EP1281182B1 - Iron-cobalt alloy, in particular for electromagnetic actuator mobile core and method for making same - Google Patents

Iron-cobalt alloy, in particular for electromagnetic actuator mobile core and method for making same Download PDF

Info

Publication number
EP1281182B1
EP1281182B1 EP01934103A EP01934103A EP1281182B1 EP 1281182 B1 EP1281182 B1 EP 1281182B1 EP 01934103 A EP01934103 A EP 01934103A EP 01934103 A EP01934103 A EP 01934103A EP 1281182 B1 EP1281182 B1 EP 1281182B1
Authority
EP
European Patent Office
Prior art keywords
iron
traces
cobalt alloy
contents
sum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01934103A
Other languages
German (de)
French (fr)
Other versions
EP1281182A1 (en
Inventor
Thierry Waeckerle
Lucien Coutu
Marc Leroy
Laurent Chaput
Hervé FRAISSE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aperam Alloys Imphy SAS
Original Assignee
ArcelorMittal Stainless and Nickel Alloys SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArcelorMittal Stainless and Nickel Alloys SA filed Critical ArcelorMittal Stainless and Nickel Alloys SA
Publication of EP1281182A1 publication Critical patent/EP1281182A1/en
Application granted granted Critical
Publication of EP1281182B1 publication Critical patent/EP1281182B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition

