EP2313895A1 - Fe-co alloy for high dynamic electromagnetic actuator - Google Patents

Fe-co alloy for high dynamic electromagnetic actuator

Info

Publication number
EP2313895A1
EP2313895A1 EP09720281A EP09720281A EP2313895A1 EP 2313895 A1 EP2313895 A1 EP 2313895A1 EP 09720281 A EP09720281 A EP 09720281A EP 09720281 A EP09720281 A EP 09720281A EP 2313895 A1 EP2313895 A1 EP 2313895A1
Authority
EP
European Patent Office
Prior art keywords
alloy
silicon
chromium
aluminum
alloy according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09720281A
Other languages
German (de)
French (fr)
Other versions
EP2313895B1 (en
Inventor
Thierry Waeckerle
Hervé FRAISSE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aperam Alloys Imphy SAS
Original Assignee
ArcelorMittal Stainless and Nickel Alloys SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39427553&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2313895(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ArcelorMittal Stainless and Nickel Alloys SA filed Critical ArcelorMittal Stainless and Nickel Alloys SA
Priority to EP09720281A priority Critical patent/EP2313895B1/en
Priority to SI200930112T priority patent/SI2313895T1/en
Priority to PL09720281T priority patent/PL2313895T3/en
Publication of EP2313895A1 publication Critical patent/EP2313895A1/en
Application granted granted Critical
Publication of EP2313895B1 publication Critical patent/EP2313895B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14716Fe-Ni based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust

Definitions

  • the present invention relates to a Fe-Co alloy more particularly intended for the manufacture of electromagnetic actuator with high dynamics, without being limited thereto.
  • An electromagnetic actuator is an electromagnetic device that converts electrical energy into mechanical energy with an electromagnetic conversion mode. Some of these actuators are called linear because they convert the received electrical energy into a rectilinear movement of a moving part. Such actuators are found in solenoid valves and electro-injectors.
  • a preferred application of such electro-injectors is the direct injection of fuel into combustion engines, especially diesel engines.
  • Another preferred application relates to a particular type of solenoid valve used for the electromagnetic control of the valves of internal combustion engines
  • the electrical energy is supplied in a winding by a series of current pulses, creating a magnetic field that magnetizes a non-closed magnetic yoke, thus having a gap.
  • the geometric characteristics of the cylinder head make it possible to direct most of the magnetic field lines axially vis-à-vis the gap zone. Under, the effect of the electric pulse, the air gap is subject to a magnetic potential difference.
  • the actuator also comprises a core made mobile by the action of the electric current in the coil. Indeed, the magnetic potential difference introduced into the coil between the movable core resting on one of the poles of the cylinder head and the opposite pole of the cylinder head creates an electromagnetic force on the magnetized core, via a magnetic field gradient.
  • the magnetized core is set in motion!
  • the rest position can also be located in the middle of the air gap, thanks to two symmetrical springs, promoting by their stiffness the dynamics of the moving part, in particular for electromagnetically controlled valves.
  • the setting in motion of the mobile core occurs with a phase shift with respect to the moment of generation of the electrical pulses.
  • the metal has an electrical resistivity at 20 0 C p e ⁇ high and in particular greater than 50 ⁇ .cm and a coercive force Hc low, c ' ie less than 32 Oe and preferably less than 8 Oe.
  • the core has a saturation magnetization Js high, ie greater than 1.75 T and preferably greater than 1.9 T, so as to allow a maximum force at the end of this high pulse as possible. It is indeed this force which guarantees the maintenance of the open or closed position of the actuator, which is particularly important when it is necessary to totally interrupt the flow of a fluid at high pressure or to compensate the return force of one or more springs.
  • Such saturation magnetization level thus provides a compact actuator having a high strength and power density.
  • These magnetic cores have various shapes that can be made from wires, bars, plates or rolled sheets. They must therefore have good heat-formability, and preferably good cold-forming ability when necessary.
  • these cores can be subjected to a slightly oxidizing working environment and must therefore have a good resistance to corrosion to resist this type of premature wear.
  • tensile strength Rm greater than 500 MPa and preferably, an elastic limit R 0 , 2 greater than 250 MPa in the hot-rolled state at a thickness of at least 2 mm.
  • Ferrocell (Fe-Co) alloys such as those described in EP 715,320 are generally used for the manufacture of electromagnetic actuators. described have 6 to 30% cobalt, 3 to 8% of one or more elements selected from chromium, molybdenum, vanadium and / or tungsten, the balance being iron. These alloys, however, have insufficient dynamics.
  • the present invention aims to provide a material suitable for the manufacture, economically, of cores for compact electromagnetic actuators with high dynamics and high saturation. This material must also allow implementation hot, and preferably, cold, improved.
  • a first object of the invention thus consists of a Fe-Co alloy whose composition comprises in% by weight:
  • the alloy may further comprise the following additional features:
  • the Fe-Co alloy is such that: ⁇ 10 Co +% Ni ⁇ 22 - the Fe-Co alloy is such that: 1 ⁇ Cr ⁇ 5.5
  • the Fe-Co alloy is such that: Ni ⁇ 1
  • the Fe-Co alloy is such that: Al ⁇ 2
  • the alloy according to the invention has a composition in% by weight which comprises:
  • the alloy according to the invention can be formed into a bar, wire, plate or rolled sheet. It can in particular be used for the manufacture of electromagnetic actuator movable core manufactured from a bar or a wire or a plate or a rolled sheet.
  • Such an electromagnetic actuator comprising a movable core of Fe-Co alloy according to the invention can in particular be used in an injector for an electronically controlled combustion engine or even as an internal combustion engine valve actuator. electronic control.
  • the alloy according to the invention is an iron-cobalt alloy with a low cobalt content having moderate levels of addition elements.
  • the cobalt content is between 6 and 22% by weight in order to obtain a good saturation magnetization while maintaining a high resistivity. It is less than 22% by weight to reduce the amount of expensive additive elements while maintaining good saturation.
  • the nickel content which may partially substitute cobalt, is, however, maintained at less than 4% because its presence considerably increases the coercive field of the alloy.
  • the silicon content of the alloy according to the invention is greater than or equal to 0.2% by weight. Such a minimum content makes it possible to obtain a good mechanical resistance Rm. Moreover, this element makes it possible to very effectively increase the coercive field of the alloy by lowering it significantly. However, the joint addition of aluminum and 6% silicon is limited to preserve the alloy good heat-transformability. It is furthermore preferred to limit this cumulative content to less than 4% by weight in order to keep the alloy good cold processability.
  • the aluminum content of the alloy according to the invention is less than or equal to 4% by weight.
  • This element has a role similar to that of silicon by favoring the obtaining of a weak coercive field. We limit its addition to 4% because otherwise Js would become too weak. However, it does not improve the mechanical properties of the alloy.
  • the chromium content of the alloy according to the invention is between 0.5 and 8% by weight. This essential element of the alloy makes it possible to extend the range of addition of silicon, with respect to the transformation with hot and cold, while maintaining the good properties of resistivity and saturation. However, it is limited because it increases the coercive force of the alloy.
  • the manganese content of the alloy according to the invention is less than or equal to 0.90% by weight. This element is added at a rate of at least 0.10% by weight to improve the heat-transformability of the alloy. Its content is limited because it is a gamma element and the appearance of the ⁇ phase greatly degrades the magnetic performances.
  • the titanium content of the alloy according to the invention is less than or equal to 1% by weight and preferably less than 0.1%, because this element easily forms nitrides, either during production or during annealing. under air or under ammonia, nitrides which strongly degrade the magnetic properties and are therefore harmful.
  • the molybdenum content of the alloy according to the invention is less than or equal to 3% by weight. This element can be added to improve the electrical resistivity of the alloy, in complement or partial substitution of chromium.
  • the carbon content of the alloy according to the invention is less than or equal to 1% by weight, and preferably less than or equal to 0.1% by weight.
  • the presence of carbon deteriorates the magnetic properties of the alloy and so the content is reduced to avoid such degradation.
  • the cumulative vanadium and tungsten content of the alloy according to the invention is less than or equal to 3% by weight. These elements can be added to improve the electrical resistivity of the alloy, in complement or partial substitution of chromium.
  • the cumulative content of niobium and tantalum of the alloy according to the invention is less than or equal to 1% by weight. These elements can be added to improve the ductility of the alloy and thus limit its fragility.
  • the cumulative content of oxygen, nitrogen, sulfur, phosphorus and boron is limited to 0.1% by weight, since these elements are oxidants and tend to form precipitates which are very unfavorable to the magnetic properties and to the mechanical ductility of the material.
  • Such a limitation supposes, in particular, that the alloy according to the invention is manufactured from raw materials of good purity.
  • the alloy according to the invention must also respect a number of relationships between some of these elements. Thus the following four equations must be respected:
  • Relation (3) represents a saturation criterion which makes it possible to ensure that the alloy according to the invention will have saturation magnetization Js of less than 2.2T in a manner consistent with the additions of non-magnetic elements necessary for the need of high dynamics. magnetization.
  • Relation (4) in combination with relation (2), makes it possible to guarantee a high electrical resistivity p e ⁇ , and in particular greater than 50 ⁇ .cm.
  • the manufacture of the alloy according to the invention can be done conventionally for this type of alloy.
  • the various elements constituting the alloy can be melted by induction under vacuum, then cast into ingots, billets or slabs. These are then hot-forged at temperatures ranging from 1000 to 1200 ° C. and then hot-rolled after reheating to a temperature greater than or equal to 1150 ° C., the end-of-rolling temperature being between 800 and 1050 ° C.
  • the plates, bars or hot-rolled strips thus produced can be used as is or cold-rolled after pickling by dipping in one or more acid trays and annealing.
  • Such elements may for example be aluminum, silicon or chromium.
  • the raw materials necessary for producing the alloy were melted by vacuum induction and vacuum cast in a 50 kg ingot.
  • the ingots are then hot-forged at between 1000 and 1200 ° C. and then hot-rolled from heating to
  • the strips are either characterized in the hot rolled state by machining. tensile test specimen, washers for magnetic characterization, elongate samples for measuring electrical resistivity, or characterized after cold rolling to the thickness of
  • the breaking strength Rm is measured on a tensile test piece after annealing the hot rolled at 900 ° C. for 4 hours under H 2.
  • the corrosion resistance Tcor is evaluated on a hot rolled rough surface, ground to obtain a clean surface with a very low roughness, and then left at 20 ° C. in a salt spray atmosphere.
  • the test for suitability for hot or cold processing was carried out by simple observation of non-weakened banks during the rolling operations (hot, cold) of the test ingots.
  • compositions of the test castings are shown in Table 1 below, it being understood that the cumulative contents of all the oxygen, nitrogen, sulfur, phosphorus and boron tests are less than 0.1% by weight and that the rest compositions consists of iron. Table 1
  • the alloy according to the invention makes it possible to combine a set of properties that were not accessible to the prior art:
  • a high electrical resistivity at 20 ° C. typically> 50 ⁇ .cm, while maintaining saturation magnetization at 20 ° C., high to very high, typically> 1, 75T and preferably> 1, 9T, and can not exceed 2.2T because of the additions necessary for the great magnetization dynamics of the alloy.
  • a preferred application of the alloys according to the invention is the manufacture of cores for electromagnetic actuators, whether linear or rotary.
  • Such compact, dynamic and robust actuators can advantageously be used in injectors of direct injection combustion engines, in particular for diesel engines, and in moving parts of actuators controlling the movement of the valves of internal combustion engines.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Soft Magnetic Materials (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Electromagnets (AREA)

