Hitachi Metals Ltd Soft magnetic member
US20070221297A1 (en) * 2006-03-27 2007-09-27 Tdk Corporation Flaky soft magnetic metal powder and magnetic core member for rfid antenna
EP1918407A1 (en) * 2006-10-30 2008-05-07 Vacuumschmelze GmbH & Co. KG Iron-cobalt based soft magnetic alloy and method for its manufacture

Also Published As

Publication number Publication date
CN105525216A (en) 2016-04-27
ZA201004418B (en) 2011-04-28
JP5555181B2 (en) 2014-07-23
ES2372367T3 (en) 2012-01-19
JP2011525945A (en) 2011-09-29
TW200948987A (en) 2009-12-01
MX2010007524A (en) 2010-08-11
KR20100115752A (en) 2010-10-28
BRPI0906592B1 (en) 2020-06-02
BRPI0906592A2 (en) 2015-07-07
EP2313895A1 (en) 2011-04-27
ATE527669T1 (en) 2011-10-15
SI2313895T1 (en) 2011-12-30
WO2009112672A1 (en) 2009-09-17
PL2313895T3 (en) 2012-02-29
TWI401322B (en) 2013-07-11
EP2313895B1 (en) 2011-10-05
US20110018658A1 (en) 2011-01-27
CN101925969A (en) 2010-12-22
US8951364B2 (en) 2015-02-10

Similar Documents

Publication Publication Date Title
EP2718469B1 (en) Cold-rolled steel plate coated with zinc or a zinc alloy, method for manufacturing same, and use of such a steel plate
EP2129808B1 (en) Austenitic iron-nickel-chromium-copper alloy
WO2006042931A1 (en) Method for production of sheets of austenitic iron/carbon/manganese steel and sheets produced thus
EP2245203B1 (en) Austenitic stainless steel sheet and method for obtaining this sheet
EP2313895B1 (en) Fe-co alloy for high dynamic electromagnetic actuator
FR2887558A1 (en) COMPOSITION OF MARTENSITIC STAINLESS STEEL, PROCESS FOR MANUFACTURING A MECHANICAL PART FROM THIS STEEL AND PART THUS OBTAINED
EP1818422B2 (en) Ferritic stainless steel with 19% of chromium stabilised with niobium
EP1281182B1 (en) Iron-cobalt alloy, in particular for electromagnetic actuator mobile core and method for making same
CA2766779C (en) Method for producing martensitic steel with mixed hardening
WO2012039421A1 (en) Electrode material
JP6481802B1 (en) Cr-Fe-Ni alloy product and method for producing the same
CA2502079C (en) Method for making hardenable steel plates by firing, resulting steel plates
EP1474813B1 (en) Soft magnetic alloy for clock-making
WO2013069822A1 (en) Electrode material, electrode for spark plug, and spark plug
FR3026748A1 (en) METAL ALLOY, METALLIC PART AND PROCESS FOR OBTAINING
EP1228253B1 (en) Steel composition, method for making same and parts produced from said compositions, particularly valves
FR2820150A1 (en) HIGH-RESISTANCE ISOTROPIC STEEL, METHOD OF MANUFACTURING SHEETS AND SHEETS OBTAINED
EP3252175B1 (en) Molded steel alloy, corresponding part and manufacturing method
CN109252088A (en) Ferritic stainless steel and heat-resistant part
JP7302152B2 (en) Cr--Fe--Ni-based alloy product and its manufacturing method
EP3914738A1 (en) Iron-manganese alloy having improved weldability
JP6419108B2 (en) Spark plug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20090904