EP1913169B1 - Manufacture of steel sheets having high resistance and excellent ductility, products thereof - Google Patents

Manufacture of steel sheets having high resistance and excellent ductility, products thereof Download PDF

Info

Publication number
EP1913169B1
EP1913169B1 EP06778838.0A EP06778838A EP1913169B1 EP 1913169 B1 EP1913169 B1 EP 1913169B1 EP 06778838 A EP06778838 A EP 06778838A EP 1913169 B1 EP1913169 B1 EP 1913169B1
Authority
EP
European Patent Office
Prior art keywords
temperature
steel
content
sheet
residual austenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06778838.0A
Other languages
German (de)
French (fr)
Other versions
EP1913169A1 (en
Inventor
Patrick Barges
Colin Scott
Gérard Petitgand
Fabien Perrard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal France SA
Original Assignee
ArcelorMittal France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArcelorMittal France SA filed Critical ArcelorMittal France SA
Priority to EP06778838.0A priority Critical patent/EP1913169B1/en
Publication of EP1913169A1 publication Critical patent/EP1913169A1/en
Application granted granted Critical
Publication of EP1913169B1 publication Critical patent/EP1913169B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Definitions

  • the invention relates to the manufacture of steel sheets, more particularly "TRIP” ("Transformation Induced Plasticity”) steels, ie having a plasticity induced by an allotropic transformation.
  • TRIP Transformation Induced Plasticity
  • TRIP steel cold-rolled sheet is produced by reheating during annealing in a field where austenitization occurs partially, followed by rapid cooling to avoid the formation of perlite and subsequent maintenance. isothermal in the bainitic domain: a part of the austenite is transformed into bainite, another part is stabilized by the increase of the carbon content of the islands of residual austenite. Thus, the initial presence of ductile residual austenite is associated with high deformability. Under the effect of a subsequent deformation, for example during stamping, the residual austenite of a TRIP steel part gradually changes to martensite, which results in a significant hardening. A steel with a TRIP behavior thus makes it possible to guarantee an aptitude significant deformation and high mechanical strength, both properties being usually antagonistic. This combination provides a high energy absorption potential, a quality typically sought in the automotive industry for shock-resistant parts.
  • a manufacturing process is therefore sought to increase the strength of the TRIP steel sheets, in particular above about 900-1100 MPa for a carbon content of the order of 0.2% by weight without the total elongation. be reduced below a value of 18%. An increase in resistance of more than 100 MPa from current levels is desirable.
  • the present invention aims to solve the problems mentioned above.
  • the subject of the invention is a composition for the manufacture of steel having a TRIP behavior, comprising, the contents being expressed by weight: 0.08% ⁇ C ⁇ 0.23%, 1% ⁇ Mn ⁇ 2 %, 1 ⁇ If ⁇ 2%, Al ⁇ 0.030%, 0.1% ⁇ V ⁇ 0.25%, Ti ⁇ 0.010%, S ⁇ 0.015%, P ⁇ 0.1%, 0.004% ⁇ N ⁇ 0.012% , and optionally one or more selected elements among: Nb ⁇ 0.1%, Mo ⁇ 0.5%, Cr ⁇ 0.3%, the remainder of the composition consisting of iron and unavoidable impurities resulting from the preparation.
  • the carbon content is such that: 0.08% ⁇ C ⁇ 0.13%.
  • the carbon content is such that: 0.13% ⁇ C ⁇ 0.18%.
  • the carbon content is such that: 0.18% ⁇ C ⁇ 0.23%.
  • the manganese content is such that: 1.4% ⁇ Mn ⁇ 1.8%.
  • the manganese content satisfies: 1.5% ⁇ Mn s 1.7%.
  • the silicon content is such that: 1.4% ⁇ Si ⁇ 1.7%.
  • the aluminum content satisfies: Al ⁇ 0.015%.
  • the vanadium content is such that: 0.12% ⁇ V ⁇ 0.15%.
  • the titanium content is such that: Ti ⁇ 0.005%.
  • the invention also relates to a steel sheet of the above composition, the microstructure of which consists of ferrite, bainite, residual austenite, and possibly martensite.
  • the microstructure of the steel comprises a residual austenite content of between 8 and 20%.
  • the microstructure of the steel preferably comprises a martensite content of less than 2%.
  • the average size of the residual austenite islands is less than or equal to 2 microns.
  • the average size of the residual austenite islands is preferably less than or equal to 1 micrometer.
  • the temperature T fl at the end of the hot rolling, the speed V r of the cooling, the temperature T bob of the winding are chosen such that the microstructure of the steel comprises a residual austenite content of between 8 and 20%. .
  • the temperature T fl of the hot rolling end, the cooling speed V r , the winding temperature T bob are chosen such that the microstructure of the steel comprises a martensite content of less than 2%.
  • the temperature T fl of the hot rolling end, the cooling speed V r , the winding temperature T bob are chosen such that the average size of the residual austenite islands is less than or equal to 2 microns. and very preferably less than 1 micrometer.
  • the parameters V cm , T m , t m , V rm , T ' m , t' m are chosen such that the microstructure of the steel comprises a residual austenite content of between 8 and 20%. .
  • the parameters V cm , T m , tm, V rm , T ' m , t' m are chosen such that the microstructure of the steel comprises less than 2% of martensite.
  • the parameters V cm , T m , t m , V rm , T ' m , t' m are chosen such that the average size of the residual austenite islands is less than 2 micrometers, very preferably less than at 1 micrometer.
  • the subject of the invention is also a process for manufacturing a cold-rolled sheet exhibiting a TRIP behavior, according to which the sheet is subjected to an annealing heat treatment, the heat treatment comprising a heating phase at a speed V cm.
  • a holding phase at a holding temperature T m between Ac1 and Ac3 for a holding time t m of between 10 and 200s, followed by a cooling phase at a speed of cooling V rm greater than 15 ° C / s when the temperature is lower than Ar3, followed by a holding phase at a temperature T ' m between 300 and 500 ° C for a holding time t' m between 10 and 1000 s.
  • the holding temperature T m is preferably between 770 and 815 ° C.
  • the invention also relates to the use of a steel sheet having a TRIP behavior, according to one of the variants described above, or manufactured by one of the processes described above, for the manufacture of parts of structure or reinforcement elements in the automotive field.
  • a bainitic transformation takes place from an austenitic structure formed at high temperature , and bainitic ferrite slats are formed. Given the much lower solubility of carbon in ferrite compared to austenite, the carbon of the austenite is rejected between the slats. Thanks to certain alloying elements of the steel composition according to the invention, in particular silicon and manganese, the precipitation of carbides, in particular of cementite, intervenes very little. Thus, the austenite interlatte is progressively enriched in carbon without the precipitation of carbides intervening.
  • the carbon content is between 0.08 and 0.23% by weight.
  • the carbon content is in a first range of 0.08 to 0.13% by weight.
  • the carbon content is greater than 0.13% and is less than or equal to 0.18% by weight.
  • the carbon content is in a third preferred range, where it is greater than 0.18 and less than or equal to 0.23% by weight.
  • the minimum carbon content of each of the three preferred ranges makes it possible to obtain a minimum strength of 600 MPa, 800 MPa and 950 MPa on cold-rolled and annealed sheets, respectively at each of the three preferred ranges. beaches above.
  • the maximum carbon content of each of three ranges makes it possible to guarantee satisfactory weldability, particularly in spot welding, if the level of resistance obtained in these three preferred ranges is taken into account.
  • an addition of manganese contributes to reducing the martensitic transformation start temperature Ms and stabilizing the austenite.
  • This addition of manganese also contributes to an effective hardening in solid solution and thus to obtaining increased strength.
  • Manganese is preferentially included between 1.4 and 1.8% by weight: in this way a satisfactory hardening and an increase in the stability of the austenite are combined without, however, excessively increasing the quenchability in the welded joints.
  • the manganese content is between 1.5 and 1.7% by weight. In this way, the effects sought above are obtained without risk of formation of a harmful band structure that would come from a possible segregation of manganese during solidification.
  • silicon inhibits the precipitation of cementite during cooling from austenite by considerably retarding the growth of carbides: this is due to the fact that the solubility of silicon in cementite is very low. low and that this element increases the carbon activity in the austenite. In this way, a possible cementite seed forming will be surrounded by a silicon-rich austenitic zone which has been rejected at the precipitate-matrix interface.
  • This silicon-enriched austenite is also richer in carbon and the growth of cementite is slowed down because of the small diffusion resulting from the reduced carbon gradient between the cementite and the surrounding austenitic zone.
  • This addition of silicon thus contributes to stabilizing a sufficient amount of residual austenite to obtain a TRIP effect.
  • this addition of silicon makes it possible to increase the resistance thanks to hardening in solid solution.
  • an excessive addition of silicon causes the formation of strongly adherent oxides, which are difficult to eliminate during a stripping operation, and the possible appearance of surface defects due in particular to a lack of wettability in dip galvanizing operations.
  • the silicon content is preferably between 1.4 and 1.7% by weight.
  • Aluminum is a very effective element for the deoxidation of steel. Like silicon, it is very slightly soluble in cementite and could be used as such to prevent the precipitation of cementite during maintenance at a bainitic transformation temperature and stabilize the austenite residual.
  • the aluminum content is less than or equal to 0.030% by weight: in fact, as will be seen below, a very effective hardening is obtained by means of a precipitation of vanadium carbonitrides: when the aluminum content is greater than 0.030%, there is a risk of precipitation of aluminum nitride which reduces by the same amount of nitrogen capable of precipitating with vanadium.
  • this amount is less than or equal to 0.015% by weight, any risk of precipitation of aluminum nitride is discarded and the full effect of hardening by the precipitation of vanadium carbonitrides is obtained.
  • the titanium content is less than or equal to 0.010% by weight in order not to precipitate a significant amount of nitrogen in the form of titanium nitrides or carbonitrides.
  • the titanium content is preferably less than or equal to 0.005% by weight. Such a titanium content then makes it possible to avoid the precipitation of (Ti, V) N on hot-rolled sheets.
  • Vanadium and nitrogen are important elements of the invention: The inventors have demonstrated that, when these elements are present in defined amounts according to the invention, they precipitate in the form of very fine vanadium carbonitrides associated with hardening. important. When the vanadium content is less than 0.1% by weight or when the nitrogen content is less than 0.004% by weight, the precipitation of vanadium carbonitrides is limited and curing is insufficient. When the vanadium content is greater than 0.25% by weight or when the nitrogen content is greater than 0.012% by weight, the precipitation occurs at an early stage after hot rolling in the form of coarser precipitates.
  • the uniform or breaking elongation is particularly increased.
  • sulfur tends to precipitate excessively in the form of manganese sulfides which greatly reduce the formability.
  • Phosphorus is a known element to segregate at grain boundaries. Its content shall be limited to 0.1% by weight so as to maintain sufficient hot ductility and to promote breakage by peeling during tensile-shear tests carried out on spot-welded joints.
  • elements such as chromium and molybdenum that delay bainitic transformation and promote hardening by solid solution, can be added in amounts of less than or equal to 0.3 or 0.5% by weight, respectively.
  • Niobium may also optionally be added in an amount of less than or equal to 0.1% by weight so as to increase the resistance by additional precipitation of carbonitrides.
  • the cast semifinished products are first brought to a temperature above 1200 ° C. in order to attain at all points a temperature favorable to the high deformations which the steel will undergo during rolling as well as to avoid at this stage of manufacture the presence of vanadium carbonitrides.
  • the step of hot rolling of these semi-products starting at more than 1200 ° C. can be done directly after so that an intermediate reheat step is not then necessary.
  • this minimum temperature of 1200 ° C. also makes it possible to perform hot rolling in a completely austenitic phase under satisfactory conditions on a continuous hot rolling mill.
  • the semi-finished product is hot-rolled up to a rolling end temperature T f equal to or greater than 900 ° C.
  • T f rolling end temperature
  • the rolling is entirely carried out in the austenitic phase where the solubility of the vanadium carbonitrides is greater and where the probability of precipitation of V (CN) is the lowest.
  • the sheet thus obtained is then cooled with a cooling rate V r greater than or equal to 20 ° C./s in order to avoid a precipitation of the vanadium carbonitrides in the ferrite.
  • This cooling can be carried out for example by means of spraying water on the sheet.
  • the sheet obtained is then reeled at a temperature of less than or equal to 450 ° C.
  • the quasi-isothermal maintenance associated with this winding leads to the formation of a microstructure consisting of bainite, ferrite, residual austenite, possibly a small amount of martensite, as well as a hardening precipitation of vanadium carbonitrides.
  • the winding temperature is less than or equal to 400 ° C, the total elongation and the distributed elongation are increased.
  • T fl end temperature of hot rolling, the cooling rate V r and the winding bob temperature T such that the microstructure comprises a residual austenite content of between 8 and 20%:
  • the amount residual austenite is less than 8%, a sufficient TRIP effect can not be demonstrated during mechanical tests: in particular, it is demonstrated during tensile tests that the coefficient of hardening n is less than 0 , 2 and decreases rapidly with the deformation ⁇ .
  • TRIP behavior residual austenite is progressively transforms into martensite during deformation, n is greater than 0.2 and necking appears for larger deformations.
  • the residual austenite content is greater than 20%, the residual austenite formed under these conditions has a relatively low carbon content and is destabilized too easily during a subsequent phase of deformation or cooling.
  • a hot-rolled sheet is first produced according to one of the variants which have been explained above. Indeed, the inventors have found that the microstructures and the mechanical properties obtained by the cold rolling and annealing manufacturing process which will be exposed, depend relatively little on the manufacturing conditions within the limits of the process variants set out above. , in particular variations of the winding temperature T bob . In this way, the sheet metal manufacturing process Cold rolled has the advantage of being insensitive to unforeseen variations in the manufacturing conditions of hot-rolled sheets.
  • a winding temperature of less than or equal to 400 ° C. will be chosen so as to keep more vanadium in solid solution available for precipitation during the subsequent annealing of the cold-rolled sheet.
  • the hot-rolled sheet is scraped by a method known per se so as to give it a surface state suitable for cold rolling.
  • the latter is carried out under customary conditions, for example by reducing the thickness of the hot-rolled sheet by 30 to 75%.
  • a rapid cooling is carried out at a speed V rm greater than 15 ° C / s when the temperature is lower than Ar3. Rapid cooling when the temperature is lower than Ar3 is important in order to limit the formation of ferrite before the bainitic transformation.
  • This rapid cooling phase when the temperature is lower than Ar 3 may be preceded, if necessary, by a slower cooling phase from the temperature T m .
  • the holding temperature T m is between 770 and 815 ° C: below 770 ° C, the recrystallization may be insufficient. Beyond 815 ° C, the fraction of intercritical austenite formed is too large and the hardening of ferrite by the precipitation of vanadium carbonitrides is less effective: in fact, the intercritical ferrite content is less and the total amount of vanadium precipitates, vanadium being rather soluble in the austenite. On the other hand, vanadium carbonitride precipitates that form are more likely to grow and coalesce at high temperatures.
  • the sheet is subjected to a heat treatment annealing whose parameters V cm , T m , tm, V rm , T ' m , t' m are chosen so that the microstructure of the steel obtained consists of ferrite, bainite and residual austenite, possibly martensite.
  • parameters will be chosen such that the residual austenite content is between 8 and 20%.
  • Parameters will preferably be chosen such that the average size of the residual austenite islands is less than or equal to 2 micrometers, optimally less than or equal to 1 micrometer.
  • These parameters will also be chosen so that the martensite content is less than 2%.
  • the microstructure does not include martensite.
  • the sheets manufactured according to the invention have a very high strength, significantly higher than 800 MPa for a carbon content of about 0.22%.
  • Their microstructure is composed of ferrite, bainite and residual austenite, as well as martensite in an amount of less than 2%.
  • residual austenite content 10.8%
  • the carbon concentration of the residual austenite islets is 1.36% by weight. This indicates that the austenite is sufficiently stable to obtain a TRIP effect as shown by the behavior observed during the tensile tests performed on these steel sheets.
  • the reference steel sheet R1 of bainito-pearlitic structure with a very low residual austenite content, does not exhibit TRIP behavior. Its resistance is less than 800 MPa, a level significantly lower than that of the steels of the invention.
  • I2 steel according to the invention also has excellent toughness since its ductile-brittle transition temperature is significantly lower (-35 ° C) than that of a reference steel (0 ° C).
  • the resulting microstructure was observed after Klemm reagent attack highlighting residual austenite islands and the average size of these islets was measured using image analysis software.
  • the average size of the islands is 1.1 microns.
  • the microstructure general is thinner with an average island size of 0.7 micron.
  • these islets have a more even character.
  • these characteristics particularly reduce the stress concentrations at the matrix-island interface.
  • the mechanical properties after cold rolling and annealing are as follows: Table 3: Mechanical tensile characteristics of cold-rolled and annealed sheets. Steel Holding temperature T m Re (MPa) Rm (MPa) At (%) I2 775 630 1000 25 795 658 980 28 815 650 938 26 R1 775 480 830 nd 795 480 820 30 815 470 820 30 na: Not determined.
  • the steel I2 manufactured according to the invention has a resistance greater than 900 MPa. At a maintenance temperature T m comparable, its resistance is significantly increased compared to the reference steel.
  • the cold-rolled and annealed steels according to the invention have mechanical properties which are not very sensitive to small variations in certain manufacturing parameters such as the winding temperature or the annealing temperature T m .
  • the invention allows the manufacture of steels with a TRIP behavior with increased mechanical strength.
  • Parts made from steel sheets according to the invention are used with advantage for the manufacture of structural parts or reinforcement elements in the automotive field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)