Definitions

  • the invention relates to the field of magnetic iron-cobalt alloys. More specifically, it relates to iron-cobalt alloys intended to constitute electromagnetic actuator cores.
  • An electromagnetic actuator is an electromagnetic device that converts electrical energy into mechanical energy. Some actuators of this type are so-called linear actuators, converting electrical energy into a rectilinear movement of a moving part. Such actuators are found in solenoid valves and electro-injectors. A preferred application of such electro-injectors is the direct injection of fuel into combustion engines, especially diesel engines. Another preferred application relates to a particular type of solenoid valve used for the electromagnetic control of valves of internal combustion engines (gasoline or diesel).
  • the electrical energy is supplied in a winding by a series of current pulses, creating a magnetic field that magnetizes a non-closed magnetic yoke, thus having a gap.
  • the geometric characteristics of the cylinder head make it possible to direct most of the magnetic field lines axially vis-à-vis the gap zone.
  • the air gap is subjected to a magnetic potential difference.
  • the actuator also comprises a core made mobile by the action of the electric current in the coil. Indeed, the magnetic potential difference introduced by the coil between the mobile core resting on a pole of the cylinder head and the opposite pole of the cylinder head creates an electromagnetic force on the magnetized core, via a magnetic field gradient.
  • the magnetized core is thus set in motion.
  • the rest position can also be located in the middle of the air gap, thanks to two symmetrical springs, favoring by their stiffness the dynamics of the moving part (case of the electromagnetically controlled valves).
  • the movement of the mobile core occurs with a phase shift with respect to the moment of creation of the electrical pulses.
  • the metal that composes it it is shown that it is necessary for the metal that composes it to have high electrical resistivity and a low coercive field. These conditions make it possible to obtain low currents induced in the cylinder head and the magnetic core, making it possible to quickly reach the minimum magnetization of the nucleus which causes it to move.
  • the core has a high saturation magnetization so as to allow as high a maximum pulse force as possible. It is indeed this force which guarantees the maintenance of the open or closed position of the actuator, which is particularly important when it comes, for example, to completely interrupt the flow of a fluid at a high level. pressure, and / or to compensate for the restoring force of one or more springs.
  • These magnetic cores have various shapes and can be made from wires or bars. In this case, they must have a high plastic aptitude for deformation, so that they can be deformed without risk of rupture. It is favorable to have an elongation at break of the material of at least 35%.
  • Such cores can also be manufactured by cutting plates or rolled sheets. In this case, they must have a high punching ability, for which minimum hardness and strength are required. A good resistance of the magnetic properties to repeated mechanical shocks to which the core will be subjected is also necessary. These characteristics of hardness and mechanical strength are also favorable to a good efficiency of the cutting of the core. It is recommended to have a material hardness after annealing greater than 200 HV for these uses.
  • a first category consists of iron-silicon alloys comprising from 2 to 3% of silicon. They have the advantage of having relatively high resistivities. On the other hand, their saturation magnetization is relatively low.
  • a second category consists of iron-cobalt alloys with a high cobalt content, of the order of 50%. Such alloys have a significantly higher saturation magnetization higher than that of previous iron-silicon alloys. On the other hand, their resistivity is somewhat lower. In addition, because of the massive presence of cobalt, these alloys are very expensive. Finally, their mechanical properties are not optimal, which makes the manufacture of the cores difficult.
  • a third category consists of iron-cobalt alloys containing about 6 to 30% cobalt and various other alloying elements.
  • the document EP-A-715,320 give an example of such alloys. It describes iron-cobalt alloys for electromagnetic actuator cores comprising 6 to 30% cobalt, 3 to 8% of one or more elements selected from chromium, molybdenum, vanadium and tungsten, the balance being iron .
  • the cobalt content is from 10 to 20% and the content of chromium, molybdenum, vanadium and / or tungsten is from 4 to 8%.
  • alloys have a good electrical resistivity, which may be greater than 50 ⁇ .cm, but their saturation magnetization is relatively low, of the order of 1.9 to 2T, except for the most heavily loaded cobalt variants (which are therefore the most expensive) where this saturation magnetization can reach 2.3 T.
  • the coercive field of the alloys given as examples in this document is also high, substantially greater than 1.5 Oe. In general, the alloys given as examples in this document do not make it possible to reach an optimal compromise between a high saturation magnetization, a low coercive field and a high resistivity.
  • the document WO 96/19001 proposes to use iron / cobalt alloys containing between 5 and 20% of cobalt, and having an aluminum and manganese or vanadium content of up to several%: up to 7% of aluminum, and up to 8% of manganese or 4% vanadium. Alloys described in this document have a very high resistivity (greater than 60 ⁇ .cm), and a fairly high saturation magnetization (from 2 to 2.2 T). But no precise information is given on the mechanical properties of these alloys, as well as on their coercive field.
  • a yoke and a core made of an iron-cobalt alloy also comprising Si, Mn, Al, Mo and V are known from JP 060933199 .
  • the object of the invention is to provide iron / cobalt alloys particularly suitable for the manufacture, economically, cores for electromagnetic actuators. These nuclei should present a more favorable compromise than the existing materials between the different electromagnetic characteristics, namely the saturation magnetization, the resistivity and the coercive field. They should also have mechanical properties making their manufacture particularly easy.
  • this iron-cobalt alloy comprises 14 to 20% of Co and the sum of the contents of Ta and Nb is between 0.05 and 0.8%.
  • the sum of the contents of Cr and V is between 1.1 and 3%, preferably between 1.5 and 3%, and the sum of the contents of Si, Al and Mo is between traces and 1% to obtain an elongation at break of at least 35%.
  • the sum of the contents of Si and Al is between 1 and 2.6%, and the sum of Cr, V, Mo, Ta, Nb content is between traces and 2% to obtain a hardness of at least 200 HV after annealing.
  • the saturation magnetization of the alloys according to the invention is at least 2.1 T at 150 ° C and at least 2.12 T at 20 ° C, their resistivity is at least 35 ⁇ .cm at 150 ° C. ° C and at least 31 ⁇ .cm at 20 ° C, their coercive field is less than 1.5 Oe at 20 and 150 ° C, and preferably less than or equal to 1 Oe.
  • the invention also relates to a bar, a wire, a plate or a rolled sheet of iron-cobalt alloy, characterized in that said alloy is of the preceding type, and in that the bar, the wire, the plate or the sheet has a preferential fiber texture of ⁇ 100> axis for a bar or wire, or a strong texture component ⁇ 100> for a rolled plate or sheet, deviated by less than 20 ° from the rolling direction at least 30% (by volume of the material) of the grains, preferably for at least 50%.
  • the subject of the invention is also a method for producing a bar, a wire, a plate or a rolled sheet of the above type, characterized in that a bar, a wire or a plate is produced. or a sheet rolled from a blank made of an alloy according to the invention by performing a rolling beginning in the austenitic phase and ending in ferritic phase, the reduction in thickness experienced by the bar, the wire, the plate or the sheet in ferritic phase being at least 30%, preferably at least 50%, and any subsequent annealing is carried out at a temperature below the austenitic transformation temperature.
  • the invention also relates to a mobile electromagnetic actuator core, characterized in that it has been manufactured from a bar or a wire or a plate or sheet rolled according to the preceding method , and an electromagnetic actuator comprising a mobile core of iron-cobalt alloy, characterized in that said core is of the above type and in that it has a preferential texture of axis ⁇ 100>, this axis being substantially parallel to the main direction of the field of excitation.
  • the invention also relates to an injector for a combustion engine controlled by electronic control comprising an electromagnetic actuator with high power density, low response time and high reliability of use of the previous type.
  • the invention finally relates to an electromagnetic valve actuator of an electronically controlled internal combustion engine, characterized in that it is of the preceding type.
  • the iron / cobalt alloy according to the invention is in the category of Fe-Co alloys with a low or medium cobalt content, and contains contents of other relatively moderate alloying elements.
  • these alloying elements must be present in respective proportions well defined. It is only in these conditions that, for these alloys and for the electromagnetic actuator cores derived therefrom, optimum properties are obtained, both magnetically and mechanically, at a cost of material (related to the presence of cobalt) very moderate compared to Fe-Co alloys at 50% cobalt.
  • the alloys according to the invention have resistivities similar to those of iron / silicon alloys containing 2 to 3% of silicon.
  • This resistivity at 150 ° C. is greater than 35 ⁇ .cm, so as to maintain good reactivity of the actuator to the stresses to which it is subjected at its operating temperature. At 20 ° C, this resistivity is greater than 31 ⁇ .cm.
  • this good responsiveness of the actuator is also due to a low coercive field, limited to 1.5 Oe at 20 and 150 ° C.
  • This low value of the coercive field is obtained according to the invention by imposing on the alloy a carbon content of less than 0.0100% and a total content of oxygen, nitrogen and sulfur limited to 70 ppm.
  • This weak coercive field strengthens the reduction of pulse time. It is also advisable, for the same purpose, to give the part from which the core will be made a preferential texture of axis ⁇ 100>, and to ensure that in the core in use, this texture preferential is found substantially parallel to the main direction of field excitation.
  • the alloys according to the invention exhibit a saturation magnetization at 150 ° C. of greater than 2.1 T. This value is quite superior to those usually observed with iron / silicon alloys containing 3% silicon. At 20 ° C., the saturation magnetization of the alloys according to the invention is greater than 2.12 T.
  • the alloys according to the invention have particularly favorable mechanical characteristics for the preparation of electromagnetic actuator cores.
  • the alloys exhibit a high plastic deformation by stamping or stamping because they have a maximum elongation at break of at least 35%.
  • these alloys are suitable for a good quality of cutting and machining, thanks to their hardness after annealing which is at least 200 HV.
  • the iron / cobalt alloys according to the invention necessarily have the following characteristics. All percentages are percentages by weight.
  • the cobalt content is between 10 and 22%, and preferably between 14 and 20%, in order to significantly increase the saturation magnetization with respect to the iron / silicon alloys, while maintaining a high resistivity.
  • the limitation to 22% of the cobalt content provides mechanical properties and a cost more favorable than in the case of iron / cobalt alloys at 50% cobalt.
  • the silicon content does not exceed 2.5%; the aluminum content does not exceed 2%; each of the contents of chromium, molybdenum and vanadium does not exceed 3%, as is the sum of their contents; the manganese content is between 0.1 and 1%, preferably between 0.1 and 0.5% to facilitate the hot conversion.
  • Each of these elements may be present only in the form of traces resulting from the elaboration.
  • the sum of the contents of silicon, aluminum, chromium, vanadium, molybdenum, manganese is between 1.1 and 3.5%, and preferably between 1.5 and 3.5%. It is in these conditions that we obtain a resistivity of the alloy equivalent to that of iron / silicon alloys containing 2 to 3% silicon.
  • the contents of these elements must verify the two following equations: 1 , 23 x al + MB % + 0 , 84 ⁇ Yes + Cr + V - 0 , 15 x Co % - 15 % ⁇ 2 , 1 to ensure that the saturation magnetization at 150 ° C is greater than or equal to 2.1T and greater than or equal to 2.12 T at 20 ° C; 14 , 5 x al + Cr % + 12 x V + MB % + 25 x Si % ⁇ 21 , preferably ⁇ 40 to ensure a resistivity greater than or equal to 35 ⁇ ohm-cm at 150 ° C and greater than or equal to 31 ⁇ .cm at 20 ° C.
  • the sum of the chromium, molybdenum and vanadium contents must be at most 3%, in order not to degrade the saturation magnetization of the material.
  • tantalum and niobium and the sum of their contents must each be less than or equal to 1%. Preferably, the sum of these contents is between 0.05 and 0.08%.
  • the purpose of tantalum is to increase the ductility of the alloy, and niobium to increase the mechanical strength and wear resistance, as well as the resistivity. The upper limit of 1% is motivated by the need not to degrade the saturation magnetization of the material. These elements can be present only in the state of traces resulting from the elaboration.
  • the carbon content must be less than or equal to 100 ppm, and the sum of the oxygen, nitrogen and sulfur contents must be less than or equal to 70 ppm. These conditions make it possible to limit the coercive field and to increase the dynamic permeability of the alloy. These elements carbon, oxygen, nitrogen and sulfur are considered as impurities and can be present only in the state of traces resulting from the elaboration.
  • Such cold stamping and stamping operations are performed on an alloy which is initially in the form of bars, wires or thick plates (at least 1 mm).
  • Table 1 gives, for examples of alloys according to the invention and alloys according to the prior art, their chemical composition, as well as the characteristics at 20 ° C. of elongation at break, of hardness after annealing, of saturation magnetization, resistivity and coercive field resulting from these compositions.
  • the 100% complement of the compositions is consisting of iron and impurities resulting from the elaboration.
  • the results of the calculation of the first members of equations (1) and (2) were also reported.
  • Reference alloy 9 is an iron / cobalt alloy with about 50% cobalt. Its magnetic characteristics are excellent, as well as its hardness which makes it suitable to be cut or machined. On the other hand, it has an extremely low elongation at break which renders it unfit to undergo large plastic deformations. In addition, it is an extremely expensive alloy.
  • Reference Example 10 is an iron / cobalt alloy with about 30% cobalt. Compared to the previous one, its resistivity is very significantly lower. In addition, if its elongation at break is better, without being excellent, this alloy has a substantially lower hardness after annealing which makes it less suitable for undergoing cutting or machining.
  • Reference alloy 11 is an iron / silicon alloy with 3% silicon. It presents satisfactory values for the resistivity and the coercive field; on the other hand, its saturation magnetization is relatively weak. In addition, its elongation at break remains very limited.
  • Reference alloy 12 is an approximately 20% cobalt alloy containing vanadium. Its composition verifies equation (1), and it therefore has good saturation magnetization. On the other hand, it does not check equation (2) and its resistivity is mediocre. In addition, its O + N + S content is relatively high, which gives it a coercive field too strong.
  • Reference alloy 13 is an 18% chromium-containing cobalt alloy. He checks equation (2) (if we take into account the elements Al, V, Mo and Si inevitably present as impurities) and verifies equation (1). Its saturation magnetization and resistivity are therefore satisfactory. Its high elongation at break would make it suitable for shaping by plastic deformation. On the other hand, its O + N + S content is high, which gives it a coercive field that is too strong.
  • Reference alloy 14 is similar to the previous one, except that tantalum has been added thereto. The elongation at break is further improved, but the coercive field remains too high for this composition is within the scope of the invention.
  • Reference alloy 15 is a 15% cobalt alloy, also containing silicon and aluminum. It checks equation (2), which gives it a good resistivity, but not equation (1), resulting in saturation magnetization a little too weak compared to what is desired. It is noted that its O + S + N content is low, which gives it a very low coercive field, and that silicon and aluminum give it a high hardness after annealing.
  • the reference alloys 16 and 17 have characteristics comparable to the previous one. They do not check equation (1) because of a cobalt content that is too low compared to the total silicon and aluminum contents, and their saturation magnetization at 20 ° C is slightly too low.
  • Reference alloy 18 is a cobalt iron with 15% cobalt containing no other alloying elements at significant levels. If its saturation magnetization and its coercive field are good (equation (1) is checked and its O + N + S content is low), its resistivity is mediocre (equation (2) is not verified) . In addition, its mechanical properties are not particularly good, either for elongation at break or hardness after annealing.
  • Reference alloy 19 is a cobalt iron with 15% cobalt containing only 1% silicon. The same comments can be made about it as for alloy 16, except that the presence of silicon improves the hardness and the resistivity, without bringing the latter to a sufficient level.
  • Reference alloy 20 is a cobalt iron with 18% cobalt containing 3.2% vanadium. Its electromagnetic characteristics are good, but its elongation at break is insufficient, due to the presence of vanadium in excess relative to the maximum quantity allowed (3%).
  • the alloys 1-8 have a hardness after high annealing, greater than 210 HV, which makes them particularly suitable for being cut or machined. They will therefore be used preferentially to form bars, plates or sheets, from which will be manufactured the desired parts.
  • These are iron-cobalt alloys containing about 15 or 18% cobalt, and significant amounts of silicon and possibly aluminum. Alloy 1 additionally contains tantalum and alloy 2 molybdenum; alloy 3 has no additional alloying elements in large amounts. These alloys have excellent electromagnetic characteristics, both in terms of saturation magnetization and resistivity, and therefore have a very good compromise between the various requirements of the applications envisaged.
  • tantalum and molybdenum in alloys 1 and 2 gives them relatively high elongations at break, which would make these alloys equally suitable for forming by stamping or stamping under conditions that would be acceptable, or which would be even mentally good for the alloy 1.
  • a composition is chosen that comprises 18% of cobalt, 0.5 to 1% of chromium + vanadium, 0.05 to 0.5% of tantalum + silicon and 1 to 2.5% silicon + aluminum + molybdenum.
  • the alloys 4-8 according to the invention have a high elongation at break (at least 35%) which makes them suitable for being formed by stamping or stamping. They will be used preferentially to form bars or wires from which the desired parts will be manufactured. These are iron-cobalt alloys with about 18% cobalt, containing little or no silicon and aluminum. On the other hand, they contain chromium (2 to 2.9%). This element could be replaced at least partially by molybdenum and / or vanadium. Their electromagnetic characteristics present the same favorable compromise between the various requirements as the 1-3 alloys.
  • a composition is chosen that comprises 18% cobalt, 2 to 3% chromium, 0 to 1% vanadium, 0.05 to 0.5% tantalum + silicon and 0 to 0, 5% silicon + aluminum + molybdenum.
  • the alloy according to the invention in the form of bars, wires, plates or sheet metal, if one wants to use this alloy to constitute electromagnetic actuators (or any other part for which similar characteristics would be required), it's important to subject the metal a thermomechanical treatment that gives it the optimal texture required.
  • This treatment must aim at obtaining for at least 30%, and preferably at least 50% (by volume of the material), grains or crystals having a crystallographic orientation having a ⁇ 100> axis deviated by less than 20 ° relative to the hot or cold rolling direction. If we approximate some axes ⁇ 100> of the crystals of the main directions of use of the magnetic flux by a particular texturing, significantly improves the magnetic properties of steels and soft magnetic alloys.
  • alloys of the invention in the form of plates or rolled sheets, these must have a preferential texture of the ⁇ 100 ⁇ or ⁇ 110 ⁇ type parallel to the rolling plane, the proportion of which in the volume of the material and the ⁇ 100> orientation with respect to the rolling direction must meet the criteria mentioned above.
  • austenoferritic rolling is meant a rolling beginning in the austenitic phase, therefore above the transformation temperature ⁇ ⁇ ⁇ + ⁇ (T ⁇ / ⁇ which is specified for each alloy given as an example in Table 1) and ending in phase ferritic, therefore below T ⁇ / ⁇ .
  • This hot rolling must comprise a reduction step with a degree of work-up of at least 30% (and preferably at least 50%) when the alloy is in the ferritic phase (the degree of curling being defined by the ratio ( initial section - final section) / initial section).
  • ferritic phase For example, if one wants to obtain a bar diameter of 20 mm, it is necessary, during hot rolling, to be in ferritic phase with an intermediate diameter of at least 24 mm, preferably at least 28 mm. Similarly, if one wants to obtain a 2.5 mm thick plate, during hot rolling, it is necessary to be in the ferritic phase at an intermediate thickness of at least 3.6 mm, preferably at least 5 mm.
  • the anneals possibly carried out after the hot rolling should never bring the product to a temperature above T ⁇ / ⁇ , this temperature ranging from 930 to 990 ° C for the alloys according to the invention shown in Table 1.
  • the mass decrease of the products following these operations should not exceed 10%, or better 5%.
  • a preferred application of the alloys according to the invention is the manufacture of cores for electromagnetic actuators.
  • Such compact, fast and reliable actuators comprising such cores can advantageously be used in injectors of direct injection combustion engines, especially diesel engines, and in moving parts of electromagnetic actuators controlling the movement of combustion engine valves. internal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Electromagnets (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

An iron-cobalt alloy containing in weight percentages: 10 to 22% of Co; traces to 2.5% of Si; traces to 2% of Al; 0.1 to 1% of Mn; traces to 0.0100% of C, a total of O, N and S content ranging between traces of 0.0070%; a total of Si, Al, Cr, Mo, V, Mn content ranging between 1.1 and 3.5%; a total of Cr, Mo and V content ranging between traces of 3%; a total of Ta and Nb content ranging between traces and 1%; and the rest being iron and impurities resulting from production wherein: 1.23×(Al+Mo) %+0.84 (Si+Cr+V) %−0.15×(Co %−15)≰2.1, and 14.5×(Al+Cr) %+12×(V+Mo) %+25×Si %≧21. The inventive alloy is useful for making electromagnetic actuator mobile cores.

