EP2245203B1 - Austenitic stainless steel sheet and method for obtaining this sheet - Google Patents

Austenitic stainless steel sheet and method for obtaining this sheet Download PDF

Info

Publication number
EP2245203B1
EP2245203B1 EP08872296.2A EP08872296A EP2245203B1 EP 2245203 B1 EP2245203 B1 EP 2245203B1 EP 08872296 A EP08872296 A EP 08872296A EP 2245203 B1 EP2245203 B1 EP 2245203B1
Authority
EP
European Patent Office
Prior art keywords
sheet
steel
temperature
rolled
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08872296.2A
Other languages
German (de)
French (fr)
Other versions
EP2245203A1 (en
Inventor
Thomas Frohlich
Jean-Denis Mithieux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aperam Stainless France SA
Original Assignee
Aperam Stainless France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aperam Stainless France SA filed Critical Aperam Stainless France SA
Priority to EP08872296.2A priority Critical patent/EP2245203B1/en
Priority to PL08872296T priority patent/PL2245203T3/en
Priority to SI200832034T priority patent/SI2245203T1/en
Publication of EP2245203A1 publication Critical patent/EP2245203A1/en
Application granted granted Critical
Publication of EP2245203B1 publication Critical patent/EP2245203B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the invention relates to stainless steel sheets having high mechanical properties and good resistance to corrosion in order to be intended in particular for the manufacture of automotive parts, such as structural parts or engine head gaskets.
  • the stainless steels considered here are in the sense given to this expression by the ISO 6929 standard, ie steels containing at least 10.5% by weight of chromium and not more than 1 , 2% by weight of carbon.
  • austenitic steels are alloy steels containing chromium, nickel, manganese, nitrogen, carbon and optionally copper and molybdenum, in order to produce an austenitic microstructure, which has the advantage of presenting a large crystalline mesh for the iron (cubic face-centered), which increases the solubility of the various elements of alloys in iron, including carbon.
  • the usual process for producing austenitic stainless steels is as follows: after hot rolling of a strip followed by annealing, a cold rolling is carried out whose rate depends on the final characteristics concerned. The steel then has good mechanical strength, but its ductility is too low, especially for its subsequent shaping. To overcome this, it is subjected to a final recrystallization treatment in the form of an annealing furnace, that is to say a heating with temperature maintenance the time required for complete recrystallization before controlled cooling.
  • annealing The main purpose of annealing is to put the metal in a structural state close to the state of equilibrium. In short, the internal energy accumulated during the cold-working is evacuated. In fact, a recrystallization annealing will use this internal energy differential to promote the germination of new metal grains and their growth. It is understood that the greater the internal energy increase due to hardening is important, the more likely there will be new seeds during the annealing, and thus a small final grain size. Also, is it advantageous to perform a strong work hardening prior to annealing.
  • the recrystallization temperature is also an important parameter for controlling the final grain size since the grain boundary mobility increases with temperature. It is therefore recommended to lower the annealing temperature to obtain a fine grained structure.
  • the heating conventionally used during the recrystallization annealing is also a quenching, ie it must exceed the solvus of the chromium carbides to put in solution all the carbon in the austenite.
  • the objective of this step is to avoid any risk of localized corrosion caused by decrepit areas around chromium carbides.
  • the solution temperature of the chromium carbides thus constitutes a limit to the decrease of the annealing temperature in order to refine the microstructure. This limit depends on the chemical composition and mainly the carbon content.
  • the mechanical strength of the steel can be further improved by hardening after this heat treatment.
  • all tests of grain size refinement have failed, resulting in a high precipitation of chromium carbides caused by the lowering of the annealing temperature.
  • EP-A-1739200 discloses an austenitic stainless steel strip having an elastic limit Rp0.2 greater than or equal to 600 MPa, a tensile strength Rm greater than or equal to 800 MPa, an elongation A80 of greater than or equal to 40%, the composition of which comprises % by weight: 0.025 ⁇ C ⁇ 0.15%; 0.20 ⁇ If ⁇ 1.0%; 0.50 ⁇ Mn ⁇ 2.0%; 6.0 ⁇ Ni ⁇ 12.0%; 16.0 ⁇ Cr ⁇ 20.0%; Mo ⁇ 3.0%; 0.030 ⁇ N ⁇ 0.160%; Cu ⁇ 0.50%; P ⁇ 0.50%; S ⁇ 0.015%; possibly 0.10 ⁇ V ⁇ 0.50%, and 0.03 ⁇ Nb ⁇ 0.50% with 0.10% ⁇ Nb + V ⁇ 0.50%, the balance being iron and any impurities resulting from the preparation, the average size of the austenite grains is less than or equal to 4 m, and the surface has a gloss greater than 50.
  • GB-A-473,331 describes treatments carried out on austenitic stainless steels in order to limit their sensitivity to intergranular corrosion.
  • the precipitation of Cr carbides is carried out intragranularly, in particular by reheating at a temperature below the recrystallization temperature, and for a period of time sufficient to precipitate all excess C and redistribute the Cr homogeneously without causing significant recrystallization.
  • FR-A-2,864,108 discloses an austenitic stainless steel of composition 0.025% ⁇ C ⁇ 0.05%; 0.3% ⁇ If ⁇ 1%; 1% ⁇ Mn ⁇ 2%; 15% ⁇ Cr ⁇ 18.5%; 5% ⁇ Ni ⁇ 10%; Mo ⁇ 3%; 0.1% ⁇ N ⁇ 0.16%; Cu ⁇ 0.5%; P ⁇ 0.5%; S ⁇ 0.015%; optionally 0.1% ⁇ V ⁇ 0.5% and 0.1% ⁇ Nb ⁇ 0.5%, with 0.1% ⁇ Nb + Ti + V ⁇ 0.5%, the balance being iron and possible impurities resulting from the preparation, and whose microstructure is an essentially austenitic microstructure comprising from 0.1 to 0.2% by volume of martensitic islands distributed homogeneously.
  • the targeted mechanical properties are achieved thanks to only partial recrystallization. Cooling after recrystallization is carried out continuously
  • the object of the invention is to provide an answer to this problem which has not yet been solved by means of a steel with a very fine austenitic microstructure, whose carbon content significantly increased compared with the practice of the prior art, makes it possible to obtain increased mechanical strength together with very good corrosion resistance.
  • the invention relates to a stainless steel sheet whose composition comprises, the contents being expressed by weight: 0.05% ⁇ C ⁇ 0.30%, 0.3% ⁇ Si ⁇ 1%, 0 , 5% ⁇ Mn ⁇ 3%, 4% ⁇ Ni ⁇ 10%, 15% ⁇ Cr ⁇ 20%, N ⁇ 0.2%, P ⁇ 0.05%, S ⁇ 0.015%, optionally 0.1 ⁇ V ⁇ 0.5%, optionally Mo ⁇ 3%, optionally Cu ⁇ 0.5%, the rest of the composition being constituted of iron and unavoidable impurities resulting from the preparation, the microstructure of the steel being essentially austenitic completely recrystallized, the average size of the austenite grains being less than 2 micrometers, the sheet containing chromium carbides precipitated at the joints of austenitic grains for over 90% of them.
  • the composition preferably comprises, the contents being expressed by weight: 0.09% ⁇ C ⁇ 0.30%.
  • the composition comprises, the contents being expressed by weight: 16% ⁇ Cr ⁇ 18%.
  • the rapid heating is up to a temperature greater than 800 ° C and less than or equal to 900 ° C.
  • the cooled sheet is subjected to a cold deformation operation capable of generating the appearance of martensite within the steel structure.
  • the rapid heating is preferably carried out by electromagnetic induction.
  • the resistance may vary between about 1000 and 1600 MPa.
  • the invention also relates to a stainless steel sheet manufactured by the manufacturing method above.
  • the invention also relates to a mechanical stainless steel part obtained from a sheet made by the manufacturing process above.
  • the invention also relates to the use of a sheet obtained by the above manufacturing process for the manufacture of structural parts for automobiles.
  • the invention also relates to the use of a sheet obtained by the above manufacturing method for the manufacture of motor cylinder head gaskets.
  • the invention essentially consists of a new sheet of austenitic stainless steel with very fine grains, having a significant carbon content, greater than 0.05 or 0.09%, and in a new process for obtaining a sheet from this steel which offsets the undesired effects of this increase in the carbon content by a very rapid heating annealing to quickly reach the recrystallization temperature.
  • the main problem raised by the recrystallization annealing of austenitic stainless steel is that it can proceed to recrystallization without the precipitation of chromium carbides.
  • these carbides are detrimental to the corrosion resistance of the steel, but they also prevent the recrystallization from starting.
  • the nose of the precipitation zone of these carbides will shift to the left: the domain A 1 is relative to steels with steels less than 0.05% C, the domain A 2 to steels with higher carbon content. Carbides will form more easily and therefore faster.
  • One solution would be to heat the steel at temperatures beyond that zone and hold it there until the carbides recoat. Unfortunately, the temperatures to achieve to achieve this are such that the time elapsed and the mobility of the grain boundaries do not allow then to obtain a fine grain.
  • the present inventors have discovered that it is possible to obtain a homogeneous and complete recrystallization or quenching of the steel before the chromium carbides precipitate, and this for carbon contents of up to at 0.3%, or even a little beyond. This could be achieved by increasing the heating rate above 50 ° C / s, although the total recrystallization temperature Tc increases with heating, which increases the risk of reaching the carbide precipitation zone.
  • the balance of the composition consists of iron and other elements usually expected to be found as impurities resulting from the processing of stainless steel, in proportions that do not affect the properties sought.
  • the slab is hot rolled in a strip train to form a hot rolled sheet. This is annealed at a temperature above 1000 ° C in order to allow subsequent cold rolling. The sheet is then etched by a method known per se.
  • the hot rolled sheet is then cold rolled at room temperature at a reduction rate of greater than 40%.
  • This rolling will generate many dislocations within the steel. It will even form martensite (called martensite deformation) which is in the form of slats. These microstructural evolutions will increase the internal energy of steel. The increase in temperature during the heat treatment that will follow, will allow to bring the metal back to thermodynamic equilibrium.
  • the heat treatment according to the invention consists in subjecting the cold-rolled steel sheet to a total recrystallization annealing comprising, in a first step, a rapid heating phase at a speed of between 50 and 800 ° C./s. to reach a temperature between Tc and Tc + 50 ° C.
  • a rapid heating phase at a speed of between 50 and 800 ° C./s. to reach a temperature between Tc and Tc + 50 ° C.
  • This temperature must be reached before the onset of precipitation of chromium carbides. After cooling under the conditions according to the invention, an ultra-fine austenitic grain having an average size of less than 2 microns is obtained.
  • obtaining a fine grain does not only depend on the rate of preliminary hardening, but also the annealing conditions (temperature and hold time).
  • the higher the carbon content of the steel the higher the heating rate must be.
  • the heating rate should reach about 100 ° C / s.
  • such a heating rate is achieved by the use of an electromagnetic induction heating device.
  • an electromagnetic induction heating device Proper implementation of such a device, in particular by the choice of the frequency of the electric excitation current, makes it possible to obtain temperatures so high that it is no longer even necessary to provide a maintenance phase of homogenization as can be seen on the figure 2 .
  • an advantage of the process according to the invention is that there is less loss of internal energy during the heating phase. It therefore becomes possible to obtain the same fineness of grain for a lower work hardening rate than in the past.
  • a first cooling is carried out at a speed greater than 50 ° C./s so as to be placed in the vicinity of the precipitation nose under isothermal conditions.
  • This first cooling is carried out for example, up to a temperature Tm of about 750 ° C., that is to say between 700 and 800 ° C, which is maintained for a period of between 1 and 100 seconds.
  • the sheet is cooled to room temperature.
  • the chromium carbides will predominantly precipitate, that is to say for more than 90% of them, at the austenitic grain boundaries.
  • This precipitation after austenitization will destabilize the structure and increase the final mechanical characteristics of the steel. Indeed, chromium carbides predominantly precipitating at austenitic grain boundaries, and the latter being very thin (their average size is less than 2 micrometers), there is less risk at this level to deteriorate the resistance to intergranular corrosion.
  • the invention will be particularly useful for the manufacture of motor cylinder head gaskets, which require a high yield strength and good resistance to fatigue and corrosion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Gasket Seals (AREA)

