JPS638164B2 - - Google Patents

Info

Publication number
JPS638164B2
JPS638164B2 JP54121011A JP12101179A JPS638164B2 JP S638164 B2 JPS638164 B2 JP S638164B2 JP 54121011 A JP54121011 A JP 54121011A JP 12101179 A JP12101179 A JP 12101179A JP S638164 B2 JPS638164 B2 JP S638164B2
Authority
JP
Japan
Prior art keywords
less
point
temperature
strength
ductility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54121011A
Other languages
Japanese (ja)
Other versions
JPS5644723A (en
Inventor
Koji Kishida
Nagayasu Takemoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12101179A priority Critical patent/JPS5644723A/en
Publication of JPS5644723A publication Critical patent/JPS5644723A/en
Publication of JPS638164B2 publication Critical patent/JPS638164B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱間圧延工程で微細なフエライト粒を
形成させ、しかるのち適正な焼鈍によつて複合組
織となす、加工性に優れた高張力鋼板の製造方法
に関する。 最近、世界的な石油事情の悪化から、自動車の
燃料の節約を求める要求が強く、この要求に対応
するために自動車の軽量化が進められ、高張力鋼
板の使用の検討が積極化しつつある。しかし、一
般に、鋼の強度を増加させれば延性が低下する特
性があるため、自動車用鋼板のように高度の加工
を要求される場合には、高張力鋼板は成形がむつ
かしくなる。したがつて、強度が高くしかも延性
に優れた鋼板の開発が望まれる。このような要望
を満すものとして軟質なフエライト相と硬質な第
2相を有する複合組織鋼板が開発されてきてい
る。この鋼板の特徴は、同じ強度で比較すると従
来の鋼板より延性がよいと同時に降伏強度が低い
ことであり、成形性に優れた高張力鋼板といえ
る。 複合組織鋼板は軟質なフエライト相と少量のお
もにマルテンサイト相と残留オーステナイト相よ
りなる硬質な第2相の組織を有し、この組織を形
成させるための代表的な方法として、フエライト
とオーステナイトの2相域から102〜103℃/s台
で急冷する方法、適当量のMn,Si,Crなどを含
む鋼を2相域から1〜102℃/s台で冷却する方
法があり、後者の方法には多量の合金元素を使用
する方法、多少合金元素を節約するために熱間圧
延時高温巻取したり、2相域で熱間圧延したり、
最終焼鈍前に2相域で長時間焼鈍したりする方法
が提案されている。 前者の2相域から急冷する方法は合金元素をか
なり節約できる利点はあるが、加工性に乏しい難
点があり、加工性を重視する自動車用高張力鋼板
としては多くの改善を必要とする。後者は、加工
性が比較的良好であり、従来の生産設備を利用で
きる利点を有しているが、合金元素を多く使用す
るためコストが高く、かつ合金元素量に比例して
加工性が低下すること、高温巻取の場合には材質
の均一性に問題があり歩留と酸洗性が低下するこ
と、2相域熱延の場合には生産性の低下と冷間圧
延時の負荷の増加があること、長時間焼鈍の場合
には工程の増加によるコストの上昇があること、
などの欠点を有している。 複合組織鋼板の製造における上述の問題点を解
消すべく種々の検討を重ねた結果、本発明者等
は、微細なフエライト粒を形成せしめるような熱
間圧延工程の条件とすることによつて、きわめて
容易に複合組織鋼板を製造しうる方法を発明し
た。 本発明の要旨は、C:0.15%以下、Mn:1〜
2%、Al:0.1%以下を基本成分とするか、ある
いはさらにSi:2%以下、Cr:1%以下、Mo:
1%以下、Cu:0.5%以下、V:0.2%以下、
Nb:0.15%以下、Ti:0.1%以下、B:0.01%以
下のうち、1種あるいは複数種類を含有し、残部
が実質的にFeよりなる鋼を、熱間圧延工程にお