Description

L'invention concerne le domaine des alliages magnétiques fer-cobalt. Plus précisément, il concerne les alliages fer-cobalt destinés à constituer des noyaux d'actionneurs électromagnétiques.The invention relates to the field of magnetic iron-cobalt alloys. More specifically, it relates to iron-cobalt alloys intended to constitute electromagnetic actuator cores.

Un actionneur électromagnétique est un dispositif électromagnétique convertissant une énergie électrique en une énergie mécanique. Certains actionneurs de ce type sont des actionneurs dits linéaires, convertissant une énergie électrique en un déplacement rectiligne d'une pièce mobile. De tels actionneurs se rencontrent dans des électrovannes et dans des électro-injecteurs. Une application privilégiée de tels électro-injecteurs est l'injection directe de carburant dans les moteurs à explosion, notamment les moteurs Diesel. Une autre application privilégiée concerne un type d'électrovanne bien particulier, utilisé pour la commande électromagnétique des soupapes de moteurs à combustion interne (essence ou diesel).An electromagnetic actuator is an electromagnetic device that converts electrical energy into mechanical energy. Some actuators of this type are so-called linear actuators, converting electrical energy into a rectilinear movement of a moving part. Such actuators are found in solenoid valves and electro-injectors. A preferred application of such electro-injectors is the direct injection of fuel into combustion engines, especially diesel engines. Another preferred application relates to a particular type of solenoid valve used for the electromagnetic control of valves of internal combustion engines (gasoline or diesel).

Dans ces actionneurs, l'énergie électrique est apportée dans un bobinage par une série d'impulsions de courant, créant un champ magnétique qui aimante une culasse magnétique non fermée, comportant donc un entrefer. Les caractéristiques géométriques de la culasse permettent de diriger la majeure partie des lignes de champ magnétique de façon axiale vis-à-vis de la zone d'entrefer. Sous l'effet de l'impulsion électrique, l'entrefer se trouve soumis à une différence de potentiel magnétique. L'actionneur comporte également un noyau rendu mobile par l'action du courant électrique dans la bobine. En effet, la différence de potentiel magnétique introduite par la bobine entre le noyau mobile au repos sur un pôle de la culasse et le pôle opposé de la culasse crée une force électromagnétique sur le noyau aimanté, via un gradient de champ magnétique. Le noyau aimanté est ainsi mis en mouvement. La position de repos peut aussi bien être située au milieu de l'entrefer, grâce à deux ressorts symétriques, favorisant par leur raideur la dynamique de la pièce mobile (cas des soupapes à commande électromagnétique).In these actuators, the electrical energy is supplied in a winding by a series of current pulses, creating a magnetic field that magnetizes a non-closed magnetic yoke, thus having a gap. The geometric characteristics of the cylinder head make it possible to direct most of the magnetic field lines axially vis-à-vis the gap zone. Under the effect of the electric pulse, the air gap is subjected to a magnetic potential difference. The actuator also comprises a core made mobile by the action of the electric current in the coil. Indeed, the magnetic potential difference introduced by the coil between the mobile core resting on a pole of the cylinder head and the opposite pole of the cylinder head creates an electromagnetic force on the magnetized core, via a magnetic field gradient. The magnetized core is thus set in motion. The rest position can also be located in the middle of the air gap, thanks to two symmetrical springs, favoring by their stiffness the dynamics of the moving part (case of the electromagnetically controlled valves).

La mise en mouvement du noyau mobile se produit avec un déphasage par rapport à l'instant de création des impulsions électriques. Pour un fonctionnement optimal de l'actionneur, on montre qu'il est nécessaire que le métal qui le compose possède une résistivité électrique élevée et un champ coercitif bas. Ces conditions permettent d'obtenir de faibles courants induits dans la culasse et le noyau magnétique, permettant d'atteindre rapidement l'aimantation minimale du noyau qui engendre sa mise en mouvement. Il est également important que le noyau possède une aimantation à saturation élevée, de manière à autoriser une force maximale en fin d'impulsion aussi élevée que possible. C'est en effet cette force qui garantit le maintien de la position ouverte ou fermée de l'actionneur, ce qui est particulièrement important lorsqu'il s'agit, par exemple, d'interrompre totalement l'écoulement d'un fluide à haute pression, et/ou de compenser la force de rappel d'un ou plusieurs ressorts.The movement of the mobile core occurs with a phase shift with respect to the moment of creation of the electrical pulses. For optimal operation of the actuator, it is shown that it is necessary for the metal that composes it to have high electrical resistivity and a low coercive field. These conditions make it possible to obtain low currents induced in the cylinder head and the magnetic core, making it possible to quickly reach the minimum magnetization of the nucleus which causes it to move. It is also important that the core has a high saturation magnetization so as to allow as high a maximum pulse force as possible. It is indeed this force which guarantees the maintenance of the open or closed position of the actuator, which is particularly important when it comes, for example, to completely interrupt the flow of a fluid at a high level. pressure, and / or to compensate for the restoring force of one or more springs.

Ces noyaux magnétiques ont des formes diverses et peuvent être fabriqués à partir de fils ou de barres. Dans ce cas, ils doivent présenter une grande aptitude plastique à la déformation, de manière à pouvoir être déformés sans risque de rupture. Il est favorable d'avoir un allongement à la rupture du matériau d'au moins 35%. De tels noyaux peuvent également être fabriqués par découpage de plaques ou de tôles laminées. Dans ce cas, ils doivent présenter une grande aptitude au poinçonnage, pour laquelle des minima de dureté et de résistance mécanique sont nécessaires. Une bonne tenue des propriétés magnétiques aux chocs mécaniques répétés auxquels le noyau sera soumis est aussi nécessaire. Ces caractéristiques de dureté et de résistance mécanique sont également favorables à une bonne efficacité de la découpe du noyau. On recommande d'avoir une dureté du matériau après recuit supérieure à 200 HV pour ces utilisations.These magnetic cores have various shapes and can be made from wires or bars. In this case, they must have a high plastic aptitude for deformation, so that they can be deformed without risk of rupture. It is favorable to have an elongation at break of the material of at least 35%. Such cores can also be manufactured by cutting plates or rolled sheets. In this case, they must have a high punching ability, for which minimum hardness and strength are required. A good resistance of the magnetic properties to repeated mechanical shocks to which the core will be subjected is also necessary. These characteristics of hardness and mechanical strength are also favorable to a good efficiency of the cutting of the core. It is recommended to have a material hardness after annealing greater than 200 HV for these uses.

Trois grandes catégories d'alliages sont traditionnellement utilisées pour constituer des noyaux d'actionneurs électromagnétiques tels que l'on vient de les décrire.Three major categories of alloys are traditionally used to form electromagnetic actuator cores as just described.

Une première catégorie est constituée par des alliages fer-silicium comportant de 2 à 3% de silicium. Ils ont pour avantage d'avoir des résistivités relativement élevées. En revanche, leur aimantation à saturation est relativement faible.A first category consists of iron-silicon alloys comprising from 2 to 3% of silicon. They have the advantage of having relatively high resistivities. On the other hand, their saturation magnetization is relatively low.

Une deuxième catégorie est constituée par des alliages fer-cobalt à haute teneur en cobalt, de l'ordre de 50%. De tels alliages ont une aimantation à saturation significativement plus élevée que celle des alliages fer-silicium précédents. En revanche leur résistivité est quelque peu inférieure. De plus, du fait de la présence massive de cobalt, ces alliages sont très coûteux. Enfin, leurs propriétés mécaniques ne sont pas optimales, ce qui rend la fabrication des noyaux difficile.A second category consists of iron-cobalt alloys with a high cobalt content, of the order of 50%. Such alloys have a significantly higher saturation magnetization higher than that of previous iron-silicon alloys. On the other hand, their resistivity is somewhat lower. In addition, because of the massive presence of cobalt, these alloys are very expensive. Finally, their mechanical properties are not optimal, which makes the manufacture of the cores difficult.

Une troisième catégorie est constituée par des alliages fer-cobalt contenant environ 6 à 30% de cobalt et divers autres éléments d'alliage. Le document EP-A-715 320 donne un exemple de tels alliages. Il décrit des alliages fer-cobalt pour noyaux d'actionneurs électromagnétiques comportant 6 à 30% de cobalt, 3 à 8% d'un ou plusieurs éléments choisis parmi le chrome, le molybdène, le vanadium et le tungstène, le reste étant du fer. De préférence, la teneur en cobalt est de 10 à 20% et la teneur en chrome, molybdène, vanadium et/ou tungstène est de 4 à 8%. Ces alliages présentent une bonne résistivité électrique, pouvant être supérieure à 50 µΩ.cm, mais leur aimantation à saturation est relativement faible, de l'ordre de 1,9 à 2T, sauf pour les variantes les plus chargées en cobalt (qui sont donc les plus coûteuses) où cette aimantation à saturation peut atteindre 2,3 T. En général, le champ coercitif des alliages donnés en exemple dans ce document est également élevé, sensiblement supérieur à 1,5 Oe. De manière générale, les alliages donnés en exemple dans ce document ne permettent pas de parvenir à un compromis optimal entre une aimantation à saturation élevée, un champ coercitif faible et une résistivité élevée.A third category consists of iron-cobalt alloys containing about 6 to 30% cobalt and various other alloying elements. The document EP-A-715,320 give an example of such alloys. It describes iron-cobalt alloys for electromagnetic actuator cores comprising 6 to 30% cobalt, 3 to 8% of one or more elements selected from chromium, molybdenum, vanadium and tungsten, the balance being iron . Preferably, the cobalt content is from 10 to 20% and the content of chromium, molybdenum, vanadium and / or tungsten is from 4 to 8%. These alloys have a good electrical resistivity, which may be greater than 50 μΩ.cm, but their saturation magnetization is relatively low, of the order of 1.9 to 2T, except for the most heavily loaded cobalt variants (which are therefore the most expensive) where this saturation magnetization can reach 2.3 T. In general, the coercive field of the alloys given as examples in this document is also high, substantially greater than 1.5 Oe. In general, the alloys given as examples in this document do not make it possible to reach an optimal compromise between a high saturation magnetization, a low coercive field and a high resistivity.

Le document WO 96/19 001 propose d'utiliser des alliages fer/cobalt contenant entre 5 et 20% de cobalt, et ayant une teneur en aluminium et en manganèse ou vanadium pouvant atteindre plusieurs % : jusqu'à 7% d'aluminium, et jusqu'à 8% de manganèse ou 4% de vanadium. Des alliages décrits dans ce document présentent une résistivité très élevée (supérieure à 60 µΩ.cm), et une aimantation à saturation assez élevée (de 2 à 2,2 T). Mais aucune information précise n'est donnée sur les propriétés mécaniques de ces alliages, ainsi que sur leur champ coercitif.The document WO 96/19001 proposes to use iron / cobalt alloys containing between 5 and 20% of cobalt, and having an aluminum and manganese or vanadium content of up to several%: up to 7% of aluminum, and up to 8% of manganese or 4% vanadium. Alloys described in this document have a very high resistivity (greater than 60 μΩ.cm), and a fairly high saturation magnetization (from 2 to 2.2 T). But no precise information is given on the mechanical properties of these alloys, as well as on their coercive field.