Description

L'invention concerne les tôles en acier inoxydable présentant des caractéristiques mécaniques élevées et une bonne résistance à la corrosion afin d'être destinées notamment à la fabrication de pièces pour automobile, telles que des pièces de structure ou des joints de culasses de moteurs.The invention relates to stainless steel sheets having high mechanical properties and good resistance to corrosion in order to be intended in particular for the manufacture of automotive parts, such as structural parts or engine head gaskets.

Il est précisé, tout d'abord, que les aciers inoxydables considérés ici le sont dans le sens donné à cette expression par la norme ISO 6929, à savoir des aciers contenant au moins 10,5 % en poids de chrome et pas plus de 1,2 % en poids de carbone.It is stated, first of all, that the stainless steels considered here are in the sense given to this expression by the ISO 6929 standard, ie steels containing at least 10.5% by weight of chromium and not more than 1 , 2% by weight of carbon.

La demande croissante pour améliorer la sécurité des véhicules, couplée avec celle visant à la réduction des émissions de gaz carbonique, incite les constructeurs automobiles à rechercher des matériaux présentant des caractéristiques mécaniques toujours plus élevées. Parmi les qualités recherchées pour le matériau "acier", on citera notamment la résistance mécanique, la résistance à la corrosion, à la fatigue, les propriétés de déformabilité, de soudabilité. C'est en fonction de la destination d'usage de l'acier, c'est-à-dire de la pièce fonctionnelle en laquelle il va être transformé au final, que certaines de ces caractéristiques mécaniques seront, plus que d'autres, privilégiées par le sidérurgiste. L'objectif de ce dernier est donc désormais de parvenir à adapter l'acier qu'il produit tant au mode de sollicitation auquel sera soumise la pièce finale en service, qu'aux contraintes liées à la fabrication même de cette pièce par transformation d'une ébauche issue de la solidification du métal.The growing demand to improve vehicle safety, coupled with the need to reduce carbon dioxide emissions, is prompting automakers to look for materials with ever-increasing mechanical characteristics. Among the desired qualities for the "steel" material, mention will in particular be made of the mechanical strength, the resistance to corrosion, to fatigue, the properties of deformability, of weldability. It is according to the purpose of use of the steel, that is to say of the functional part in which it will be transformed in the end, that some of these mechanical characteristics will be, more than others, favored by the steelmaker. The aim of the latter is now to adapt the steel it produces both to the mode of solicitation to which the final piece in service will be subjected, as the constraints related to the very manufacture of this piece by transformation of a blank resulting from the solidification of the metal.

Concernant les pièces pour moteurs thermiques auxquelles se rapporte plus particulièrement l'invention, on utilise généralement pour leur fabrication des aciers austénitiques. Ce sont des aciers alliés contenant du chrome, du nickel, du manganèse, de l'azote, du carbone et optionnellement du cuivre et du molybdène, en vue de produire une microstructure austénitique, laquelle a l'avantage de présenter une grande maille cristalline pour le fer (cubique face centrée), ce qui permet d'augmenter la solubilité des différents éléments d'alliages dans le fer, le carbone notamment.With regard to the thermal engine parts to which the invention relates more particularly, it is generally used for their manufacture of austenitic steels. These are alloy steels containing chromium, nickel, manganese, nitrogen, carbon and optionally copper and molybdenum, in order to produce an austenitic microstructure, which has the advantage of presenting a large crystalline mesh for the iron (cubic face-centered), which increases the solubility of the various elements of alloys in iron, including carbon.

Il se trouve que les aciers inoxydables austénitiques classiques sont caractérisés par des propriétés mécaniques relativement modestes à l'état recuit. En effet, à la différence des aciers martensitiques qui prennent la trempe, ceux-là ne durcissent pas significativement par traitement thermique. Pour atteindre une résistance mécanique suffisante à leur utilisation dans l'industrie automobile, les aciers inoxydables austénitiques peuvent être écrouis par laminage à froid, en raison d'une transformation martensitique induite par la déformation. Selon la réduction d'épaisseur réalisée, différents niveaux de résistance mécanique peuvent être atteints jusqu'à des valeurs très élevées (Rm=1500MPa). Toutefois, l'utilisation de ces produits écrouis pose plusieurs problèmes, d'une part le coût lié à l'opération supplémentaire de laminage comparativement à un produit recuit, d'autre part les faibles capacités d'allongement et l'anisotropie planaire. C'est pourquoi des solutions à l'état recuit sont recherchées.It turns out that conventional austenitic stainless steels are characterized by relatively modest mechanical properties in the annealed state. Indeed, unlike martensitic steels that take quenching, they do not harden significantly by heat treatment. To achieve sufficient mechanical strength for their use in the automotive industry, the austenitic stainless steels can be cold rolled, due to a martensitic transformation induced by the deformation. Depending on the reduction in thickness achieved, different levels of mechanical strength can be reached up to very high values (Rm = 1500MPa). However, the use of these hardened products poses several problems, on the one hand the cost associated with the additional rolling operation compared to an annealed product, on the other hand the low elongation capacities and the planar anisotropy. This is why solutions in the annealed state are sought.

Le procédé usuel de fabrication des aciers inoxydables austénitiques est le suivant : après laminage à chaud d'une bande suivi d'un recuit, on effectue un laminage à froid dont le taux dépend des caractéristiques finales visées. L'acier présente alors une bonne résistance mécanique, mais sa ductilité est trop réduite, notamment pour sa mise en forme ultérieure. Pour y pallier, il est soumis à un traitement final de recristallisation sous forme d'un recuit en four, c'est-à-dire un chauffage avec maintien à température le temps nécessaire à la recristallisation complète avant refroidissement contrôlé.The usual process for producing austenitic stainless steels is as follows: after hot rolling of a strip followed by annealing, a cold rolling is carried out whose rate depends on the final characteristics concerned. The steel then has good mechanical strength, but its ductility is too low, especially for its subsequent shaping. To overcome this, it is subjected to a final recrystallization treatment in the form of an annealing furnace, that is to say a heating with temperature maintenance the time required for complete recrystallization before controlled cooling.

