JPH0733551B2 - Method for producing high strength steel sheet having excellent formability - Google Patents

Method for producing high strength steel sheet having excellent formability

Info

Publication number
JPH0733551B2
JPH0733551B2 JP1038957A JP3895789A JPH0733551B2 JP H0733551 B2 JPH0733551 B2 JP H0733551B2 JP 1038957 A JP1038957 A JP 1038957A JP 3895789 A JP3895789 A JP 3895789A JP H0733551 B2 JPH0733551 B2 JP H0733551B2
Authority
JP
Japan
Prior art keywords
steel sheet
austenite
steel
transformation
excellent formability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1038957A
Other languages
Japanese (ja)
Other versions
JPH02217425A (en
Inventor
康治 佐久間
治 秋末
弘 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1038957A priority Critical patent/JPH0733551B2/en
Publication of JPH02217425A publication Critical patent/JPH02217425A/en
Publication of JPH0733551B2 publication Critical patent/JPH0733551B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は優れた成形性を有する高強度板の製造方法に関
するものである。
TECHNICAL FIELD The present invention relates to a method for producing a high strength plate having excellent formability.

(従来の技術) 工程の簡略化はその連続化とともに近年における一般的
な技術動向である。この傾向は薄鋼板のプレス成形の分
野でも認められ一段一体成形化が進められており、これ
に対応できるような鋼板が求められている。薄鋼板の成
形性の良否は伸び、ランクフォードの塑性歪み比r値、
加工硬化指数n値や降伏強度等で判断されるが、複雑な
部品を一段一体成形するには伸びやn値の大きいことが
必要である。伸びやn値の大きい高強度鋼板としてはフ
ェライトとマルテンサイトの混合した組織からなるDual
phase鋼板が一般的であり、特公昭56−18051号公報や
特公昭59−45735号公報にあるように50〜80kgf/mm
引張強度で最大30〜35%程度の伸びが得られる。このDu
al phase鋼板の伸びやn値を改善する方としてこれまで
に提唱されている代表的な方法はフェライトの清浄度を
上げるとともにその比率を増すことおよびn値をあまり
劣化させずに強度を確保できる元素を添加することであ
る。前者の目的を達成するためには二相域焼鈍温度をA
c1直上に設定したり、特公昭57−45454号公報のように
冷却を適当な温度までは緩慢なものとし、その後を急冷
する方法、また連続焼鈍前に適当な条件のバッチ焼鈍を
予め行なっておく方法があり、後者の目的を達成する元
素としてPやSiがあげられる。しかしこのような方法を
用いて50〜80kgf/mm級の引張強度と同時に0.25を超す
ようなn値を合わせ持たせた鋼板の工業的な規模での製
造例は報告されていない。すなわち鋼板の強度が高くな
ると伸びやn値は相当な低下を来すため、これまでに開
発されてきた高強度鋼板では複雑な形状に一段で成形す
ることは不可能となる。このようにいわゆるDual phase
鋼でさえ成形性に不満が残りコストパフォーマンスも優
れないことは現状でも限られた用途にしか適用されず、
過時効帯を有する既存の一般的な連続焼鈍炉では理想的
な特性を得にくいこと等と合わせ考えるとそのままの状
態では今後とも発展を期待しにくい。
(Prior art) Simplification of the process is a general technical trend in recent years along with its continuity. This tendency is also recognized in the field of press forming of thin steel sheets, and one-step integral forming is being advanced, and steel sheets capable of coping with this are required. The formability of thin steel sheet is determined by elongation, Rankford's plastic strain ratio r value,
Judgment is made based on the work hardening index n value, yield strength, etc., but it is necessary to have a large elongation and a large n value in order to integrally mold a complicated part. As a high-strength steel sheet with a large elongation and a large n value, a dual structure consisting of a mixture of ferrite and martensite
Phase steel plate is generally used, and as disclosed in Japanese Patent Publication No. Sho 56-18051 and Japanese Patent Publication No. 59-45735, a maximum elongation of about 30 to 35% can be obtained with a tensile strength of 50 to 80 kgf / mm 2 . This Du
Typical methods that have been proposed so far to improve the elongation and n value of al phase steel sheets are to increase the cleanliness of ferrite and increase its ratio, and to secure the strength without significantly degrading the n value. It is to add an element. In order to achieve the former purpose, the annealing temperature in the two-phase region is set to A
Set directly above c1 or slow cooling to an appropriate temperature as in JP-B-57-45454, and then quenching it, or by performing batch annealing under appropriate conditions in advance before continuous annealing. There is a method of placing it, and elements such as P and Si can be cited as elements that achieve the latter purpose. However, there has not been reported an industrial scale production example of a steel sheet which has a tensile strength of 50 to 80 kgf / mm 2 grade and an n value exceeding 0.25 at the same time by using such a method. That is, as the strength of the steel sheet increases, the elongation and the n value considerably decrease, so that it is impossible to form a complicated shape with the high strength steel sheet that has been developed so far. Thus, the so-called Dual phase
Even steel is unsatisfactory in formability, and the cost performance is not excellent, so even at present, it is applied to limited applications,
Taking into consideration the fact that it is difficult to obtain ideal characteristics in the existing general continuous annealing furnace having an overaging zone, it is difficult to expect further development in the state as it is.