Une culasse et un noyau fabriqués d'un alliage fer- cobalt comprenant aussi Si, Mn, Al, Mo et V sont connus de JP- 060933199 .A yoke and a core made of an iron-cobalt alloy also comprising Si, Mn, Al, Mo and V are known from JP 060933199 .

Le but de l'invention est de proposer des alliages fer/cobalt particulièrement adaptés à la fabrication, de manière économique, de noyaux pour actionneurs électromagnétiques. Ces noyaux devraient présenter un compromis plus favorable qu'avec les matériaux existants entre les différentes caractéristiques électromagnétiques, à savoir l'aimantation à saturation, la résistivité et le champ coercitif. Ils devraient également présenter des propriétés mécaniques rendant leur fabrication particulièrement aisée.The object of the invention is to provide iron / cobalt alloys particularly suitable for the manufacture, economically, cores for electromagnetic actuators. These nuclei should present a more favorable compromise than the existing materials between the different electromagnetic characteristics, namely the saturation magnetization, the resistivity and the coercive field. They should also have mechanical properties making their manufacture particularly easy.

A cet effet, l'invention a pour objet un alliage fer-cobalt, caractérisé en ce qu'il comporte en pourcentages pondéraux :

  • de 10 à 22% de Co ;
  • de traces à 2,5% de Si ;
  • de traces à 2% d'Al ;
  • de 0,1 à 1% de Mn ;
  • de traces à 0,0100% de C ;
  • une somme des teneurs en O,N et S comprise entre des traces et 0,0070% ;
  • une somme des teneurs en Si, Al, Cr, V, Mo, Mn comprise entre 1,1 et 3,5%, de préférence entre 1,5 et 3,5% ;
  • une somme des teneurs en Cr, Mo et V comprise entre des traces et 3% ;
  • une somme des teneurs en Ta et Nb comprise entre des traces et 1% ;
le reste étant du fer et des impuretés résultant de l'élaboration,
en ce que : 1 , 23 x Al + Mo % + 0 , 84 Si + Cr + V % - 0 , 15 x Co % - 15 2 , 1
Figure imgb0001

et en ce que : 14 , 5 x Al + Cr % + 12 x V + Mo % + 25 x Si % 40.
Figure imgb0002
For this purpose, the subject of the invention is an iron-cobalt alloy, characterized in that it comprises, in weight percentages:
  • from 10 to 22% Co;
  • traces of 2.5% Si;
  • traces of 2% Al;
  • from 0.1 to 1% Mn;
  • trace amounts of 0.0100% C;
  • a sum of O, N and S contents between traces and 0.0070%;
  • a sum of the contents of Si, Al, Cr, V, Mo, Mn of between 1.1 and 3.5%, preferably between 1.5 and 3.5%;
  • a sum of Cr, Mo and V contents between traces and 3%;
  • a sum of the contents of Ta and Nb between traces and 1%;
the rest being iron and impurities resulting from the elaboration,
in that : 1 , 23 x al + MB % + 0 , 84 Yes + Cr + V % - 0 , 15 x Co % - 15 2 , 1
Figure imgb0001

and in that : 14 , 5 x al + Cr % + 12 x V + MB % + 25 x Si % 40.
Figure imgb0002

Préférentiellement, cet alliage fer-cobalt comporte 14 à 20% de Co et la somme des teneurs en Ta et Nb est comprise entre 0,05 et 0,8%.Preferably, this iron-cobalt alloy comprises 14 to 20% of Co and the sum of the contents of Ta and Nb is between 0.05 and 0.8%.

Selon une variante de l'invention, la somme des teneurs en Cr et V est comprise entre 1,1 et 3%, de préférence entre 1,5 et 3%, et la somme des teneurs en Si, Al et Mo est comprise entre des traces et 1% pour obtenir un allongement à la rupture d'au moins 35%.According to a variant of the invention, the sum of the contents of Cr and V is between 1.1 and 3%, preferably between 1.5 and 3%, and the sum of the contents of Si, Al and Mo is between traces and 1% to obtain an elongation at break of at least 35%.

Selon une autre variante de l'invention, la somme des teneurs en Si et Al est comprise entre 1 et 2,6%, et la somme des teneurs en Cr, V, Mo, Ta, Nb est comprise entre des traces et 2% pour obtenir une dureté d'au moins 200 HV après recuit.According to another variant of the invention, the sum of the contents of Si and Al is between 1 and 2.6%, and the sum of Cr, V, Mo, Ta, Nb content is between traces and 2% to obtain a hardness of at least 200 HV after annealing.

L'aimantation à saturation des alliages selon l'invention est d'au moins 2,1 T à 150°C et d'au moins 2,12 T à 20°C, leur résistivité est d'au moins 35µΩ.cm à 150°C et d'au moins 31 µΩ .cm à 20°C, leur champ coercitif est inférieur à 1,5 Oe à 20 et à 150°C, et de préférence inférieur ou égal à 1 Oe.The saturation magnetization of the alloys according to the invention is at least 2.1 T at 150 ° C and at least 2.12 T at 20 ° C, their resistivity is at least 35μΩ.cm at 150 ° C. ° C and at least 31 μΩ .cm at 20 ° C, their coercive field is less than 1.5 Oe at 20 and 150 ° C, and preferably less than or equal to 1 Oe.

L'invention a également pour objet une barre, un fil, une plaque ou une tôle laminée en alliage fer-cobalt, caractérisé en ce que ledit alliage est du type précédent, et en ce que la barre, le fil, la plaque ou la tôle présente une texture de fibre préférentielle d'axe <100> pour une barre ou un fil, ou une composante forte de texture <100> pour une plaque ou une tôle laminée, déviée de moins de 20° par rapport à la direction de laminage à chaud, pour au moins 30% (en volume du matériau) des grains, de préférence pour au moins 50%.The invention also relates to a bar, a wire, a plate or a rolled sheet of iron-cobalt alloy, characterized in that said alloy is of the preceding type, and in that the bar, the wire, the plate or the sheet has a preferential fiber texture of <100> axis for a bar or wire, or a strong texture component <100> for a rolled plate or sheet, deviated by less than 20 ° from the rolling direction at least 30% (by volume of the material) of the grains, preferably for at least 50%.

L'invention a également pour objet un procédé de production d'une barre, d'un fil, d'une plaque ou d'une tôle laminée du type précédent, caractérisé en ce qu'on élabore une barre, un fil, une plaque ou une tôle laminée à partir d'une ébauche en un alliage selon l'invention en effectuant un laminage débutant en phase austénitique et finissant en phase ferritique, la réduction d'épaisseur subie par la barre , le fil, la plaque ou la tôle en phase ferritique étant d'au moins 30%, de préférence au moins 50%, et en ce qu'un éventuel recuit ultérieur est effectué à une température inférieure à la température de transformation austénitique.The subject of the invention is also a method for producing a bar, a wire, a plate or a rolled sheet of the above type, characterized in that a bar, a wire or a plate is produced. or a sheet rolled from a blank made of an alloy according to the invention by performing a rolling beginning in the austenitic phase and ending in ferritic phase, the reduction in thickness experienced by the bar, the wire, the plate or the sheet in ferritic phase being at least 30%, preferably at least 50%, and any subsequent annealing is carried out at a temperature below the austenitic transformation temperature.

L'invention a également pour objets un noyau mobile d'actionneur électromagnétique, caractérisé en ce qu'il a été fabriqué à partir d'une barre ou d'un fil ou d'une plaque ou d'une tôle laminée selon le procédé précédent, ainsi qu'un actionneur électromagnétique comportant un noyau mobile en alliage fer-cobalt, caractérisé en ce que ledit noyau est du type précédent et en ce qu'il a une texture préférentielle d'axe <100>, cet axe étant sensiblement parallèle à la direction principale du champ d'excitation.The invention also relates to a mobile electromagnetic actuator core, characterized in that it has been manufactured from a bar or a wire or a plate or sheet rolled according to the preceding method , and an electromagnetic actuator comprising a mobile core of iron-cobalt alloy, characterized in that said core is of the above type and in that it has a preferential texture of axis <100>, this axis being substantially parallel to the main direction of the field of excitation.

L'invention a également pour objet un injecteur pour moteur à explosion commandé par régulation électronique comportant un actionneur électromagnétique à forte puissance volumique, faible temps de réponse et grande fiabilité d'utilisation du type précédent.The invention also relates to an injector for a combustion engine controlled by electronic control comprising an electromagnetic actuator with high power density, low response time and high reliability of use of the previous type.

L'invention a enfin pour objet un actionneur électromagnétique de soupape de moteur à combustion interne à commande électronique, caractérisé en ce qu'il est du type précédent.The invention finally relates to an electromagnetic valve actuator of an electronically controlled internal combustion engine, characterized in that it is of the preceding type.

Comme on l'aura compris, l'alliage fer/cobalt selon l'invention se classe dans la catégorie des alliages Fe-Co à teneur faible ou moyenne en cobalt, et comporte des teneurs en autres éléments d'alliage relativement modérées. Toutefois, ces éléments d'alliage doivent être présents dans des proportions respectives bien définies. C'est seulement dans ces conditions que l'on obtient, pour ces alliages et pour les noyaux d'actionneurs électromagnétiques qui en sont issus, des propriétés optimales, à la fois sur le plan magnétique et sur le plan mécanique, pour un coût de matière (lié à la présence de cobalt) très modéré par rapport aux alliages Fe-Co à 50% de cobalt.As will be understood, the iron / cobalt alloy according to the invention is in the category of Fe-Co alloys with a low or medium cobalt content, and contains contents of other relatively moderate alloying elements. However, these alloying elements must be present in respective proportions well defined. It is only in these conditions that, for these alloys and for the electromagnetic actuator cores derived therefrom, optimum properties are obtained, both magnetically and mechanically, at a cost of material (related to the presence of cobalt) very moderate compared to Fe-Co alloys at 50% cobalt.

Les alliages selon l'invention ont des résistivités similaires à celles des alliages fer/silicium contenant 2 à 3% de silicium. Cette résistivité à 150°C est supérieure à 35 µΩ.cm, de manière à conserver une bonne réactivité de l'actionneur aux sollicitations dont il est l'objet à sa température de fonctionnement. A 20°C, cette résistivité est supérieure à 31 µΩ .cm. Parallèlement, cette bonne réactivité de l'actionneur est également due à un faible champ coercitif, limité à 1,5 Oe à 20 et 150°C. Cette faible valeur du champ coercitif est obtenue selon l'invention en imposant à l'alliage une teneur en carbone inférieure à 0,0100% et une teneur totale en oxygène, azote et soufre limitée à 70 ppm. Ce faible champ coercitif renforce la réduction du temps d'impulsion. Il est également conseillé, dans le même but, de conférer à la pièce à partir de laquelle sera fabriqué le noyau une texture préférentielle d'axe <100>, et de faire en sorte que dans le noyau en cours d'utilisation, cette texture préférentielle se retrouve sensiblement parallèle à la direction principale d'excitation du champ.The alloys according to the invention have resistivities similar to those of iron / silicon alloys containing 2 to 3% of silicon. This resistivity at 150 ° C. is greater than 35 μΩ.cm, so as to maintain good reactivity of the actuator to the stresses to which it is subjected at its operating temperature. At 20 ° C, this resistivity is greater than 31 μΩ .cm. In parallel, this good responsiveness of the actuator is also due to a low coercive field, limited to 1.5 Oe at 20 and 150 ° C. This low value of the coercive field is obtained according to the invention by imposing on the alloy a carbon content of less than 0.0100% and a total content of oxygen, nitrogen and sulfur limited to 70 ppm. This weak coercive field strengthens the reduction of pulse time. It is also advisable, for the same purpose, to give the part from which the core will be made a preferential texture of axis <100>, and to ensure that in the core in use, this texture preferential is found substantially parallel to the main direction of field excitation.