Abstract

Iron-cobalt alloy comprises (e.g.): cobalt (>= 6 wt.%) and nickel (= 30 wt.%); silicon (>= 0.2); chromium (0.5-8 wt.%); nickel (= 4 wt.%); manganese (= 4 wt.%); aluminum (= 4 w.%); titanium (= 1 wt.%); carbon (= 1 wt.%); molybdenum (= 3 wt.%); vanadium and tungsten (= 3 wt.%); niobium and tantalum (= 1 wt.%); silicon and aluminum (= 6 wt.%); cobalt and silicon to chromium (less than 27 wt.%); aluminum and molybdenum, and silicon, chromium and vanadium (>= 1.3 wt.%); aluminum and chromium, vanadium and molybdenum, and silicon (>= 50 wt.%); and iron and inevitable impurities (balance). Iron-cobalt alloy comprises: cobalt (>= 6 wt.%) and nickel (= 30 wt.%); silicon (>= 0.2); chromium (0.5-8 wt.%); nickel (= 4 wt.%); manganese (= 4 wt.%); aluminum (= 4 w.%); titanium (= 1 wt.%); carbon (= 1 wt.%); molybdenum (= 3 wt.%); vanadium and tungsten (= 3 wt.%); niobium and tantalum (= 1 wt.%); silicon and aluminum (= 6 wt.%); oxygen, nitrogen, sulfur, phosphorus and boron (= 0.1); cobalt and silicon to chromium (less than 27 wt.%); silicon, aluminum chromium, vanadium, molybdenum and titanium (>= 3.5 wt.%); 1.23 wt.% of aluminum and molybdenum, and 0.84 wt.% of silicon, chromium and vanadium (>= 1.3 wt.%); 14.5 wt.% of aluminum and chromium, 21 wt.% of vanadium and molybdenum, and 25 wt.% of silicon (>= 50 wt.%); and iron and inevitable impurities (balance).