(発明が解決しようとする課題) 本発明は前記したような従来技術の有する課題を解決
し、50〜80kgf/mm程度の張強度と同時に35〜45%を超
す伸びと、0.25〜0.30以上のn値を合わせ持つことで認
められるような優れた成形性を有する高強度鋼板の製造
方法を提供するものである。すなわち従来知見と最大限
活用するとともに残留オーステナイトの変態誘起塑性を
相乗し、従来では考えられなかったような高強度と優れ
た成形性の両立を図ったものである。
(Problems to be Solved by the Invention) The present invention solves the problems of the prior art as described above, and has a tensile strength of about 50 to 80 kgf / mm 2 and an elongation of more than 35 to 45%, and 0.25 to 0.30 or more. The present invention provides a method for producing a high-strength steel sheet having excellent formability that is recognized by having the same n value. In other words, while maximally utilizing the conventional knowledge, the transformation-induced plasticity of retained austenite is synergized to achieve both high strength and excellent formability that have not been considered in the past.

変態誘起塑性が常識的な強度延性バランスの範囲を外れ
て高強度、高延性をもたらす機構であることは広く知ら
れている。これはたとえばSUS301のような準安定系のス
テンレス鋼では変形につれてオーステナイトがマルテン
サイトに変態するが、それと同時に大きな伸びを示す現
象である。この現象を有効に活用すれば「塑性と加工」
第16巻993〜1000頁にあるように80kgf/mmの引張強度
で60%の大きな伸び、そして0.70という極めて大きなn
値が得られる。しかしこのような驚異的とも言える機械
的性質は極めて限定された温度範囲でしか示されず、実
際の工業生産に適用するのは困難である。またこの変態
誘起塑性を積極的に活用した鋼として「Trans.ASM」第6
0巻252〜259頁でZackay等が提示したいわゆるTRIP鋼で
あるが、高価な合金元素を大量に含むことと低温での大
圧下等の複雑な工程を径なければならないことのために
その用途は非常に限定されている。ところが近年では、
特開昭61−157625号公報記載の発明のように自動車用鋼
板の如き廉価かつ多量生産が必須な用途にもこの現象を
応用することが試みられている。その肝要とするところ
はSiの添加により炭化物の抑制され、Cが濃化した未変
態オーステナイトの安定化が進むことである。この先願
発明に従えば一般的な連続焼鈍炉を用いて、しかも高価
な合金元素を添加せずに安定的な大量生産が可能であ
り、その意義は極めて大きい。しかしこの先願発明にお
いてはCの含有量が多く残留オーステナイトの量が多大
であるために引張強度が過大となり、またそれに伴う弊
害も散見され広範な実用化には達していない。
It is widely known that transformation-induced plasticity is a mechanism that brings high strength and high ductility out of the common range of strength-ductility balance. This is a phenomenon in which, in metastable stainless steel such as SUS301, austenite transforms to martensite as it is deformed, but at the same time, it shows a large elongation. If this phenomenon is effectively utilized, it will become "plasticity and processing".
As shown in Vol. 16, pp. 993-1000, with a tensile strength of 80 kgf / mm 2 , a large elongation of 60% and an extremely large n of 0.70.
The value is obtained. However, such astonishing mechanical properties are exhibited only in a very limited temperature range, and are difficult to be applied to actual industrial production. In addition, as a steel that positively utilizes this transformation-induced plasticity, “Trans.ASM” No. 6
The so-called TRIP steel presented by Zackay et al. In Vol. 0, pp. 252-259, but its use because it contains a large amount of expensive alloying elements and complicated processes such as large reduction at low temperature must be used. Are very limited. However, in recent years,
It has been attempted to apply this phenomenon to applications such as steel sheets for automobiles, which require low cost and large-scale production, such as the invention described in JP-A-61-157625. The important point is that the addition of Si suppresses carbides and stabilizes the untransformed austenite in which C is concentrated. According to the invention of this prior application, stable mass production is possible using a general continuous annealing furnace without adding an expensive alloy element, and its significance is extremely large. However, in the invention of this prior application, the tensile strength is excessive due to the large amount of C and the large amount of retained austenite, and the adverse effects associated therewith are also found, and it has not reached widespread practical use.

(課題を解決するための手段) 本発明者らは比較的低いC含有量であってもSiの添加と
同時にフェライトの清浄度とその量を増すようなプロセ
ス設計を行なうと、いわゆるDual phase鋼ではかつて認
められなかったような変態誘起塑性に寄与するところが
大である残留オーステナイトが得られることを見出し
た。これにより低歪域では主として多量に存在する清浄
なフェライトにより、また高歪域では残留オーステナイ
トの変態誘起塑性により大きなn値が確保できることが
明らかとなり本発明を行なった。
(Means for Solving the Problems) Even if the present inventors carry out a process design that increases the cleanliness and the amount of ferrite at the same time as adding Si even if the C content is relatively low, the so-called Dual phase steel is obtained. Then, it was found that retained austenite, which largely contributes to transformation-induced plasticity, which was never observed, is obtained. As a result, it was revealed that a large amount of clean ferrite can be secured mainly in a large amount in the low strain region, and that a large n value can be secured in the high strain region due to the transformation-induced plasticity of retained austenite.