D'autre part, les alliages selon l'invention présentent une aimantation à saturation à 150°C supérieure à 2,1 T. Cette valeur est franchement supérieure à celles habituellement constatées avec les alliages fer/silicium à 3% de silicium. A 20°C, l'aimantation à saturation des alliages selon l'invention est supérieure à 2,12 T.On the other hand, the alloys according to the invention exhibit a saturation magnetization at 150 ° C. of greater than 2.1 T. This value is quite superior to those usually observed with iron / silicon alloys containing 3% silicon. At 20 ° C., the saturation magnetization of the alloys according to the invention is greater than 2.12 T.

Les différences sur les valeurs des grandeurs que l'on vient de citer entre 20 et 150°C s'expliquent par le fait que le champ coercitif et l'aimantation à saturation varient de au plus 4% et 1% respectivement entre 20 et 150°C, tandis que la résistivité croît d'environ 16% entre 20 et 150°C. Cette propriété varie donc de façon importante et l'effet de la température doit être pris en compte : une résistivité minimale de 35 µΩ.cm à 150°C correspond à une résistivité minimale de 31 µ Ω.cm à 20°C. Le champ coercitif à 150°C est toujours inférieur d'environ 4% à ce qu'il est à 20°C ; donc s'il est suffisamment faible à 20°C (1,5 Oe au plus), il le sera a fortiori à 150°C. En revanche, l'aimantation à saturation décroît lorsque la température augmente ; donc, pour garantir une aimantation à saturation supérieure ou égale à 2,1 T à 150°C, il faut que l'aimantation à saturation à 20°C lui soit supérieure de 1%, soit supérieure ou égale à 2,12 T.The differences in the values of the quantities just mentioned between 20 and 150 ° C are explained by the fact that the coercive field and the saturation magnetization vary by at most 4% and 1% respectively between 20 and 150 ° C, while the resistivity increases by about 16% between 20 and 150 ° C. This property therefore varies significantly and the effect of the temperature must be taken into account: a minimum resistivity of 35 μΩ.cm at 150 ° C corresponds to a minimum resistivity of 31 μ Ω.cm at 20 ° C. The coercive field at 150 ° C is always about 4% lower than it is at 20 ° C; therefore if it is sufficiently low at 20 ° C (1.5 Oe at most), it will be a fortiori at 150 ° C. On the other hand, the saturation magnetization decreases as the temperature increases; therefore, to ensure saturation magnetization greater than or equal to 2.1 T at 150 ° C, the saturation magnetization at 20 ° C must be greater than 1%, greater than or equal to 2.12 T.

Enfin, les alliages selon l'invention présentent des caractéristiques mécaniques particulièrement favorables à la préparation des noyaux d'actionneurs électromagnétiques. Dans certains exemples préférentiels, les alliages présentent une grande aptitude à la déformation plastique par matriçage ou emboutissage, car ils ont un allongement à la rupture maximal d'au moins 35%. Dans une autre variante des alliages selon l'invention, ces alliages sont aptes à une bonne qualité de découpe et d'usinage, grâce à leur dureté après recuit qui est d'au moins 200 HV.Finally, the alloys according to the invention have particularly favorable mechanical characteristics for the preparation of electromagnetic actuator cores. In certain preferred examples, the alloys exhibit a high plastic deformation by stamping or stamping because they have a maximum elongation at break of at least 35%. In another variant of the alloys according to the invention, these alloys are suitable for a good quality of cutting and machining, thanks to their hardness after annealing which is at least 200 HV.

Les alliages fer/cobalt selon l'invention présentent obligatoirement les caractéristiques suivantes. Tous les pourcentages sont des pourcentages pondéraux.The iron / cobalt alloys according to the invention necessarily have the following characteristics. All percentages are percentages by weight.

La teneur en cobalt est comprise entre 10 et 22%, et de préférence entre 14 et 20%, afin d'accroître significativement l'aimantation à saturation par rapport aux alliages fer/silicium, tout en conservant une résistivité élevée. D'autre part, la limitation à 22% de la teneur en cobalt procure des propriétés mécaniques et un prix de revient plus favorables que dans le cas des alliages fer/cobalt à 50% de cobalt.The cobalt content is between 10 and 22%, and preferably between 14 and 20%, in order to significantly increase the saturation magnetization with respect to the iron / silicon alloys, while maintaining a high resistivity. On the other hand, the limitation to 22% of the cobalt content provides mechanical properties and a cost more favorable than in the case of iron / cobalt alloys at 50% cobalt.

La teneur en silicium n'excède pas 2,5% ; la teneur en aluminium n'excède pas 2% ; chacune des teneurs en chrome, molybdène et vanadium n'excède pas 3%, de même que la somme de leurs teneurs ; la teneur en manganèse est comprise entre 0,1 et 1%, de préférence entre 0,1 et 0,5% pour faciliter la transformation à chaud. Chacun de ces éléments (sauf le manganèse) peut n'être présent qu'à l'état de traces résultant de l'élaboration.The silicon content does not exceed 2.5%; the aluminum content does not exceed 2%; each of the contents of chromium, molybdenum and vanadium does not exceed 3%, as is the sum of their contents; the manganese content is between 0.1 and 1%, preferably between 0.1 and 0.5% to facilitate the hot conversion. Each of these elements (except manganese) may be present only in the form of traces resulting from the elaboration.

En outre, la somme des teneurs en silicium, aluminium, chrome, vanadium, molybdène, manganèse est comprise entre 1,1 et 3,5%, et de préférence entre 1,5 et 3,5%. C'est dans ces conditions qu'on obtient une résistivité de l'alliage équivalente à celle des alliages fer/silicium contenant 2 à 3% de silicium. D'autre part, les teneurs en ces éléments doivent vérifier les deux équations suivantes : 1 , 23 x Al + Mo % + 0 , 84 Si + Cr + V - 0 , 15 x Co % - 15 % 2 , 1

Figure imgb0003
afin d'assurer que l'aimantation à saturation à 150°C est supérieure ou égale à 2,1T et supérieure ou égale à 2,12 T à 20°C; 14 , 5 x Al + Cr % + 12 x V + Mo % + 25 x Si % 21 , de préférence 40
Figure imgb0004
afin d'assurer une résistivité supérieure ou égale à 35 µΩ.cm à 150°C et supérieure ou égale à 31 µΩ.cm à 20°C.In addition, the sum of the contents of silicon, aluminum, chromium, vanadium, molybdenum, manganese is between 1.1 and 3.5%, and preferably between 1.5 and 3.5%. It is in these conditions that we obtain a resistivity of the alloy equivalent to that of iron / silicon alloys containing 2 to 3% silicon. On the other hand, the contents of these elements must verify the two following equations: 1 , 23 x al + MB % + 0 , 84 Yes + Cr + V - 0 , 15 x Co % - 15 % 2 , 1
Figure imgb0003
to ensure that the saturation magnetization at 150 ° C is greater than or equal to 2.1T and greater than or equal to 2.12 T at 20 ° C; 14 , 5 x al + Cr % + 12 x V + MB % + 25 x Si % 21 , preferably 40
Figure imgb0004
to ensure a resistivity greater than or equal to 35 μ ohm-cm at 150 ° C and greater than or equal to 31 μΩ.cm at 20 ° C.

Par ailleurs, la somme des teneurs en chrome, molybdène et vanadium doit être au plus de 3%, afin de ne pas dégrader l'aimantation à saturation du matériau.Moreover, the sum of the chromium, molybdenum and vanadium contents must be at most 3%, in order not to degrade the saturation magnetization of the material.

Les teneurs en tantale et niobium, ainsi que la somme de leurs teneurs, doivent être chacune inférieures ou égales à 1%. De préférence la somme de ces teneurs est comprise entre 0,05 et 0,08%. Le tantale a pour fonction d'accroître la ductilité de l'alliage, et le niobium d'accroître la résistance mécanique et la résistance à l'usure, ainsi que la résistivité. La limite supérieure de 1% est motivée par la nécessité de ne pas dégrader l'aimantation à saturation du matériau. Ces éléments peuvent n'être présents qu'à l'état de traces résultant de l'élaboration.The contents of tantalum and niobium and the sum of their contents must each be less than or equal to 1%. Preferably, the sum of these contents is between 0.05 and 0.08%. The purpose of tantalum is to increase the ductility of the alloy, and niobium to increase the mechanical strength and wear resistance, as well as the resistivity. The upper limit of 1% is motivated by the need not to degrade the saturation magnetization of the material. These elements can be present only in the state of traces resulting from the elaboration.

La teneur en carbone doit être inférieure ou égale à 100 ppm, et la somme des teneurs en oxygène, azote et soufre doit être inférieure ou égale à 70 ppm. Ces conditions permettent de limiter le champ coercitif et d'accroître la perméabilité dynamique de l'alliage. Ces éléments carbone, oxygène, azote et soufre sont considérés comme des impuretés et peuvent n'être présents qu'à l'état de traces résultant de l'élaboration.The carbon content must be less than or equal to 100 ppm, and the sum of the oxygen, nitrogen and sulfur contents must be less than or equal to 70 ppm. These conditions make it possible to limit the coercive field and to increase the dynamic permeability of the alloy. These elements carbon, oxygen, nitrogen and sulfur are considered as impurities and can be present only in the state of traces resulting from the elaboration.

Lorsque l'alliage est destiné à subir une opération de matriçage ou d'emboutissage, pour laquelle il est souhaitable d'avoir un allongement plastique maximal important (supérieur ou égal à 35%), l'alliage doit préférentiellement répondre aux deux conditions suivantes :

  • la somme des teneurs en chrome et vanadium doit être comprise entre 1,1 et 3% de préférence entre 1,5 et 3%;
  • la somme des teneurs en silicium, aluminium et molybdène doit être comprise entre des traces et 1%.
When the alloy is intended to undergo a stamping or stamping operation, for which it is desirable to have a large maximum plastic elongation (greater than or equal to 35%), the alloy must preferentially meet the following two conditions:
  • the sum of the chromium and vanadium contents must be between 1.1 and 3%, preferably between 1.5 and 3%;
  • the sum of the silicon, aluminum and molybdenum contents must be between traces and 1%.

De telles opérations de matriçage à froid et d'emboutissage sont exécutées sur un alliage qui se trouve initialement sous forme de barres, de fils ou de plaques épaisses (au moins 1 mm).Such cold stamping and stamping operations are performed on an alloy which is initially in the form of bars, wires or thick plates (at least 1 mm).