Description

Alliage Fe-Co pour actionneur électromagnétique à grande dynamique Fe-Co alloy for high dynamic range electromagnetic actuator
La présente invention concerne un alliage Fe-Co plus particulièrement destiné à la fabrication d'actionneur électromagnétique à grande dynamique, sans pour autant y être limitée.The present invention relates to a Fe-Co alloy more particularly intended for the manufacture of electromagnetic actuator with high dynamics, without being limited thereto.
Un actionneur électromagnétique est un dispositif électromagnétique convertissant une énergie électrique en une énergie mécanique avec un mode de conversion électromagnétique. Certains de ces actionneurs sont dits linéaires car ils convertissent l'énergie électrique reçue en un déplacement rectiligne d'une pièce mobile. De tels actionneurs se rencontrent dans des électrovannes et dans des électro-injecteurs.An electromagnetic actuator is an electromagnetic device that converts electrical energy into mechanical energy with an electromagnetic conversion mode. Some of these actuators are called linear because they convert the received electrical energy into a rectilinear movement of a moving part. Such actuators are found in solenoid valves and electro-injectors.
Une application privilégiée de tels électro-injecteurs est l'injection directe de carburant dans les moteurs à explosion, notamment les moteurs Diesel. Une autre application privilégiée concerne un type d'électrovanne particulier utilisé pour la commande électromagnétique des soupapes de moteurs à combustion interneA preferred application of such electro-injectors is the direct injection of fuel into combustion engines, especially diesel engines. Another preferred application relates to a particular type of solenoid valve used for the electromagnetic control of the valves of internal combustion engines
(essence ou Diesel).(gasoline or diesel).
Dans ces actionneurs, l'énergie électrique est apportée dans un bobinage par une série d'impulsions de courant, créant un champ magnétique qui aimante une culasse magnétique non fermée, comportant donc un entrefer. Les caractéristiques géométriques de la culasse permettent de diriger la majeure partie des lignes de champ magnétique de façon axiale vis-à-vis de la zone d'entrefer. Sous, l'effet de l'impulsion électrique, l'entrefer se trouve soumis à une différence de potentiel magnétique. L'actionneur comporte également un noyau rendu mobile par l'action du courant électrique dans la bobine. En effet, la différence de potentiel magnétique introduite dans la bobine entre le noyau mobile au repos sur un des pôles de la culasse et le pôle opposé de la culasse crée une force électromagnétique sur le noyau aimanté, via un gradient de champ magnétique. Le noyau aimanté est ainsi mis en mouvement! La position de repos peut aussi bien être située au milieu de l'entrefer, grâce à deux ressorts symétriques, favorisant par leur raideur la dynamique de la pièce mobile, en particulier pour les soupapes à commande électromagnétique. La mise en mouvement du noyau mobile se produit avec un déphasage par rapport à l'instant de génération des impulsions électriques. Pour un fonctionnement optimal de l'actionneur, on montre qu'il est nécessaire que le métal possède une résistivité électrique à 200C peι élevée, et en particulier supérieure à 50 μΩ.cm et un champ coercitif Hc bas, c'est à dire inférieur à 32 Oe et de préférence inférieur à 8 Oe. Ces conditions permettent d'obtenir une excellente dynamique d'aimantation par la génération de faibles courants induits dans la culasse et le noyau magnétique, permettant d'atteindre rapidement l'aimantation minimale du noyau engendrant sa mise en mouvement. Cette excellente dynamique permet ainsi de réduire les temps d'actionnement et la consommation électrique de l'actionneur.In these actuators, the electrical energy is supplied in a winding by a series of current pulses, creating a magnetic field that magnetizes a non-closed magnetic yoke, thus having a gap. The geometric characteristics of the cylinder head make it possible to direct most of the magnetic field lines axially vis-à-vis the gap zone. Under, the effect of the electric pulse, the air gap is subject to a magnetic potential difference. The actuator also comprises a core made mobile by the action of the electric current in the coil. Indeed, the magnetic potential difference introduced into the coil between the movable core resting on one of the poles of the cylinder head and the opposite pole of the cylinder head creates an electromagnetic force on the magnetized core, via a magnetic field gradient. The magnetized core is set in motion! The rest position can also be located in the middle of the air gap, thanks to two symmetrical springs, promoting by their stiffness the dynamics of the moving part, in particular for electromagnetically controlled valves. The setting in motion of the mobile core occurs with a phase shift with respect to the moment of generation of the electrical pulses. For optimum operation of the actuator, it is shown that it is necessary that the metal has an electrical resistivity at 20 0 C p e ι high and in particular greater than 50 μΩ.cm and a coercive force Hc low, c ' ie less than 32 Oe and preferably less than 8 Oe. These conditions make it possible to obtain an excellent magnetization dynamic by the generation of weak currents induced in the yoke and the magnetic core, making it possible to quickly reach the minimum magnetization of the core generating its movement. This excellent dynamics thus makes it possible to reduce the actuation times and the electrical consumption of the actuator.
Il est également nécessaire que le noyau possède une aimantation à saturation Js élevée, c'est à dire supérieure à 1 ,75 T et de préférence supérieure à 1 ,9 T, de manière à autoriser une force maximale en fin d'impulsion aussi élevée que possible. C'est en effet cette force qui garantit le maintien de la position ouverte ou fermée de l'actionneur, ce qui est particulièrement important lorsqu'il s'agit d'interrompre totalement l'écoulement d'un fluide à haute pression ou de compenser la force de rappel d'un ou plusieurs ressorts. Un tel niveau d'aimantation à saturation permet ainsi d'obtenir un actionneur compact présentant une force et une puissance volumique élevées. Ces noyaux magnétiques ont des formes diverses qui peuvent être fabriquées à partir de fils, de barres, de plaques ou de tôles laminées. Ils doivent donc présenter une bonne aptitude à la transformation à chaud, et de préférence, une bonne aptitude à la mise en forme à froid lorsque celle-ci est nécessaire.It is also necessary that the core has a saturation magnetization Js high, ie greater than 1.75 T and preferably greater than 1.9 T, so as to allow a maximum force at the end of this high pulse as possible. It is indeed this force which guarantees the maintenance of the open or closed position of the actuator, which is particularly important when it is necessary to totally interrupt the flow of a fluid at high pressure or to compensate the return force of one or more springs. Such saturation magnetization level thus provides a compact actuator having a high strength and power density. These magnetic cores have various shapes that can be made from wires, bars, plates or rolled sheets. They must therefore have good heat-formability, and preferably good cold-forming ability when necessary.
Une fois fabriqués et mis en service, ces noyaux peuvent être soumis à un environnement de travail légèrement oxydant et doivent donc présenter une bonne tenue à la corrosion pour résister à ce type d'usure prématurée.Once manufactured and put into service, these cores can be subjected to a slightly oxidizing working environment and must therefore have a good resistance to corrosion to resist this type of premature wear.