すなわち本発明は重量%でC:0.07〜0.12%,Si:0.50〜2.
00%,Mn:1.00〜2.50%,sol.Al:0.005〜0.100%及び必要
に応じてNi,Cr,Co,Cuのうちの1種または2種以上を合
計1%以下含み、残部Feおよび不可避的不純物からなる
鋼に、酸洗と30〜85%の冷間圧延を行なってから、Ac1
変態点以上の700〜800℃に加熱し15秒〜5分保持後、1
〜200℃/秒の速度で200〜450℃に冷却し、引き続いて3
00〜450℃の範囲内で X=5500/(T+273)-logt+0.27(Si(%)+Mn(%))+10(C(%)) なる式で与えられるXが6〜7となるように鋼の成分組
成によって規定される時間t秒の間、平均温度T℃に保
持した後で60秒以内に150℃以下まで冷却することを特
徴とする優れた成形性を有する高強度鋼板の製造方法を
要旨とするものである。
That is, in the present invention, C: 0.07 to 0.12% and Si: 0.50 to 2.
00%, Mn: 1.00 to 2.50%, sol.Al: 0.005 to 0.100% and, if necessary, one or more of Ni, Cr, Co and Cu, totaling 1% or less, balance Fe and unavoidable Of steel with mechanical impurities is pickled and cold-rolled at 30-85%, then A c1
After heating at 700-800 ℃ above the transformation point and holding for 15 seconds-5 minutes, 1
Cool to 200-450 ° C at a rate of ~ 200 ° C / s, then 3
Within the range of 00 to 450 ℃, X = 5500 / (T + 273) -logt + 0.27 (Si (%) + Mn (%)) + 10 (C (%)) 2 7, the average temperature T ° C. is maintained for a time t seconds defined by the composition of the steel, and then the temperature is cooled to 150 ° C. or less within 60 seconds. The gist of the invention is a method of manufacturing a strength steel sheet.

(作 用) 最初に本発明の対象とする鋼の成分範囲の限定理由につ
いて述べる。
(Operation) First, the reasons for limiting the composition range of the steel targeted by the present invention will be described.

まずCは鋼のオーステナイト域を拡大する元素であると
同時に鋼中での拡散が速いため、フェライトおよびオー
ステナイトが共存する時にはオーステナイト中に濃化し
てその安定度を増す。その結果、本発明で規定するよう
なサイクルの熱処理を行なえば室温に冷却した後でもオ
ーステナイトを残留させることができ、変態誘起塑性を
活用できる。Cの量は溶接性をはじめとする良好な実用
特性を確保する上から少ないほうが好ましいが、0.07%
未満では変態誘起塑性を明らかに示すような適度の安定
性をもつ残留オーステナイトが得にくいため本発明の目
的を達成できない。反対に0.12%を超すようだと残留オ
ーステナイトは得やすくなるものの目的とする優れた成
形性を50〜80kgf/mmという引張強度レベルで工業的に
確保することは現状では難しく、また可能であるとして
も溶接性等を考え合わせた時には何らメリットがない。
First, C is an element that expands the austenite region of steel, and at the same time diffuses rapidly in the steel, so when ferrite and austenite coexist, they are concentrated in austenite to increase their stability. As a result, if heat treatment of the cycle defined in the present invention is performed, austenite can remain even after cooling to room temperature, and transformation-induced plasticity can be utilized. The amount of C is preferably small in order to secure good practical properties such as weldability, but 0.07%
If the amount is less than the above, it is difficult to obtain the retained austenite having appropriate stability that clearly shows the transformation-induced plasticity, so that the object of the present invention cannot be achieved. On the other hand, if it exceeds 0.12%, retained austenite is easily obtained, but it is difficult and possible to industrially secure the desired excellent formability at a tensile strength level of 50 to 80 kgf / mm 2. However, there is no merit when considering the weldability.

Siはセメンタイト中に固溶しないためその析出を抑制す
る作用を有すると同時に、Mn等とともに変態を遅滞させ
る。したがって、300〜450℃で然るべき時間保持するこ
とにより未変態オーステナイト中に固溶限をはるかに越
えたCを濃縮させ、残留オーステナイトの安定性を適度
なものとし変態誘起塑性による効果を大きなものとす
る。このような効果は本発明のC量および工程条件では
Siの量が0.50%未満では認められない。しかし過剰に添
加すると酸洗性を著しく悪化させるほどのスケールが熱
延時に生じ、またCの黒鉛化を招くため、その量は2.00
%以下に限定する。なお、化成処理性を損なわないため
にその添加量は1.40%以下が好ましい。
Since Si does not form a solid solution in cementite, it has the effect of suppressing its precipitation and, at the same time, delays the transformation together with Mn and the like. Therefore, by holding the material at 300 to 450 ° C. for an appropriate time, C far exceeding the solid solubility limit is concentrated in the untransformed austenite, the stability of retained austenite is moderated, and the effect of transformation-induced plasticity is increased. To do. Such an effect is obtained with the C content and process conditions of the present invention.
Not observed when the Si content is less than 0.50%. However, if added excessively, a scale that deteriorates the pickling property remarkably occurs during hot rolling, and it causes graphitization of C, so the amount is 2.00
% Or less. The addition amount is preferably 1.40% or less so as not to impair the chemical conversion treatment property.