いて巻取後のフエライト結晶粒径が10μ以下とし
たのち、熱間圧延のまま、あるいは熱間圧延の後
に冷間圧延を施し、焼鈍工程でAc1点以上1000℃
未満の温度に加熱し、Ar1点以下300℃以上の温
度範囲を5℃/S以上200℃/S未満の平均冷却
速度で冷却することを特徴とする加工性に優れた
高張力鋼板の製造方法にある。 以下に、本発明の技術思想および構成要件の限
定理由を述べる。 複合組織とするための必須の添加元素はMnで
あり、Mn量が多いほど複合組織は容易に形成さ
れるが、良好な延性を保障する微細なフエライト
粒は清浄であることが望ましく、この観点からは
Mn量は少ない方がよい。したがつて、複合組織
であつて、しかも良好な延性をもつた鋼板とする
ためのMn量の上限は2%とする。一方、Mn量
が1%未満の場合、本発明による熱延条件および
焼鈍条件では複合組織を形成させることがむつか
しくなる。 CはMnと同様にオーステナイト安定化元素で
あつてその含有量が多いほど複合組織の形成にと
つて有利であるが、多量に含まれた場合、清浄な
フエライト粒の形成を抑制し延性を低下させるほ
か、溶接性の低下を招くので、0.15%以下とす
る。複合組織は基本的にMnによつて形成させる
ため、C量の下限はとくに限定しないが、C量の
減少によつて複合組織化は抑制されるため、C量
がきわめて低い場合、Mn,Crなどを多目にする
ことが望ましい。 Alは脱酸剤としての役目をなし、Mn,Si,Cr
などの合金元素を有効に働かせるのに役立つが、
0.1%を超えて含有した場合、コストの増加、表
面の酸化に起因する問題の増加があり、好ましく
ないため、上限を0.1%とした。 Siは延性を向上させるのに有効な元素であり、
Si含有量の増加にともなつて延性が向上するが、
2%を超えて含有した場合、適正な熱間圧延温度
が高くなり、微細なフエライト粒をうることが困
難になることのほか、表面の酸化に起因する問題
の増加、コストの増加などの問題が生ずるため好
ましくなく、その上限を2%以下とする。 CrおよびMoの添加はオーステナイトからパー
ライトへの変態を抑制するのに効果のある元素で
あり、複合組織形成のためには好ましく、かつ固
溶C,Nによる常温時効性を抑えるため望ましい
が、1%を超えて含有してもその効果は少く、延
性の低下を招き、かつコストが増加するため好ま
しくない。したがつて、その上限を1%とする。 Cuはオーステナイトからパーライトへの変態
を抑制し、複合組織形成にとつて有利であると同
時に耐食性の向上をも計ることのできる元素であ
るが、0.5%を超えて含有した場合、熱間脆性の
心配がある。したがつて、Cuの上限を0.5%とす
る。 Vは微細な炭窒化物形成元素であり、フエライ
ト粒の微細化に役立つと同時に、固溶C,Nによ
る常温時効性を抑え、降伏点の上昇を抑制するの
に効果のある元素であるが、0.2%を超えて含有
すると微細な析出物によつてフエライト・マトリ
ツクスの延性が阻害されるばかりでなく、コスト
の上昇を招く。したがつて、Vの上限を0.2%と
する。 NbおよびTiは炭窒化物形成元素であり、フエ
ライト結晶粒の微細化に効果をもつが、多量に添
加された場合、フエライト・マトリツクス内の微
細な析出物が多くなりフエライト粒の延性を阻害
するようになる。したがつて、Nbの上限を0.15
%、Tiの上限を0.1%とする。なお、Bは微量で
オーステナイトの焼入性を高め、複合組織の形成
にとつて有利であるが、0.01%を超えて含有した
場合、延性に乏しくなるため、0.01%以下に抑え
るべきである。 以上、述べたとおり、之等の各元素は鋼板の強
度向上に寄与するものであり、各元素によつて鋼
板の強化機構への寄与の違いは、固溶強化、析出
強化、焼入れ強化等とあつても、鋼板の強度向上
と言う点で均等な作用効果を奏するものであり、
必要に応じて1種又は2種以上を添加することに
よつて、高強度の高張力鋼板を提供しうるもので
ある。 熱間圧延工程においては、熱延巻取後の鋼板の
フエライト結晶粒径を10μ以下としなければなら
ない。第1図に、熱延鋼板のフエライト結晶粒径
と延性の尺度をしめす強度・延性バランス(引張
強さ×伸び)の関係をしめす。強度・延性バラン
スの値が高いことは同じ強度では延性が優れてい
ることを示し、この値が高いほど好ましいといえ
る。 この図より、結晶粒径が10μ未満の場合、強
度・延性バランスは良好な値をしめしているが、
10μを超えた場合劣化の傾向をしめす。このよう
に結晶粒径が10μ未満の場合、強度・延性バラン
スが良好である現象の生ずる理由はいまだ明らか
ではないが、あえて推測すれば、以下のごとく考