Ils sont en outre soumis à des chocs multiples lorsqu'ils terminent leurs courses en butée de façon brutale et doivent donc présenter de bonnes caractéristiques mécaniques, c'est à dire, dans la pratique, une résistance à la traction Rm supérieure à 500 MPa et , de préférence, une limite élastique R0,2 supérieure à 250MPa à l'état laminé à chaud à une épaisseur d'au moins 2 mm.They are also subjected to multiple shocks when they terminate abruptly in their abutment races and must therefore have good mechanical characteristics, that is to say, in practice, a tensile strength Rm greater than 500 MPa and preferably, an elastic limit R 0 , 2 greater than 250 MPa in the hot-rolled state at a thickness of at least 2 mm.
On utilise généralement pour la fabrication d'actionneurs électromagnétiques des alliages fer-cobalt (Fe-Co) tels que ceux décrits dans EP 715 320. Les matériaux décrits comportent de 6 à 30% de cobalt, de 3 à 8% d'un ou plusieurs éléments choisis parmi le chrome, le molybdène, le vanadium et/ou le tungstène, le reste étant du fer. Ces alliages présentent cependant une dynamique insuffisante.Ferrocell (Fe-Co) alloys such as those described in EP 715,320 are generally used for the manufacture of electromagnetic actuators. described have 6 to 30% cobalt, 3 to 8% of one or more elements selected from chromium, molybdenum, vanadium and / or tungsten, the balance being iron. These alloys, however, have insufficient dynamics.
La présente invention vise à mettre à disposition un matériau adapté à la fabrication, de manière économique, de noyaux pour actionneurs électromagnétiques compacts à grande dynamique et à saturation élevée. Ce matériau doit en outre permettre une mise en oeuvre à chaud, et de préférence, à froid, améliorée.The present invention aims to provide a material suitable for the manufacture, economically, of cores for compact electromagnetic actuators with high dynamics and high saturation. This material must also allow implementation hot, and preferably, cold, improved.
Un premier objet de l'invention est ainsi constitué par un alliage Fe-Co dont la composition comprend en % en poids :A first object of the invention thus consists of a Fe-Co alloy whose composition comprises in% by weight:
6 ≤ Co + Ni ≤ 226 ≤ Co + Ni ≤ 22
Si > 0,2If> 0.2
0,5 < Cr < 80.5 <Cr <8
Ni < 4 0,10 < Mn < 0,90Ni <4 0.10 <Mn <0.90
Al < 4Al <4
Ti < 1Ti <1
C ≤ 1C ≤ 1
Mo ≤ 3 V + W ≤ 3Mo ≤ 3 V + W ≤ 3
Nb + Ta < 1Nb + Ta <1
Si + Al ≤ 6If + Al ≤ 6
O + N + S + P + B < 0,1 le reste de la composition étant constitué de fer et d'impuretés inévitables dues à l'élaboration, étant entendu en outre que les teneurs en respectent les relations suivantes :O + N + S + P + B <0.1 the remainder of the composition consisting of iron and unavoidable impurities due to the elaboration, it being further understood that the contents respect the following relations:
Co + Si -Cr < 27Co + Si -Cr <27
Si + Al + Cr + V +Mo + Ti > 3,5Si + Al + Cr + V + Mo + Ti> 3.5
1 ,23(Al + Mo) + 0,84(Si + Cr + V) > 1 ,3 14,5(AI + Cr) +12(V+Mo) + 25Si > 50 Dans des modes de réalisation particuliers, considérés seuls ou en combinaison, l'alliage peut en outre comporter les caractéristiques additionnelles suivantes :1, 23 (Al + Mo) + 0.84 (Si + Cr + V)> 1, 3 14.5 (Al + Cr) +12 (V + Mo) + 25Si> 50 In particular embodiments, considered alone or in combination, the alloy may further comprise the following additional features:
- l'alliage Fe-Co est tel que : 10 < %Co + %Ni < 22 - l'alliage Fe-Co est tel que : 1 ≤ Cr < 5,5the Fe-Co alloy is such that: <10 Co +% Ni <22 - the Fe-Co alloy is such that: 1 ≤ Cr <5.5
- l'alliage Fe-Co est tel que : Ni ≤ 1the Fe-Co alloy is such that: Ni ≤ 1
- l'alliage Fe-Co est tel que : Al < 2the Fe-Co alloy is such that: Al <2
Dans un mode de réalisation plus particulièrement préféré, l'alliage selon l'invention présente une composition en % en poids qui comprend :In a more particularly preferred embodiment, the alloy according to the invention has a composition in% by weight which comprises:
6 < Co + Ni < 226 <Co + Ni <22
Si > 0,2If> 0.2
0,5 < Cr ≤ 60.5 <Cr ≤ 6
Ni ≤ 1 . 0,10 ≤ Mn < 0,90Ni ≤ 1. 0.10 ≤ Mn <0.90
Al < 4Al <4
Ti < 0,1Ti <0.1
C ≤ 0,1C ≤ 0.1
Mo < 3 V + W < 3Mo <3 V + W <3
Nb + Ta < 1Nb + Ta <1
Si + Al < 6Si + Al <6
O + N + S + P + B ≤ 0,1 le reste de la composition étant constitué de fer et d'impuretés dues à l'élaboration, étant entendu en outre que les teneurs en silicium, aluminium, cobalt, chrome, vanadium, molybdène, titane et nickel respectent les relations suivantes :O + N + S + P + B ≤ 0.1 the remainder of the composition consisting of iron and impurities due to the preparation, it being understood further that the contents of silicon, aluminum, cobalt, chromium, vanadium, molybdenum, titanium and nickel respect the following relationships:
Co + Si -Cr < 27Co + Si -Cr <27
Si + Al + Cr + V +Mo + Ti > 3,5 1 ,23(Al + Mo) + 0,84(Si + Cr + V) > 1 ,3If + Al + Cr + V + Mo + Ti> 3.5 1, 23 (Al + Mo) + 0.84 (Si + Cr + V)> 1, 3
14,5(Al + Cr) +12(V+Mo) + 25Si > 5014.5 (Al + Cr) +12 (V + Mo) + 25Si> 50
L'alliage selon l'invention peut être mis sous forme de barre, fil, plaque ou tôle laminée. II peut notamment servir à la fabrication de noyau mobile d'actionneur électromagnétique fabriqué à partir d'une barre ou d'un fil ou d'une plaque ou d'une tôle laminée.The alloy according to the invention can be formed into a bar, wire, plate or rolled sheet. It can in particular be used for the manufacture of electromagnetic actuator movable core manufactured from a bar or a wire or a plate or a rolled sheet.
Un tel actionneur électromagnétique comportant un noyau mobile en alliage Fe-Co selon l'invention peut notamment être utilisé au sein d'un injecteur pour moteur à explosion à régulation électronique ou bien encore en tant qu'actionneur de soupape de moteur à combustion interne à commande électronique.Such an electromagnetic actuator comprising a movable core of Fe-Co alloy according to the invention can in particular be used in an injector for an electronically controlled combustion engine or even as an internal combustion engine valve actuator. electronic control.
Comme on l'a vu précédemment, l'alliage selon l'invention est un alliage fer-cobalt à faible teneur en cobalt comportant des teneurs modérées en éléments d'addition.As has been seen previously, the alloy according to the invention is an iron-cobalt alloy with a low cobalt content having moderate levels of addition elements.
La teneur en cobalt, éventuellement substitué partiellement par du nickel, est comprise entre 6 et 22% en poids afin d'obtenir une bonne aimantation à saturation tout en conservant une résistivité élevée. Elle est inférieure à 22% en poids pour réduire la quantité d'éléments d'addition coûteux tout en conservant une bonne saturation.The cobalt content, optionally partially substituted by nickel, is between 6 and 22% by weight in order to obtain a good saturation magnetization while maintaining a high resistivity. It is less than 22% by weight to reduce the amount of expensive additive elements while maintaining good saturation.
La teneur en nickel, qui peut venir en substitution partielle du cobalt, est cependant maintenue à moins de 4% car sa présence augmente considérablement le champ coercitif de l'alliage.The nickel content, which may partially substitute cobalt, is, however, maintained at less than 4% because its presence considerably increases the coercive field of the alloy.
La teneur en silicium de l'alliage selon l'invention est supérieure ou égale à 0,2% en poids. Une telle teneur minimale permet d'obtenir une bonne résistance mécanique Rm. En outre, cet élément permet d'accroître très efficacement le champ coercitif de l'alliage en le baissant significativement. On limite cependant l'addition conjointe d'aluminium et de silicium à 6% pour conserver à l'alliage une bonne aptitude à la transformation à chaud. On préfère en outre limiter cette teneur cumulée à moins de 4% en poids afin de conserver à l'alliage une bonne aptitude à la transformation à froid.The silicon content of the alloy according to the invention is greater than or equal to 0.2% by weight. Such a minimum content makes it possible to obtain a good mechanical resistance Rm. Moreover, this element makes it possible to very effectively increase the coercive field of the alloy by lowering it significantly. However, the joint addition of aluminum and 6% silicon is limited to preserve the alloy good heat-transformability. It is furthermore preferred to limit this cumulative content to less than 4% by weight in order to keep the alloy good cold processability.