またMnはオーステナイト形成元素であるばかりか、二相
域からベイナイト変態域へ冷却する過程でオーステナイ
トがパーライトに分解するのを抑制すると同時にベイナ
イト変態自体をも遅滞させる。したがって前述したよう
なSiの果たす効果と相補い、連続焼鈍で今日一般的に行
なわれている冷却方法と過時効を目的とした400℃付近
での保持条件をとる場合でも変態誘起塑性をもたらすよ
うな残留オーステナイトが混在した金属組織を持ち来
す。またその添加で組織が微細となる傾向にあり、細粒
強化が図れるばかりか残留オーステナイトの量および安
定度を高めることができ目的達成に有効である。以上の
ような効果はMn添加量が1.00%未満では認められない。
しかし、2.50%を超すようになると熱延条件を制御して
も残留オーステナイトの安定度を室温近傍で変態起塑性
の効果を示す程度のものにするためにはベイナイト変態
域での保持を相当長時間とする必要があり、避けなけれ
ばならない。
Further, Mn is not only an austenite forming element, but also suppresses the decomposition of austenite into pearlite in the process of cooling from the two-phase region to the bainite transformation region and at the same time delays the bainite transformation itself. Therefore, in order to complement the effect of Si as described above, it is possible to bring about transformation-induced plasticity even when the cooling method commonly used today in continuous annealing and the holding condition at around 400 ° C for the purpose of overaging are taken. Brings a metallographic structure with mixed retained austenite. Further, the addition thereof tends to make the structure fine, and not only strengthens the fine grains but also increases the amount and stability of retained austenite, which is effective for achieving the purpose. The above effects are not observed when the amount of Mn added is less than 1.00%.
However, if it exceeds 2.50%, even if the hot rolling conditions are controlled, the retention in the bainite transformation region is considerably long in order to maintain the stability of retained austenite to the extent that it exhibits the effect of transformation plasticity near room temperature. It must be time and should be avoided.

さらにsol.Alは脱酸元素として、またAlNによる熱延素
材の細粒化、および一連の熱処理工程における結晶粒の
粗大化を抑制することで材質が改善されるため、0.005
〜0.100%を添加する。その量が0.005%未満だと目的と
する効果が不十分であり、0.100%を超すと介在物によ
り靱性が劣化することがあるので避けなければならな
い。
Further, sol.Al improves the material quality by suppressing the grain refining of the hot rolled material by AlN as a deoxidizing element and the coarsening of the crystal grains in the series of heat treatment steps.
Add ~ 0.100%. If the amount is less than 0.005%, the desired effect is insufficient, and if it exceeds 0.100%, the toughness may deteriorate due to inclusions, so it must be avoided.

本発明の鋼は以上を基本成分とするが、これらの元素お
よびFe以外にP、S、Nその他の一般に鋼に対して不可
避的に混入する元素を含むものである。またオーステナ
イト形成元素のNi、CuやCoあるいは焼入れ性を増す元素
であるCrを添加し、残留オーステナイト量やその安定度
を高めることは本発明の目的を達成する上で好ましい。
しかし、過大に添加すると複雑な組成の化合物が析出し
て加工性を悪くしたり、また極めて安定な炭化物が形成
されCの果たすべき役割が阻害されることがあるのでそ
の量は合計で1%以下に限定する。
The steel of the present invention has the above-mentioned basic components, but in addition to these elements and Fe, it also contains P, S, N and other elements that are generally unavoidably mixed with steel. Further, it is preferable to increase the amount of retained austenite and its stability by adding austenite forming elements Ni, Cu and Co or Cr which is an element that increases hardenability in order to achieve the object of the present invention.
However, if added excessively, a compound having a complicated composition may be precipitated and workability may be deteriorated, or extremely stable carbide may be formed to impair the role of C, so the total amount is 1%. Limited to:

次に工程上の限定理由を詳述する。Next, the reasons for limitation in the process will be described in detail.

本発明による鋼板には酸洗と30〜85%の冷間圧延を行な
っている。その目的とするところはAc1変態点以上に加
熱した時にフェライトやパーライトの粒界三重点を中心
に微細なオーステナイト粒を形成させ、引続く一連のサ
イクルを終了した後では微細な残留オーステナイトおよ
びベイナイトが清浄なフェライトマトリクスの間に分散
した金属組織を得ることにある。この金属組織により高
強度と優れた成形性の両立を図れるが、冷延率が30%未
満だと通常の速度で加熱した時には再結晶後のフェライ
ト粒が粗大となるため本発明に規定した熱処理を行なっ
てもオーステナイトを室温以下まで残留させにくく、ま
た残留させても変態誘起塑性の効果を得づらいので目的
を達成できない。一方、80%を越えた冷延を行なっても
介在物が極端に展伸されるから局部伸びの劣化を招くだ
けで何らメリットをもたらさない。
The steel sheet according to the present invention is pickled and cold-rolled at 30 to 85%. The purpose is to form fine austenite grains centering on the triple boundary points of ferrite and pearlite when heated above the A c1 transformation point, and after the subsequent series of cycles, fine retained austenite and bainite are formed. To obtain a metallic structure dispersed in a clean ferrite matrix. With this metal structure, it is possible to achieve both high strength and excellent formability, but if the cold rolling rate is less than 30%, the ferrite grains after recrystallization become coarse when heated at a normal rate, so the heat treatment specified in the present invention. However, even if it is carried out, it is difficult to retain austenite up to room temperature or below, and even if it is retained, the effect of transformation-induced plasticity is difficult to obtain, so the object cannot be achieved. On the other hand, even if cold rolling is performed at more than 80%, inclusions are extremely stretched, so that local elongation is deteriorated and no merit is brought about.