Description

L'invention concerne la fabrication de tôles d'acier, plus particulièrement d'aciers « TRIP » (« Transformation Induced Plasticity ») c'est à dire présentant une plasticité induite par une transformation allotropique.The invention relates to the manufacture of steel sheets, more particularly "TRIP" ("Transformation Induced Plasticity") steels, ie having a plasticity induced by an allotropic transformation.

Dans l'industrie automobile, il existe un besoin continu d'allègement des véhicules qui se traduit par la recherche d'aciers à limite d'élasticité ou à résistance accrues. C'est ainsi que l'on a proposé des aciers à haute résistance comportant des éléments de micro-alliage. Le durcissement est obtenu simultanément par précipitation et par affinement de la taille de grains. Dans le but d'obtenir des niveaux de résistance encore supérieurs, on a développé des aciers TRIP qui présentent des combinaisons de propriétés (résistance-aptitude à la déformation) avantageuses. Ces propriétés sont liées à la structure de ces aciers, constituée d'une matrice ferritique comportant des phases de bainite et d'austénite résiduelle. Dans les tôles laminées à chaud, l'austénite résiduelle est stabilisée grâce à une augmentation de la teneur en éléments tels que le silicium ou d'aluminium, ces éléments retardant la précipitation des carbures dans la bainite. La fabrication de tôles laminées à froid en acier TRIP est quant à elle réalisée par un réchauffage lors du recuit dans un domaine où l'austénitisation intervient de manière partielle, suivi d'un refroidissement rapide pour éviter la formation de perlite puis d'un maintien isotherme dans le domaine bainitique : une partie de l'austénite se transforme en bainite, une autre partie est stabilisée par l'accroissement de la teneur en carbone des îlots d'austénite résiduelle. Ainsi, la présence initiale d'austénite résiduelle ductile est associée à une grande aptitude à la déformation. Sous l'effet d'une déformation ultérieure, par exemple lors d'un l'emboutissage, l'austénite résiduelle d'une pièce en acier TRIP se transforme progressivement en martensite ce qui se traduit par un durcissement important. Un acier présentant un comportement TRIP permet donc de garantir une aptitude importante à la déformation et une résistance mécanique élevée, ces deux propriétés étant habituellement antagonistes. Cette combinaison procure un potentiel d'absorption d'énergie élevée, qualité typiquement recherchée dans l'industrie automobile pour des pièces résistantes aux chocs.In the automotive industry, there is a continuing need for vehicle lightening which results in the search for steels with increased yield strength or resistance. Thus, high strength steels having micro-alloy elements have been proposed. The hardening is obtained simultaneously by precipitation and by refining the grain size. In order to achieve even higher strength levels, TRIP steels have been developed which have advantageous combinations of properties (strength-ability to deform). These properties are related to the structure of these steels, consisting of a ferritic matrix comprising phases of bainite and residual austenite. In hot rolled sheets, the residual austenite is stabilized by increasing the content of elements such as silicon or aluminum, these elements delaying the precipitation of carbides in the bainite. TRIP steel cold-rolled sheet is produced by reheating during annealing in a field where austenitization occurs partially, followed by rapid cooling to avoid the formation of perlite and subsequent maintenance. isothermal in the bainitic domain: a part of the austenite is transformed into bainite, another part is stabilized by the increase of the carbon content of the islands of residual austenite. Thus, the initial presence of ductile residual austenite is associated with high deformability. Under the effect of a subsequent deformation, for example during stamping, the residual austenite of a TRIP steel part gradually changes to martensite, which results in a significant hardening. A steel with a TRIP behavior thus makes it possible to guarantee an aptitude significant deformation and high mechanical strength, both properties being usually antagonistic. This combination provides a high energy absorption potential, a quality typically sought in the automotive industry for shock-resistant parts.

Le carbone joue un rôle important dans la fabrication des aciers TRIP: d'une part sa présence en quantité suffisante au sein des îlots d'austénite résiduelle est nécessaire pour que la température de transformation martensitique locale soit abaissée au dessous de la température ambiante. D'autre part, il est usuellement ajouté pour accroître la résistance de façon économique. Cependant, cette addition de carbone doit rester limitée pour garantir que la soudabilité des produits reste satisfaisante : dans le cas contraire, la ductilité des assemblages soudés et la résistance à la fissuration à froid sont amoindries. On recherche donc un procédé de fabrication pour augmenter la résistance des tôles d'acier TRIP, en particulier au delà de 900-1100 MPa environ pour une teneur en carbone de l'ordre de 0,2% en poids sans que l'allongement total ne soit réduit au dessous d'une valeur de 18%. Une augmentation de résistance de plus de 100 MPa par rapport aux niveaux actuels est souhaitable.Carbon plays an important role in the manufacture of TRIP steels: on the one hand, its presence in sufficient quantities within the islands of residual austenite is necessary for the local martensitic transformation temperature to be lowered below ambient temperature. On the other hand, it is usually added to increase strength economically. However, this addition of carbon must remain limited to ensure that the weldability of the products remains satisfactory: otherwise, the ductility of the welded joints and the cold cracking resistance are reduced. A manufacturing process is therefore sought to increase the strength of the TRIP steel sheets, in particular above about 900-1100 MPa for a carbon content of the order of 0.2% by weight without the total elongation. be reduced below a value of 18%. An increase in resistance of more than 100 MPa from current levels is desirable.

On recherche également un procédé de fabrication de tôles d'acier laminées à chaud ou à froid qui serait peu sensible à de petites variations des conditions industrielles de fabrication, en particulier à des variations de température. On cherche ainsi à obtenir un produit caractérisé par une microstructure et des propriétés mécaniques peu sensibles à de petites variations de ces paramètres de fabrication. On cherche également à obtenir un produit à haute ténacité offrant une excellente résistance à la rupture.It also seeks a method of manufacturing hot or cold rolled steel sheet which is insensitive to small variations in industrial manufacturing conditions, particularly to temperature variations. It is thus sought to obtain a product characterized by a microstructure and mechanical properties that are insensitive to small variations in these manufacturing parameters. It is also sought to obtain a high tenacity product with excellent breaking strength.

La présente invention a pour but de résoudre les problèmes évoqués ci-dessus.The present invention aims to solve the problems mentioned above.

Dans ce but, l'invention a pour objet une composition pour la fabrication d'acier présentant un comportement TRIP, comprenant, les teneurs étant exprimées en poids : 0,08% ≤ C ≤ 0,23%, 1%≤ Mn ≤ 2%, 1≤ Si ≤ 2%, Al ≤ 0,030%, 0,1% ≤ V ≤ 0,25%, Ti ≤ 0,010%, S ≤ 0,015%, P≤ 0,1%, 0,004% ≤ N ≤ 0,012%, et à titre optionnel un ou plusieurs éléments choisis parmi : Nb ≤ 0,1%, Mo ≤ 0,5%, Cr ≤ 0,3%, le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration. Préférentiellement, la teneur en carbone est telle que : 0,08% ≤ C ≤ 0,13%. Selon une variante préférée, la teneur en carbone est telle que : 0,13% < C ≤ 0,18%.For this purpose, the subject of the invention is a composition for the manufacture of steel having a TRIP behavior, comprising, the contents being expressed by weight: 0.08% ≤ C ≤ 0.23%, 1% ≤ Mn ≤ 2 %, 1≤ If ≤ 2%, Al ≤ 0.030%, 0.1% ≤ V ≤ 0.25%, Ti ≤ 0.010%, S ≤ 0.015%, P ≤ 0.1%, 0.004% ≤ N ≤ 0.012% , and optionally one or more selected elements among: Nb ≤ 0.1%, Mo ≤ 0.5%, Cr ≤ 0.3%, the remainder of the composition consisting of iron and unavoidable impurities resulting from the preparation. Preferably, the carbon content is such that: 0.08% ≤ C ≤ 0.13%. According to a preferred variant, the carbon content is such that: 0.13% <C ≤ 0.18%.

Préférentiellement encore, la teneur en carbone est telle que : 0,18% < C ≤ 0,23%.Preferentially, the carbon content is such that: 0.18% <C ≤ 0.23%.

Préférentiellement, la teneur en manganèse est telle que : 1,4% ≤ Mn ≤ 1,8%. Préférentiellement encore, la teneur en manganèse satisfait à : 1,5% ≤ Mn s 1,7%.Preferably, the manganese content is such that: 1.4% ≤ Mn ≤ 1.8%. Preferentially, the manganese content satisfies: 1.5% ≤ Mn s 1.7%.

A titre préféré, la teneur en silicium est telle que : 1,4% ≤ Si ≤ 1,7%. Préférentiellement, la teneur en aluminium satisfait à : Al ≤ 0,015%.Preferably, the silicon content is such that: 1.4% ≤ Si ≤ 1.7%. Preferably, the aluminum content satisfies: Al ≤ 0.015%.