La teneur en aluminium de l'alliage selon l'invention est inférieure ou égale à 4% en poids. Cet élément a un rôle similaire à celui du silicium en favorisant l'obtention d'un faible champ coercitif. On limite son ajout à 4% car sinon Js deviendrait trop faible. Il ne permet cependant pas d'améliorer les propriétés mécaniques de l'alliage. La teneur en chrome de l'alliage selon l'invention est comprise entre 0,5 et 8% en poids. Cet élément essentiel de l'alliage permet d'étendre la plage d'addition du silicium, vis-à-vis de la transformation à chaud et à froid, tout en maintenant les bonnes propriétés de résistivité et de saturation. On limite cependant son ajout, car il augmente le champ coercitif de l'alliage. La teneur en manganèse de l'alliage selon l'invention est inférieure ou égale à 0,90% en poids. Cet élément est ajouté à raison d'au moins 0,10% en poids pour améliorer l'aptitude à la transformation à chaud de l'alliage. On limite sa teneur car c'est un élément gammagène et l'apparition de la phase γ dégrade fortement les performances magnétiques.The aluminum content of the alloy according to the invention is less than or equal to 4% by weight. This element has a role similar to that of silicon by favoring the obtaining of a weak coercive field. We limit its addition to 4% because otherwise Js would become too weak. However, it does not improve the mechanical properties of the alloy. The chromium content of the alloy according to the invention is between 0.5 and 8% by weight. This essential element of the alloy makes it possible to extend the range of addition of silicon, with respect to the transformation with hot and cold, while maintaining the good properties of resistivity and saturation. However, it is limited because it increases the coercive force of the alloy. The manganese content of the alloy according to the invention is less than or equal to 0.90% by weight. This element is added at a rate of at least 0.10% by weight to improve the heat-transformability of the alloy. Its content is limited because it is a gamma element and the appearance of the γ phase greatly degrades the magnetic performances.
La teneur en titane de l'alliage selon l'invention est inférieure ou égale à 1% en poids et de préférence moins de 0,1 %, car cet élément forme facilement des nitrures, soit lors de l'élaboration, soit lors de recuit sous air ou sous ammoniaque, nitrures qui dégradent fortement les propriétés magnétiques et sont donc néfastes. La teneur en molybdène de l'alliage selon l'invention est inférieure ou égale à 3% en poids. Cet élément peut être ajouté pour améliorer la résistivité électrique de l'alliage, en complément ou en substitution partielle du chrome.The titanium content of the alloy according to the invention is less than or equal to 1% by weight and preferably less than 0.1%, because this element easily forms nitrides, either during production or during annealing. under air or under ammonia, nitrides which strongly degrade the magnetic properties and are therefore harmful. The molybdenum content of the alloy according to the invention is less than or equal to 3% by weight. This element can be added to improve the electrical resistivity of the alloy, in complement or partial substitution of chromium.
La teneur en carbone de l'alliage selon l'invention est inférieure ou égale à 1 % en poids, et de préférence inférieure ou égale à 0,1 % en poids. La présence de carbone détériore les propriétés magnétiques de l'alliage et on en réduit donc la teneur pour éviter une telle dégradation.The carbon content of the alloy according to the invention is less than or equal to 1% by weight, and preferably less than or equal to 0.1% by weight. The presence of carbon deteriorates the magnetic properties of the alloy and so the content is reduced to avoid such degradation.
La teneur cumulée en vanadium et tungstène de l'alliage selon l'invention est inférieure ou égale à 3% en poids. Ces éléments peuvent être ajoutés pour améliorer la résistivité électrique de l'alliage, en complément ou en substitution partielle du chrome. La teneur cumulée en niobium et tantale de l'alliage selon l'invention est inférieure ou égale à 1 % en poids. Ces éléments peuvent être ajouter pour améliorer la ductilité de l'alliage et limiter ainsi sa fragilité.The cumulative vanadium and tungsten content of the alloy according to the invention is less than or equal to 3% by weight. These elements can be added to improve the electrical resistivity of the alloy, in complement or partial substitution of chromium. The cumulative content of niobium and tantalum of the alloy according to the invention is less than or equal to 1% by weight. These elements can be added to improve the ductility of the alloy and thus limit its fragility.
Enfin, la teneur cumulée en oxygène, azote, soufre, phosphore et bore est limitée à 0,1% en poids, car ces éléments sont des oxydants et tendent à former des précipités très défavorables aux propriétés magnétiques et à la ductilité mécanique du matériau. Une telle limitation suppose notamment que l'on fabrique l'alliage selon l'invention à partir de matières premières de bonne pureté.Finally, the cumulative content of oxygen, nitrogen, sulfur, phosphorus and boron is limited to 0.1% by weight, since these elements are oxidants and tend to form precipitates which are very unfavorable to the magnetic properties and to the mechanical ductility of the material. Such a limitation supposes, in particular, that the alloy according to the invention is manufactured from raw materials of good purity.
Par ailleurs, l'alliage selon l'invention doit également respecter un certain nombre de relations entre certains de ces éléments. Ainsi les quatre équations suivantes doivent être respectées :Moreover, the alloy according to the invention must also respect a number of relationships between some of these elements. Thus the following four equations must be respected:
Co + Si -Cr ≤ 27 (1)Co + Si -Cr ≤ 27 (1)
Si + Al + Cr + V +Mo + Ti > 3,5 (2)Si + Al + Cr + V + Mo + Ti> 3.5 (2)
1 ,23(Al + Mo) + 0,84(Si + Cr + V) > 1 ,3 (3)1, 23 (Al + Mo) + 0.84 (Si + Cr + V)> 1, 3 (3)
14,5(AI + Cr) +12(V+Mo) + 25Si > 50 (4) La relation (1) permet, en équilibrant le silicium et le chrome, de garantir une bonne aptitude à la transformation à chaud et donc l'absence de criques ou de fissures lors du forgeage et du laminage. La relation (2), en combinaison avec la relation (4), permet de garantir une résistivité électrique peι élevée, et en particulier supérieure à 50 μΩ.cm.14.5 (AI + Cr) +12 (V + Mo) + 25Si> 50 (4) The equation (1) makes it possible, by equilibrating the silicon and the chromium, to guarantee a good aptitude for hot transformation and thus the absence of cracks or cracks during forging and rolling. The relationship (2), in combination with the relation (4), makes it possible to guarantee a high electrical resistivity p e ι, and in particular greater than 50 μΩ.cm.
La relation (3) représente un critère de saturation qui permet d'assurer que l'alliage selon l'invention présentera une aimantation à saturation Js inférieure à 2.2T de façon cohérente avec les additions d'éléments non magnétiques nécessaires au besoin de forte dynamique d'aimantation.Relation (3) represents a saturation criterion which makes it possible to ensure that the alloy according to the invention will have saturation magnetization Js of less than 2.2T in a manner consistent with the additions of non-magnetic elements necessary for the need of high dynamics. magnetization.
La relation (4), en combinaison avec la relation (2), permet de garantir une résistivité électrique peι élevée, et en particulier supérieure à 50 μΩ.cm.Relation (4), in combination with relation (2), makes it possible to guarantee a high electrical resistivity p e ι, and in particular greater than 50 μΩ.cm.