L'objectif principal d'un recuit est de mettre le métal dans un état structural proche de l'état d'équilibre. En bref, on évacue l'énergie interne accumulée lors de l'écrouissage. En fait, un recuit de recristallisation va utiliser ce différentiel d'énergie interne pour favoriser la germination de nouveaux grains métalliques et leur croissance. On comprend que plus l'accroissement d'énergie interne due à l'écrouissage est important, plus il y aura de chance d'avoir de nouveaux germes pendant le recuit, et donc une faible taille de grains finale. Aussi, est-il avantageux de réaliser un fort écrouissage préalablement au recuit.The main purpose of annealing is to put the metal in a structural state close to the state of equilibrium. In short, the internal energy accumulated during the cold-working is evacuated. In fact, a recrystallization annealing will use this internal energy differential to promote the germination of new metal grains and their growth. It is understood that the greater the internal energy increase due to hardening is important, the more likely there will be new seeds during the annealing, and thus a small final grain size. Also, is it advantageous to perform a strong work hardening prior to annealing.

La température de recristallisation est également un paramètre important pour contrôler la taille de grains finale puisque la mobilité des joints de grains augmente avec la température. Il est donc recommandé de baisser la température de recuit pour obtenir une structure à grains fins.The recrystallization temperature is also an important parameter for controlling the final grain size since the grain boundary mobility increases with temperature. It is therefore recommended to lower the annealing temperature to obtain a fine grained structure.

Toutefois, le chauffage classiquement mis en oeuvre lors du recuit de recristallisation est également une hypertrempe, c'est-à-dire qu'il faut dépasser le solvus des carbures de chrome pour mettre en solution tout le carbone dans l'austénite. L'objectif de cette étape est d'éviter tout risque de corrosion localisée causée par les zones déchromées autour des carbures de chrome. La température de mise en solution des carbures de chrome constitue donc une limite à la diminution de la température de recuit pour affiner la microstructure. Cette limite dépend de la composition chimique et principalement de la teneur en carbone.However, the heating conventionally used during the recrystallization annealing is also a quenching, ie it must exceed the solvus of the chromium carbides to put in solution all the carbon in the austenite. The objective of this step is to avoid any risk of localized corrosion caused by decrepit areas around chromium carbides. The solution temperature of the chromium carbides thus constitutes a limit to the decrease of the annealing temperature in order to refine the microstructure. This limit depends on the chemical composition and mainly the carbon content.

Un équilibre a été trouvé dans l'art antérieur en utilisant des aciers présentant des faibles teneurs en carbone, ce qui permet de baisser le solvus des carbures de chrome et de retarder la cinétique de précipitation. Comme on peut le voir sur la figure 1, avec une vitesse de chauffage d'environ 20 °C/s, représentée par la courbe Vc, et une teneur en carbone inférieure à 0,05 %, la température de recristallisation totale Tc est atteinte sans entrer dans le domaine A1 de précipitation des carbures de chrome, relatif à ces aciers à teneur en C inférieure à 0,05%C.An equilibrium has been found in the prior art using steels having low carbon contents, which makes it possible to lower the solvus of chromium carbides and to delay the kinetics of precipitation. As can be seen on the figure 1 with a heating rate of about 20 ° C / s, represented by the curve Vc, and a carbon content of less than 0.05%, the total recrystallization temperature Tc is reached without entering the precipitation area A 1 chromium carbides relative to those steels with a C content of less than 0.05% C.

La résistance mécanique de l'acier peut encore être améliorée par écrouissage après ce traitement thermique. Toutefois, afin de mieux répondre aux demandes de l'industrie automobile, il faudrait de nos jours pouvoir encore améliorer la résistance mécanique de tels aciers au-delà des limites imposées par les voies classiquement utilisées. C'est la raison pour laquelle, il a été tenté d'augmenter la teneur en carbone. Mais à ce jour, à la connaissance du Demandeur, tous les essais d'affinement de la taille de grains se sont soldés par des échecs, se traduisant par une forte précipitation de carbures de chrome causée par la baisse de la température de recuit.The mechanical strength of the steel can be further improved by hardening after this heat treatment. However, in order to better meet the demands of the automotive industry, it should nowadays be possible to further improve the mechanical strength of such steels beyond the limits imposed by the conventionally used routes. This is the reason why he was tempted to increase the carbon content. But to date, to the knowledge of the Applicant, all tests of grain size refinement have failed, resulting in a high precipitation of chromium carbides caused by the lowering of the annealing temperature.

EP-A-1 739 200 décrit une bande en acier inoxydable austénitique, présentant une limite élastique Rp0,2 supérieure ou égale à 600 MPa, une charge à la rupture Rm supérieure ou égale à 800 MPa, un allongement A80 supérieur ou égale à 40 %, dont la composition comprend en % en poids : 0,025 ≤ C ≤ 0,15 % ; 0,20 ≤ Si ≤ 1,0 % ; 0,50 ≤ Mn ≤ 2,0 % ; 6,0 ≤ Ni ≤ 12,0 % ; 16,0 ≤ Cr ≤ 20,0 % ; Mo ≤ 3,0% ; 0,030 ≤ N ≤ 0,160 % ; Cu ≤ 0,50 % ; P ≤ 0,50 % ; S ≤ 0,015 % ; éventuellement 0,10 ≤ V ≤ 0,50 %, et 0,03 ≤ Nb ≤ 0,50% avec 0,10% ≤ Nb + V ≤ 0,50%, le complément étant du fer et d'éventuelles impuretés résultant de l'élaboration, dont la taille moyenne des grains d'austénite est inférieure ou égale à 4 m, et la surface présente une brillance supérieure à 50. Cet acier n'est que partiellement recristallisé, à un taux de 60-75%. Son refroidissement après le traitement de recristallisation partielle est effectué de façon continue. La présence de carbures de Cr aux joints de grains y est considérée comme étant à éviter. EP-A-1739200 discloses an austenitic stainless steel strip having an elastic limit Rp0.2 greater than or equal to 600 MPa, a tensile strength Rm greater than or equal to 800 MPa, an elongation A80 of greater than or equal to 40%, the composition of which comprises % by weight: 0.025 ≤ C ≤ 0.15%; 0.20 ≤ If ≤ 1.0%; 0.50 ≤ Mn ≤ 2.0%; 6.0 ≤ Ni ≤ 12.0%; 16.0 ≤ Cr ≤ 20.0%; Mo ≤ 3.0%; 0.030 ≤ N ≤ 0.160%; Cu ≤ 0.50%; P ≤ 0.50%; S ≤ 0.015%; possibly 0.10 ≤ V ≤ 0.50%, and 0.03 ≤ Nb ≤ 0.50% with 0.10% ≤ Nb + V ≤ 0.50%, the balance being iron and any impurities resulting from the preparation, the average size of the austenite grains is less than or equal to 4 m, and the surface has a gloss greater than 50. This steel is only partially recrystallized, at a rate of 60-75%. Its cooling after the partial recrystallization treatment is carried out continuously. The presence of Cr carbides at the grain boundaries is considered to be avoided.

GB-A-473 331 décrit des traitements réalisés sur des aciers inoxydables austénitiques dans le but de limiter leur sensibilité à la corrosion intergranulaire. A cet effet la précipitation des carbures de Cr s'effectue de manière intragranulaire grâce, notamment, à un réchauffage effectué à une température inférieure à la température de recristallisation, et pendant une durée suffisante pour faire précipiter tout le C en excès et redistribuer le Cr de façon homogène sans provoquer de recristallisation significative. GB-A-473,331 describes treatments carried out on austenitic stainless steels in order to limit their sensitivity to intergranular corrosion. For this purpose, the precipitation of Cr carbides is carried out intragranularly, in particular by reheating at a temperature below the recrystallization temperature, and for a period of time sufficient to precipitate all excess C and redistribute the Cr homogeneously without causing significant recrystallization.