Selon un mode préféré, la teneur en vanadium est telle que : 0,12% ≤V ≤ 0,15%.According to a preferred mode, the vanadium content is such that: 0.12% ≤V ≤ 0.15%.

Préférentiellement encore, la teneur en titane est telle que : Ti ≤ 0,005%. L'invention a également pour objet une tôle d'acier de composition ci-dessus, dont la microstructure est constituée de ferrite, de bainite, d'austénite résiduelle, et éventuellement de martensite.Preferentially, the titanium content is such that: Ti ≤ 0.005%. The invention also relates to a steel sheet of the above composition, the microstructure of which consists of ferrite, bainite, residual austenite, and possibly martensite.

Selon un mode préféré, la microstructure de l'acier comprend une teneur en austénite résiduelle comprise entre 8 et 20%.According to a preferred embodiment, the microstructure of the steel comprises a residual austenite content of between 8 and 20%.

La microstructure de l'acier comprend préférentiellement une teneur en martensite inférieure à 2%.The microstructure of the steel preferably comprises a martensite content of less than 2%.

A titre préférentiel, la taille moyenne des îlots d'austénite résiduelle est inférieure ou égale à 2 micromètres.Preferably, the average size of the residual austenite islands is less than or equal to 2 microns.

La taille moyenne des îlots d'austénite résiduelle est préférentiellement inférieure ou égale à 1 micromètre.The average size of the residual austenite islands is preferably less than or equal to 1 micrometer.

L'invention a également pour objet un procédé de fabrication d'une tôle laminée à chaud présentant un comportement TRIP, selon lequel :

  • on approvisionne un acier selon l'une quelconque des compositions ci-dessus,
  • on procède à la coulée d'un demi-produit à partir de cet acier,
  • on porte ledit demi-produit à une température supérieure à 1200°C,
  • on lamine à chaud le demi-produit,
  • on refroidit la tôle ainsi obtenue,
  • on bobine la tôle, la température Tfl de fin du laminage à chaud, la vitesse Vr du refroidissement, la température de bobinage Tbob étant choisies de telle sorte que la microstructure de l'acier soit constituée de ferrite, de bainite, d'austénite résiduelle, et éventuellement de martensite.
The invention also relates to a method for manufacturing a hot-rolled sheet exhibiting a TRIP behavior, according to which:
  • a steel is supplied according to any one of the above compositions,
  • a semi-finished product is cast from this steel,
  • said semi-finished product is heated to a temperature above 1200 ° C,
  • the semi-finished product is hot-rolled,
  • the sheet thus obtained is cooled,
  • the sheet is wound, the end temperature T fl of the hot rolling, the speed V r of the cooling, the winding temperature T bob being chosen so that the microstructure of the steel consists of ferrite, bainite, d residual austenite, and possibly martensite.

Préférentiellement, la température Tfl de fin de laminage à chaud, la vitesse Vr du refroidissement, la température Tbob de bobinage sont choisies de telle sorte que la microstructure de l'acier comprenne une teneur en austénite résiduelle comprise entre 8 et 20%.Preferably, the temperature T fl at the end of the hot rolling, the speed V r of the cooling, the temperature T bob of the winding are chosen such that the microstructure of the steel comprises a residual austenite content of between 8 and 20%. .

Préférentiellement encore, la température Tfl de fin de laminage à chaud, la vitesse Vr de refroidissement, la température Tbob de bobinage sont choisies de telle sorte que la microstructure de l'acier comprenne une teneur en martensite inférieure à 2%.Also preferably, the temperature T fl of the hot rolling end, the cooling speed V r , the winding temperature T bob are chosen such that the microstructure of the steel comprises a martensite content of less than 2%.

A titre préféré, la température Tfl de fin de laminage à chaud, la vitesse Vr de refroidissement, la température Tbob de bobinage sont choisies de telle sorte que la taille moyenne des îlots d'austénite résiduelle soit inférieure ou égale à 2 micromètres, et très préférentiellement inférieure à 1 micromètre.Preferably, the temperature T fl of the hot rolling end, the cooling speed V r , the winding temperature T bob are chosen such that the average size of the residual austenite islands is less than or equal to 2 microns. and very preferably less than 1 micrometer.

L'invention a également pour objet un procédé de fabrication d'une tôle laminée à chaud présentant un comportement TRIP, selon lequel :

  • on lamine à chaud le demi-produit jusqu'à une température de fin de laminage Tfl supérieure ou égale à 900°C,
  • on refroidit la tôle ainsi obtenue avec une vitesse de refroidissement Vr supérieure ou égale à 20°C/s,
  • on bobine la tôle à une température Tbob inférieure à 450°C. Préférentiellement, la température de bobinage Tbob est inférieure à 400°C. L'invention a également pour objet un procédé de fabrication d'une tôle laminée à froid présentant un comportement TRIP, selon lequel on approvisionne une tôle d'acier laminé à chaud fabriquée selon l'un quelconque des procédés décrits ci-dessus, on décape la tôle, on lamine à froid la tôle, on fait subir à la tôle un traitement thermique de recuit, le traitement thermique comprenant une phase de chauffage à une vitesse de chauffage Vcm, une phase de maintien à une température de maintien Tm pendant un temps de maintien tm, suivie d'une phase de refroidissement à une vitesse de refroidissement Vrm lorsque la température est inférieure à Ar3, suivie d'une phase de maintien à une température de maintien T'm pendant un temps de maintien t'm, les paramètres Vcm, Tm, tm, Vrm, T'm, t'm étant choisis de telle sorte que la microstructure dudit acier soit constituée de ferrite, de bainite, d'austénite résiduelle, et éventuellement de martensite.
The invention also relates to a method for manufacturing a hot-rolled sheet exhibiting a TRIP behavior, according to which:
  • the semi-finished product is hot-rolled to a rolling end temperature T fl greater than or equal to 900 ° C.,
  • the sheet thus obtained is cooled with a cooling rate V r greater than or equal to 20 ° C / s,
  • the sheet is reeled at a temperature T bob lower than 450 ° C. Preferably, the winding temperature T bob is less than 400 ° C. The subject of the invention is also a process for manufacturing a cold-rolled sheet exhibiting a TRIP behavior, according to which a hot-rolled steel sheet manufactured according to any of the processes described above is supplied, the sheet, the sheet is cold-rolled, the sheet is subjected to an annealing heat treatment, the heat treatment comprising a heating phase at a heating rate V cm , a holding phase at a holding temperature T m during a holding time t m , followed by a cooling phase at a cooling rate V rm when the temperature is lower than Ar3, followed by a holding phase at a holding temperature T ' m during a holding time t ' m , the parameters V cm , T m , t m , V rm , T' m , t ' m being chosen such that the microstructure of said steel consists of ferrite, bainite, residual austenite, and possibly of martensite.

Selon un mode préféré, les paramètres Vcm, Tm, tm, Vrm, T'm, t'm sont choisis de telle sorte que la microstructure de l'acier comprenne une teneur en austénite résiduelle comprise entre 8 et 20%.According to a preferred embodiment, the parameters V cm , T m , t m , V rm , T ' m , t' m are chosen such that the microstructure of the steel comprises a residual austenite content of between 8 and 20%. .

Préférentiellement encore, les paramètres Vcm, Tm, tm, Vrm, T'm, t'm sont choisis de telle sorte que la microstructure de l'acier comprenne moins de 2% de martensite.Preferentially, the parameters V cm , T m , tm, V rm , T ' m , t' m are chosen such that the microstructure of the steel comprises less than 2% of martensite.

Selon un mode préféré, les paramètres Vcm, Tm, tm, Vrm, T'm, t'm sont choisis de telle sorte que la taille moyenne des îlots d'austénite résiduelle est inférieure à 2 micromètres, très préférentiellement inférieure à 1 micromètre. L'invention a également pour objet un procédé de fabrication d'une tôle laminée à froid présentant un comportement TRIP, selon lequel on fait subir à la tôle un traitement thermique de recuit, le traitement thermique comprenant une phase de chauffage à une vitesse Vcm supérieure ou égale à 2°C/s, une phase de maintien à une température de maintien Tm comprise entre Ac1 et Ac3 pendant un temps de maintien tm compris entre 10 et 200s, suivie d'une phase de refroidissement à une vitesse de refroidissement Vrm supérieure à 15°C/s lorsque la température est inférieure à Ar3, suivie d'une phase de maintien à une température T'm comprise entre 300 et 500°C pendant un temps de maintien t'm compris entre 10 et 1000 s.According to a preferred embodiment, the parameters V cm , T m , t m , V rm , T ' m , t' m are chosen such that the average size of the residual austenite islands is less than 2 micrometers, very preferably less than at 1 micrometer. The subject of the invention is also a process for manufacturing a cold-rolled sheet exhibiting a TRIP behavior, according to which the sheet is subjected to an annealing heat treatment, the heat treatment comprising a heating phase at a speed V cm. greater than or equal to 2 ° C / s, a holding phase at a holding temperature T m between Ac1 and Ac3 for a holding time t m of between 10 and 200s, followed by a cooling phase at a speed of cooling V rm greater than 15 ° C / s when the temperature is lower than Ar3, followed by a holding phase at a temperature T ' m between 300 and 500 ° C for a holding time t' m between 10 and 1000 s.

La température de maintien Tm est préférentiellement comprise entre 770 et 815°C.The holding temperature T m is preferably between 770 and 815 ° C.

L'invention a également pour objet l'utilisation d'une tôle d'acier présentant un comportement TRIP, selon l'une des variantes décrites ci-dessus, ou fabriquée par un des procédés décrits ci-dessus, pour la fabrication de pièces de structure ou d'éléments de renfort dans le domaine automobile.The invention also relates to the use of a steel sheet having a TRIP behavior, according to one of the variants described above, or manufactured by one of the processes described above, for the manufacture of parts of structure or reinforcement elements in the automotive field.

D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description ci-dessous, donnée à titre d'exemple.Other features and advantages of the invention will become apparent from the description below, given by way of example.

En ce qui concerne la composition chimique de l'acier, le carbone joue un rôle très important sur la formation de la microstructure et les propriétés mécaniques: Selon l'invention, une transformation bainitique intervient à partir d'une structure austénitique formée à haute température, et des lattes de ferrite bainitique sont formées. Compte tenu de la solubilité très inférieure du carbone dans la ferrite par rapport à l'austénite, le carbone de l'austénite est rejeté entre les lattes. Grâce à certains éléments d'alliage de la composition d'acier selon l'invention, en particulier le silicium et le manganèse, la précipitation de carbures, notamment de cémentite, intervient très peu. Ainsi, l'austénite interlattes s'enrichit progressivement en carbone sans que la précipitation de carbures n'intervienne. Cet enrichissement est tel que l'austénite est stabilisée, c'est à dire que la transformation martensitique de cette austénite n'intervient pas lors du refroidissement jusqu'à la température ambiante. Selon l'invention, la teneur en carbone est comprise entre 0,08 et 0,23% en poids. A titre préférentiel, la teneur en carbone est comprise dans une première plage allant de 0,08 à 0,13% en poids. Dans une seconde plage préférentielle, la teneur en carbone est supérieure à 0,13% et est inférieure ou égale à 0,18% en poids. La teneur en carbone est comprise dans une troisième plage préférentielle, où celle-ci est supérieure à 0,18 et inférieure ou égale à 0,23% en poids.With regard to the chemical composition of steel, carbon plays a very important role in the formation of the microstructure and the mechanical properties: According to the invention, a bainitic transformation takes place from an austenitic structure formed at high temperature , and bainitic ferrite slats are formed. Given the much lower solubility of carbon in ferrite compared to austenite, the carbon of the austenite is rejected between the slats. Thanks to certain alloying elements of the steel composition according to the invention, in particular silicon and manganese, the precipitation of carbides, in particular of cementite, intervenes very little. Thus, the austenite interlatte is progressively enriched in carbon without the precipitation of carbides intervening. This enrichment is such that the austenite is stabilized, that is to say that the martensitic transformation of this austenite does not occur during cooling to room temperature. According to the invention, the carbon content is between 0.08 and 0.23% by weight. Preferably, the carbon content is in a first range of 0.08 to 0.13% by weight. In a second preferred range, the carbon content is greater than 0.13% and is less than or equal to 0.18% by weight. The carbon content is in a third preferred range, where it is greater than 0.18 and less than or equal to 0.23% by weight.

Le carbone étant un élément particulièrement important pour le durcissement, la teneur minimale en carbone de chacune des trois plages préférentielles permet d'obtenir une résistance minimale de 600 MPa, 800 MPa et 950 MPa sur tôles laminées à froid et recuites, respectivement à chacune des plages ci-dessus. La teneur maximale en carbone de chacune de trois plages permet de garantir une soudabilité satisfaisante notamment en soudage par points si l'on tient compte du niveau de résistance obtenu dans ces trois plages préférentielles.Since carbon is a particularly important element for curing, the minimum carbon content of each of the three preferred ranges makes it possible to obtain a minimum strength of 600 MPa, 800 MPa and 950 MPa on cold-rolled and annealed sheets, respectively at each of the three preferred ranges. beaches above. The maximum carbon content of each of three ranges makes it possible to guarantee satisfactory weldability, particularly in spot welding, if the level of resistance obtained in these three preferred ranges is taken into account.