本発明の一連のサイクルからなる熱処理では先ずAc1
態点以上の700〜800℃に加熱し15秒〜5分保持する。本
発明の成分系を有する鋼板にこの加熱を行なうと固溶限
以上の炭化物はほとんど消滅し、共析組成近くまでCが
濃化しているオーステナイトが体積率で10〜40%生成す
る。このオーステナイトは引き続く一連のサイクルを経
た後では残留オーステナイトおよびベイナイトとなり、
清浄なフェライトと共存して低歪域から高歪域まで大き
なn値をもたらす。加熱温度が700℃未満だと、連続ラ
インで実現することのできる時間内では炭化物が完全に
溶解しなかったり、さらには再結晶も不十分な状態とな
ることがあるため後に続く処理が本発明に規定されるも
のであったとしても高強度にして優れた成形性を有する
鋼板とはできない。また加熱する温度域が800℃を超す
ことは必要なエネルギーが多大となるだけで、それに見
合った効果が期待できないので避けなければならない。
この温度域に加熱保持する時間が15秒未満だと未溶解炭
化物の存在する可能性が大きくオーステナイトがほとん
ど生成していない場合がある。一方、5分を超えるよう
な長い時間保持しても投下エネルギーの増加に見合った
だけの特性向上を図れないし、そもそも連続ラインでの
経済的な多量生産という前提条件に合致しない。
In the heat treatment consisting of a series of cycles of the present invention, first, it is heated to 700 to 800 ° C. which is higher than the A c1 transformation point and kept for 15 seconds to 5 minutes. When this heating is applied to a steel sheet having the component system of the present invention, most of the carbides above the solid solution limit disappear, and 10-40% by volume of austenite in which C is concentrated near the eutectoid composition is formed. This austenite becomes residual austenite and bainite after a series of subsequent cycles,
Coexists with clean ferrite to bring a large n value from a low strain region to a high strain region. If the heating temperature is lower than 700 ° C., the carbide may not be completely dissolved within the time that can be realized in a continuous line, and further recrystallization may be in an insufficient state, so that the subsequent treatment is performed according to the present invention. However, even if it is specified by the above, it cannot be a steel sheet having high strength and excellent formability. Also, if the heating temperature range exceeds 800 ° C, it requires a large amount of energy and cannot be expected to have an effect commensurate with it, so it must be avoided.
If the time of heating and holding in this temperature range is less than 15 seconds, there is a possibility that undissolved carbides are present and austenite is hardly generated in some cases. On the other hand, even if it is kept for a long time such as more than 5 minutes, the characteristics cannot be improved corresponding to the increase in the energy released, and it does not meet the precondition of economical mass production in a continuous line.

本発明ではこの後1〜200℃/秒の速度で200〜450℃に
冷却する。これはAc1変態点以上の加熱により生成させ
たオーステナイトをそのままの状態でベイナイト変態域
に持ち来し、引き続く処理により残留オーステナイトを
清浄なフェライトと共存する組織の中に得ることを目的
とする。この冷却速度が1℃/秒未満だとパーライトへ
の変態が始まり、Cはその中の炭化物を形成するため変
態誘起塑性に有効な残留オーステナイトが確保できな
い。逆に200℃/秒を超えるような速度では鋼板全体を
均一に設定した条件で冷却することが難しいし、困難を
排除してかかる冷却を行なったとしても突発的にフェラ
イトが成長し、針状組織が形成されやすくなるため強度
のわりに成形性が劣るようになる。この冷却がそのまま
200℃より低い温度まで進むと加熱時に生成したオース
テナイトのほとんどがマルテンサイトに変態するため強
度は高くなるもののその特性は従来からのDual phase鋼
と大差のないものとなり、伸びやn値が要求される水準
に達しない。一方、450℃を超えるような温度でこの冷
却を終了することは、その後の変態が急激に進行するた
め望まれる組織状態で処理を終了することが困難となる
ので避ける必要がある。なおこの冷却の前段と後段で速
度を変更し、550〜680℃までを1〜20℃/秒、それ以下
を15〜200℃/秒の冷却とすることは前段の緩冷中に未
変態オーステナイトへ合金元素を濃化させ、より清浄な
フェライトを増すことになり、本発明の目的を達成する
上でより大きな効果をもたらすものである。
In the present invention, this is followed by cooling to 200 to 450 ° C at a rate of 1 to 200 ° C / sec. The purpose of this is to bring austenite generated by heating above the A c1 transformation point to the bainite transformation region as it is, and to obtain residual austenite in a structure coexisting with clean ferrite by subsequent treatment. If this cooling rate is less than 1 ° C./sec, transformation into pearlite starts and C forms carbides therein, so that retained austenite effective for transformation-induced plasticity cannot be secured. On the contrary, at a speed exceeding 200 ° C / sec, it is difficult to cool the entire steel plate under uniform conditions, and even if this difficulty is eliminated and such cooling is performed, ferrite will suddenly grow and acicular Since the structure is likely to be formed, the moldability becomes poor in spite of the strength. This cooling remains
When the temperature goes below 200 ° C, most of the austenite formed during heating transforms to martensite, so the strength increases, but its properties are not much different from conventional Dual phase steel, and elongation and n value are required. Does not reach the standard. On the other hand, ending this cooling at a temperature exceeding 450 ° C. is difficult because it is difficult to end the treatment in the desired microstructure state because the subsequent transformation rapidly progresses. In addition, changing the speed in the former and latter stages of this cooling to cool it to 1 to 20 ° C / sec up to 550 to 680 ° C, and to 15 to 200 ° C / sec below it is possible to use untransformed austenite during slow cooling of the former stage. The alloy element is concentrated to increase the amount of cleaner ferrite, which is more effective in achieving the object of the present invention.