Lorsque le noyau est préparé à partir de barres de plaques ou de tôles, et que ces barres, plaques ou tôles doivent être découpées ou usinées, il est préférable que la composition de l'alliage réponde aux deux caractéristiques suivantes :

  • la somme des teneurs en silicium et aluminium est comprise entre 1 et 2,6% ;
  • et la somme des teneurs en chrome, vanadium, molybdène, tantale et niobium est comprise entre des traces et 2%.
When the core is prepared from plate bars or sheets, and these bars, plates or sheets are to be cut or machined, it is preferable that the composition of the alloy meets both of the following characteristics:
  • the sum of silicon and aluminum contents is between 1 and 2.6%;
  • and the sum of the contents of chromium, vanadium, molybdenum, tantalum and niobium is between traces and 2%.

De cette façon on obtient un alliage dont la dureté est supérieure à 200 HV après recuit.In this way we obtain an alloy whose hardness is greater than 200 HV after annealing.

Le tableau 1 donne, pour des exemples d'alliages selon l'invention et des alliages selon l'art antérieur, leur composition chimique, ainsi que les caractéristiques à 20°C d'allongement à la rupture, de dureté après recuit, d'aimantation à saturation, de résistivité et de champ coercitif résultant de ces compositions. Le complément à 100% des compositions est constitué par du fer et des impuretés résultant de l'élaboration. On a également reporté les résultats du calcul des premiers membres des équations (1) et (2).

Figure imgb0005
Table 1 gives, for examples of alloys according to the invention and alloys according to the prior art, their chemical composition, as well as the characteristics at 20 ° C. of elongation at break, of hardness after annealing, of saturation magnetization, resistivity and coercive field resulting from these compositions. The 100% complement of the compositions is consisting of iron and impurities resulting from the elaboration. The results of the calculation of the first members of equations (1) and (2) were also reported.
Figure imgb0005

L'alliage de référence 9 est un alliage fer/cobalt à environ 50% de cobalt. Ses caractéristiques magnétiques sont excellentes, ainsi que sa dureté qui le rend apte à être découpé ou usiné. En revanche, il présente un allongement à la rupture extrêmement faible qui le rend impropre à subir de grandes déformations plastiques. De plus, il s'agit d'un alliage extrêmement coûteux.Reference alloy 9 is an iron / cobalt alloy with about 50% cobalt. Its magnetic characteristics are excellent, as well as its hardness which makes it suitable to be cut or machined. On the other hand, it has an extremely low elongation at break which renders it unfit to undergo large plastic deformations. In addition, it is an extremely expensive alloy.

L'exemple de référence 10 est un alliage fer/cobalt à environ 30% de cobalt. Par rapport au précédent, sa résistivité est très sensiblement inférieure. En outre, si son allongement à la rupture est meilleur, sans pour autant être excellent, cet alliage présente une dureté après recuit sensiblement plus faible qui le rend moins adapté à subir une découpe ou un usinage.Reference Example 10 is an iron / cobalt alloy with about 30% cobalt. Compared to the previous one, its resistivity is very significantly lower. In addition, if its elongation at break is better, without being excellent, this alloy has a substantially lower hardness after annealing which makes it less suitable for undergoing cutting or machining.

L'alliage de référence 11 est un alliage fer/silicium à 3% de silicium. Il présente des valeurs satisfaisantes pour la résistivité et le champ coercitif ; en revanche, son aimantation à saturation est relativement faible. En outre, son allongement à la rupture demeure très limité.Reference alloy 11 is an iron / silicon alloy with 3% silicon. It presents satisfactory values for the resistivity and the coercive field; on the other hand, its saturation magnetization is relatively weak. In addition, its elongation at break remains very limited.

L'alliage de référence 12 est un alliage à environ 20% de cobalt contenant du vanadium. Sa composition vérifie l'équation (1), et il présente donc une bonne aimantation à saturation. En revanche, il ne vérifie pas l'équation (2) et sa résistivité est donc médiocre. De plus, sa teneur en O+N+S est relativement élevée, ce qui lui procure un champ coercitif trop fort.Reference alloy 12 is an approximately 20% cobalt alloy containing vanadium. Its composition verifies equation (1), and it therefore has good saturation magnetization. On the other hand, it does not check equation (2) and its resistivity is mediocre. In addition, its O + N + S content is relatively high, which gives it a coercive field too strong.

L'alliage de référence 13 est un alliage à 18% de cobalt contenant du chrome. Il vérifie l'équation (2) (si on tient compte des éléments Al, V, Mo et Si inévitablement présents comme impuretés) et vérifie l'équation (1). Son aimantation à saturation et sa résistivité sont donc satisfaisantes. Son allongement à la rupture élevé le rendrait apte à la mise en forme par déformation plastique. En revanche, sa teneur en O+N+S est élevée, ce qui lui procure un champ coercitif trop fort.Reference alloy 13 is an 18% chromium-containing cobalt alloy. He checks equation (2) (if we take into account the elements Al, V, Mo and Si inevitably present as impurities) and verifies equation (1). Its saturation magnetization and resistivity are therefore satisfactory. Its high elongation at break would make it suitable for shaping by plastic deformation. On the other hand, its O + N + S content is high, which gives it a coercive field that is too strong.

L'alliage de référence 14 est semblable au précédent, à ceci près qu'on y a ajouté du tantale. L'allongement à la rupture s'en trouve encore amélioré, mais le champ coercitif demeure trop élevé pour que cette composition entre dans le cadre de l'invention.Reference alloy 14 is similar to the previous one, except that tantalum has been added thereto. The elongation at break is further improved, but the coercive field remains too high for this composition is within the scope of the invention.

L'alliage de référence 15 est un alliage à 15% de cobalt, contenant également du silicium et de l'aluminium. Il vérifie l'équation (2), ce qui lui procure une bonne résistivité, mais pas l'équation (1), d'où une aimantation à saturation un peu trop faible par rapport à ce qui est désiré. On remarque que sa teneur en O + S + N est faible, ce qui lui procure un champ coercitif très bas, et que le silicium et l'aluminium lui procurent une dureté élevée après recuit.Reference alloy 15 is a 15% cobalt alloy, also containing silicon and aluminum. It checks equation (2), which gives it a good resistivity, but not equation (1), resulting in saturation magnetization a little too weak compared to what is desired. It is noted that its O + S + N content is low, which gives it a very low coercive field, and that silicon and aluminum give it a high hardness after annealing.

Les alliages de référence 16 et 17 présentent des caractéristiques comparables au précédent. Ils ne vérifient pas l'équation (1) en raison d'une teneur en cobalt trop faible par rapport au total des teneurs en silicium et aluminium, et leur aimantation à saturation à 20°C est légèrement trop faible.The reference alloys 16 and 17 have characteristics comparable to the previous one. They do not check equation (1) because of a cobalt content that is too low compared to the total silicon and aluminum contents, and their saturation magnetization at 20 ° C is slightly too low.

L'alliage de référence 18 est un fer-cobalt à 15% de cobalt ne contenant pas d'autres éléments d'alliage à des teneurs significatives. Si son aimantation à saturation et son champ coercitif sont bons (l'équation (1) est vérifiée et sa teneur en O+N+S est faible), sa résistivité est médiocre (l'équation (2) n'est pas vérifiée). De plus, ses propriétés mécaniques ne sont pas particulièrement bonnes, que ce soit pour l'allongement à la rupture ou pour la dureté après recuit.Reference alloy 18 is a cobalt iron with 15% cobalt containing no other alloying elements at significant levels. If its saturation magnetization and its coercive field are good (equation (1) is checked and its O + N + S content is low), its resistivity is mediocre (equation (2) is not verified) . In addition, its mechanical properties are not particularly good, either for elongation at break or hardness after annealing.

L'alliage de référence 19 est un fer-cobalt à 15% de cobalt contenant seulement 1% de silicium. On peut faire à son sujet les mêmes commentaires que pour l'alliage 16 à ceci près que la présence de silicium améliore la dureté et la résistivité, sans pour autant porter cette dernière à un niveau suffisant.Reference alloy 19 is a cobalt iron with 15% cobalt containing only 1% silicon. The same comments can be made about it as for alloy 16, except that the presence of silicon improves the hardness and the resistivity, without bringing the latter to a sufficient level.

L'alliage de référence 20 est un fer-cobalt à 18% de cobalt contenant 3,2% de vanadium. Ses caractéristiques électromagnétiques sont bonnes, mais son allongement à la rupture est insuffisant, du fait de la présence de vanadium en excès par rapport à la quantité maximale admise (3%).Reference alloy 20 is a cobalt iron with 18% cobalt containing 3.2% vanadium. Its electromagnetic characteristics are good, but its elongation at break is insufficient, due to the presence of vanadium in excess relative to the maximum quantity allowed (3%).

Parmi les alliages 1-8 selon l'invention, les alliages 1-3 ont une dureté après recuit élevée, supérieure à 210 HV, qui les rend donc particulièrement aptes à être découpés ou usinés. On les utilisera donc préférentiellement pour former des barres, des plaques ou des tôles, à partir desquels seront fabriquées les pièces désirées. Ce sont des alliages fer-cobalt contenant environ 15 ou 18% de cobalt, et des quantités significatives de silicium et éventuellement d'aluminium. L'alliage 1 contient en plus du tantale et l'alliage 2 du molybdène ; l'alliage 3 n'a pas d'éléments d'alliage supplémentaires en quantités importantes. Ces alliages ont des caractéristiques électromagnétiques excellentes, aussi bien en termes d'aimantation à saturation que de résistivité, et présentent donc un très bon compromis entre les diverses exigences des applications envisagées. Enfin, la présence de tantale et de molybdène dans les alliages 1 et 2 leur confère des allongements à la rupture assez élevés, qui rendraient ces alliages également aptes à être mis en forme par matriçage ou emboutissage dans des conditions qui seraient acceptables, ou qui seraient même franchement bonnes pour l'alliage 1. Typiquement, pour cette catégorie d'alliages, on choisit une composition comportant 18% de cobalt, 0,5 à 1% de chrome + vanadium, 0,05 à 0,5% de tantale + silicium et 1 à 2,5% de silicium + aluminium + molybdène.Among the alloys 1-8 according to the invention, the alloys 1-3 have a hardness after high annealing, greater than 210 HV, which makes them particularly suitable for being cut or machined. They will therefore be used preferentially to form bars, plates or sheets, from which will be manufactured the desired parts. These are iron-cobalt alloys containing about 15 or 18% cobalt, and significant amounts of silicon and possibly aluminum. Alloy 1 additionally contains tantalum and alloy 2 molybdenum; alloy 3 has no additional alloying elements in large amounts. These alloys have excellent electromagnetic characteristics, both in terms of saturation magnetization and resistivity, and therefore have a very good compromise between the various requirements of the applications envisaged. Finally, the presence of tantalum and molybdenum in alloys 1 and 2 gives them relatively high elongations at break, which would make these alloys equally suitable for forming by stamping or stamping under conditions that would be acceptable, or which would be even frankly good for the alloy 1. Typically, for this category of alloys, a composition is chosen that comprises 18% of cobalt, 0.5 to 1% of chromium + vanadium, 0.05 to 0.5% of tantalum + silicon and 1 to 2.5% silicon + aluminum + molybdenum.