FR-A-2 864 108 décrit un acier inoxydable austénitique de composition 0,025% ≤ C ≤ 0,05% ; 0,3% ≤ Si ≤ 1 % ; 1% ≤ Mn ≤ 2% ; 15% ≤ Cr ≤ 18,5% ; 5% ≤ Ni ≤ 10% ; Mo ≤ 3% ; 0,1% ≤ N ≤ 0,16% ; Cu ≤ 0,5% ; P ≤ 0,5% ; S ≤ 0,015% ; éventuellement 0,1% ≤ V ≤ 0,5 % et 0,1% ≤ Nb ≤ 0,5 %, avec 0,1% ≤ Nb + Ti + V ≤ 0,5 %, le complément étant du fer et d'éventuelles impuretés résultant de l'élaboration, et dont la microstructure est une microstructure essentiellement austénitique comprenant de 0,1 à 0,2 % en volume d'îlots martensitiques répartis de façon homogène. Les propriétés mécaniques visées sont atteintes grâce à une recristallisation seulement partielle. Le refroidissement suivant la recristallisation s'effectue de façon continue FR-A-2,864,108 discloses an austenitic stainless steel of composition 0.025% ≤ C ≤ 0.05%; 0.3% ≤ If ≤ 1%; 1% ≤ Mn ≤ 2%; 15% ≤ Cr ≤ 18.5%; 5% ≤ Ni ≤ 10%; Mo ≤ 3%; 0.1% ≤ N ≤ 0.16%; Cu ≤ 0.5%; P ≤ 0.5%; S ≤ 0.015%; optionally 0.1% ≤ V ≤ 0.5% and 0.1% ≤ Nb ≤ 0.5%, with 0.1% ≤ Nb + Ti + V ≤ 0.5%, the balance being iron and possible impurities resulting from the preparation, and whose microstructure is an essentially austenitic microstructure comprising from 0.1 to 0.2% by volume of martensitic islands distributed homogeneously. The targeted mechanical properties are achieved thanks to only partial recrystallization. Cooling after recrystallization is carried out continuously

L'invention a pour but d'apporter une réponse à ce problème non encore résolu grâce à un acier à microstructure essentiellement austénitique très fine, dont la teneur en carbone significativement augmentée par rapport à la pratique de l'art antérieur, permet d'obtenir une résistance mécanique accrue conjointement avec une très bonne résistance à la corrosion.The object of the invention is to provide an answer to this problem which has not yet been solved by means of a steel with a very fine austenitic microstructure, whose carbon content significantly increased compared with the practice of the prior art, makes it possible to obtain increased mechanical strength together with very good corrosion resistance.

A cet effet, l'invention a pour objet une tôle en acier inoxydable dont la composition comprend, les teneurs étant exprimées en poids : 0,05 % ≤ C ≤ 0,30 %, 0,3 % ≤ Si ≤ 1 %, 0,5% ≤ Mn ≤ 3 %, 4 % ≤ Ni ≤ 10 %, 15 % ≤ Cr ≤ 20 %, N ≤ 0,2 %, P ≤ 0,05 %, S ≤ 0,015 %, optionnellement 0,1 ≤ V ≤ 0,5 %, optionnellement Mo ≤ 3 %, optionnellement Cu ≤ 0,5 %, le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration, la microstructure de l'acier étant essentiellement austénitique totalement recristallisée, la taille moyenne des grains d'austénite étant inférieure à 2 micromètres, la tôle contenant des carbures de chrome précipités aux joints de grains austénitiques pour plus de 90% d'entre eux.For this purpose, the invention relates to a stainless steel sheet whose composition comprises, the contents being expressed by weight: 0.05% ≤ C ≤ 0.30%, 0.3% ≤ Si ≤ 1%, 0 , 5% ≤ Mn ≤ 3%, 4% ≤ Ni ≤ 10%, 15% ≤ Cr ≤ 20%, N ≤ 0.2%, P ≤ 0.05%, S ≤ 0.015%, optionally 0.1 ≤ V ≤ 0.5%, optionally Mo ≤ 3%, optionally Cu ≤ 0.5%, the rest of the composition being constituted of iron and unavoidable impurities resulting from the preparation, the microstructure of the steel being essentially austenitic completely recrystallized, the average size of the austenite grains being less than 2 micrometers, the sheet containing chromium carbides precipitated at the joints of austenitic grains for over 90% of them.

La composition comprend préférentiellement, les teneurs étant exprimées en poids : 0,09 % ≤ C ≤ 0,30 %.The composition preferably comprises, the contents being expressed by weight: 0.09% ≤ C ≤ 0.30%.

Préférentiellement encore, la composition comprend, les teneurs étant exprimées en poids : 16 % ≤ Cr ≤ 18 %.Preferentially, the composition comprises, the contents being expressed by weight: 16% ≤ Cr ≤ 18%.

L'invention a également pour objet un procédé de fabrication d'une tôle en acier inoxydable, selon lequel :

  • on approvisionne un acier de composition selon l'une quelconque des compositions ci-dessus, puis
  • on coule l'acier sous forme de brame, puis
  • on lamine à chaud la brame pour obtenir une tôle laminée à chaud, puis
  • on recuit la tôle laminée à chaud à une température supérieure à 1000°C, puis
  • on décape la tôle laminée à chaud, puis
  • on lamine à froid la tôle laminée à chaud, à un taux de réduction supérieur à 40 %, puis
  • on effectue un traitement thermique de recristallisation totale sur la tôle laminée à froid, le traitement thermique comprenant une phase de chauffage rapide, à une vitesse Vc comprise entre 50 et 800 °C/s jusqu'à une température comprise entre Tc et Tc+50°C, Tc désignant la température de recristallisation totale, de façon à obtenir une tôle chauffée et totalement recristallisée, puis
  • on refroidit la tôle chauffée et totalement recristallisée, à une vitesse supérieure à 50°C/s jusqu'à une température Tm d'environ 750 °C, puis
  • on maintient la tôle à la température Tm durant une durée comprise entre 1 et 100s afin d'obtenir une précipitation de carbures de chrome, puis
  • on refroidit la tôle jusqu'à la température ambiante.
The invention also relates to a method for manufacturing a stainless steel sheet, according to which:
  • a composition steel is supplied according to any one of the above compositions, and then
  • the steel is cast as a slab, then
  • the slab is hot rolled to obtain a hot rolled sheet, then
  • the hot-rolled sheet is annealed at a temperature above 1000 ° C., and then
  • the hot-rolled sheet is scoured, then
  • the hot-rolled sheet is cold-rolled at a reduction rate greater than 40%, and then
  • a total recrystallization heat treatment is carried out on the cold-rolled sheet, the heat treatment comprising a rapid heating phase, at a speed Vc of between 50 and 800 ° C./s up to a temperature of between Tc and Tc + 50 ° C, Tc denoting the total recrystallization temperature, so as to obtain a heated sheet and completely recrystallized, then
  • the heated and completely recrystallized sheet is cooled at a speed greater than 50 ° C./s up to a temperature Tm of approximately 750 ° C., and then
  • the sheet is maintained at the temperature Tm for a period of between 1 and 100 seconds in order to obtain a precipitation of chromium carbides, then
  • the sheet is cooled to room temperature.

Préférentiellement, le chauffage rapide se fait jusqu'à une température supérieure à 800°C et inférieure ou égale à 900°C.Preferably, the rapid heating is up to a temperature greater than 800 ° C and less than or equal to 900 ° C.

Selon une mise en oeuvre préférée de l'invention, une fois le traitement thermique achevé, on fait subir à la tôle refroidie une opération de déformation à froid apte à générer l'apparition de martensite au sein de la structure de l'acier.According to a preferred embodiment of the invention, once the heat treatment is complete, the cooled sheet is subjected to a cold deformation operation capable of generating the appearance of martensite within the steel structure.

Le chauffage rapide est réalisé préférentiellement par induction électromagnétique.The rapid heating is preferably carried out by electromagnetic induction.

Selon la composition, notamment la teneur en carbone, la résistance peut varier entre 1000 et 1600 MPa environ.Depending on the composition, especially the carbon content, the resistance may vary between about 1000 and 1600 MPa.

L'invention a également pour objet une tôle en acier inoxydable fabriquée par le procédé de fabrication ci-dessus.The invention also relates to a stainless steel sheet manufactured by the manufacturing method above.

L'invention a également pour objet une pièce mécanique en acier inoxydable obtenue à partir d'une tôle fabriquée par le procédé de fabrication ci-dessus. L'invention a également pour objet l'utilisation d'une tôle obtenue par le procédé de fabrication ci-dessus pour la fabrication de pièces de structure pour automobiles.The invention also relates to a mechanical stainless steel part obtained from a sheet made by the manufacturing process above. The invention also relates to the use of a sheet obtained by the above manufacturing process for the manufacture of structural parts for automobiles.

L'invention a également pour objet l'utilisation d'une tôle obtenue par le procédé de fabrication ci-dessus pour la fabrication de joints de culasses de moteurs.The invention also relates to the use of a sheet obtained by the above manufacturing method for the manufacture of motor cylinder head gaskets.