En quantité comprise entre 1 et 2% en poids, une addition de manganèse, élément à caractère gammagène, contribue à diminuer la température de début de transformation martensitique Ms et à stabiliser l'austénite. Cette addition de manganèse participe également à un durcissement efficace en solution solide et donc à l'obtention d'une résistance accrue. Le manganèse est compris préférentiellement entre 1,4 et 1,8% en poids : on combine de la sorte un durcissement satisfaisant et une augmentation de la stabilité de l'austénite sans pour autant augmenter de façon excessive la trempabilité dans les assemblages soudés. Optimalement, la teneur en manganèse est comprise entre 1,5 et 1,7% en poids. De la sorte, les effets recherchés ci-dessus sont obtenus sans risque de formation d'une structure en bandes néfaste qui proviendrait d'une ségrégation éventuelle du manganèse lors de la solidification.In an amount of between 1 and 2% by weight, an addition of manganese, a gammagenic element, contributes to reducing the martensitic transformation start temperature Ms and stabilizing the austenite. This addition of manganese also contributes to an effective hardening in solid solution and thus to obtaining increased strength. Manganese is preferentially included between 1.4 and 1.8% by weight: in this way a satisfactory hardening and an increase in the stability of the austenite are combined without, however, excessively increasing the quenchability in the welded joints. Optimally, the manganese content is between 1.5 and 1.7% by weight. In this way, the effects sought above are obtained without risk of formation of a harmful band structure that would come from a possible segregation of manganese during solidification.

En quantité comprise entre 1 et 2% en poids, le silicium inhibe la précipitation de la cémentite lors du refroidissement à partir de l'austénite en retardant considérablement la croissance des carbures : ceci provient du fait que la solubilité du silicium dans la cémentite est très faible et que cet élément augmente l'activité du carbone dans l'austénite. De la sorte, un germe éventuel de cémentite se formant sera environné d'une zone austénitique riche en silicium qui aura été rejeté à l'interface précipité-matrice. Cette austénite enrichie en silicium est également plus riche en carbone et la croissance de la cémentite est ralentie en raison de la diffusion peu importante résultant du gradient réduit de carbone entre la cémentite et la zone austénitique avoisinante. Cette addition de silicium contribue donc à stabiliser une quantité suffisante d'austénite résiduelle pour obtenir un effet TRIP. De plus, cette addition de silicium permet d'augmenter la résistance grâce à un durcissement en solution solide. Cependant, une addition excessive de silicium provoque la formation d'oxydes fortement adhérents, difficilement éliminables lors d'une opération de décapage, et l'apparition éventuelle de défauts de surface dus notamment à un manque de mouillabilité dans les opérations de galvanisation au trempé. Afin d'obtenir la stabilisation d'une quantité suffisante d'austénite tout en réduisant le risque de défauts de surface, la teneur en silicium est préférentiellement comprise entre 1,4 et 1,7% en poids.In an amount of between 1 and 2% by weight, silicon inhibits the precipitation of cementite during cooling from austenite by considerably retarding the growth of carbides: this is due to the fact that the solubility of silicon in cementite is very low. low and that this element increases the carbon activity in the austenite. In this way, a possible cementite seed forming will be surrounded by a silicon-rich austenitic zone which has been rejected at the precipitate-matrix interface. This silicon-enriched austenite is also richer in carbon and the growth of cementite is slowed down because of the small diffusion resulting from the reduced carbon gradient between the cementite and the surrounding austenitic zone. This addition of silicon thus contributes to stabilizing a sufficient amount of residual austenite to obtain a TRIP effect. In addition, this addition of silicon makes it possible to increase the resistance thanks to hardening in solid solution. However, an excessive addition of silicon causes the formation of strongly adherent oxides, which are difficult to eliminate during a stripping operation, and the possible appearance of surface defects due in particular to a lack of wettability in dip galvanizing operations. In order to obtain the stabilization of a sufficient amount of austenite while reducing the risk of surface defects, the silicon content is preferably between 1.4 and 1.7% by weight.

L'aluminium est un élément très efficace pour la désoxydation de l'acier. Comme le silicium, il est très peu soluble dans la cémentite et pourrait être utilisé à ce titre pour éviter la précipitation de la cémentite lors d'un maintien à une température de transformation bainitique et stabiliser l'austénite résiduelle. Cependant, selon l'invention, la teneur en aluminium est inférieure ou égale à 0,030% en poids : en effet, comme on le verra ci-dessous, un durcissement très efficace est obtenu au moyen d'une précipitation de carbonitrures de vanadium : lorsque la teneur en aluminium est supérieure à 0,030%, il existe un risque de précipitation de nitrure d'aluminium qui réduit d'autant la quantité d'azote susceptible de précipiter avec le vanadium. Préférentiellement, lorsque cette quantité est inférieure ou égale à 0,015% en poids, tout risque de précipitation de nitrure d'aluminium est écarté et le plein effet du durcissement par la précipitation des carbonitrures de vanadium est obtenu.Aluminum is a very effective element for the deoxidation of steel. Like silicon, it is very slightly soluble in cementite and could be used as such to prevent the precipitation of cementite during maintenance at a bainitic transformation temperature and stabilize the austenite residual. However, according to the invention, the aluminum content is less than or equal to 0.030% by weight: in fact, as will be seen below, a very effective hardening is obtained by means of a precipitation of vanadium carbonitrides: when the aluminum content is greater than 0.030%, there is a risk of precipitation of aluminum nitride which reduces by the same amount of nitrogen capable of precipitating with vanadium. Preferably, when this amount is less than or equal to 0.015% by weight, any risk of precipitation of aluminum nitride is discarded and the full effect of hardening by the precipitation of vanadium carbonitrides is obtained.

Pour la même raison, la teneur en titane est inférieure ou égale à 0,010% en poids afin de ne pas précipiter une quantité significative d'azote sous forme de nitrures ou de carbonitrures de titane. Compte tenu de la forte affinité du titane pour l'azote, la teneur en titane est préférentiellement inférieure ou égale à 0,005% en poids. Une telle teneur en titane permet alors d'éviter la précipitation de (Ti,V)N sur tôles laminées à chaud.For the same reason, the titanium content is less than or equal to 0.010% by weight in order not to precipitate a significant amount of nitrogen in the form of titanium nitrides or carbonitrides. Given the high affinity of titanium for nitrogen, the titanium content is preferably less than or equal to 0.005% by weight. Such a titanium content then makes it possible to avoid the precipitation of (Ti, V) N on hot-rolled sheets.

Le vanadium et l'azote sont des éléments importants de l'invention : Les inventeurs ont mis en évidence que, lorsque ces éléments sont présents en quantités définies selon l'invention, ils précipitent sous forme de carbonitrures de vanadium très fins associés à un durcissement important. Lorsque la teneur en vanadium est inférieure à 0,1% en poids ou lorsque la teneur en azote est inférieure à 0,004% en poids, la précipitation de carbonitrures de vanadium est limitée et le durcissement est insuffisant. Lorsque la teneur en vanadium est supérieure à 0,25% en poids ou lorsque la teneur en azote est supérieure à 0,012% en poids, la précipitation intervient à un stade précoce après le laminage à chaud sous forme de précipités plus grossiers. La taille de ces précipités ne permet pas de tirer le plein parti du durcissement potentiel du vanadium, tout particulièrement lorsque l'on vise à la fabrication d'une tôle d'acier laminée à froid et recuite. Dans ce dernier cas, les inventeurs ont mis en évidence qu'il convient de limiter la précipitation du vanadium à l'étape du laminage à chaud afin de tirer le plus grand parti d'une précipitation fine durcissante lors d'un recuit ultérieur. De plus, la limitation de la précipitation du vanadium à ce stade permet de réduire les efforts nécessaires lors du laminage à froid ultérieur et donc d'exploiter au mieux les performances des installations industrielles.Vanadium and nitrogen are important elements of the invention: The inventors have demonstrated that, when these elements are present in defined amounts according to the invention, they precipitate in the form of very fine vanadium carbonitrides associated with hardening. important. When the vanadium content is less than 0.1% by weight or when the nitrogen content is less than 0.004% by weight, the precipitation of vanadium carbonitrides is limited and curing is insufficient. When the vanadium content is greater than 0.25% by weight or when the nitrogen content is greater than 0.012% by weight, the precipitation occurs at an early stage after hot rolling in the form of coarser precipitates. The size of these precipitates does not make it possible to take full advantage of the potential hardening of vanadium, especially when it is aimed at producing a cold-rolled and annealed steel sheet. In the latter case, the inventors have demonstrated that it is necessary to limit the precipitation of vanadium to the hot rolling step in order to make the most of a fine hardening precipitation during a subsequent annealing. In addition, limiting the precipitation of vanadium at this stage reduces efforts necessary during the subsequent cold rolling and therefore to make the best use of the performance of industrial installations.

Lorsque la teneur en vanadium est comprise entre 0,12 et 0,15% en poids, l'allongement uniforme ou à rupture est particulièrement augmenté.When the vanadium content is between 0.12 and 0.15% by weight, the uniform or breaking elongation is particularly increased.

En quantité supérieure à 0,015% en poids, le soufre tend à précipiter en quantité excessive sous forme de sulfures de manganèse qui réduisent fortement l'aptitude à la mise en forme.In an amount greater than 0.015% by weight, sulfur tends to precipitate excessively in the form of manganese sulfides which greatly reduce the formability.

Le phosphore est un élément connu pour ségréger aux joints de grains. Sa teneur doit être limitée à 0,1% en poids de façon à maintenir une ductilité à chaud suffisante et afin de favoriser une rupture par déboutonnage lors d'essais de traction-cisaillement effectués sur des assemblages soudés par point.Phosphorus is a known element to segregate at grain boundaries. Its content shall be limited to 0.1% by weight so as to maintain sufficient hot ductility and to promote breakage by peeling during tensile-shear tests carried out on spot-welded joints.

A titre optionnel, des éléments tels que le chrome et le molybdène qui retardent la transformation bainitique et favorisent le durcissement par solution solide, peuvent être ajoutés en quantité respectivement inférieure ou égale à 0,3 ou 0,5% en poids. Le niobium peut être également ajouté à titre optionnel en quantité inférieure ou égale à 0,1% en poids de façon à accroître la résistance par une précipitation complémentaire de carbonitrures.Optionally, elements such as chromium and molybdenum that delay bainitic transformation and promote hardening by solid solution, can be added in amounts of less than or equal to 0.3 or 0.5% by weight, respectively. Niobium may also optionally be added in an amount of less than or equal to 0.1% by weight so as to increase the resistance by additional precipitation of carbonitrides.

La mise en oeuvre du procédé de fabrication d'une tôle laminée à chaud selon l'invention est la suivante :

  • On approvisionne un acier de composition selon l'invention
  • On procède à la coulée d'un demi-produit à partir de cet acier. Cette coulée peut être réalisée en lingots ou en continu sous forme de brames d'épaisseur de l'ordre de 200mm. On peut également effectuer la coulée sous forme de brames minces de quelques dizaines de millimètres d'épaisseur ou de bandes minces entre cylindres d'acier contra-rotatifs.
The method of manufacturing a hot-rolled sheet according to the invention is implemented as follows:
  • A composition steel is supplied according to the invention
  • A semi-finished product is cast from this steel. This casting can be carried out in ingots or continuously in the form of slabs of the order of 200mm thickness. It is also possible to perform the casting in the form of slabs of a few tens of millimeters thick or thin strips between contra-rotating steel rolls.

Les demi-produits coulés sont tout d'abord portés à une température supérieure à 1200°C pour atteindre en tout point une température favorable aux déformations élevées que va subir l'acier lors du laminage ainsi que pour éviter à ce stade de la fabrication la présence de carbonitrures de vanadium. Naturellement, dans le cas d'une coulée directe de brames minces ou de bandes minces entre cylindres contra-rotatifs, l'étape de laminage à chaud de ces demi-produits débutant à plus de 1200°C peut se faire directement après coulée si bien qu'une étape de réchauffage intermédiaire n'est pas alors nécessaire. Comme on va le voir, cette température minimale de 1200°C permet également de réaliser le laminage à chaud en phase entièrement austénitique dans des conditions satisfaisantes sur un train continu de laminage à chaud.The cast semifinished products are first brought to a temperature above 1200 ° C. in order to attain at all points a temperature favorable to the high deformations which the steel will undergo during rolling as well as to avoid at this stage of manufacture the presence of vanadium carbonitrides. Naturally, in the case of a direct casting of thin slabs or thin strips between contra-rotating rolls, the step of hot rolling of these semi-products starting at more than 1200 ° C. can be done directly after so that an intermediate reheat step is not then necessary. As will be seen, this minimum temperature of 1200 ° C. also makes it possible to perform hot rolling in a completely austenitic phase under satisfactory conditions on a continuous hot rolling mill.