この冷却に引き続き本発明では300〜450℃の範囲内で、 X=5500/(T+273)-logt+0.27(Si(%)+Mn(%))+10(C(%)) なる式で与えられるXが6〜7となるように鋼の成分組
成によって規定される時間t秒の間、平均温度T℃に保
持した後で60秒以内に150℃以下まで冷却する。Siを添
加しているためにこの保持中には炭化物の析出は起こら
ず、オーステナイトの一部がベイナイト状の組織に変態
するとともに未変態オーステナイトにはより一層のCが
濃化してその安定度が増す。その結果未変態オーステナ
イトのMs点は室温よりも著しく低い温度になり、清浄な
フェライトと共存することにより大きな伸びとn値が実
現する。この保持温度が450℃を超すと変態の進行が急
速であるため相当な量の合金元素を添加しない限り望ま
れる組織状態で処理を終えることが困難となるが、それ
は著しいコスト増加をもたらすため現実的ではない。一
方300℃未満の温度での保持はCの拡散が極めて遅いも
のとなるため、連続ラインでの生産が実質的に不可能な
ものとなるほどの保持時間を必要とし、行なうことはで
きない。保持時間が短く、Xの値が7よりも大きいと残
留オーステナイトが得られたとしてもCの濃化が不足し
ているために変態誘起塑性としての寄与が小さい。した
がって目的とするような大きな伸びやn値は示されず、
従来のDual phase鋼と大差ない特性しか得られない。反
対にXの値が6よりも小さく、長時間の保持を行なった
時にはオーステナイトのほとんどがベイナイトに変態す
る。その結果得られる金属組織はフェライトの粒界を中
心にベイナイトが混在したものとなるため、その機械的
性質はDual phase鋼以下の何ら利点のないものとなる。
この保持後150℃以下までの冷却に60秒を超す時間を要
した場合も同様であり、発明の目的を達するには程遠
い。
Following this cooling, in the present invention, X = 5500 / (T + 273) -logt + 0.27 (Si (%) + Mn (%)) + 10 (C (%)) 2 in the range of 300 to 450 ° C. After maintaining at the average temperature T ° C. for a time t seconds defined by the composition of the steel so that X given by the formula becomes 6 to 7, it is cooled to 150 ° C. or lower within 60 seconds. Precipitation of carbides does not occur during this retention because Si is added, and a portion of austenite transforms into a bainite-like structure and the untransformed austenite is further enriched with C and its stability is improved. Increase. As a result, the Ms point of untransformed austenite becomes a temperature significantly lower than room temperature, and a large elongation and n value are realized by coexisting with clean ferrite. If this holding temperature exceeds 450 ° C, the progress of transformation is rapid, so it will be difficult to finish the treatment in the desired microstructure unless a considerable amount of alloying elements are added, but this will cause a significant increase in cost, which is a reality. Not at all. On the other hand, holding at a temperature of less than 300 ° C. cannot be carried out because it requires a holding time that makes production in a continuous line practically impossible because the diffusion of C is extremely slow. When the holding time is short and the value of X is larger than 7, even if the retained austenite is obtained, the concentration of C is insufficient, so that the contribution as the transformation-induced plasticity is small. Therefore, the desired large elongation and n value are not shown,
Only properties that are not very different from conventional Dual phase steel can be obtained. On the contrary, when the value of X is smaller than 6, and most of the austenite is transformed into bainite when it is held for a long time. The resulting metallographic structure is a mixture of bainite centered around the ferrite grain boundaries, so its mechanical properties have no advantage over those of Dual phase steel.
This is also the case when it takes more than 60 seconds to cool to 150 ° C. or lower after the holding, which is far from reaching the object of the invention.

なお、以上に説明してきた工程において加熱保持する温
度や冷却終了後の保持温度、あるいはその間の冷却速度
は規定の範囲であれば一定である必要はなく、その範囲
内での変動ならず最終製品の特性に及ぼす影響は無視で
きるものである。
In the process described above, the temperature for heating and holding, the holding temperature after completion of cooling, or the cooling rate during that period does not need to be constant within a specified range, and does not fluctuate within that range and the final product. The effect on the properties of is negligible.

また、本発明の素材は通常の製鋼、鋳造、熱延工程を経
て製造されるのを原則とするが、薄手鋳造を行ない熱延
工程の一部または全部を省略して製造したものであって
も何ら問題はない。熱延も巻取温度が500〜750℃程度で
あるのをはじめとし、通常に行なわれているのに準じた
条件で構わない。
Further, the material of the present invention is, in principle, manufactured through normal steelmaking, casting, hot rolling process, but is manufactured by omitting a part or all of the hot rolling process by performing thin casting. There is no problem. The hot rolling may be carried out under conditions similar to those usually performed, including a winding temperature of about 500 to 750 ° C.

(実施例) 第1表に成分を示す熱延鋼板を酸洗し第2表記載の圧延
率で冷間圧延した後、同表に記載した一連の条件で構成
される熱処理および0.6%の調質圧延を行なった。ここ
で表中に記載した保持する平均温度、時間と鋼の成分で
決定する値Xとは平均温度T℃、時間t秒と鋼の成分組
成により X=5500/(T+273)-log+0.27(Si(%)+Mn(%))+10(C(%))
なる式で与えられるXであり、この値が6〜7であるこ
とが本発明の要件である。その後でJIS5号引張試験片を
採取し、ゲージ長さ50mm、引張速度10mm/minの常温引張
試験を行なうと同表に記載したような引張強度と全伸び
およびn値が得られた。ここでn値は引張歪10%と20%
の間でn乗硬化則が成立すると仮定して算出したもので
ある。
(Example) After hot-rolled steel sheet having the components shown in Table 1 was pickled and cold-rolled at the rolling rate shown in Table 2, heat treatment constituted by a series of conditions shown in the table and a 0.6% adjustment Quality rolling was performed. The average temperature held in the table, the value X determined by the time and the composition of the steel is the average temperature T ° C., the time t seconds and the composition of the steel X = 5500 / (T + 273) -log + 0. 27 (Si (%) + Mn (%)) + 10 (C (%))
It is the requirement of the present invention that X is given by the formula 2 and this value is 6 to 7. After that, JIS No. 5 tensile test pieces were sampled and subjected to a room temperature tensile test with a gauge length of 50 mm and a tensile speed of 10 mm / min, and the tensile strength, total elongation and n value as shown in the same table were obtained. Here, n value is tensile strain 10% and 20%
It is calculated on the assumption that the n-th power hardening rule holds between the two.