L'invention sera bien comprise et d'autres aspects et avantages apparaîtront plus clairement à la lecture de la description détaillée qui suit d'un exemple de réalisation donné en référence aux figures annexées, dans lesquelles :

  • La figure 1 est un diagramme représentant le chauffage d'un acier austénitique à teneur en carbone inférieure à 0,05% (dont le domaine A1 de précipitation des carbures de chrome a été représenté) ou à teneur en carbone plus élevée (domaine de précipitation A2) lors d'un recuit de recristallisation avec une vitesse de chauffage VC selon l'art antérieur.
  • La figure 2 est un diagramme similaire illustrant un mode de réalisation selon l'invention avec un recuit de recristallisation totale suivi d'une déstabilisation de la structure. Le domaine A de précipitation des carbures de chrome a été également figuré ainsi que la température de recristallisation totale Tc .
The invention will be better understood and other aspects and advantages will emerge more clearly on reading the following detailed description of an exemplary embodiment given with reference to the appended figures, in which:
  • The figure 1 is a diagram showing the heating of a carbon steel austenitic less than 0.05% (which has a chromium carbide precipitating region A 1 ) or a higher carbon content (A 2 precipitation domain) ) during a recrystallization annealing with a heating rate V C according to the prior art.
  • The figure 2 is a similar diagram illustrating an embodiment according to the invention with a total recrystallization annealing followed by a destabilization of the structure. Domain A precipitation of chromium carbides was also included as well as the total recrystallization temperature Tc.

Comme on l'aura sans doute déjà compris, l'invention consiste pour l'essentiel en une nouvelle tôle d'acier inoxydable austénitique à grains très fins, présentant une teneur en carbone significative, supérieure à 0,05 ou 0,09%, ainsi qu'en un nouveau procédé d'obtention d'une tôle à partir de cet acier qui compense les effets non souhaités de cette augmentation de la teneur en carbone par un recuit à chauffage très rapide permettant d'atteindre rapidement la température de recristallisation.As will have already been understood, the invention essentially consists of a new sheet of austenitic stainless steel with very fine grains, having a significant carbon content, greater than 0.05 or 0.09%, and in a new process for obtaining a sheet from this steel which offsets the undesired effects of this increase in the carbon content by a very rapid heating annealing to quickly reach the recrystallization temperature.

Comme on l'a vu précédemment le problème principal soulevé par le recuit de recristallisation d'un acier inoxydable austénitique est de pouvoir procéder à la recristallisation sans qu'advienne la précipitation des carbures de chrome. D'une part, ces carbures sont néfastes à la tenue à la corrosion de l'acier, mais ils empêchent d'autre part la recristallisation de démarrer. Or, comme on peut le voir sur la figure 1, lorsqu'on augmente la teneur en carbone, le nez de la zone de précipitation de ces carbures va se décaler vers la gauche : le domaine A1 est relatif à des aciers à des aciers à moins de 0,05%C, le domaine A2 à des aciers à teneur en carbone plus élevée. Les carbures se formeront plus facilement et donc plus vite. Une solution consisterait à chauffer l'acier à des températures allant au-delà de cette zone et à l'y maintenir jusqu'à ce que les carbures se remettent en solution. Malheureusement, les températures à atteindre pour y parvenir sont telles que le temps écoulé et la mobilité des joints de grains ne permettent plus alors d'obtenir un grain fin.As we have seen above, the main problem raised by the recrystallization annealing of austenitic stainless steel is that it can proceed to recrystallization without the precipitation of chromium carbides. On the one hand, these carbides are detrimental to the corrosion resistance of the steel, but they also prevent the recrystallization from starting. Now, as we can see on the figure 1 when the carbon content is increased, the nose of the precipitation zone of these carbides will shift to the left: the domain A 1 is relative to steels with steels less than 0.05% C, the domain A 2 to steels with higher carbon content. Carbides will form more easily and therefore faster. One solution would be to heat the steel at temperatures beyond that zone and hold it there until the carbides recoat. Unfortunately, the temperatures to achieve to achieve this are such that the time elapsed and the mobility of the grain boundaries do not allow then to obtain a fine grain.

Ainsi, lorsqu'il augmente la teneur en carbone de l'acier en vue d'en augmenter la résistance mécanique, l'homme du métier se trouve donc à devoir choisir entre une bonne résistance à la corrosion ou une bonne résistance à la fatigue, par l'intermédiaire d'un grain fin et d'une haute résistance mécanique, alors qu'il souhaite bien légitimement obtenir les deux.Thus, when he increases the carbon content of steel to increase the mechanical strength, the skilled person is therefore to have to choose between good corrosion resistance or good fatigue resistance, through a fine grain and a high mechanical strength, while he legitimately wants to get both.

D'une manière surprenante, les présents inventeurs ont découvert qu'il était possible d'obtenir une recristallisation ou une hypertrempe homogène et complète de l'acier avant que les carbures de chrome ne précipitent, et ce pour des teneurs en carbone allant jusqu'à 0,3 %, voire même un peu au delà. Ceci a pu être obtenu en augmentant la vitesse de chauffage au delà de 50°C/s, bien que la température de recristallisation totale Tc augmente avec ladite vitesse de chauffage, ce qui augmente le risque d'atteindre la zone de précipitation de carbures.Surprisingly, the present inventors have discovered that it is possible to obtain a homogeneous and complete recrystallization or quenching of the steel before the chromium carbides precipitate, and this for carbon contents of up to at 0.3%, or even a little beyond. This could be achieved by increasing the heating rate above 50 ° C / s, although the total recrystallization temperature Tc increases with heating, which increases the risk of reaching the carbide precipitation zone.

Pour fixer les idées, avec des vitesses de chauffage conventionnelles en four de l'ordre de 20°C/s, les teneurs en carbone maximales admissibles pour obtenir une recristallisation et éviter une précipitation des carbures se situeraient autour de 0,07 à 0,08 % en moyenne. Un maximum de 0,15 %C même aurait parfois pu être atteint par certaines nuances.For the sake of clarity, with conventional furnace heating rates of the order of 20 ° C / s, the maximum allowable carbon contents to obtain recrystallization and avoid precipitation of the carbides would be around 0.07 to 0, 08% on average. A maximum of 0,15% C even could have been reached sometimes by certain nuances.

Pour obtenir une tôle en acier selon l'invention, il faut d'abord élaborer, puis couler sous forme d'une brame, un acier inoxydable de composition telle que définie ci-dessous, qui comprend :

  • du carbone à une teneur comprise entre 0,05 et 0,30 % en poids. Si la teneur en C est inférieure à 0,05%, la résistance mécanique est insuffisante. Une teneur en carbone supérieure ou égale à 0,09% se prête particulièrement bien au procédé décrit selon la figure 2. En revanche si la teneur est supérieure à 0,30 %, les efforts de laminage à froid sont considérablement augmentés ce qui réduit la gamme dimensionnelle accessible.
  • du silicium à une teneur comprise entre 0,3 et 1 % en poids. Le silicium est utilisé à titre de désoxydant de l'acier liquide. En outre, il participe au durcissement en solution solide et diminue l'énergie de faute d'empilement qui contrôle en partie la transformation martensitique induite par la déformation. On limite sa teneur à 1 % en poids car il a tendance à perturber le procédé de fabrication de la tôle d'acier en posant des problèmes de ségrégation pendant la coulée en brame d'acier;
  • du manganèse à une teneur comprise entre 0,5 et 3%. Le manganèse favorise la formation d'austénite et augmente la solubilité de l'azote dans l'austénite. Pour une teneur inférieure à 0,5%, le manganèse ne peut plus piéger le soufre sous forme de MnS et la forgeabilité à chaud se dégrade, causant des défauts de surface sur les bandes laminées à chaud. Au delà de 3%, ces effets sont saturés.
  • du chrome à une teneur comprise entre 15 et 20 %. Le chrome favorise la formation de martensite de déformation, et est un élément essentiel pour conférer à l'acier une bonne résistance à la corrosion. Si la teneur en chrome est inférieure à 15 %, la résistance à la corrosion sera insuffisante; si la teneur en chrome dépasse 20%, la fraction de ferrite pendant le laminage à chaud devient trop importante et peut conduire à la formation de criques de rives. Ces différents effets sont obtenus de façon stable dans une gamme préférentielle de 16 à 18% de chrome.
  • du nickel à une teneur comprise entre 4 et 10 %. Le nickel stabilise l'austénite et favorise la re-passivation de l'acier. Il s'agit de la formation à la surface de l'acier d'un film protecteur très mince et de faible perméabilité ionique. Si la teneur en nickel est inférieure à 5 %, la résistance à la corrosion de l'acier est insuffisante. Si la teneur en nickel est supérieure à 10 %, l'austénite se surstabilise. On ne forme alors plus suffisamment de martensite de déformation et les caractéristiques de l'acier sont insuffisantes;
  • de l'azote à une teneur inférieure ou égale à 0,2 %. En plus de son action en faveur de la formation d'austénite, l'azote retarde la précipitation des carbures de chrome. Au delà de 0,2 %, il risque de détériorer la ductilité à chaud de l'acier;
  • du phosphore à une teneur inférieure ou égale à 0,05 %. Le phosphore est un élément ségrégeant aisément. Il favorise le durcissement en solution solide de l'acier, cependant sa teneur doit être limitée à 0,05 % car il augmente la fragilité de l'acier et diminue son aptitude au soudage;
  • du soufre à une teneur inférieure ou égale à 0,015 %. Le soufre est également un élément qui ségrége, dont la teneur doit être limitée afin d'éviter les fissures lors du laminage à chaud.
To obtain a steel sheet according to the invention, it is first necessary to develop and then flow in the form of a slab, a stainless steel of composition as defined below, which comprises:
  • carbon at a content of between 0.05 and 0.30% by weight. If the C content is less than 0.05%, the mechanical strength is insufficient. A carbon content greater than or equal to 0.09% is particularly suitable for the process described according to figure 2 . On the other hand, if the content is greater than 0.30%, the cold rolling forces are considerably increased, which reduces the accessible dimensional range.
  • silicon at a content of between 0.3 and 1% by weight. Silicon is used as a deoxidizer for liquid steel. In addition, it participates in hardening in solid solution and reduces the stacking fault energy which partly controls the martensitic transformation induced by the deformation. Its content is limited to 1% by weight because it has a tendency to disturb the manufacturing process of the steel sheet by posing problems of segregation during the casting of steel slab;
  • manganese at a content between 0.5 and 3%. Manganese promotes the formation of austenite and increases the solubility of nitrogen in austenite. At less than 0.5%, manganese can no longer trap sulfur as MnS and hot forgeability degrades, causing surface defects on hot-rolled strip. Beyond 3%, these effects are saturated.
  • chromium at a content of between 15 and 20%. Chromium promotes the formation of deformation martensite, and is an essential element in giving steel good corrosion resistance. If the chromium content is less than 15%, the corrosion resistance will be insufficient; if the content chromium exceeds 20%, the fraction of ferrite during hot rolling becomes too large and can lead to the formation of bank cracks. These different effects are stably obtained in a preferred range of 16 to 18% chromium.
  • nickel at a content of between 4 and 10%. Nickel stabilizes the austenite and promotes the re-passivation of the steel. This is the formation on the steel surface of a very thin protective film with low ionic permeability. If the nickel content is less than 5%, the corrosion resistance of the steel is insufficient. If the nickel content is greater than 10%, the austenite is over-stabilized. The formation of deformation martensite is then no longer sufficient and the characteristics of the steel are insufficient;
  • nitrogen at a level not exceeding 0,2%. In addition to its action in favor of the formation of austenite, nitrogen delays the precipitation of chromium carbides. Beyond 0.2%, it may deteriorate the hot ductility of the steel;
  • phosphorus at a level not exceeding 0,05%. Phosphorus is an easily segregating element. It promotes the solid solution hardening of steel, however its content must be limited to 0.05% because it increases the fragility of steel and decreases its weldability;
  • sulfur at a level of less than or equal to 0.015%. Sulfur is also a segregating element whose content must be limited in order to avoid cracks during hot rolling.