On lamine à chaud le demi-produit jusqu'à une température de fin de laminage Tfl supérieure ou égale à 900°C : de la sorte, le laminage est entièrement effectué en phase austénitique où la solubilité des carbonitrures de vanadium est plus importante et où la probabilité d'une précipitation de V(CN) est la plus réduite. Pour la même raison, on refroidit ensuite la tôle ainsi obtenue avec une vitesse de refroidissement Vr supérieure ou égale à 20°C/s afin d'éviter une précipitation des carbonitrures de vanadium dans la ferrite. Ce refroidissement peut être effectué par exemple au moyen de pulvérisation d'eau sur la tôle.The semi-finished product is hot-rolled up to a rolling end temperature T f equal to or greater than 900 ° C. In this way, the rolling is entirely carried out in the austenitic phase where the solubility of the vanadium carbonitrides is greater and where the probability of precipitation of V (CN) is the lowest. For the same reason, the sheet thus obtained is then cooled with a cooling rate V r greater than or equal to 20 ° C./s in order to avoid a precipitation of the vanadium carbonitrides in the ferrite. This cooling can be carried out for example by means of spraying water on the sheet.

Si l'on veut fabriquer une tôle laminée à chaud selon l'invention, on bobine ensuite la tôle obtenue à une température inférieure ou égale à 450°C. De la sorte, le maintien quasi-isotherme associé à ce bobinage conduit à la formation d'une microstructure constituée de bainite, de ferrite, d'austénite résiduelle, éventuellement d'une faible quantité de martensite, ainsi qu'à une précipitation durcissante de carbonitrures de vanadium. Lorsque la température de bobinage est inférieure ou égale à 400°C, l'allongement total et l'allongement réparti sont accrus.If it is desired to manufacture a hot-rolled sheet according to the invention, the sheet obtained is then reeled at a temperature of less than or equal to 450 ° C. In this way, the quasi-isothermal maintenance associated with this winding leads to the formation of a microstructure consisting of bainite, ferrite, residual austenite, possibly a small amount of martensite, as well as a hardening precipitation of vanadium carbonitrides. When the winding temperature is less than or equal to 400 ° C, the total elongation and the distributed elongation are increased.

On choisira plus particulièrement la température Tfl de fin de laminage à chaud, la vitesse Vr de refroidissement et la température Tbob de bobinage de telle sorte que la microstructure comprenne une teneur en austénite résiduelle comprise entre 8 et 20% : Lorsque la quantité d'austénite résiduelle est inférieure à 8%, un effet TRIP suffisant ne peut être mis en évidence lors d'essais mécaniques : en particulier, on met en évidence lors d'essais de traction que le coefficient d'écrouissage n est inférieur à 0,2 et décroît rapidement avec la déformation ε. Le critère de Considère s'applique à ces aciers et la rupture intervient quand n = εvrai, l'allongement est donc fortement limité. Dans le cas d'un comportement TRIP, l'austénite résiduelle se transforme progressivement en martensite lors la déformation, n est supérieur à 0,2 et la striction apparaît pour des déformations plus importantes. Lorsque la teneur en austénite résiduelle est supérieure à 20%, l'austénite résiduelle formée dans ces conditions présente une teneur en carbone relativement faible et se déstabilise trop facilement lors d'une phase ultérieure de déformation ou de refroidissement.Are more particularly chosen T fl end temperature of hot rolling, the cooling rate V r and the winding bob temperature T such that the microstructure comprises a residual austenite content of between 8 and 20%: When the amount residual austenite is less than 8%, a sufficient TRIP effect can not be demonstrated during mechanical tests: in particular, it is demonstrated during tensile tests that the coefficient of hardening n is less than 0 , 2 and decreases rapidly with the deformation ε. The criterion of Consider applies to these steels and the rupture occurs when n = ε true , the elongation is thus strongly limited. In the case of TRIP behavior, residual austenite is progressively transforms into martensite during deformation, n is greater than 0.2 and necking appears for larger deformations. When the residual austenite content is greater than 20%, the residual austenite formed under these conditions has a relatively low carbon content and is destabilized too easily during a subsequent phase of deformation or cooling.

Parmi les paramètres Tfl, Vr, Tbob choisis pour obtenir une quantité d'austénite résiduelle comprise entre 8 et 20%, les paramètres Vr, Tbob sont les plus importants :

  • La vitesse de refroidissement Vr sera choisie de façon à être la plus rapide possible pour éviter une transformation perlitique (ce qui irait à l'encontre de l'obtention d'une teneur en austénite résiduelle comprise entre 8 et 20%) tout en restant au sein des capacités de contrôle d'une ligne industrielle de façon à obtenir une homogénéité microstructurale dans le sens longitudinal et transversal de la tôle laminée à chaud.
  • La température de bobinage sera choisie suffisamment basse de façon à éviter une transformation perlitique, ce qui se traduirait par une transformation bainitique incomplète et une teneur en austénite résiduelle inférieure à 8%.
Among the parameters T fl , V r , T bob selected to obtain a residual austenite amount of between 8 and 20%, the parameters V r , T bob are the most important:
  • The cooling rate V r will be chosen so as to be as rapid as possible in order to avoid a pearlitic transformation (which would be contrary to obtaining a residual austenite content of between 8 and 20%) while remaining within the control capabilities of an industrial line so as to obtain a microstructural homogeneity in the longitudinal and transverse direction of the hot-rolled sheet.
  • The winding temperature will be chosen sufficiently low so as to avoid a pearlitic transformation, which would result in an incomplete bainitic transformation and a residual austenite content of less than 8%.

On choisira préférentiellement les paramètres Tfl, Vr, Tbob, de telle sorte que la microstructure de la tôle d'acier laminée à chaud contienne moins de 2% de martensite. Dans le cas contraire, l'allongement est réduit ainsi que l'énergie d'absorption liée à l'aire sous la courbe de traction (σ-ε). La présence excessive de martensite conduit à un comportement mécanique se rapprochant de celui d'un acier Dual-Phase avec une valeur initiale du coefficient d'écrouissage n élevé diminuant lorsque le taux de déformation augmente. Optimalement, la microstructure ne contient pas de martensite. Parmi les paramètres Tfl, Vr, Tbob choisis dans le but d'obtenir une teneur en martensite inférieure à 2%, les paramètres les plus importants sont :

  • La vitesse de refroidissement Vr, qui doit être la plus rapide possible pour éviter une transformation perlitique, tout en évitant que ce refroidissement ne conduise à une température inférieure à Ms, cette dernière température désignant la température de début de transformation martensitique, caractéristique de la composition chimique de l'acier mis en oeuvre.
  • Pour la même raison, on choisira une température de bobinage supérieure à Ms.
  • On choisira aussi préférentiellement les paramètres Tfl, Vr, Tbob, de telle sorte que la taille moyenne des îlots d'austénite résiduelle de la microstructure soit inférieure ou égale à 2 micromètres. En effet, lorsque l'austénite se transforme en martensite sous l'influence de l'abaissement de la température ou d'une déformation, les îlots de martensite de taille moyenne supérieure à 2 micromètres jouent un rôle préférentiel pour l'endommagement par suite d'une décohésion avec la matrice.
  • A titre préférentiel, on choisira encore plus particulièrement les paramètres Tfl, Vr, Tbob, de telle sorte que la taille moyenne des îlots d'austénite résiduelle de la microstructure soit inférieure ou égale à 1 micromètre afin d'augmenter leur stabilité, de limiter l'endommagement à l'interface matrice-îlots et de repousser la striction vers des valeurs de déformation plus élevées.
The parameters T f , V r , T bob will preferably be chosen so that the microstructure of the hot-rolled steel sheet contains less than 2% of martensite. In the opposite case, the elongation is reduced as well as the absorption energy related to the area under the traction curve (σ-ε). The excessive presence of martensite leads to a mechanical behavior approaching that of a Dual-Phase steel with an initial value of the coefficient of hardening n high decreasing when the rate of deformation increases. Optimally, the microstructure does not contain martensite. Among the parameters T fl , V r , T bob chosen in order to obtain a martensite content of less than 2%, the most important parameters are:
  • The cooling rate V r , which must be as fast as possible to avoid a pearlitic transformation, while avoiding that this cooling leads to a temperature below M s , the latter temperature designating the start temperature of martensitic transformation, characteristic of the chemical composition of the steel used.
  • For the same reason, we will choose a winding temperature greater than M s .
  • The parameters T f , V r , T bob will also preferably be chosen so that the average size of the residual austenite islands of the microstructure is less than or equal to 2 micrometers. Indeed, when the austenite is transformed into martensite under the influence of the lowering of the temperature or of a deformation, the islands of martensite of average size superior to 2 micrometers play a preferential role for the damage as a result of decohesion with the matrix.
  • As a preference, the parameters T f , V r , T bob will be chosen even more particularly, so that the average size of the residual austenite islands of the microstructure is less than or equal to 1 micrometer in order to increase their stability. to limit the damage to the matrix-island interface and to push the necking towards higher deformation values.

Dans le but d'obtenir une taille fine d'îlots d'austénite résiduelle, on choisira :

  • Une température Tfl de fin de laminage dans le domaine austénitique pas trop élevée de façon à obtenir une taille de grain austénitique relativement fine avant transformation allotropique.
  • La vitesse de refroidissement Vr la plus rapide possible pour éviter une transformation perlitique.
In order to obtain a fine size of islands of residual austenite, one will choose:
  • A rolling end temperature T fl in the austenitic range not too high so as to obtain a relatively fine austenitic grain size before allotropic transformation.
  • The cooling rate V r as fast as possible to avoid a pearlitic transformation.

Pour fabriquer une tôle laminée à froid selon l'invention, on fabrique tout d'abord une tôle laminée à chaud selon l'une des variantes qui ont été exposées ci-dessus. En effet, les inventeurs ont constaté que les microstructures et les propriétés mécaniques obtenues grâce au procédé de fabrication par laminage à froid et recuit qui va être exposé, dépendent relativement peu des conditions de fabrication au sein des limites des variantes du procédé exposées ci-dessus, en particulier des variations de la température de bobinage Tbob. De la sorte, le procédé de fabrication des tôles laminées à froid présente l'avantage d'être peu sensible à des variations fortuites des conditions de fabrication des tôles laminées à chaud.In order to manufacture a cold-rolled sheet according to the invention, a hot-rolled sheet is first produced according to one of the variants which have been explained above. Indeed, the inventors have found that the microstructures and the mechanical properties obtained by the cold rolling and annealing manufacturing process which will be exposed, depend relatively little on the manufacturing conditions within the limits of the process variants set out above. , in particular variations of the winding temperature T bob . In this way, the sheet metal manufacturing process Cold rolled has the advantage of being insensitive to unforeseen variations in the manufacturing conditions of hot-rolled sheets.

A titre préférentiel, on choisira cependant une température de bobinage inférieure ou égale à 400°C de façon à garder plus de vanadium en solution solide disponible pour la précipitation lors du recuit ultérieur de la tôle laminée à froid.As a preference, however, a winding temperature of less than or equal to 400 ° C. will be chosen so as to keep more vanadium in solid solution available for precipitation during the subsequent annealing of the cold-rolled sheet.

On décape la tôle laminée à chaud selon un procédé connu en lui-même de façon à conférer à celle-ci un état de surface propre au laminage à froid. Ce dernier est effectué dans des conditions usuelles, en réduisant par exemple l'épaisseur de la tôle laminée à chaud de 30 à 75%The hot-rolled sheet is scraped by a method known per se so as to give it a surface state suitable for cold rolling. The latter is carried out under customary conditions, for example by reducing the thickness of the hot-rolled sheet by 30 to 75%.

On effectue ensuite un traitement de recuit propre à recristalliser la structure écrouie et à conférer la microstructure particulière selon l'invention. Ce traitement, effectué préférentiellement par recuit en continu, comporte les phases successives suivantes :

  • Une phase de chauffage avec une vitesse Vcm supérieure ou égale à 2°C/s jusqu'à une température Tm située dans le domaine intercritique, c'est à dire une température située entre les températures de transformation Ac1 et Ac3 : Lors de cette phase, on observe une recristallisation de la structure écrouie, une dissolution de la cémentite et une croissance de l'austénite au delà de la température de transformation Ac1 ainsi qu'une précipitation de carbonitrures de vanadium dans la ferrite : ces précipités sont de très petite taille, de diamètre typiquement inférieur à 5 nanomètres à l'issue de cette phase de chauffage.
A clean annealing treatment is then carried out to recrystallize the work-hardened structure and to confer the particular microstructure according to the invention. This treatment, preferably carried out by continuous annealing, comprises the following successive phases:
  • A heating phase with a velocity V cm greater than or equal to 2 ° C / s to a temperature T m located in the intercritical range, ie a temperature situated between the transformation temperatures A c1 and A c3 : During this phase, recrystallization of the hardened structure, dissolution of the cementite and growth of the austenite beyond the transformation temperature A c1 and precipitation of vanadium carbonitrides in the ferrite are observed: these precipitates are of very small size, of diameter typically less than 5 nanometers at the end of this heating phase.

Lorsque la vitesse de chauffage est inférieure à 2°C/s, la fraction volumique de vanadium précipité décroît. De plus la productivité de la fabrication est réduite de façon excessive.