Les alliages 4-8 selon l'invention ont un allongement à la rupture élevé (au moins 35%) qui les rend aptes à être mis en forme par matriçage ou emboutissage. On les utilisera préférentiellement pour former des barres ou des fils à partir desquels seront fabriquées les pièces désirées. Ce sont des alliages fer-cobalt à 18% de cobalt environ, ne contenant pas ou peu dé silicium et d'aluminium. En revanche, ils contiennent du chrome (2 à 2,9%). Cet élément pourrait être remplacé au moins partiellement par du molybdène et/ou du vanadium. Leurs caractéristiques électromagnétiques présentent le même compromis favorable entre les diverses exigences que les alliages 1-3. Typiquement, pour cette catégorie d'alliages, on choisit une composition comportant 18% de cobalt, 2 à 3% de chrome, 0 à 1% de vanadium, 0,05 à 0,5% de tantale + silicium et 0 à 0,5% de silicium + aluminium + molybdène.The alloys 4-8 according to the invention have a high elongation at break (at least 35%) which makes them suitable for being formed by stamping or stamping. They will be used preferentially to form bars or wires from which the desired parts will be manufactured. These are iron-cobalt alloys with about 18% cobalt, containing little or no silicon and aluminum. On the other hand, they contain chromium (2 to 2.9%). This element could be replaced at least partially by molybdenum and / or vanadium. Their electromagnetic characteristics present the same favorable compromise between the various requirements as the 1-3 alloys. Typically, for this category of alloys, a composition is chosen that comprises 18% cobalt, 2 to 3% chromium, 0 to 1% vanadium, 0.05 to 0.5% tantalum + silicon and 0 to 0, 5% silicon + aluminum + molybdenum.

Une fois obtenu l'alliage selon l'invention, sous forme de barres, de fils, de plaques ou de tôle, si on veut utiliser cet alliage pour constituer des actionneurs électromagnétiques (ou toute autre pièce pour laquelle des caractéristiques similaires seraient requises), il est important de faire subir au métal un traitement thermomécanique qui lui confère la texture optimale requise. Ce traitement doit avoir pour but d'obtenir pour au moins 30%, et de préférence au moins 50% (en volume du matériau), des grains ou des cristaux ayant une orientation cristallographique comportant un axe <100> dévié de moins de 20° par rapport à la direction de laminage à chaud ou à froid. Si on rapproche certains axes <100> des cristaux des directions principales d'utilisation du flux magnétique par une texturation particulière, on améliore significativement les propriétés magnétiques des aciers et alliages magnétiques doux. Dans le cas des alliages de l'invention se trouvant sous forme de plaques ou de tôles laminées, celles-ci doivent avoir une texture préférentielle du type {100} ou {110} parallèle au plan de laminage, dont la proportion dans le volume du matériau et l'orientation <100> par rapport à la direction de laminage doivent obéir aux critères cités précédemment.Once obtained the alloy according to the invention, in the form of bars, wires, plates or sheet metal, if one wants to use this alloy to constitute electromagnetic actuators (or any other part for which similar characteristics would be required), it's important to subject the metal a thermomechanical treatment that gives it the optimal texture required. This treatment must aim at obtaining for at least 30%, and preferably at least 50% (by volume of the material), grains or crystals having a crystallographic orientation having a <100> axis deviated by less than 20 ° relative to the hot or cold rolling direction. If we approximate some axes <100> of the crystals of the main directions of use of the magnetic flux by a particular texturing, significantly improves the magnetic properties of steels and soft magnetic alloys. In the case of the alloys of the invention in the form of plates or rolled sheets, these must have a preferential texture of the {100} or {110} type parallel to the rolling plane, the proportion of which in the volume of the material and the <100> orientation with respect to the rolling direction must meet the criteria mentioned above.

Sur les alliages de l'invention, un procédé permettant d'obtenir une texture répondant à ces caractéristiques est le suivant.On the alloys of the invention, a method for obtaining a texture corresponding to these characteristics is as follows.

On procède à un laminage à chaud austénoferritique de l'ébauche sous forme de barre, de fil, de plaque ou de tôle dont la composition a été précédemment définie. Par laminage austénoferritique, on entend un laminage commençant en phase austénitique, donc au-dessus de la température de transformation α → α + γ (Tα/γ qui est spécifiée pour chaque alliage donné en exemple dans le tableau 1) et se terminant en phase ferritique, donc au-dessous de Tα/γ. Ce laminage à chaud doit comporter une étape de réduction avec un taux de corroyage d'au moins 30% (et de préférence au moins 50%) lorsque l'alliage se trouve en phase ferritique (le taux de corroyage étant défini par le rapport (section initiale - section finale) / section initiale). Par exemple, si on veut obtenir une barre de diamètre 20 mm, il faut, lors du laminage à chaud, être en phase ferritique à un diamètre intermédiaire d'au moins 24 mm, de préférence au moins 28 mm. De même, si on veut obtenir une plaque d'épaisseur 2,5 mm, il faut, lors du laminage à chaud, être en phase ferritique à une épaisseur intermédiaire d'au moins 3,6 mm, de préférence au moins 5 mm.The bar, wire, plate or sheet blank, whose composition has been previously defined, is subjected to a hot-rolling austenoferritic blank. By austenoferritic rolling is meant a rolling beginning in the austenitic phase, therefore above the transformation temperature α → α + γ (Tα / γ which is specified for each alloy given as an example in Table 1) and ending in phase ferritic, therefore below Tα / γ. This hot rolling must comprise a reduction step with a degree of work-up of at least 30% (and preferably at least 50%) when the alloy is in the ferritic phase (the degree of curling being defined by the ratio ( initial section - final section) / initial section). For example, if one wants to obtain a bar diameter of 20 mm, it is necessary, during hot rolling, to be in ferritic phase with an intermediate diameter of at least 24 mm, preferably at least 28 mm. Similarly, if one wants to obtain a 2.5 mm thick plate, during hot rolling, it is necessary to be in the ferritic phase at an intermediate thickness of at least 3.6 mm, preferably at least 5 mm.

Par ailleurs, les recuits éventuellement effectués postérieurement au laminage à chaud ne devront jamais porter le produit à une température supérieure à Tα/γ, cette température variant de 930 à 990°C pour les alliages selon l'invention figurant dans le tableau 1.Moreover, the anneals possibly carried out after the hot rolling should never bring the product to a temperature above Tα / γ, this temperature ranging from 930 to 990 ° C for the alloys according to the invention shown in Table 1.

Enfin, comme la texture la plus favorable est obtenue principalement dans les couches supérieures du produit, il est conseillé de limiter autant que possible les enlèvements superficiels de matière lors des opérations ultérieures de décapage ou de polissage. De préférence, la diminution de masse des produits suite à ces opérations ne devrait pas excéder 10%, ou mieux 5%.Finally, since the most favorable texture is obtained mainly in the upper layers of the product, it is advisable to limit as much as possible the superficial removal of material during subsequent stripping or polishing operations. Preferably, the mass decrease of the products following these operations should not exceed 10%, or better 5%.

Comme on l'a dit, une application privilégiée des alliages selon l'invention est la fabrication de noyaux pour actionneurs électromagnétiques. De tels actionneurs compacts, rapides et fiables comportant de tels noyaux peuvent avantageusement être utilisés dans des injecteurs de moteurs à explosion à injection directe, notamment de moteurs Diesel, et dans des pièces mobiles d'actionneurs électromagnétiques commandant le mouvement des soupapes de moteurs à combustion interne.As has been said, a preferred application of the alloys according to the invention is the manufacture of cores for electromagnetic actuators. Such compact, fast and reliable actuators comprising such cores can advantageously be used in injectors of direct injection combustion engines, especially diesel engines, and in moving parts of electromagnetic actuators controlling the movement of combustion engine valves. internal.

Claims (16)

  1. Iron-cobalt alloy, characterized in that it comprises, in percentages by weight:
    - from 10 to 22% of Co;
    - from traces to 2.5% of Si;
    - from traces to 2% of Al;
    - from 0.1 to 1% of Mn;
    - from traces to 0.0100% of C;
    - a sum of the O, N and S contents of between traces and 0.0070%;
    - a sum of the Si, Al, Cr, V, Mo and Mn contents of between 1.1 and 3.5%, preferably between 1.5 and 3.5%;
    - a sum of the Cr, Mo and V contents of between traces and 3%;
    - a sum of the Ta and Nb contents of between traces and 1%;
    the balance being iron and impurities resulting from the smelting,
    in that: 1.23 Al + Mo % + 0.84 Si + Cr + V % - 0.15 Co % - 15 2.1
    Figure imgb0008

    and in that: 14 , 5 Al + Cr % + 12 V + Mo % + 25 Si % 40.
    Figure imgb0009
  2. Iron-cobalt alloy according to Claim 1, characterized in that it contains 14 to 20% Co.
  3. Iron-cobalt alloy according to Claim 1 or 2, characterized in that the sum of the Ta and Nb contents is between 0.05 and 0.8%.
  4. Iron-cobalt alloy according to one of Claims 1 to 3, characterized in that the sum of its Cr and V contents is between 1.1 and 3%, preferably between 1.5 and 3%, and in that the sum of its Si, Al and Mo contents is between traces and 1%.
  5. Iron-cobalt alloy according to Claim 4, characterized in that its elongation at break is ≥ 35%.
  6. Iron-cobalt alloy according to one of Claims 1 to 3, characterized in that the sum of its Si and Al contents is between 1 and 2.6% and in that the sum of its Cr, V, Mo, Ta and Nb contents is between traces and 2%.
  7. Iron-cobalt alloy according to Claim 6, characterized in that its hardness HV is ≥ 200 after annealing.
  8. Iron-cobalt alloy according to one of Claims 1 to 7, characterized in that its saturation magnetization is ≥ 2.1 T at 150°C and ≥ 2.12 T at 20°C and in that its resistivity is ≥ 35 µΩ.cm at 150 °C and ≥ 31 µΩ.cm at 20°C.
  9. Iron-cobalt alloy according to one of Claims 1 to 8, characterized in that its coercive field at 20°C and 150°C is less than 1.5 Oe, preferably less than 1 Oe.
  10. Bar, rod or plate made of iron-cobalt alloy, characterized in that said alloy is of the type according to one of Claims 1 to 9 and in that the bar, rod or plate has a preferential <100> axis fiber texture deviating by less than 20° with respect to the hot rolling direction, for at least 30% (by volume of the material), preferably for at least 50%, of the grains.
  11. Rolled plate or sheet made of iron-cobalt alloy, characterized in that said alloy is of the type according to one of Claims 1 to 9 and in that it has a strong <100> axis texture component deviating by less than 20° with respect to the hot rolling direction, for at least 30% (by volume of the material), preferably for at least 50%, of the grains.
  12. Process for producing a rolled bar, rod, plate or sheet according to Claim 10 or 11, characterized in that a rolled bar, rod, plate or sheet is produced from a blank made of an alloy according to one of Claims 1 to 9 by carrying out a rolling operation with a deformation ratio in the ferritic phase of at least 30%, preferably at least 50%, and in that an optional subsequent annealing treatment is carried out at a temperature below the austenitic transformation temperature.
  13. Moving core for an electromagnetic actuator, characterized in that it has been manufactured from a rolled bar or rod or plate or sheet according to Claim 10 or 11.
  14. Electromagnetic actuator comprising a moving core made of an iron-cobalt alloy, characterized in that said core is of the type according to Claim 13 and in that the preferential texture of said core has a <100> axis approximately parallel to the principal direction of the excitation field.
  15. Injector for an internal combustion engine controlled by electronic regulation, comprising an electromagnetic actuator having a high volume power, a short response time and high reliability in use, characterized in that said actuator is of the type according to Claim 14.
  16. Electromagnetic actuator for the electronically controlled valves of an internal combustion engine, characterized in that it is of the type according to Claim 14.
EP01934103A 2000-05-12 2001-05-11 Iron-cobalt alloy, in particular for electromagnetic actuator mobile core and method for making same Expired - Lifetime EP1281182B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0006088 2000-05-12
FR0006088A FR2808806B1 (en) 2000-05-12 2000-05-12 IRON-COBALT ALLOY, IN PARTICULAR FOR A MOBILE CORE OF ELECTROMAGNETIC ACTUATOR, AND ITS MANUFACTURING METHOD
PCT/FR2001/001440 WO2001086665A1 (en) 2000-05-12 2001-05-11 Iron-cobalt alloy, in particular for electromagnetic actuator mobile core and method for making same