En outre, la composition peut inclure optionnellement:

  • du vanadium à une teneur comprise entre 0,1 et 0,5 %. Le vanadium favorise la soudabilité de l'acier et freine la croissance des grains d'austénite dans la zone affectée par la chaleur. Au delà de 0,5 %, le vanadium ne contribue pas à l'amélioration de la soudabilité, et en dessous de 0,1 %, la soudabilité de l'acier n'est pas améliorée.
  • du cuivre à une teneur inférieure ou égale à 0,5 %. Le cuivre favorise la formation d'austénite et contribue à la résistance contre la corrosion. Cependant, au delà d'une teneur de 0,5 %, l'austénite devient trop stable à température ambiante et la transformation martensitique par déformation est inhibée.
  • du molybdène à une teneur inférieure ou égale à 3 %. Le molybdène favorise la formation de martensite de déformation et augmente la résistance à la corrosion, surtout s'il est combiné avec l'azote. Au delà de 3 %, la résistance à la corrosion de l'acier n'est plus améliorée et le durcissement à haute température rend le laminage à chaud trop difficile.
In addition, the composition may optionally include:
  • vanadium at a content of between 0.1 and 0.5%. Vanadium promotes the weldability of steel and inhibits the growth of austenite grains in the heat affected zone. Beyond 0.5%, vanadium does not contribute to the improvement of the weldability, and below 0.1%, the weldability of the steel is not improved.
  • copper at a level not exceeding 0.5%. Copper promotes the formation of austenite and contributes to resistance against corrosion. However, beyond a content of 0.5%, the austenite becomes too stable at room temperature and martensitic transformation by deformation is inhibited.
  • molybdenum at a content of not more than 3%. Molybdenum promotes the formation of deformation martensite and increases corrosion resistance, especially when combined with nitrogen. Beyond 3%, the corrosion resistance of the steel is no longer improved and hardening at high temperature makes hot rolling too difficult.

Le reste de la composition est constitué de fer et d'autres éléments que l'on s'attend habituellement à trouver en tant qu'impuretés résultant de l'élaboration de l'acier inoxydable, ce dans des proportions qui n'influent pas sur les propriétés recherchées.The balance of the composition consists of iron and other elements usually expected to be found as impurities resulting from the processing of stainless steel, in proportions that do not affect the properties sought.

Une fois la brame coulée, elle est laminée à chaud dans un train à bandes pour former une tôle laminée à chaud. Celle-ci est recuite à une température supérieure à 1000°C dans le but de permettre le laminage ultérieur à froid. La tôle est ensuite décapée par un procédé connu en lui-même.Once the slab is cast, it is hot rolled in a strip train to form a hot rolled sheet. This is annealed at a temperature above 1000 ° C in order to allow subsequent cold rolling. The sheet is then etched by a method known per se.

La tôle laminée à chaud est ensuite laminée à froid à température ambiante à un taux de réduction supérieur à 40 %.The hot rolled sheet is then cold rolled at room temperature at a reduction rate of greater than 40%.

Ce laminage va générer de nombreuses dislocations au sein de l'acier. Il va même se former de la martensite (appelée martensite de déformation) qui se présente sous forme de lattes. Ces évolutions microstructurales vont augmenter l'énergie interne de l'acier. L'augmentation de la température durant le traitement thermique qui va suivre, va permettre de ramener le métal vers l'équilibre thermodynamique.This rolling will generate many dislocations within the steel. It will even form martensite (called martensite deformation) which is in the form of slats. These microstructural evolutions will increase the internal energy of steel. The increase in temperature during the heat treatment that will follow, will allow to bring the metal back to thermodynamic equilibrium.

Lorsque l'écrouissage est suffisant, la force de retour vers l'équilibre va permettre la germination de nouveaux grains et leur croissance. Ainsi, plus l'écrouissage préalable aura été important, plus on obtiendra un grain fin. C'est pourquoi un taux de réduction inférieur à 40 % est insuffisant pour conférer à l'acier inoxydable selon l'invention les caractéristiques requises.When the work-hardening is sufficient, the force of return to equilibrium will allow the germination of new grains and their growth. Thus, the earlier the hardening has been important, the more fine grain will be obtained. This is why a reduction rate of less than 40% is insufficient to give the stainless steel according to the invention the required characteristics.

Enfin, la tôle laminée à froid subit un traitement thermique de manière à conférer à l'acier inoxydable une structure recristallisée totalement.Finally, the cold-rolled sheet undergoes heat treatment so as to give the stainless steel a totally recrystallized structure.

Le traitement thermique selon l'invention consiste à faire subir à la tôle d'acier laminée à froid un recuit de recristallisation totale comprenant, dans un premier temps, une phase de chauffage rapide à une vitesse comprise entre 50 et 800 °C/s afin d'atteindre une température comprise entre Tc et Tc+50°C. On effectuera préférentiellement le chauffage rapide à une température supérieure à 800°C et inférieure ou égale à 900°C.The heat treatment according to the invention consists in subjecting the cold-rolled steel sheet to a total recrystallization annealing comprising, in a first step, a rapid heating phase at a speed of between 50 and 800 ° C./s. to reach a temperature between Tc and Tc + 50 ° C. We preferentially perform rapid heating at a temperature greater than 800 ° C and less than or equal to 900 ° C.

Cette température doit être atteinte en effet avant que ne débute la précipitation des carbures de chrome. Après refroidissement dans les conditions selon l'invention, on obtient un grain austénitique ultra-fin, de taille moyenne inférieure à 2 micromètres.This temperature must be reached before the onset of precipitation of chromium carbides. After cooling under the conditions according to the invention, an ultra-fine austenitic grain having an average size of less than 2 microns is obtained.

En effet, l'obtention d'un grain fin ne dépend pas uniquement du taux d'écrouissage préalable, mais aussi des conditions de recuit (température et temps de maintien). On notera que plus la teneur en carbone de l'acier est importante, plus la vitesse de chauffage doit être élevée. Ainsi, pour une teneur en carbone de 0,05 % on peut se contenter d'une vitesse de chauffage de l'ordre de 50 °C/s, mais il faut atteindre les 200 °C/s lorsque la teneur en carbone se situe autour de 0,2 %. Pour une teneur en carbone de l'ordre de 0,09-0,1 %, la vitesse de chauffage devra atteindre 100°C/s environ.Indeed, obtaining a fine grain does not only depend on the rate of preliminary hardening, but also the annealing conditions (temperature and hold time). It should be noted that the higher the carbon content of the steel, the higher the heating rate must be. Thus, for a carbon content of 0.05% can be satisfied with a heating rate of the order of 50 ° C / s, but it is necessary to reach 200 ° C / s when the carbon content is around 0.2%. For a carbon content of the order of 0.09-0.1%, the heating rate should reach about 100 ° C / s.