  • Une phase de maintien à une température intercritique Tm comprise entre Ac1 et Ac3 pendant un temps tm compris entre 10s et 200s. Dans ces conditions bien définies, les inventeurs ont mis en évidence que la précipitation de carbonitrures de vanadium se poursuivait dans la ferrite pratiquement sans aucune précipitation dans la phase austénitique nouvellement formée. La fraction volumique de précipités s'accroît parallèlement à une augmentation du diamètre moyen de ces précipités. De la sorte, on obtient un durcissement particulièrement efficace de la ferrite intercritique.
When the heating rate is less than 2 ° C / sec, the volume fraction of precipitated vanadium decreases. In addition, the productivity of manufacturing is reduced excessively.
  • A maintenance phase at an intercritical temperature T m between A c1 and A c3 for a time t m between 10s and 200s. Under these well-defined conditions, the inventors have demonstrated that the precipitation of vanadium carbonitrides continued in the ferrite virtually without any precipitation in the newly formed austenitic phase. The volume fraction of precipitates increases in parallel with an increase in the average diameter of these precipitates. Of In this way, a particularly effective hardening of the intercritical ferrite is obtained.

On effectue ensuite un refroidissement rapide à une vitesse Vrm supérieure à 15°C/s lorsque la température est inférieure à Ar3. Le refroidissement rapide lorsque la température est inférieure à Ar3 est important afin de limiter la formation de ferrite avant la transformation bainitique. Cette phase de refroidissement rapide lorsque la température est inférieure à Ar3 peut être précédée éventuellement d'une phase de refroidissement plus lent à partir de la température Tm.Then a rapid cooling is carried out at a speed V rm greater than 15 ° C / s when the temperature is lower than Ar3. Rapid cooling when the temperature is lower than Ar3 is important in order to limit the formation of ferrite before the bainitic transformation. This rapid cooling phase when the temperature is lower than Ar 3 may be preceded, if necessary, by a slower cooling phase from the temperature T m .

Durant cette phase de refroidissement, les inventeurs ont mis en évidence qu'une précipitation complémentaire de carbonitrures de vanadium dans la phase ferritique n'intervenait pratiquement pas.During this cooling phase, the inventors have demonstrated that a complementary precipitation of vanadium carbonitrides in the ferritic phase was practically not involved.

On effectue ensuite un maintien à une température T'm comprise entre 300°C et 500°C pendant un temps de maintien t'm compris entre 10s et 1000 s : on obtient de la sorte une transformation bainitique et un enrichissement en carbone des îlots d'austénite résiduelle dans une quantité telle que cette austénite résiduelle est stable même après refroidissement jusqu'à température ambiante.It is then carried out at a temperature T ' m of between 300 ° C. and 500 ° C. for a hold time t' m of between 10 s and 1000 s: a bainitic transformation and a carbon enrichment of the islets are thus obtained. residual austenite in such an amount that this residual austenite is stable even after cooling to room temperature.

Préférentiellement, la température de maintien Tm est comprise entre 770 et 815°C : au dessous de 770°C, la recristallisation peut être insuffisante. Au delà de 815°C, la fraction d'austénite intercritique formée est trop importante et le durcissement de la ferrite par la précipitation de carbonitrures de vanadium est moins efficace : en effet, la teneur en ferrite intercritique est moindre ainsi que la quantité totale de vanadium précipité, le vanadium étant plutôt soluble dans l'austénite. D'autre part, les précipités de carbonitrures de vanadium qui se forment ont plus tendance à croître et à coalescer à haute température.Preferably, the holding temperature T m is between 770 and 815 ° C: below 770 ° C, the recrystallization may be insufficient. Beyond 815 ° C, the fraction of intercritical austenite formed is too large and the hardening of ferrite by the precipitation of vanadium carbonitrides is less effective: in fact, the intercritical ferrite content is less and the total amount of vanadium precipitates, vanadium being rather soluble in the austenite. On the other hand, vanadium carbonitride precipitates that form are more likely to grow and coalesce at high temperatures.

Selon un mode préféré de l'invention, après l'étape de laminage à froid, on fait subir à la tôle un traitement thermique de recuit dont les paramètres Vcm, Tm, tm, Vrm, T'm, t'm sont choisis de telle sorte que la microstructure de l'acier obtenu soit constituée de ferrite, de bainite et d'austénite résiduelle, éventuellement de martensite. On choisira avantageusement des paramètres tels que la teneur en austénite résiduelle soit comprise entre 8 et 20%. Ces paramètres seront choisis de préférence de telle sorte que la taille moyenne des îlots d'austénite résiduelle soit inférieure ou égale à 2 micromètres, optimalement inférieure ou égale à 1 micromètre. On choisira également ces paramètres de telle sorte que la teneur en martensite soit inférieure à 2%. D'une façon optimale, la microstructure ne comprend pas de martensite.According to a preferred embodiment of the invention, after the cold rolling step, the sheet is subjected to a heat treatment annealing whose parameters V cm , T m , tm, V rm , T ' m , t' m are chosen so that the microstructure of the steel obtained consists of ferrite, bainite and residual austenite, possibly martensite. Advantageously, parameters will be chosen such that the residual austenite content is between 8 and 20%. These Parameters will preferably be chosen such that the average size of the residual austenite islands is less than or equal to 2 micrometers, optimally less than or equal to 1 micrometer. These parameters will also be chosen so that the martensite content is less than 2%. Optimally, the microstructure does not include martensite.

Afin d'obtenir ces résultats, le choix des paramètres Tm, tm, Vrm, T'm est plus particulièrement important :

  • Tm, température située dans le domaine intercritique entre les températures de transformation Ac1 (début de transformation austénitique) et Ac3 (fin de transformation austénitique), doit être choisie de façon à obtenir au moins 8% d'austénite formée à haute température. Cette condition est nécessaire pour que la structure après refroidissement contienne au moins 8% d'austénite résiduelle. La température Tm ne doit cependant pas être trop proche de Ac3 pour éviter un grossissement du grain austénitique à haute température, entraînant par la suite une taille trop importante des îlots d'austénite résiduelle.
  • Le temps tm doit être choisi suffisamment long pour que la transformation partielle en austénite ait le temps d'intervenir.
  • La vitesse de refroidissement Vrm doit être suffisamment rapide pour éviter la formation de perlite, celle-ci ne permettant pas d'obtenir les résultats visés ci-dessus.
  • La température T'm sera choisie de façon à ce que la transformation de l'austénite formée lors du maintien à la température Tm, soit une transformation bainitique, et conduise à un enrichissement en carbone suffisant pour que cette austénite formée à haute température soit stabilisée dans une quantité comprise entre 8 et 20%.
In order to obtain these results, the choice of the parameters T m , t m , V rm , T ' m is more particularly important:
  • T m , temperature in the intercritical range between transformation temperatures A c1 (austenitic transformation start) and A c3 (end of austenitic transformation), must be chosen to obtain at least 8% of austenite formed at high temperature . This condition is necessary for the structure after cooling to contain at least 8% residual austenite. However, the temperature T m must not be too close to A c3 to avoid a magnification of the austenitic grain at high temperature, which subsequently causes the islands of residual austenite to be too large.
  • The time t m must be chosen long enough for the partial transformation into austenite to have time to intervene.
  • The cooling rate V rm must be fast enough to prevent the formation of perlite, which does not make it possible to obtain the results referred to above.
  • The temperature T ' m will be chosen so that the transformation of the austenite formed during the maintenance at the temperature T m , is a bainitic transformation, and lead to a sufficient carbon enrichment so that this austenite formed at high temperature is stabilized in an amount of between 8 and 20%.

A titre d'exemple non limitatif, les résultats suivants vont montrer les caractéristiques avantageuses conférées par l'invention.By way of non-limiting example, the following results will show the advantageous characteristics conferred by the invention.

Exemple 1:Example 1

On a élaboré des aciers dont la composition figure au tableau ci-dessous, exprimée en pourcentage pondéral. Outre les aciers I1 à I3 selon l'invention, on a indiqué à titre de comparaison la composition d'un acier de référence R1 : Tableau 1 Compositions d'aciers (% poids). I= Selon l'invention. R= référence Acier C Mn Si Al V Ti S P N I1 0,223 1,58 1,59 <0.030 0,100 0,002 <0.005 <0.030 0,008 I2 0,225 1,58 1,60 <0.030 0,155 0,002 <0.005 <0.030 0,009 I3 0,225 1,58 1,60 <0.030 0,209 0,002 <0.005 <0.030 0,009 R1 0,221 1,60 1,59 <0.030 0,005(*) 0,002 <0.005 <0.030 0,001(*) (*) : Non conforme à l'invention Steels have been developed, the composition of which is given in the table below, expressed in percentage by weight. In addition to the steels I1 to I3 according to the invention, the composition of a reference steel R1 has been indicated for comparison: Table 1 Compositions of steel (% by weight). I = according to the invention. R = reference Steel VS mn Yes al V Ti S P NOT I1 0.223 1.58 1.59 <0.030 0,100 0,002 <0.005 <0.030 0,008 I2 0,225 1.58 1.60 <0.030 0.155 0,002 <0.005 <0.030 0,009 I3 0,225 1.58 1.60 <0.030 0.209 0,002 <0.005 <0.030 0,009 R1 0.221 1.60 1.59 <0.030 0.005 (*) 0,002 <0.005 <0.030 0.001 (*) (*): Not in accordance with the invention

Des demi-produits correspondant aux compositions ci-dessus ont été réchauffés à 1200°C et laminés à chaud de telle sorte que la température de laminage soit supérieure à 900°C. Les tôles de 3 mm ainsi obtenues ont été refroidies avec une vitesse de 20°C/s par pulvérisation d'eau, puis bobinées à une température de 400°C. Les propriétés mécaniques de traction obtenues (limite d'élasticité Re, résistance Rm, allongement uniforme Au, allongement à rupture At) ont été portées au tableau 2 ci-dessous. On a également déterminé au moyen d'éprouvettes de type Charpy V d'épaisseur réduite (e=3mm) la température de transition ductile-fragile. On a indiqué également la teneur en austénite résiduelle mesurée par diffraction de rayons X. Tableau 2 : Caractéristiques mécaniques de traction, température de transition et teneur en austénite résiduelle des tôles laminées à chaud. Acier Re (MPa) Rm (MPa) Au (%) At (%) Température de transition (°C) Teneur en austénite résiduelle (%) I1 731 884 13 22 n.d. n.d. I2 724 891 26 38 -35 n.d. I3 755 916 24 36 n.d. 10,8 R1 615 793 14 28 0 <1% n.d. : Non déterminé. Semi-products corresponding to the above compositions were heated to 1200 ° C and hot rolled so that the rolling temperature was above 900 ° C. The sheets of 3 mm thus obtained were cooled with a speed of 20 ° C / s by water spray, and then wound at a temperature of 400 ° C. The tensile mechanical properties obtained (yield strength Re, resistance Rm, uniform elongation Au, elongation at break At) were given in Table 2 below. The ductile-brittle transition temperature was also determined using Charpy V type specimens of reduced thickness (e = 3mm). The residual austenite content measured by X-ray diffraction was also reported. Table 2: Mechanical tensile properties, transition temperature and residual austenite content of hot-rolled sheets. Steel Re (MPa) Rm (MPa) At (%) At (%) Transition temperature (° C) Residual austenite content (%) I1 731 884 13 22 nd nd I2 724 891 26 38 -35 nd I3 755 916 24 36 nd 10.8 R1 615 793 14 28 0 <1% na: Not determined.

Les tôles fabriquées selon l'invention présentent une résistance très élevée, nettement supérieure à 800MPa pour une teneur en carbone d'environ 0,22%. Leur microstructure est composée de ferrite, de bainite et d'austénite résiduelle, ainsi que de martensite en quantité inférieure à 2%. Dans le cas de l'acier 13 (teneur en austénite résiduelle: 10,8%) la concentration en carbone des îlots d'austénite résiduelle est de 1,36% en poids. Ceci indique que l'austénite est suffisamment stable pour obtenir un effet TRIP comme le montre le comportement observé lors des essais de traction effectués sur ces tôles d'acier.The sheets manufactured according to the invention have a very high strength, significantly higher than 800 MPa for a carbon content of about 0.22%. Their microstructure is composed of ferrite, bainite and residual austenite, as well as martensite in an amount of less than 2%. In the case of steel 13 (residual austenite content: 10.8%), the carbon concentration of the residual austenite islets is 1.36% by weight. This indicates that the austenite is sufficiently stable to obtain a TRIP effect as shown by the behavior observed during the tensile tests performed on these steel sheets.

La tôle d'acier de référence R1 de structure bainito-perlitique, avec une très faible teneur en austénite résiduelle, ne présente pas de comportement TRIP. Sa résistance est inférieure à 800MPa, soit un niveau nettement plus faible que celle des aciers de l'invention.The reference steel sheet R1 of bainito-pearlitic structure, with a very low residual austenite content, does not exhibit TRIP behavior. Its resistance is less than 800 MPa, a level significantly lower than that of the steels of the invention.

L'acier I2 selon l'invention présente également une excellente ténacité puisque sa température de transition ductile-fragile est nettement plus basse (-35°C) que celle d'un acier de référence (0°C).I2 steel according to the invention also has excellent toughness since its ductile-brittle transition temperature is significantly lower (-35 ° C) than that of a reference steel (0 ° C).