Publications (2)

Publication Number Publication Date
EP1281182A1 EP1281182A1 (en) 2003-02-05
EP1281182B1 true EP1281182B1 (en) 2010-04-21

Family

ID=8850163

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01934103A Expired - Lifetime EP1281182B1 (en) 2000-05-12 2001-05-11 Iron-cobalt alloy, in particular for electromagnetic actuator mobile core and method for making same

Country Status (10)

Country Link
US (2) US7128790B2 (en)
EP (1) EP1281182B1 (en)
JP (1) JP5027372B2 (en)
KR (1) KR100711188B1 (en)
AT (1) ATE465500T1 (en)
AU (1) AU2001260412A1 (en)
DE (1) DE60141900D1 (en)
ES (1) ES2342766T3 (en)
FR (1) FR2808806B1 (en)
WO (1) WO2001086665A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10134056B8 (en) 2001-07-13 2014-05-28 Vacuumschmelze Gmbh & Co. Kg Process for the production of nanocrystalline magnetic cores and apparatus for carrying out the process
DE102005034486A1 (en) 2005-07-20 2007-02-01 Vacuumschmelze Gmbh & Co. Kg Process for the production of a soft magnetic core for generators and generator with such a core
US20070176025A1 (en) * 2006-01-31 2007-08-02 Joachim Gerster Corrosion resistant magnetic component for a fuel injection valve
US8029627B2 (en) * 2006-01-31 2011-10-04 Vacuumschmelze Gmbh & Co. Kg Corrosion resistant magnetic component for a fuel injection valve
DE502007000329D1 (en) * 2006-10-30 2009-02-05 Vacuumschmelze Gmbh & Co Kg Soft magnetic iron-cobalt based alloy and process for its preparation
DE102007035774B9 (en) 2007-07-27 2013-03-14 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt based alloy and process for its preparation
US9057115B2 (en) * 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
US8012270B2 (en) 2007-07-27 2011-09-06 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it
EP2083428A1 (en) * 2008-01-22 2009-07-29 Imphy Alloys Fe-Co alloy for highly dynamic electromagnetic actuator
KR101376507B1 (en) * 2012-02-22 2014-03-21 포항공과대학교 산학협력단 METHOD OF MANUFACTURING Fe-Co BASED ALLOY SHEET WITH TEXTURE STRUCTURE AND SOFT MAGNETIC STEEL SHEET MANUFACTURED BY THE SAME
DE102014100589A1 (en) * 2014-01-20 2015-07-23 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt based alloy and process for its preparation
US9502167B1 (en) 2015-11-18 2016-11-22 Hamilton Sundstrand Corporation High temperature electromagnetic actuator
US11329585B2 (en) 2019-01-25 2022-05-10 General Electric Company Electric machines with air gap control systems, and systems and methods of controlling an air gap in an electric machine
DE102019110872A1 (en) * 2019-04-26 2020-11-12 Vacuumschmelze Gmbh & Co. Kg Laminated core and method for producing a highly permeable soft magnetic alloy
WO2021182518A1 (en) * 2020-03-10 2021-09-16 日立金属株式会社 METHOD FOR MANUFACTURING Fe-Co-BASED ALLOY ROD, AND Fe-Co-BASED ALLOY ROD
US11920230B2 (en) 2020-08-31 2024-03-05 General Electric Company Processing of iron cobalt lamination material for hybrid turbo-electric components
CN114038642B (en) * 2021-10-12 2024-07-12 泉州天智合金材料科技有限公司 Fe-Co soft magnetic alloy wave-absorbing powder and preparation method thereof
WO2024048138A1 (en) * 2022-08-31 2024-03-07 株式会社プロテリアル Method for producing fe-co-based alloy rod, and fe-co-based alloy rod
WO2024048788A1 (en) * 2022-09-02 2024-03-07 株式会社プロテリアル Method for producing fe-co alloy rod

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892604A (en) * 1972-02-22 1975-07-01 Westinghouse Electric Corp Method of producing normal grain growth (110) {8 001{9 {0 textured iron-cobalt alloys
US3977919A (en) * 1973-09-28 1976-08-31 Westinghouse Electric Corporation Method of producing doubly oriented cobalt iron alloys
US4082579A (en) * 1975-02-11 1978-04-04 The Foundation: The Research Institute Of Electric And Magnetic Alloys Rectangular hysteresis magnetic alloy
US4059562A (en) * 1977-03-21 1977-11-22 Tenneco Chemicals, Inc. Liquid stabilizer systems and vinyl halide resin compositions containing same
US4120704A (en) * 1977-04-21 1978-10-17 The Arnold Engineering Company Magnetic alloy and processing therefor
FR2406876A1 (en) * 1977-10-18 1979-05-18 Western Electric Co Magnetic chromium-cobalt-iron alloys - used for electromechanical transducers being cold shaped in air
JPH0633199A (en) * 1992-07-16 1994-02-08 Hitachi Metal Precision Ltd Yoke core for printer head
US5817191A (en) * 1994-11-29 1998-10-06 Vacuumschmelze Gmbh Iron-based soft magnetic alloy containing cobalt for use as a solenoid core
DE4442420A1 (en) * 1994-11-29 1996-05-30 Vacuumschmelze Gmbh Soft magnetic iron-based alloy with cobalt for magnetic circuits or excitation circuits
DE4444482A1 (en) * 1994-12-14 1996-06-27 Bosch Gmbh Robert Soft magnetic material
JPH09228007A (en) * 1996-02-22 1997-09-02 Toshiba Corp High strength magnetostriction alloy, sensor core and load sensor using the same
DE19928764B4 (en) * 1999-06-23 2005-03-17 Vacuumschmelze Gmbh Low coercivity iron-cobalt alloy and process for producing iron-cobalt alloy semi-finished product

Also Published As

Publication number Publication date
US7819990B2 (en) 2010-10-26
ES2342766T3 (en) 2010-07-14
KR20020091831A (en) 2002-12-06
AU2001260412A1 (en) 2001-11-20
FR2808806A1 (en) 2001-11-16
FR2808806B1 (en) 2002-08-30
JP2004515644A (en) 2004-05-27
US20070029013A1 (en) 2007-02-08
KR100711188B1 (en) 2007-04-24
DE60141900D1 (en) 2010-06-02
EP1281182A1 (en) 2003-02-05
JP5027372B2 (en) 2012-09-19
US20040099347A1 (en) 2004-05-27
ATE465500T1 (en) 2010-05-15
US7128790B2 (en) 2006-10-31
WO2001086665A1 (en) 2001-11-15

Similar Documents

Publication Publication Date Title
EP1281182B1 (en) Iron-cobalt alloy, in particular for electromagnetic actuator mobile core and method for making same
CA2858167C (en) Process for manufacturing a thin strip made of soft magnetic alloy and strip obtained
EP1844173B1 (en) Method for producing austenitic iron-carbon-manganese metal sheets, and sheets produced thereby
EP2630269B1 (en) Hot or cold rolled steel sheet, its manufacturing method and its use in the automotive industry
EP3007844B1 (en) Method for manufacturing a titanium-aluminium alloy part
WO2017016604A1 (en) Feco alloy, fesi alloy or fe sheet or strip and production method thereof, magnetic transformer core produced from said sheet or strip, and transformer comprising same
US7909945B2 (en) Soft magnetic iron-cobalt-based alloy and method for its production
CN111926268B (en) Sheet lamination and method of making high permeability soft magnetic alloys
WO2008142229A2 (en) Austenitic iron/nickel/chromium/copper alloy
EP2245203A1 (en) Austenitic stainless steel sheet and method for making said sheet
CA2984131A1 (en) Steel, product made of said steel, and manufacturing method thereof
US20200147688A1 (en) Method for producing a part from a soft magnetic alloy
US9057115B2 (en) Soft magnetic iron-cobalt-based alloy and process for manufacturing it
KR101060094B1 (en) Soft Magnetic Iron-Cobalt-Based Alloy and Manufacturing Method Thereof
EP1299569B1 (en) Ferritic stainless steel for ferromagnetic parts
EP2313895B1 (en) Fe-co alloy for high dynamic electromagnetic actuator
CA2435938C (en) High-strength isotropic steel, method for making steel plates and resulting plates
FR2821858A1 (en) Production of ferritic ferro-alloy sleeve strengthened with oxide dispersion and containing chromium, useful in nuclear reactor core, involves repeated cold rolling and annealing of sintered blank
WO2023111456A1 (en) Nickel-based alloy comprising tantalum
EP0379061A1 (en) Exterior cover part for a watch, and method for manufacturing the same
WO2023111457A1 (en) Nickel-based alloy
EP4039843A1 (en) Non ferromagnetic alloy, manufacturing proccess therefore and clock movement component made of that alloy
JPH04323353A (en) Production of shape memory alloy wire by focusing wire drawing method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021031

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FRAISSE, HERVE

Inventor name: LEROY, MARC

Inventor name: COUTU, LUCIEN

Inventor name: WAECKERLE, THIERRY

Inventor name: CHAPUT, LAURENT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARCELORMITTAL - STAINLESS & NICKEL ALLOYS

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60141900

Country of ref document: DE

Date of ref document: 20100602

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2342766

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: ARCELORMITTAL - STAINLESS & NICKEL ALLOYS

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100722

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100823

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

26N No opposition filed

Effective date: 20110124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200616

Year of fee payment: 20

Ref country code: DE

Payment date: 20200513

Year of fee payment: 20

Ref country code: FR

Payment date: 20200421

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200511

Year of fee payment: 20

Ref country code: GB

Payment date: 20200527

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20200424

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60141900

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210510

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 465500

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210510

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20211207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210512