Selon l'invention, une telle vitesse de chauffage est atteinte par l'emploi d'un dispositif de chauffage par induction électromagnétique. Une mise en oeuvre adéquate d'un tel dispositif, notamment par le choix de la fréquence du courant électrique d'excitation, permet d'obtenir rapidement des températures si élevées qu'il n'est même plus nécessaire de prévoir une phase de maintien d'homogénéisation comme on peut le voir sur la figure 2.According to the invention, such a heating rate is achieved by the use of an electromagnetic induction heating device. Proper implementation of such a device, in particular by the choice of the frequency of the electric excitation current, makes it possible to obtain temperatures so high that it is no longer even necessary to provide a maintenance phase of homogenization as can be seen on the figure 2 .

Puisque la température de recristallisation est atteinte plus rapidement qu'auparavant, un avantage du procédé selon l'invention est qu'il y a moins de perte d'énergie interne durant la phase de chauffage. Il devient dès lors possible d'obtenir une même finesse de grain pour un taux d'écrouissage moins fort que par le passé.Since the recrystallization temperature is reached faster than before, an advantage of the process according to the invention is that there is less loss of internal energy during the heating phase. It therefore becomes possible to obtain the same fineness of grain for a lower work hardening rate than in the past.

Bien que l'augmentation de la teneur en carbone permette déjà en soi d'obtenir des caractéristiques de résistance élevées, il est possible encore de les améliorer.Although the increase in carbon content already allows itself to obtain high strength characteristics, it is still possible to improve them.

Après le traitement thermique de recristallisation totale, on refroidit ensuite la tôle par étapes, comme le présente la figure 2 : un premier refroidissement est effectué à une vitesse supérieure à 50°C/s de façon à se placer au voisinage du nez de précipitation en conditions isothermes. Ce premier refroidissement est effectué par exemple, jusqu'à une température Tm d'environ 750 °C, c'est à dire entre 700 et 800°C, où l'on effectue un maintien d'une durée comprise entre 1 et 100 secondes. Puis, la tôle est refroidie jusqu'à la température ambiante. De la sorte, les carbures de chrome vont précipiter majoritairement, c'est à dire pour plus de 90% d'entre eux, au niveau des joints de grains austénitiques. Cette précipitation après austénitisation va déstabiliser la structure et accroître les caractéristiques mécaniques finales de l'acier. En effet, les carbures de chrome précipitant majoritairement aux joints des grains austénitiques, et ces derniers étant très fins (leur taille moyenne est inférieure à 2 micromètres), on risque moins à ce niveau de détériorer la résistance à la corrosion intergranulaire.After the total recrystallization heat treatment, the sheet is then cooled in stages, as shown in FIG. figure 2 a first cooling is carried out at a speed greater than 50 ° C./s so as to be placed in the vicinity of the precipitation nose under isothermal conditions. This first cooling is carried out for example, up to a temperature Tm of about 750 ° C., that is to say between 700 and 800 ° C, which is maintained for a period of between 1 and 100 seconds. Then, the sheet is cooled to room temperature. In this way, the chromium carbides will predominantly precipitate, that is to say for more than 90% of them, at the austenitic grain boundaries. This precipitation after austenitization will destabilize the structure and increase the final mechanical characteristics of the steel. Indeed, chromium carbides predominantly precipitating at austenitic grain boundaries, and the latter being very thin (their average size is less than 2 micrometers), there is less risk at this level to deteriorate the resistance to intergranular corrosion.

Enfin, il est également possible de faire subir à la tôle une déformation à froid supplémentaire, en particulier par laminage, après le traitement de recristallisation. Cette déformation plastique finale va permettre de transformer une partie de l'austénite en martensite de déformation et d'augmenter encore la résistance mécanique.Finally, it is also possible to subject the sheet to additional cold deformation, in particular by rolling, after the recrystallization treatment. This final plastic deformation will make it possible to transform part of the austenite into martensite deformation and to further increase the mechanical strength.

L'invention sera particulièrement mise à profit pour la fabrication de joints de culasses de moteurs, qui requièrent une limite d'élasticité élevée et une bonne résistance à la fatigue et à la corrosion.The invention will be particularly useful for the manufacture of motor cylinder head gaskets, which require a high yield strength and good resistance to fatigue and corrosion.

Il va de soi que l'invention ne saurait se limiter aux exemples explicités dans le présent mémoire, mais qu'elle s'étend à de multiples variantes ou équivalents dans la mesure où est respectée sa définition donnée dans les revendications jointes.It goes without saying that the invention can not be limited to the examples explained herein, but that it extends to multiple variants or equivalents to the extent that its definition given in the appended claims is respected.

Claims (11)

  1. Stainless steel sheet, the composition of which comprises, the contents being by weight: 0.05 % C 0.30 %
    Figure imgb0021
    0.3 % Si 1 %
    Figure imgb0022
    0.5 % Mn 3 %
    Figure imgb0023
    4 % Ni 10 %
    Figure imgb0024
    15 % Cr 20 %
    Figure imgb0025
    N 0.2 %
    Figure imgb0026
    P 0.05 %
    Figure imgb0027
    S 0.015 %
    Figure imgb0028
    optionally 0.1 ≤ V ≤ 0.5%
    optionally Mo ≤ 3%
    optionally Cu ≤ 0.5%,
    the remainder of the composition being composed of iron and unavoidable impurities resulting from the production process, the microstructure of said steel being substantially totally recrystallised austenitic, the average size of the austenite grains being less than 2 micrometres, said sheet containing chromium carbides of which more than 90% are precipitated at the boundaries of said austenitic grains.
  2. Steel sheet according to claim 1, characterised in that its composition comprises, the contents being by weight 0.09 % C 0.30 % .
    Figure imgb0029
  3. Steel sheet according to claim 1 or 2, characterised in that its composition comprises, the contents being by weight 16 % Cr 18 % .
    Figure imgb0030
  4. Process for manufacturing a stainless steel sheet, in which:
    - a steel having a composition according to any one of claims 1 to 3 is provided, then
    - the steel is cast in the form of a slab, then
    - said slab is hot-rolled to obtain a hot-rolled sheet, then
    - said hot-rolled sheet is annealed at a temperature greater than 1000°C, then
    - said hot-rolled sheet is pickled, then
    - said hot-rolled sheet is cold-rolled, with a rate of reduction greater than 40%, then
    - a heat treatment for total recrystallisation is carried out on said cold-rolled sheet, said heat treatment comprising a phase of rapid heating, at a rate Vc of between 50 and 800°C/s to a temperature of between Tc and Tc+50°C, Tc denoting the total recrystallisation temperature, so as to obtain a heated and totally recrystallised sheet, then
    - said heated and totally recrystallised sheet is cooled at a rate greater than 50°C/s to a temperature Tm of approximately 750°C, then
    - said sheet is maintained at said temperature Tm for a period of between 1 and 100 seconds in order to obtain chromium carbide precipitation, then
    - said sheet is cooled to ambient temperature.
  5. Process according to claim 4, characterised in that said rapid heating is carried out to a temperature greater than 800°C and less than or equal to 900°C.
  6. Process according to either claim 4 or claim 5, characterised in that, once said heat treatment is complete, said cooled sheet is subjected to a cold deformation operation capable of generating the appearance of martensite within the structure of the steel.
  7. Process according to any one of claims 4 to 6, characterised in that said rapid heating is carried out by electromagnetic induction.
  8. Stainless steel sheet obtained by the manufacturing process according to any one of claims 4 to 7.
  9. Mechanical part made of stainless steel obtained from a sheet according to claim 8.
  10. Use of a sheet according to claim 8 for the manufacture of structural parts for motor vehicles.
  11. Use of a sheet according to claim 8 for the manufacture of engine cylinder head gaskets.
EP08872296.2A 2007-12-20 2008-12-03 Austenitic stainless steel sheet and method for obtaining this sheet Active EP2245203B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08872296.2A EP2245203B1 (en) 2007-12-20 2008-12-03 Austenitic stainless steel sheet and method for obtaining this sheet
PL08872296T PL2245203T3 (en) 2007-12-20 2008-12-03 Austenitic stainless steel sheet and method for obtaining this sheet
SI200832034T SI2245203T1 (en) 2007-12-20 2008-12-03 Austenitic stainless steel sheet and method for obtaining this sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07291575A EP2072631A1 (en) 2007-12-20 2007-12-20 Austenitic stainless steel sheet and method for obtaining this sheet
EP08872296.2A EP2245203B1 (en) 2007-12-20 2008-12-03 Austenitic stainless steel sheet and method for obtaining this sheet
PCT/FR2008/001687 WO2009101285A1 (en) 2007-12-20 2008-12-03 Austenitic stainless steel sheet and method for making said sheet