Exemple 2 :Example 2

Des tôles laminées à chaud de 3mm d'épaisseur d'aciers de compositions I2 et R1 fabriquées selon l'exemple 1 ont été laminées à froid jusqu'à une épaisseur de 0,9mm. On a ensuite effectué un traitement thermique de recuit comprenant une phase de chauffage à une vitesse de 5°C/s, une phase de maintien à une température de maintien Tm comprise entre 775 et 815°C (températures situées dans le domaine Ac1-Ac3) pendant un temps de maintien de 180s, suivie d'une première phase de refroidissement à 6-8°C/s, puis d'un refroidissement à 20°C/s dans un domaine où la température est inférieure à Ar3, d'une phase de maintien à 400°C pendant 300s pour former de la bainite, et d'un refroidissement final à 5°C/s.3 mm thick hot-rolled sheets of steels of compositions I2 and R1 made according to example 1 were cold-rolled to a thickness of 0.9 mm. An annealing heat treatment was then carried out comprising a heating phase at a rate of 5 ° C./s, a holding phase at a holding temperature T m of between 775 and 815 ° C. (temperatures in the Ac1- Ac3) for a holding time of 180s, followed by a first cooling phase at 6-8 ° C / s, followed by cooling at 20 ° C / s in a range where the temperature is lower than Ar3, d a hold phase at 400 ° C for 300s to form bainite, and a final cooling at 5 ° C / s.

On a observé la microstructure ainsi obtenue après attaque au réactif de Klemm mettant en évidence les îlots d'austénite résiduelle et on a mesuré la taille moyenne de ces îlots au moyen d'un logiciel d'analyse d'images.The resulting microstructure was observed after Klemm reagent attack highlighting residual austenite islands and the average size of these islets was measured using image analysis software.

Dans le cas de l'acier de référence R1, la taille moyenne des îlots est de 1,1 micromètre. Dans le cas de l'acier selon l'invention 12, la microstructure générale est plus fine avec une taille moyenne d'îlots de 0,7 micromètre. En outre, ces îlots ont un caractère plus équiaxe. Dans le cas de l'acier 12, ces caractéristiques diminuent particulièrement les concentrations de contrainte à l'interface matrice-îlots.In the case of the reference steel R1, the average size of the islands is 1.1 microns. In the case of the steel according to the invention 12, the microstructure general is thinner with an average island size of 0.7 micron. In addition, these islets have a more even character. In the case of steel 12, these characteristics particularly reduce the stress concentrations at the matrix-island interface.

Les propriétés mécaniques après laminage à froid et recuit sont les suivantes : Tableau 3 : Caractéristiques mécaniques de traction des tôles laminées à froid et recuites. Acier Température de maintien Tm Re (MPa) Rm (MPa) At(%) I2 775 630 1000 25 795 658 980 28 815 650 938 26 R1 775 480 830 n.d. 795 480 820 30 815 470 820 30 n.d. : Non déterminé. The mechanical properties after cold rolling and annealing are as follows: Table 3: Mechanical tensile characteristics of cold-rolled and annealed sheets. Steel Holding temperature T m Re (MPa) Rm (MPa) At (%) I2 775 630 1000 25 795 658 980 28 815 650 938 26 R1 775 480 830 nd 795 480 820 30 815 470 820 30 na: Not determined.

L'acier I2 fabriqué selon l'invention présente une résistance supérieure à 900MPa. A température de maintien Tm comparable, sa résistance est nettement accrue par rapport à l'acier de référence.The steel I2 manufactured according to the invention has a resistance greater than 900 MPa. At a maintenance temperature T m comparable, its resistance is significantly increased compared to the reference steel.

Les aciers laminés à froid et recuits selon l'invention présentent des propriétés mécaniques peu sensibles à de petites variations de certains paramètres de fabrication tels que la température de bobinage ou la température de recuit Tm.The cold-rolled and annealed steels according to the invention have mechanical properties which are not very sensitive to small variations in certain manufacturing parameters such as the winding temperature or the annealing temperature T m .

Ainsi, l'invention permet la fabrication d'aciers présentant un comportement TRIP avec une résistance mécanique accrue. Les pièces fabriquées à partir de tôles d'aciers selon l'invention sont utilisées avec profit pour la fabrication de pièces de structure ou d'éléments de renfort dans le domaine automobile.Thus, the invention allows the manufacture of steels with a TRIP behavior with increased mechanical strength. Parts made from steel sheets according to the invention are used with advantage for the manufacture of structural parts or reinforcement elements in the automotive field.

Claims (30)

  1. Composition for the manufacture of steel exhibiting TRIP behaviour, comprising, the contents being expressed by weight: 0.08 % C 0.23 %
    Figure imgb0043
    1 % Mn 2 %
    Figure imgb0044
    1 Si 2 %
    Figure imgb0045
    Al 0.030 %
    Figure imgb0046
    0.1 % V 0.25 %
    Figure imgb0047
    Ti 0.010 %
    Figure imgb0048
    S 0.015 %
    Figure imgb0049
    P 0.1 %
    Figure imgb0050
    0.004 % N 0.012 % ,
    Figure imgb0051

    and, optionally, one or more elements chosen from: Nb 0.1 %
    Figure imgb0052
    Mo 0.5 %
    Figure imgb0053
    Cr 0.3 % ,
    Figure imgb0054

    the balance of the composition consisting of iron and inevitable impurities resulting from the smelting.
  2. Composition according to claim 1, characterized in that it comprises the content being expressed by weight: 0.08 % C 0.13 % .
    Figure imgb0055
  3. Composition according to claim 1, characterized in that it comprises, the content being expressed by weight: 0.13 % < C 0.18 % .
    Figure imgb0056
  4. Composition according to claim 1, characterized in that it comprises, the content being expressed by weight: 0.18 % < C 0.23 % .
    Figure imgb0057
  5. Composition according to any one of claims 1 to 4, characterized in that it comprises, the content being expressed by weight: 1.4 % Mn 1.8 % .
    Figure imgb0058
  6. Composition according to any one of claims 1 to 5, characterized in that it comprises, the content being expressed by weight: 1.5 % Mn 1.7 % .
    Figure imgb0059
  7. Composition according to any one of claims 1 to 6, characterized in that it comprises, the content being expressed by weight: 1.4 % Si 1.7 % .
    Figure imgb0060
  8. Composition according to claim any one of claims 1 to 7, characterized in that it comprises, the content being expressed by weight: Al 0.015 % .
    Figure imgb0061
  9. Composition according to claim any one of claims 1 to 8, characterized in that it comprises, the content being expressed by weight: 0.12 % V 0.15 % .
    Figure imgb0062
  10. Composition according to claim any one of claims 1 to 9, characterized in that it comprises, the content being expressed by weight: Ti 0.005 % .
    Figure imgb0063
  11. Sheet of steel of composition according to any one of claims 1 to 10, characterized in that the microstructure of said steel consists of ferrite, bainite, residual austenite and, optionally, martensite.
  12. Sheet of steel according to claim 11, characterized in that the microstructure of said steel has a residual austenite content of between 8 and 20%.
  13. Sheet of steel according to any one of claims 11 or 12, characterized in that the microstructure of said steel has a martensite content of less than 2%.
  14. Sheet of steel according to any one of claims 11 to 13, characterized in that the mean size of the residual austenite islands does not exceed 2 microns.
  15. Sheet of steel according to any one of claims 11 to 14, characterized in that the mean size of the residual austenite islands does not exceed 1 micron.
  16. Process for manufacturing a hot-rolled sheet exhibiting TRIP behaviour, in which:
    - a steel of composition according to any one of claims 1 to 10 is supplied;
    - a semi-finished product is cast from this steel;
    - said semi-finished product is raised to a temperature above 1200°C;
    - said semi-finished product is hot-rolled;
    - the sheet thus obtained is cooled;
    - said sheet is coiled,
    - characterized in that the temperature Ter of the end of said hot rolling, the rate Vc of said cooling and the temperature Tcoil of said coiling are chosen in such a way that the microstructure of said steel consists of ferrite, bainite, residual austenite and, optionally, martensite.
  17. Process according to claim 16, characterized in that the temperature Ter of the end of said hot rolling, the rate Vc of said cooling and the temperature Tcoil of said coiling are chosen in such a way that the microstructure of said steel has a residual austenite content of between 8 and 20%.
  18. Process according to claim 16 or 17, characterized in that the temperature Ter of the end of said hot rolling, the rate Vc of said cooling and the temperature Tcoil of said coiling are chosen in such a way that the microstructure of said steel has a martensite content of less than 2%.
  19. Process according to any one of claims 16 to 18, characterized in that the temperature Ter of the end of said hot rolling, the rate Vc of said cooling and the temperature Tcoil of said coiling are chosen in such a way that the mean size of the residual austenite islands does not exceed 2 microns.
  20. Process according to any one of claims 16 to 19, characterized in that the temperature Ter of the end of said hot rolling, the rate Vc of said cooling and the temperature Tcoil of said coiling are chosen in such a way that the mean size of the residual austenite islands does not exceed 1 micron.
  21. Process for manufacturing a hot-rolled sheet according to claim 16, characterized in that the temperature Ter of the end of said rolling is not less than 900°C,the rate Vc of said cooling is not less than 20°C/s and the temperature Tcoil of said coiling is below 450°C
  22. Process according to claim 21, characterized in that the coiling temperature Tcoil is below 400 ° C.
  23. Process for manufacturing a cold-rolled sheet exhibiting TRIP behaviour, in which:
    - a hot-rolled steel sheet manufactured according to any one of claims 16 to 22 is supplied;
    - said sheet is pickled;
    - said sheet is cold-rolled; and
    - said sheet is made to undergo an annealing heat treatment, said heat treatment comprising a heating phase at a heating rate Vhs, a soak phase at a soak temperature Ts for a soak time is followed by a cooling phase at a cooling rate Vcs when the temperature is below Ar3, followed by a soak phase at a soak temperature T's for a soak time t's, characterized in that the parameters Vhs, Ts, ts, Vcs, T's and t's are chosen in such a way that the microstructure of said steel consists of ferrite, bainite, residual austenite and, optionally, martensite.
  24. Process according to claim 23, characterized in that the parameters Vhs, Ts, ts, Vcs, T's and t's, are chosen in such a way that the microstructure of said steel has a residual austenite content of between 8 and 20%.
  25. Process according to any one of claims 23 or 24, characterized in that the parameters Vhs, Ts, ts, Vcs, T's and t's, are chosen in such a way that the microstructure of said steel has a martensite content of less than 2%.
  26. Process according to any one of claims 23 to 25, characterized in that the parameters Vhs, Ts, ts, Vcs, T's and t's, are chosen in such a way that the mean size of the residual austenite islands is less than 2 microns.
  27. Process according to any one of claims 23 to 26, characterized in that the parameters Vhs, Ts, ts, Vcs, T's and t's are chosen in such a way that the mean size of the residual austenite islands is less than 1 micron.
  28. Process for manufacturing a cold-rolled sheet exhibiting TRIP behaviour according to claim 23, characterized in that said sheet is made to undergo an annealing heat treatment, said heat treatment comprising a heating phase at a heating rate Vhs of 2°C/s or higher, a soak phase at a soak temperature Ts of between Ac1 and Ac3 for a soak time ts of between 10 and 200 s, followed by a cooling phase at a cooling rate Vcs of greater than 15°C/s when the temperature is below Ar3, followed by a soak phase at a temperature T's of between 300 and 500 ° C for a soak time ts of between 10 and 1000 s.
  29. Process according to claim 28, characterized in that said soak temperature Ts is between 770 and 815° C.
  30. Using of a sheet of steel as claimed in any one of claims 11 to 15, or manufactured by the process of any one of claims 16 to 29, for the manufacture of structural components or of reinforcing elements in the automobile field.
EP06778838.0A 2005-08-04 2006-07-07 Manufacture of steel sheets having high resistance and excellent ductility, products thereof Active EP1913169B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06778838.0A EP1913169B1 (en) 2005-08-04 2006-07-07 Manufacture of steel sheets having high resistance and excellent ductility, products thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP05291675A EP1749895A1 (en) 2005-08-04 2005-08-04 Manufacture of steel sheets having high resistance and excellent ductility, products thereof
EP06778838.0A EP1913169B1 (en) 2005-08-04 2006-07-07 Manufacture of steel sheets having high resistance and excellent ductility, products thereof
PCT/FR2006/001668 WO2007017565A1 (en) 2005-08-04 2006-07-07 Method of producing high-strength steel plates with excellent ductility and plates thus produced

Publications (2)

Publication Number Publication Date
EP1913169A1 EP1913169A1 (en) 2008-04-23
EP1913169B1 true EP1913169B1 (en) 2014-09-03

Family

ID=35149545

Family Applications (2)

Application Number Title Priority Date Filing Date
EP05291675A Withdrawn EP1749895A1 (en) 2005-08-04 2005-08-04 Manufacture of steel sheets having high resistance and excellent ductility, products thereof
EP06778838.0A Active EP1913169B1 (en) 2005-08-04 2006-07-07 Manufacture of steel sheets having high resistance and excellent ductility, products thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP05291675A Withdrawn EP1749895A1 (en) 2005-08-04 2005-08-04 Manufacture of steel sheets having high resistance and excellent ductility, products thereof