La fabrication de l'alliage selon l'invention peut se faire de façon classique pour ce type d'alliage. Ainsi, les différents éléments constituant l'alliage peuvent être fondus par induction sous vide, puis coulés en lingots, billettes ou brames. Ceux-ci sont ensuite forgés à chaud à des températures allant de 1000 à 12000C, puis laminées à chaud après réchauffage à une température supérieure ou égale à 1150°C, la température de fin de laminage étant comprise entre 800 et 10500C. Les plaques, barres ou bandes laminées à chaud ainsi produites peuvent être utilisées en l'état ou bien encore laminées à froid après décapage par trempé dans un ou plusieurs bacs d'acide et recuites.The manufacture of the alloy according to the invention can be done conventionally for this type of alloy. Thus, the various elements constituting the alloy can be melted by induction under vacuum, then cast into ingots, billets or slabs. These are then hot-forged at temperatures ranging from 1000 to 1200 ° C. and then hot-rolled after reheating to a temperature greater than or equal to 1150 ° C., the end-of-rolling temperature being between 800 and 1050 ° C. The plates, bars or hot-rolled strips thus produced can be used as is or cold-rolled after pickling by dipping in one or more acid trays and annealing.
Il est également possible, afin d'améliorer encore la dynamique d'aimantation de l'alliage selon l'invention, de faire diffuser en sous surface des éléments déposés par tout procédé adapté à la surface de la pièce fabriquée. De tels éléments peuvent par exemple être l'aluminium, le silicium ou le chrome. It is also possible, in order to further improve the magnetization dynamics of the alloy according to the invention, to diffuse under the surface of the deposited elements by any method adapted to the surface of the manufactured part. Such elements may for example be aluminum, silicon or chromium.
Essaistesting
Les matières premières nécessaires à l'élaboration de l'alliage ont été fondues par induction sous vide et coulées sous vide en lingot de 50kg. Les lingots sont ensuite forgés à chaud entre 1000 et 12000C puis laminés à chaud depuis un réchauffage àThe raw materials necessary for producing the alloy were melted by vacuum induction and vacuum cast in a 50 kg ingot. The ingots are then hot-forged at between 1000 and 1200 ° C. and then hot-rolled from heating to
11500C jusqu'à une épaisseur de 4 à 5mm pour une température de fin de laminage à chaud d'au moins 8000C. Après décapage chimique acide, les bandes sont soit caractérisées dans l'état laminé à chaud par usinage d'éprouvette de traction, de rondelles pour caractérisation magnétique, d'échantillons allongés pour mesure de résistivité électrique, ou bien caractérisées après laminage à froid jusqu'à l'épaisseur de1150 0 C to a thickness of 4 to 5 mm for a hot rolling end temperature of at least 800 ° C. After acidic etching, the strips are either characterized in the hot rolled state by machining. tensile test specimen, washers for magnetic characterization, elongate samples for measuring electrical resistivity, or characterized after cold rolling to the thickness of
0,6mm pour le même type de prélèvement et de caractérisation.0.6mm for the same type of sampling and characterization.
Selon les cas, ces deux types d'état métallurgique (état laminé à chaud : LAC et laminé à froid : LAF) peuvent être caractérisés en l'état ou après recuit à 900°C pendant 4 heures sous H2 et refroidissement rapide. Sauf indication contraire toutes les données qui suivent ont été obtenues après laminage à froid et recuit.Depending on the case, these two types of metallurgical state (hot rolled state: LAC and cold rolled: LAF) can be characterized in the state or after annealing at 900 ° C for 4 hours under H2 and rapid cooling. Unless otherwise indicated all the following data were obtained after cold rolling and annealing.
La résistance mécanique à rupture Rm est mesurée sur éprouvette de traction après recuit du laminé à chaud à 9000C pendant 4 heures sous H2.The breaking strength Rm is measured on a tensile test piece after annealing the hot rolled at 900 ° C. for 4 hours under H 2.
La tenue à la corrosion Tcor est évaluée sur surface brut de laminé à chaud, rectifiée afin d'avoir une surface propre et à très faible rugosité, puis laissée à 200C en atmosphère de brouillard salin.The corrosion resistance Tcor is evaluated on a hot rolled rough surface, ground to obtain a clean surface with a very low roughness, and then left at 20 ° C. in a salt spray atmosphere.
Le test d'aptitude à la transformation à chaud ou à froid a été réalisé par simple observation de rives non fragilisées lors des opérations de laminage (à chaud, à froid) des lingots d'essai.The test for suitability for hot or cold processing was carried out by simple observation of non-weakened banks during the rolling operations (hot, cold) of the test ingots.
Les compositions des coulées d'essai sont reprises dans le tableau 1 ci-après, étant entendu que les teneurs cumulées de tous les essais en oxygène, azote, soufre, phosphore et bore sont inférieures à 0,1% en poids et que le reste des compositions est constitué de fer. Tableau 1The compositions of the test castings are shown in Table 1 below, it being understood that the cumulative contents of all the oxygen, nitrogen, sulfur, phosphorus and boron tests are less than 0.1% by weight and that the rest compositions consists of iron. Table 1
: essais selon l'invention : tests according to the invention
Les résultats des essais sont repris dans le tableau 2 ci-dessous : Tableau 2The results of the tests are shown in Table 2 below: Table 2
essais selon l'invention, NE : non évalué tests according to the invention, NE: not evaluated
Comme on peut le voir à partir de ces essais, l'alliage selon l'invention permet de réunir un ensemble de propriétés qui n'étaient pas accessible à l'art antérieur:As can be seen from these tests, the alloy according to the invention makes it possible to combine a set of properties that were not accessible to the prior art:
- un champ coercitif Hc à 200C modéré à faible sur des états métallurgiques aussi bien massifs (plaque LAC de quelques mm d'épaisseur) que mince (laminé à froid de 0,1 à 2mm d'épaisseur),a coercive field Hc at 20 ° C. moderate to low on metallurgical states both solid (LAC plate a few mm thick) and thin (cold rolled from 0.1 to 2 mm thick),
- une excellente ductilité en transformation à chaud ou à froid du matériau,excellent ductility in hot or cold transformation of the material,
- une résistivité électrique à 200C élevée, typiquement > 50μΩ.cm, tout en conservant une aimantation à saturation à 20°C élevée à très élevée, typiquement >1 ,75T et de préférence >1 ,9T, et ne pouvant excéder 2,2T du fait des additions nécessaires à la grande dynamique d'aimantation de l'alliage.a high electrical resistivity at 20 ° C., typically> 50 μΩ.cm, while maintaining saturation magnetization at 20 ° C., high to very high, typically> 1, 75T and preferably> 1, 9T, and can not exceed 2.2T because of the additions necessary for the great magnetization dynamics of the alloy.
- une résistance à la traction d'au moins 500MPa dans l'état laminé à chaud à une épaisseur d'au moins 2mm, - une tenue à la corrosion satisfaisante,- a tensile strength of at least 500 MPa in the hot-rolled state to a thickness of at least 2 mm, - a satisfactory corrosion resistance,
- un coût du matériau limité.- a limited material cost.
Comme on l'a vu précédemment, une application privilégiée des alliages selon l'invention est la fabrication de noyaux pour actionneurs électromagnétiques, qu'ils soient linéaires ou rotatifs. De tels actionneurs compacts, dynamiques et robustes peuvent avantageusement être utilisés dans des injecteurs de moteurs à explosion à injection directe, notamment pour moteurs Diesel, et dans des pièces mobiles d'actionneurs commandant le mouvement des soupapes de moteurs à combustion interne. As has been seen above, a preferred application of the alloys according to the invention is the manufacture of cores for electromagnetic actuators, whether linear or rotary. Such compact, dynamic and robust actuators can advantageously be used in injectors of direct injection combustion engines, in particular for diesel engines, and in moving parts of actuators controlling the movement of the valves of internal combustion engines.