本発明試料である試料No.2,4,5,7,8,10,13,16,19〜21,2
3,26,27,30,31,34,35は清浄なフェライトマトリクスの
間に少量の残留オーステナイトがベイナイトや一部では
マルテンサイトとともに存在した金属組織を持ち、いず
れも50〜80kgf/mm級の引張強度で35〜45%を超す伸び
および0.25〜0.30以上のn値を合わせ持つことから明ら
かなように優れた成形性を高強度と両立させている。こ
れに対し、本発明成分範囲外の鋼a,e,f,gは最適と考え
得る熱処理を施しても試料No.1,37〜39のように、また
本発明成分鋼であっても処理条件の一つでも不適切な場
合には試料No.3,6,9,11,12,14,15,17,18,22,24,25,28,2
9,32,33,36のように強度が低かったり、高過ぎたり、あ
るいは適当な強度レベルであったとしても伸びやn値が
不足して成形性に問題があるなどして従来技術が抱える
課題を解決できない。
Sample No. 2,4,5,7,8,10,13,16,19 to 21,2 of the present invention sample
3,26,27,30,31,34,35 have a metallic structure in which a small amount of retained austenite existed with bainite and some martensite in a clean ferrite matrix, all of which are 50-80kgf / mm 2 grade It has an excellent formability as well as high strength, as is clear from the fact that it has elongation exceeding 35 to 45% and n value of 0.25 to 0.30 or more. On the other hand, steels a, e, f, and g outside the composition range of the present invention were treated as sample Nos. 1, 37 to 39 even if heat treatment considered to be optimal, and even the composition steel of the present invention was treated. If any of the conditions is inappropriate, sample No. 3,6,9,11,12,14,15,17,18,22,24,25,28,2
Conventional technology has problems such as 9,32,33,36 having low strength, too high strength, or even at an appropriate strength level, there is a problem in formability due to insufficient elongation or n value. Cannot solve the problem.

(発明の効果) 以上の実施例から判るように本発明は従来よりも低いC
量のもとで残留オーステナイトを生成させることに成功
したので従来になく大きな伸びとn値を持った優れた成
形性を有する高強度鋼板が得られる。しかもこの鋼板を
製造するのに要するコストは同等強度レベルを有する従
来鋼板並み以下であり、溶接性など成形性以外に薄鋼板
に要求される特性も満足できる範囲にあるため、産業上
期待できる効果は極めて大きい。
(Effects of the Invention) As can be seen from the above embodiments, the present invention has a lower C than the conventional one.
Since it succeeded in producing retained austenite under a certain amount, a high-strength steel sheet having an unprecedentedly large elongation and excellent formability with an n value can be obtained. Moreover, the cost required to manufacture this steel sheet is less than or equal to that of conventional steel sheets having the same strength level, and the properties required for thin steel sheets in addition to formability such as weldability are also in a range that can be expected from the industrial viewpoint. Is extremely large.

【図面の簡単な説明】[Brief description of drawings]

第1図は冷間圧延の後で鋼板に施す熱処理サイクルを示
す図である。
FIG. 1 is a diagram showing a heat treatment cycle applied to a steel sheet after cold rolling.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】重量%でC:0.07〜0.12%,Si:0.50〜2.00
%,Mn:1.00〜2.50%,sol.Al:0.005〜0.100%を含み、残
部Feおよび不可避的不純物からなる鋼に、酸洗と30〜85
%の冷間圧延を行なってから、Ac1変態点以上の700〜8
00℃に加熱し15秒〜5分保持後、1〜200℃/秒の速度
で200〜450℃に冷却し、引き続いて300〜450℃の範囲内
で X=5500/(T+273)-logt0.27(Si(%)+Mn(%))+10(C(%)) なる式で与えられるXが6〜7となるように鋼の成分組
成によって規定される時間t秒の間、平均温度T℃に保
持した後で60秒以内に150℃以下まで冷却することを特
徴とする優れた成形性を有する高強度鋼板の製造方法。
1. C: 0.07 to 0.12% by weight%, Si: 0.50 to 2.00
%, Mn: 1.00 to 2.50%, sol.Al: 0.005 to 0.100%, balance Fe and inevitable impurities in steel, pickling and 30 to 85
% After cold rolling 700% to 8% above A c1 transformation point
After heating to 00 ℃ and holding for 15 seconds to 5 minutes, cool to 200-450 ℃ at a speed of 1-200 ℃ / second, and then in the range of 300-450 ℃ X = 5500 / (T + 273)- logt0.27 (Si (%) + Mn (%)) + 10 (C (%)) 2 The time given by the composition of the steel for t seconds such that X given by the formula becomes 6-7. A method for producing a high-strength steel sheet having excellent formability, which is characterized by cooling to an average temperature T ° C and then cooling to 150 ° C or less within 60 seconds.
【請求項2】Ni,Cr,Co,Cuのうちの1種または2種以上
を重量%で合計1%以下添加することを特徴とする請求
項1記載の優れた成形性を有する高強度鋼板の製造方
法。
2. A high-strength steel sheet having excellent formability according to claim 1, characterized in that one or more of Ni, Cr, Co, and Cu are added in a total amount of 1% or less by weight. Manufacturing method.
【請求項3】Ac1変態点以上の700〜800℃に加熱し15秒
〜5分保持後の冷却を、550〜680℃までを1〜20℃/
秒、それ以下を15〜200℃/秒とすることを特徴とする
請求項1または2記載の優れた成形性を有する高強度鋼
板の製造方法。
3. A method of heating at 700 to 800 ° C. above the A c1 transformation point and holding for 15 seconds to 5 minutes, cooling at 550 to 680 ° C. at 1 to 20 ° C. /
The method for producing a high-strength steel sheet having excellent formability according to claim 1 or 2, characterized in that the second is set to 15 to 200 ° C / second.
JP1038957A 1989-02-18 1989-02-18 Method for producing high strength steel sheet having excellent formability Expired - Lifetime JPH0733551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1038957A JPH0733551B2 (en) 1989-02-18 1989-02-18 Method for producing high strength steel sheet having excellent formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1038957A JPH0733551B2 (en) 1989-02-18 1989-02-18 Method for producing high strength steel sheet having excellent formability