Country Status (14)

Country Link
US (1) US9732404B2 (en)
EP (2) EP1749895A1 (en)
JP (1) JP5283504B2 (en)
KR (2) KR101232972B1 (en)
CN (1) CN101263239B (en)
BR (1) BRPI0614391B8 (en)
CA (1) CA2617879C (en)
ES (1) ES2515116T3 (en)
MA (1) MA29691B1 (en)
MX (1) MX2008001653A (en)
RU (1) RU2403311C2 (en)
UA (1) UA92039C2 (en)
WO (1) WO2007017565A1 (en)
ZA (1) ZA200801068B (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5214905B2 (en) * 2007-04-17 2013-06-19 株式会社中山製鋼所 High strength hot rolled steel sheet and method for producing the same
US8258432B2 (en) * 2009-03-04 2012-09-04 Lincoln Global, Inc. Welding trip steels
JP5779847B2 (en) * 2009-07-29 2015-09-16 Jfeスチール株式会社 Manufacturing method of high-strength cold-rolled steel sheets with excellent chemical conversion properties
DE102010012830B4 (en) * 2010-03-25 2017-06-08 Benteler Automobiltechnik Gmbh Method for producing a motor vehicle component and body component
CN101942601B (en) * 2010-09-15 2012-11-14 北京科技大学 Manufacturing method of transformation induced plasticity steel containing V hot rolling
US9314880B2 (en) * 2010-10-21 2016-04-19 Stoody Company Chromium free hardfacing welding consumable
WO2012064129A2 (en) * 2010-11-10 2012-05-18 (주)포스코 Method for manufacturing high-strength cold-rolled/hot-rolled trip steel having a tensile strength of 590 mpa grade, superior workability, and low mechanical-property deviation
CN102140606A (en) * 2011-03-17 2011-08-03 北京科技大学 Hot rolled high-strength low-alloy multi-phase steel and preparation method thereof
JP5636347B2 (en) 2011-08-17 2014-12-03 株式会社神戸製鋼所 High strength steel sheet with excellent formability at room temperature and warm, and its warm forming method
CZ303949B6 (en) * 2011-09-30 2013-07-10 Západoceská Univerzita V Plzni Method of achieving TRIP microstructure in steels by deformation heat
EP2803746B1 (en) 2012-01-13 2019-05-01 Nippon Steel & Sumitomo Metal Corporation Hot stamped steel and method for producing the same
JP5447740B2 (en) * 2012-01-13 2014-03-19 新日鐵住金株式会社 Cold-rolled steel sheet and manufacturing method thereof
EP2690183B1 (en) * 2012-07-27 2017-06-28 ThyssenKrupp Steel Europe AG Hot-rolled steel flat product and method for its production
PE20151042A1 (en) * 2012-09-14 2015-07-27 Salzgitter Mannesmann Prec Gmbh STEEL ALLOY FOR A HIGH STRENGTH, LOW ALLOY STEEL
CN103805838B (en) * 2012-11-15 2017-02-08 宝山钢铁股份有限公司 High formability super strength cold-roll steel sheet and manufacture method thereof
ES2636780T3 (en) 2013-08-22 2017-10-09 Thyssenkrupp Steel Europe Ag Procedure for manufacturing a steel component
CN104018069B (en) * 2014-06-16 2016-01-20 武汉科技大学 A kind of high-performance low-carbon is containing Mo bainitic steel and preparation method thereof
WO2016016676A1 (en) * 2014-07-30 2016-02-04 ArcelorMittal Investigación y Desarrollo, S.L. Process for manufacturing steel sheets, for press hardening, and parts obtained by means of this process
WO2016020714A1 (en) * 2014-08-07 2016-02-11 Arcelormittal Method for producing a coated steel sheet having improved strength, ductility and formability
JP5935843B2 (en) * 2014-08-08 2016-06-15 Jfeスチール株式会社 Cold-rolled steel sheet with excellent spot weldability and method for producing the same
CN104233092B (en) * 2014-09-15 2016-12-07 首钢总公司 A kind of analysis of producing hot rolled TRIP and preparation method thereof
CN105039847B (en) * 2015-08-17 2017-01-25 攀钢集团攀枝花钢铁研究院有限公司 Niobium alloying TAM steel and preparing method thereof
WO2017109538A1 (en) * 2015-12-21 2017-06-29 Arcelormittal Method for producing a steel sheet having improved strength, ductility and formability
WO2017163098A1 (en) 2016-03-25 2017-09-28 Arcelormittal Process for manufacturing cold-rolled and welded steel sheets, and sheets thus produced
CN105714189B (en) * 2016-04-28 2017-09-15 北京科技大学 A kind of niobium, vanadium compound addition has high strength and ductility automobile steel and manufacture method
CN105950970B (en) * 2016-05-09 2018-01-02 北京科技大学 Tough automobile steel of a kind of compound bainite high-strength of Ultra-fine Grained and preparation method thereof
TWI635189B (en) * 2017-06-21 2018-09-11 中國鋼鐵股份有限公司 Method for producing steel and application thereof
CN107557692B (en) * 2017-08-23 2019-01-25 武汉钢铁有限公司 1000MPa grade analysis of producing hot rolled TRIP and manufacturing method based on CSP process
CN107475627B (en) * 2017-08-23 2018-12-21 武汉钢铁有限公司 600MPa grade analysis of producing hot rolled TRIP and manufacturing method based on CSP process
CN107488814B (en) * 2017-08-23 2018-12-28 武汉钢铁有限公司 800MPa grade analysis of producing hot rolled TRIP and manufacturing method based on CSP process
WO2019111028A1 (en) * 2017-12-05 2019-06-13 Arcelormittal Cold rolled and annealed steal sheet and method of manufacturing the same
WO2019122963A1 (en) 2017-12-19 2019-06-27 Arcelormittal Cold rolled and heat treated steel sheet and a method of manufacturing thereof
CN109943769B (en) * 2017-12-20 2021-06-15 宝山钢铁股份有限公司 780 MPa-grade low-carbon low-alloy TRIP steel and rapid heat treatment method thereof
CN108486477B (en) * 2018-05-30 2019-05-10 攀钢集团攀枝花钢铁研究院有限公司 1000MPa grades high work hardening index cold rolling high strength steel plate and preparation method thereof
WO2020109098A1 (en) * 2018-11-29 2020-06-04 Tata Steel Nederland Technology B.V. A method for producing a high strength steel strip with a good deep drawability and a high strength steel produced thereby
CN112760554A (en) * 2019-10-21 2021-05-07 宝山钢铁股份有限公司 High-strength steel with excellent ductility and manufacturing method thereof
CN116356125A (en) * 2020-04-16 2023-06-30 江苏沙钢集团有限公司 High-strength steel for seat slide rail and method based on thin strip casting and rolling production
RU2751072C1 (en) * 2020-09-02 2021-07-07 Публичное Акционерное Общество "Новолипецкий металлургический комбинат" Method for production of high-strength cold-rolled steel
CN112080703B (en) * 2020-09-23 2021-08-17 辽宁衡业高科新材股份有限公司 960 MPa-grade micro-residual stress high-strength steel plate and heat treatment method thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230715A (en) 1987-06-26 1989-09-14 Nippon Steel Corp Manufacture of high strength cold rolled steel sheet having superior press formability
JPH0733551B2 (en) 1989-02-18 1995-04-12 新日本製鐵株式会社 Method for producing high strength steel sheet having excellent formability
CN1076223A (en) * 1992-03-11 1993-09-15 中国科学院金属研究所 Hot-rolled low-alloy high-strength steel plate and preparation technology thereof
US5470529A (en) * 1994-03-08 1995-11-28 Sumitomo Metal Industries, Ltd. High tensile strength steel sheet having improved formability
WO1998032889A1 (en) * 1997-01-29 1998-07-30 Nippon Steel Corporation High-strength steel sheet highly resistant to dynamic deformation and excellent in workability and process for the production thereof
FR2801061B1 (en) * 1999-11-12 2001-12-14 Lorraine Laminage PROCESS FOR PRODUCING A VERY HIGH STRENGTH HOT LAMINATED SHEET METAL FOR USE IN FORMING AND IN PARTICULAR FOR STAMPING
JP3858540B2 (en) * 1999-11-30 2006-12-13 Jfeスチール株式会社 Manufacturing method of high workability hot-rolled high-tensile steel sheet with excellent material uniformity
JP3958921B2 (en) * 2000-08-04 2007-08-15 新日本製鐵株式会社 Cold-rolled steel sheet excellent in paint bake-hardening performance and room temperature aging resistance and method for producing the same
WO2002073001A1 (en) * 2001-03-09 2002-09-19 Sumitomo Metal Industries, Ltd. Steel pipe for use as embedded expanded pipe, and method of embedding oil-well steel pipe
JP4445161B2 (en) 2001-06-19 2010-04-07 新日本製鐵株式会社 Manufacturing method of thick steel plate with excellent fatigue strength
JP4304421B2 (en) * 2002-10-23 2009-07-29 住友金属工業株式会社 Hot rolled steel sheet
ES2633914T3 (en) * 2003-01-15 2017-09-26 Nippon Steel & Sumitomo Metal Corporation High strength hot dipped galvanized steel sheet and method to produce it
US7981224B2 (en) * 2003-12-18 2011-07-19 Nippon Steel Corporation Multi-phase steel sheet excellent in hole expandability and method of producing the same
EP1559798B1 (en) * 2004-01-28 2016-11-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength and low yield ratio cold rolled steel sheet and method of manufacturing the same
US20050199322A1 (en) * 2004-03-10 2005-09-15 Jfe Steel Corporation High carbon hot-rolled steel sheet and method for manufacturing the same
US20050247378A1 (en) * 2004-04-22 2005-11-10 Kabushiki Kaisha Kobe Seiko Sho(Kobe Steel, Ltd.) High-strength cold rolled steel sheet having excellent formability, and plated steel sheet

Also Published As

Publication number Publication date
RU2008117135A (en) 2009-11-10
BRPI0614391A2 (en) 2011-03-22
EP1913169A1 (en) 2008-04-23
CN101263239B (en) 2012-06-27
CN101263239A (en) 2008-09-10
KR20120114411A (en) 2012-10-16
JP5283504B2 (en) 2013-09-04
CA2617879A1 (en) 2007-02-15
CA2617879C (en) 2011-11-15
BRPI0614391B8 (en) 2017-03-21
JP2009503267A (en) 2009-01-29
BRPI0614391B1 (en) 2016-10-18
ES2515116T3 (en) 2014-10-29
EP1749895A1 (en) 2007-02-07
UA92039C2 (en) 2010-09-27
WO2007017565A1 (en) 2007-02-15
MA29691B1 (en) 2008-08-01
ZA200801068B (en) 2008-12-31
KR101232972B1 (en) 2013-02-13
KR20080038202A (en) 2008-05-02
US9732404B2 (en) 2017-08-15
KR101222724B1 (en) 2013-01-16
US20080199347A1 (en) 2008-08-21
RU2403311C2 (en) 2010-11-10
MX2008001653A (en) 2008-04-22

Similar Documents

Publication Publication Date Title
EP1913169B1 (en) Manufacture of steel sheets having high resistance and excellent ductility, products thereof
EP2155915B2 (en) Process for manufacturing cold-rolled and annealed steel sheets with very high strength, and sheets thus produced
EP3084014B1 (en) High strength steel and method of production of the same
CA2587858C (en) Method of producing austentic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity
EP2718469B1 (en) Cold-rolled steel plate coated with zinc or a zinc alloy, method for manufacturing same, and use of such a steel plate
EP2291547B1 (en) Method for manufacturing very high strength, cold-rolled, dual phase steel sheets, and sheets thus produced
EP2689045B1 (en) Hot-rolled steel sheet and associated production method
EP1844173B1 (en) Method for producing austenitic iron-carbon-manganese metal sheets, and sheets produced thereby
EP2855725B1 (en) Low-density hot- or cold-rolled steel, method for implementing same and use thereof
EP2155916B2 (en) Low density steel with good stamping capability
EP3146083B1 (en) Double-annealed steel sheet having high mechanical strength and ductility characteristics, method of manufacture and use of such sheets
WO2016198940A2 (en) High-strength steel and production method
WO2007101921A1 (en) Process for manufacturing steel sheet having very high strength, ductility and toughness characteristics, and sheet thus produced
WO2012153009A1 (en) Method for the production of very-high-strength martensitic steel and sheet thus obtained
FR2833617A1 (en) PROCESS FOR MANUFACTURING COLD ROLLED SHEATHES WITH HIGH RESISTANCE OF MICRO-ALLOY DUAL PHASE STEELS
EP1587963B1 (en) Ultrahigh strength hot-rolled steel and method of producing bands
EP2257652B1 (en) Method of manufacturing sheets of austenitic stainless steel with high mechanical properties

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080304

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140227

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 685665

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006042942

Country of ref document: DE

Effective date: 20141009

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2515116

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20141029

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 685665

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141204

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140903

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 17660

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150105

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006042942

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

26N No opposition filed

Effective date: 20150604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150707

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060707

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230620

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230623

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230801

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240620

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20240625

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20240627

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240619

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240619

Year of fee payment: 19