Claims

REVENDICATIONS
1. Alliage Fe-Co dont la composition comprend en % en poids :1. Fe-Co alloy whose composition comprises in% by weight:
6 < Co + Ni < 22 Si > 0,26 <Co + Ni <22 Si> 0.2
0,5 < Cr < 80.5 <Cr <8
Ni<4Or <4
0,10 ≤ Mn < 0,900.10 ≤ Mn <0.90
Al < 4 Ti < 1Al <4 Ti <1
C< 1C <1
Mo<3Mo <3
V + W<3V + W <3
Nb + Ta < 1 Si+AI<6Nb + Ta <1 Si + AI <6
0 + N + S + P + B<0,1 le reste de la composition étant constitué de fer et d'impuretés inévitables dues à l'élaboration, étant entendu en outre que les teneurs en respectent les relations suivantes : Co + Si -Cr < 270 + N + S + P + B <0.1 the remainder of the composition consisting of iron and inevitable impurities due to the elaboration, it being further understood that the contents are in the following relationships: Co + Si - Cr <27
Si +Al + Cr + V +Mo + Ti > 3,5Si + Al + Cr + V + Mo + Ti> 3.5
1 ,23(Al + Mo) + 0,84(Si + Cr + V) > 1,31, 23 (Al + Mo) + 0.84 (Si + Cr + V)> 1.3
14,5(Al + Cr) +12(V+Mo) + 25Si > 5014.5 (Al + Cr) +12 (V + Mo) + 25Si> 50
2. Alliage Fe-Co selon la revendication 1, dans lequel :2. Fe-Co alloy according to claim 1, wherein:
10<%Co + %Ni<2210 <% Co +% Ni <22
3. Alliage Fe-Co selon l'une ou l'autre des revendications 1 ou 2, dans lequel :3. Fe-Co alloy according to either of Claims 1 or 2, in which:
1 ≤Cr≤5,51 ≤Cr≤5.5
4. Alliage Fe-Co selon l'une quelconque des revendications 1 à 3, dans lequel :4. Fe-Co alloy according to any one of claims 1 to 3, wherein:
Ni<1 Ni <1
5. Alliage Fe-Co selon l'une quelconque des revendications 1 à 4, dans lequel : Al < 25. Fe-Co alloy according to any one of claims 1 to 4, wherein: Al <2
6. Alliage selon la revendication 1 , dont la composition en % en poids comprend : 6 < Co + Ni ≤ 226. An alloy according to claim 1, the composition in% by weight comprises: 6 <Co + Ni ≤ 22
Si > 0,2If> 0.2
0,5 ≤ Cr < 60.5 ≤ Cr <6
Ni ≤ 1Ni ≤ 1
0,10 < Mn < 0,90 Al < 40.10 <Mn <0.90 Al <4
Ti < 0,1Ti <0.1
C < 0,1C <0.1
Mo < 3Mo <3
V + W ≤ 3 Nb + Ta < 1V + W ≤ 3 Nb + Ta <1
Si + Al ≤ 6If + Al ≤ 6
O + N + S + P + B < 0,1 le reste de la composition étant constitué de fer et d'impuretés dues à l'élaboration, étant entendu en outre que les teneurs en silicium, aluminium, cobalt, chrome, vanadium, molybdène, titane et nickel respectent les relations suivantes :O + N + S + P + B <0.1 the remainder of the composition being made up of iron and impurities due to the preparation, it being understood moreover that the contents of silicon, aluminum, cobalt, chromium, vanadium, molybdenum, titanium and nickel respect the following relationships:
Co + Si -Cr < 27Co + Si -Cr <27
Si + Al + Cr + V +Mo + Ti > 3,5Si + Al + Cr + V + Mo + Ti> 3.5
1 ,23(Al + Mo) + 0,84(Si + Cr + V) > 1,3 14,5(AI + Cr) +12(V+Mo) + 25Si > 501, 23 (Al + Mo) + 0.84 (Si + Cr + V)> 1.3 14.5 (AI + Cr) +12 (V + Mo) + 25Si> 50
7. Barre, fil, plaque ou tôle laminée en alliage Fe-Co selon l'une quelconque des revendications 1 à 6.7. Bar, wire, plate or rolled Fe-Co alloy sheet according to any one of claims 1 to 6.
8. Actionneur électromagnétique comprenant un noyau mobile fabriqué à partir d'une barre ou d'un fil ou d'une plaque ou d'une tôle laminée selon la revendication 7. An electromagnetic actuator comprising a movable core made from a bar or wire or plate or rolled sheet according to claim 7.
9. Utilisation d'un actionneur électromagnétique selon la revendication 8, dans un injecteur pour moteur à explosion à régulation électronique.9. Use of an electromagnetic actuator according to claim 8 in an injector for an electronically controlled combustion engine.
10. Utilisation d'un actionneur électromagnétique selon la revendication 8, dans un moteur à combustion interne à commande électronique. 10. Use of an electromagnetic actuator according to claim 8 in an electronically controlled internal combustion engine.
EP09720281A 2008-01-22 2009-01-14 Fe-co alloy for high dynamic electromagnetic actuator Active EP2313895B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09720281A EP2313895B1 (en) 2008-01-22 2009-01-14 Fe-co alloy for high dynamic electromagnetic actuator
SI200930112T SI2313895T1 (en) 2008-01-22 2009-01-14 Fe-co alloy for high dynamic electromagnetic actuator
PL09720281T PL2313895T3 (en) 2008-01-22 2009-01-14 Fe-co alloy for high dynamic electromagnetic actuator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08290057A EP2083428A1 (en) 2008-01-22 2008-01-22 Fe-Co alloy for highly dynamic electromagnetic actuator
PCT/FR2009/000039 WO2009112672A1 (en) 2008-01-22 2009-01-14 Fe-co alloy for high dynamic electromagnetic actuator
EP09720281A EP2313895B1 (en) 2008-01-22 2009-01-14 Fe-co alloy for high dynamic electromagnetic actuator

Publications (2)

Publication Number Publication Date
EP2313895A1 true EP2313895A1 (en) 2011-04-27
EP2313895B1 EP2313895B1 (en) 2011-10-05

Family

ID=39427553

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08290057A Withdrawn EP2083428A1 (en) 2008-01-22 2008-01-22 Fe-Co alloy for highly dynamic electromagnetic actuator
EP09720281A Active EP2313895B1 (en) 2008-01-22 2009-01-14 Fe-co alloy for high dynamic electromagnetic actuator

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP08290057A Withdrawn EP2083428A1 (en) 2008-01-22 2008-01-22 Fe-Co alloy for highly dynamic electromagnetic actuator

Country Status (14)

Country Link
US (1) US8951364B2 (en)
EP (2) EP2083428A1 (en)
JP (1) JP5555181B2 (en)
KR (1) KR20100115752A (en)
CN (2) CN101925969A (en)
AT (1) ATE527669T1 (en)
BR (1) BRPI0906592B1 (en)
ES (1) ES2372367T3 (en)
MX (1) MX2010007524A (en)
PL (1) PL2313895T3 (en)
SI (1) SI2313895T1 (en)
TW (1) TWI401322B (en)
WO (1) WO2009112672A1 (en)
ZA (1) ZA201004418B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103111811B (en) * 2013-03-07 2015-09-23 茂名市兴丽高岭土有限公司 A kind of manufacture method of kaolin iron removal filter screen
RU2663953C1 (en) * 2018-02-13 2018-08-13 Юлия Алексеевна Щепочкина Iron-based alloy
CN113564465A (en) * 2021-07-05 2021-10-29 北京科技大学 Forging FeCo alloy with stretching and impact toughness and preparation method thereof
CN113604643A (en) * 2021-07-05 2021-11-05 北京科技大学 Preparation method of high-saturation magnetic induction FeCo alloy with high impact toughness