Publications (2)

Publication Number Publication Date
JPH02217425A JPH02217425A (en) 1990-08-30
JPH0733551B2 true JPH0733551B2 (en) 1995-04-12

Family

ID=12539666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1038957A Expired - Lifetime JPH0733551B2 (en) 1989-02-18 1989-02-18 Method for producing high strength steel sheet having excellent formability

Country Status (1)

Country Link
JP (1) JPH0733551B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04333524A (en) * 1991-05-09 1992-11-20 Nippon Steel Corp Production of high strength dual-phase steel sheet having superior ductility
JP2704350B2 (en) * 1992-11-02 1998-01-26 新日本製鐵株式会社 Manufacturing method of high strength steel sheet with good press formability
JP3990539B2 (en) 1999-02-22 2007-10-17 新日本製鐵株式会社 High-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet excellent in plating adhesion and press formability and method for producing the same
KR100748116B1 (en) * 2001-06-29 2007-08-10 주식회사 포스코 Annealing method for transformation Induced Plasticity of bainite
CA2513298C (en) 2003-01-15 2012-01-03 Nippon Steel Corporation High-strength hot-dip galvanized steel sheet and method for producing the same
EP1749895A1 (en) 2005-08-04 2007-02-07 ARCELOR France Manufacture of steel sheets having high resistance and excellent ductility, products thereof
MX2017012377A (en) 2015-03-31 2017-12-14 Nippon Steel & Sumitomo Metal Corp Steel sheet for hot stamping, method for manufacturing same, and hot stamp molded article.
US10808291B2 (en) 2015-07-13 2020-10-20 Nippon Steel Corporation Steel sheet, hot-dip galvanized steel sheet, galvannealed steel sheet, and manufacturing methods therefor
MX2018000329A (en) 2015-07-13 2018-03-14 Nippon Steel & Sumitomo Metal Corp Steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and production methods therefor.
MX2019001760A (en) 2016-08-16 2019-06-17 Nippon Steel & Sumitomo Metal Corp Hot press-formed member.
US10787727B2 (en) 2016-09-21 2020-09-29 Nippon Steel Corporation Steel sheet

Also Published As

Publication number Publication date
JPH02217425A (en) 1990-08-30

Similar Documents

Publication Publication Date Title
US20080289726A1 (en) Cold rolled, dual phase, steel sheet and method of manufacturing same
WO2010011790A2 (en) Cold rolled dual phase steel sheet having high formability and method of making the same
JP2876968B2 (en) High-strength steel sheet having high ductility and method for producing the same
JPH0733551B2 (en) Method for producing high strength steel sheet having excellent formability
JPH0823048B2 (en) Method for producing hot rolled steel sheet with excellent bake hardenability and workability
US6635127B2 (en) Steel strapping and method of making
JPH05320749A (en) Production of ultrahigh strength steel
JP2005325393A (en) High strength cold rolled steel sheet and its manufacturing method
JP3448454B2 (en) High-strength cold-rolled steel sheet with excellent surface properties and formability, and method for producing the same
JPH07107178B2 (en) Method for producing high strength dual phase chromium stainless steel strip with excellent ductility
JP3551878B2 (en) High-ductility, high-hole-expansion high-tensile steel sheet and method for producing the same
JP3229107B2 (en) Manufacturing method of low yield ratio high strength steel sheet with excellent uniform elongation
CN115698365A (en) Heat-treated cold-rolled steel sheet and method for producing same
JP3751707B2 (en) High-strength bolt wire excellent in strength and ductility and its manufacturing method
JPH0670247B2 (en) Method for producing high strength steel sheet with good formability
JPH0645827B2 (en) Method for manufacturing high strength steel sheet with excellent workability
JP2806121B2 (en) Method for producing high-strength hot-dip galvanized steel with excellent workability and material stability
JPH07100824B2 (en) Method for producing high strength dual phase chromium stainless steel strip with excellent ductility
JPS6347338A (en) Production of high tension zinc hot dip coated steel sheet
JPS589816B2 (en) Manufacturing method of non-thermal rolled steel bar
JP2658706B2 (en) Manufacturing method of high strength and high ductility cold rolled steel sheet with excellent aging resistance
KR960005222B1 (en) Making method of high nitrogen austenite stainless cold steel sheet
JP2829510B2 (en) Method for producing high-strength hot-rolled steel sheet with excellent ductility and workability
JPS638164B2 (en)
JPH03223420A (en) Production of high strength steel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080412

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 14

EXPY Cancellation because of completion of term