Publications (2)

Publication Number Publication Date
EP2245203A1 EP2245203A1 (en) 2010-11-03
EP2245203B1 true EP2245203B1 (en) 2018-10-31

Family

ID=39186201

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07291575A Withdrawn EP2072631A1 (en) 2007-12-20 2007-12-20 Austenitic stainless steel sheet and method for obtaining this sheet
EP08872296.2A Active EP2245203B1 (en) 2007-12-20 2008-12-03 Austenitic stainless steel sheet and method for obtaining this sheet

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP07291575A Withdrawn EP2072631A1 (en) 2007-12-20 2007-12-20 Austenitic stainless steel sheet and method for obtaining this sheet

Country Status (9)

Country Link
EP (2) EP2072631A1 (en)
DK (1) DK2245203T3 (en)
ES (1) ES2708578T3 (en)
HU (1) HUE042000T2 (en)
PL (1) PL2245203T3 (en)
PT (1) PT2245203T (en)
SI (1) SI2245203T1 (en)
TR (1) TR201900950T4 (en)
WO (1) WO2009101285A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2804962B1 (en) * 2012-01-20 2021-06-09 Solu Stainless Oy Method for manufacturing an austenitic stainless steel product
CN103484779A (en) * 2013-09-05 2014-01-01 常熟市勤丰铸件厂 Stainless steel casting
CN106906428B (en) * 2015-12-23 2020-07-14 宝钢德盛不锈钢有限公司 Hard austenitic stainless steel for conveyor belt and manufacturing method and application thereof
CN106011681B (en) * 2016-06-27 2018-04-20 武汉科技大学 A kind of method of raising 316LN austenite stainless steel mechanical properties
JP7049142B2 (en) * 2018-03-15 2022-04-06 日鉄ステンレス株式会社 Martensitic stainless steel sheet and its manufacturing method and spring members
CN113637924A (en) * 2020-04-27 2021-11-12 靖江市中信特种机械泵阀厂 Novel material for mash pump
CN113667903B (en) * 2021-08-11 2022-05-06 浙江久立特材科技股份有限公司 Stepped structure austenitic stainless steel, seamless pipe and preparation method and application thereof
CN113957322A (en) * 2021-10-29 2022-01-21 烟台汽车工程职业学院 Method for improving martensite nucleation capability and content in deformation process of 301 stainless steel
CN114480977B (en) * 2021-12-13 2023-04-07 四川大学 Low-temperature 2500 MPa-grade ultrahigh-strength high-toughness steel and preparation method thereof
CN114317904B (en) * 2022-01-05 2024-01-19 无锡派克新材料科技股份有限公司 Forming method of precipitation hardening high-temperature alloy forging for aero-engine
CN115948694B (en) * 2022-11-07 2023-07-14 鞍钢股份有限公司 High-performance austenitic stainless steel plate with diameter of less than 45mm and manufacturing method thereof
CN115595420B (en) * 2022-12-13 2023-03-21 太原科技大学 High-strength and high-toughness copper-containing stainless steel and production process thereof
CN115927965A (en) * 2022-12-16 2023-04-07 广东甬金金属科技有限公司 Iron-nickel alloy and application thereof, welded bulging strong-plasticity iron-nickel stainless steel band and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB473331A (en) * 1936-04-06 1937-10-06 United States Steel Corp Improvements in and relating to the heat treatment of austenitic nickel-chromium steels
US3152934A (en) * 1962-10-03 1964-10-13 Allegheny Ludlum Steel Process for treating austenite stainless steels
GB1057168A (en) * 1964-07-08 1967-02-01 Atomic Energy Authority Uk Improvements in or relating to heat treatment of metals
GB1224114A (en) * 1968-03-19 1971-03-03 Japan Atomic Energy Res Inst Stainless steel
JPH05117813A (en) * 1991-04-18 1993-05-14 Nisshin Steel Co Ltd Stainless steel for metal gasket having excellent formability and fatigue characteristic and this manufacture
US5702543A (en) * 1992-12-21 1997-12-30 Palumbo; Gino Thermomechanical processing of metallic materials
JP3691341B2 (en) * 2000-05-16 2005-09-07 日新製鋼株式会社 Austenitic stainless steel sheet with excellent precision punchability
FR2864108B1 (en) * 2003-12-22 2006-01-27 Ugine Et Alz France STAINLESS STEEL SHEET HAVING HIGH RESISTANCE AND LENGTH ELONGATION, AND METHOD OF MANUFACTURE
EP1739200A1 (en) * 2005-06-28 2007-01-03 UGINE & ALZ FRANCE Strip made of stainless austenitic steel with bright surface and excellent mechanical properties

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2245203A1 (en) 2010-11-03
PT2245203T (en) 2019-02-06
HUE042000T2 (en) 2019-06-28
ES2708578T3 (en) 2019-04-10
PL2245203T3 (en) 2019-06-28
TR201900950T4 (en) 2019-02-21
SI2245203T1 (en) 2019-04-30
DK2245203T3 (en) 2019-02-18
WO2009101285A1 (en) 2009-08-20
EP2072631A1 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
EP2245203B1 (en) Austenitic stainless steel sheet and method for obtaining this sheet
EP2855725B1 (en) Low-density hot- or cold-rolled steel, method for implementing same and use thereof
EP1913169B1 (en) Manufacture of steel sheets having high resistance and excellent ductility, products thereof
EP1844173B1 (en) Method for producing austenitic iron-carbon-manganese metal sheets, and sheets produced thereby
EP1819461B1 (en) Method of producing austentic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity
EP2707514B1 (en) Steel sheet with high mechanical strength, ductility and formability properties, production method and use of such sheets
EP2753723B1 (en) Rolled steel that hardens by means of precipitation after hot-forming and/or quenching with a tool having very high strength and ductility, and method for manufacturing same
EP1067203B1 (en) Process of manufacturing iron-carbon-manganese alloy strips and strips obtained thereby
EP2155916B2 (en) Low density steel with good stamping capability
EP1427866B1 (en) Method for making rolled and welded tubes comprising a final drawing or hydroforming step and resulting rolled tube
FR2833617A1 (en) PROCESS FOR MANUFACTURING COLD ROLLED SHEATHES WITH HIGH RESISTANCE OF MICRO-ALLOY DUAL PHASE STEELS
EP2257652B1 (en) Method of manufacturing sheets of austenitic stainless steel with high mechanical properties
EP1099769A1 (en) Process for manufacturing high tensile strength hot rolled steel sheet for forming and especially for deep drawing
FR2864108A1 (en) Stainless steel with high mechanical strength and good elongation with an austenitic microstructure and limited martensite pockets for the fabrication of motor vehicle structural components
EP1725689A2 (en) Forged or stamped average or small size mechanical part
BE1011557A4 (en) Steel with a high elasticity limit showing good ductility and a method of manufacturing this steel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: APERAM STAINLESS FRANCE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: APERAM STAINLESS FRANCE

17Q First examination report despatched

Effective date: 20160318

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/44 20060101ALI20180426BHEP

Ipc: C22C 38/42 20060101ALI20180426BHEP

Ipc: C21D 8/04 20060101ALI20180426BHEP

Ipc: C21D 9/48 20060101ALI20180426BHEP

Ipc: C22C 38/40 20060101AFI20180426BHEP

Ipc: C22C 38/46 20060101ALI20180426BHEP

INTG Intention to grant announced

Effective date: 20180525

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1059470

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008057742

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI AND CIE SA, CH

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2245203

Country of ref document: PT

Date of ref document: 20190206

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20190131

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190211

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2708578

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190131

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190131

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190201

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 29931

Country of ref document: SK

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E042000

Country of ref document: HU

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008057742

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20190801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1059470

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181031

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231124

Year of fee payment: 16

Ref country code: LU

Payment date: 20231124

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20231124

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231122

Year of fee payment: 16

Ref country code: SI

Payment date: 20231121

Year of fee payment: 16

Ref country code: SE

Payment date: 20231218

Year of fee payment: 16

Ref country code: RO

Payment date: 20231127

Year of fee payment: 16

Ref country code: PT

Payment date: 20231117

Year of fee payment: 16

Ref country code: IT

Payment date: 20231213

Year of fee payment: 16

Ref country code: HU

Payment date: 20231130

Year of fee payment: 16

Ref country code: FR

Payment date: 20231109

Year of fee payment: 16

Ref country code: FI

Payment date: 20231120

Year of fee payment: 16

Ref country code: DK

Payment date: 20231129

Year of fee payment: 16

Ref country code: DE

Payment date: 20231208

Year of fee payment: 16

Ref country code: CZ

Payment date: 20231122

Year of fee payment: 16

Ref country code: AT

Payment date: 20231120

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231120

Year of fee payment: 16

Ref country code: BE

Payment date: 20231212

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240108

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 16