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5192097A (en) * 1975-02-10 1976-08-12
JPS5644751A (en) * 1979-09-21 1981-04-24 Hitachi Metals Ltd Amorphous magnetic material
JPH0699722B2 (en) * 1989-03-22 1994-12-07 株式会社神戸製鋼所 Magnetic powder for electromagnetic clutch
JPH0633199A (en) * 1992-07-16 1994-02-08 Hitachi Metal Precision Ltd Yoke core for printer head
DE4419996C2 (en) * 1993-10-18 1996-10-17 Gfe Ges Fuer Fertigungstechnik Tool cutting, in particular of technical knives, with a wear-resistant composite layer and a method for producing the tool cutting
JPH0841604A (en) * 1994-08-03 1996-02-13 Mitsubishi Steel Mfg Co Ltd High sensitivity corrosion resistant torque sensor detecting shaft material
DE4442420A1 (en) * 1994-11-29 1996-05-30 Vacuumschmelze Gmbh Soft magnetic iron-based alloy with cobalt for magnetic circuits or excitation circuits
JP3957234B2 (en) * 1997-06-30 2007-08-15 日本ピストンリング株式会社 Wear-resistant iron-based sintered alloy material
JP2002038912A (en) * 1999-12-09 2002-02-06 Sumitomo Electric Ind Ltd Opening/closing mechanism of valve for internal combustion engine
JP4346780B2 (en) * 2000-03-06 2009-10-21 新日鉄マテリアルズ株式会社 Heat-resistant and wear-resistant composite structural member and manufacturing method thereof
FR2808806B1 (en) * 2000-05-12 2002-08-30 Imphy Ugine Precision IRON-COBALT ALLOY, IN PARTICULAR FOR A MOBILE CORE OF ELECTROMAGNETIC ACTUATOR, AND ITS MANUFACTURING METHOD
JP3748055B2 (en) * 2001-08-07 2006-02-22 信越化学工業株式会社 Iron alloy plate material for voice coil motor magnetic circuit yoke and yoke for voice coil motor magnetic circuit
AT411905B (en) * 2003-02-10 2004-07-26 Boehler Edelstahl Gmbh & Co Kg Iron-based alloy for producing a hot working steel object contains alloying additions of silicon, manganese, chromium, molybdenum, nickel, vanadium, cobalt and aluminum
JP2006336061A (en) * 2005-06-01 2006-12-14 Hitachi Metals Ltd Soft magnetic member
JP4420235B2 (en) * 2006-03-27 2010-02-24 Tdk株式会社 Flat soft magnetic metal powder and RFID antenna core member
EP1918407B1 (en) * 2006-10-30 2008-12-24 Vacuumschmelze GmbH & Co. KG Iron-cobalt based soft magnetic alloy and method for its manufacture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009112672A1 *

Also Published As

Publication number Publication date
BRPI0906592B1 (en) 2020-06-02
WO2009112672A1 (en) 2009-09-17
BRPI0906592A2 (en) 2015-07-07
ES2372367T3 (en) 2012-01-19
ATE527669T1 (en) 2011-10-15
TWI401322B (en) 2013-07-11
SI2313895T1 (en) 2011-12-30
EP2313895B1 (en) 2011-10-05
EP2083428A1 (en) 2009-07-29
JP2011525945A (en) 2011-09-29
PL2313895T3 (en) 2012-02-29
JP5555181B2 (en) 2014-07-23
US8951364B2 (en) 2015-02-10
MX2010007524A (en) 2010-08-11
TW200948987A (en) 2009-12-01
US20110018658A1 (en) 2011-01-27
KR20100115752A (en) 2010-10-28
ZA201004418B (en) 2011-04-28
CN105525216A (en) 2016-04-27
CN101925969A (en) 2010-12-22

Similar Documents

Publication Publication Date Title
EP2718469B1 (en) Cold-rolled steel plate coated with zinc or a zinc alloy, method for manufacturing same, and use of such a steel plate
CA2847809C (en) Rolled steel that hardens by means of precipitation after hot-forming and/or quenching with a tool having very high strength and ductility, and method for manufacturing same
WO2006042931A1 (en) Method for production of sheets of austenitic iron/carbon/manganese steel and sheets produced thus
EP2245203B1 (en) Austenitic stainless steel sheet and method for obtaining this sheet
FR2887558A1 (en) COMPOSITION OF MARTENSITIC STAINLESS STEEL, PROCESS FOR MANUFACTURING A MECHANICAL PART FROM THIS STEEL AND PART THUS OBTAINED
FR2835850A1 (en) Iron-based alloy used in the production of a valve seat ring in an internal combustion engine contains alloying additions of carbon, chromium, silicon, molybdenum, nickel and optionally cobalt, vanadium, niobium, manganese and tungsten
EP2313895B1 (en) Fe-co alloy for high dynamic electromagnetic actuator
EP1281182B1 (en) Iron-cobalt alloy, in particular for electromagnetic actuator mobile core and method for making same
CA2766779C (en) Method for producing martensitic steel with mixed hardening
CA2502079C (en) Method for making hardenable steel plates by firing, resulting steel plates
EP1474813B1 (en) Soft magnetic alloy for clock-making
FR3026748A1 (en) METAL ALLOY, METALLIC PART AND PROCESS FOR OBTAINING
EP1228253B1 (en) Steel composition, method for making same and parts produced from said compositions, particularly valves
FR2820150A1 (en) HIGH-RESISTANCE ISOTROPIC STEEL, METHOD OF MANUFACTURING SHEETS AND SHEETS OBTAINED
CN109252088A (en) Ferritic stainless steel and heat-resistant part
EP1346069B1 (en) Magnetic steel sheet with non-oriented grains, method for making steel plates and resulting steel plates
WO2020152498A1 (en) Iron-manganese alloy having improved weldability
FR2835001A1 (en) Fabrication of steel sheet from a magnetic steel of specific composition by hot rolling and coiling under controlled temperatures, followed by cold rolling and hardening

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: APERAM ALLOYS IMPHY

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009002944

Country of ref document: DE

Effective date: 20111215

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2372367

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120119

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 10542

Country of ref document: SK

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120105

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111005

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120205

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111005

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120106

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111005

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111005

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120105

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111005

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111005

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111005

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

26N No opposition filed

Effective date: 20120706

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009002944

Country of ref document: DE

Effective date: 20120706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111005

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230111

Year of fee payment: 15

Ref country code: SE

Payment date: 20230117

Year of fee payment: 15

Ref country code: IT

Payment date: 20230110

Year of fee payment: 15

Ref country code: BE

Payment date: 20230117

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20231220

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231229

Year of fee payment: 16

Ref country code: FR

Payment date: 20231211

Year of fee payment: 16

Ref country code: FI

Payment date: 20231222

Year of fee payment: 16

Ref country code: CZ

Payment date: 20231219

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231220

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240207

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20231222

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240115

Year of fee payment: 16

Ref country code: GB

Payment date: 20240119

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20231221

Year of fee payment: 16

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240405