えることができる。すなわち、微細なフエライト
結晶粒の粒界には、熱延後の冷却速度と巻取温度
に応じてパーライト相、ベイナイト相、マルテン
サイト相、残留オーステナイト相などが存在する
が、これらの相の間隔はフエライト結晶粒径にほ
ぼ等しい。この間隔はそのまま、あるいは冷間圧
延後本発明による条件で焼鈍を施しても不変であ
る。このため、焼鈍時のフエライト粒内の固溶C
は、冷却途中残留するオーステナイト相に拡散す
ることが可能なためフエライト粒内は清浄化さ
れ、かつオーステナイト相は拡散してきたCなど
によつて安定化し、この部分が一部のオーステナ
イトを残してマルテンサイトに変態する。このよ
うな理由で固溶Cの少い清浄なフエライト粒とマ
ルテンサイト相(一部残留オーステナイト)の複
合組織が形成されるため、延性の優れた複合組織
鋼板がえられるものと想定される。 なお、熱延鋼板のフエライト結晶粒径を10μ以
下とする方法としては、熱間圧延時の仕上温度を
Ar3点直上とし、Ar3〜Ar1点間を比較的ゆつくり
と冷却して巻取る方法、仕上温度をAr3点直下と
し、2相域での圧下量を50%未満として比較的速
く冷却し巻取る方法、Mn,CrなどAr3変態点を
下げる元素を加えて低温で圧延を行わせ微細なフ
エライト粒の核発生を増加させる方法、Nb,
Ti,Moなどの添加でオーステナイトの再結晶を
抑制して微細なフエライト結晶粒の核発生数を増
加させる方法などが考えられる。 フエライト結晶粒径が10μ以下に調整された熱
延鋼板は、そのままかあるいは冷間圧延が施され
て、焼鈍工程に導かれる。 焼鈍工程ではAc1点以上、1000℃未満に加熱、
保定することが必要である。第2図は焼鈍温度と
降伏比(降伏強度/引張強さ)および強度・延性
バランスの関係をしめす。降伏比は低いほど加工
性が良好で、複合組織鋼では0.6以下の値となる
のが一般的である。この図より、Ac1点以上、
1000℃未満の温度域に加熱、保定した場合、降伏
比が低く、かつ強度・延性バランスに優れたもの
となつている。すなわち、Ac1点以下の焼鈍では
オーステナイト相が生ずることがないため、オー
ステナイト相からマルテンサイト相への変態も起
らないため複合組織となりえない。また1000℃以
上の焼鈍ではオーステナイト結晶粒が粗大化し、
このため冷却途中に発生するフエライト粒も粗大
となり十分な延性がえられなくなる。これに対
し、焼鈍温度がAc1点以上Ac3点以下では微細な
フエライト粒とオーステナイト粒であるため、冷
却途中、清浄なフエライト粒とオーステナイト→
マルテンサイト変態(一部残留オーステナイト)
が生じ、延性に富んだ複合組織鋼がえられる。ま
た、焼鈍温度がAc3点以上1000℃未満の場合、オ
ーステナイト粒に変態するが、オーステナイト粒
が粗大化するほどの高温度ではないため、微細な
オーステナイト粒であり、このため以後の冷却の
過程で微細なフエライト粒とマルテンサイト相
(一部残留オーステナイト)の複合組織となり、
良好な延性をしめすようになる。 焼鈍時の冷却速度は、Ar1点以下300℃以上の
温度域を5℃/S以上200℃/S未満の平均冷却
速度で冷却されなければならない。第3図は冷却
速度と降伏比、強度・延性バランスの関係をしめ
す図である。5℃/S未満ではオーステナイトか
らパーライトあるいはベイナイトへの変態が進行
し、複合組織が形成されないため降伏比が高くな
り好ましくない。200℃/Sを超えて冷却された
場合、フエライト中に固溶Cが多く残留し、清浄
なフエライト相がえられないため強度・延性バラ
ンスが悪くなり好ましくない。制御すべき冷却速
度の温度域の上限をAr1点以下としたのは、Ar1
点以上ではこの温度域の冷却速度を特に規制する
必要がないためであり、温度域の下限を300℃と
したのは、オーステナイトからパーライトなどへ
の変態を抑制し、かつ固溶Cによる時効硬化を防
止するためである。Ar1点以上の冷却速度はとく
に限定しないが遅い方がフエライト粒の清浄化と
オーステナイト粒へのC,Mn等の濃化が進行す
るため、複合組織の形成にとつては好ましい。 なお、本発明鋼板は、Zn,Sn,Cr,Al,Pbな
どの金属あるいは合金をめつきされて使用されて
もよく、また150℃以上で焼戻し処理、たとえば
焼付塗装を施せば、あるいは軽度の加工を施せ
ば、降伏強度が著しく増加する特徴をもつてい
る。さらに、伸びフランジ性などを改善する目的
で希土類元素(REM),Zr、あるいはCaなどを
添加することができる。 次に、本発明の実施例について述べる。 実施例 1 転炉および連続鋳造法でスラブとした表1に示
す成分の鋼に熱間圧延を施し、表1にしめすよう
なフエライト結晶粒径に調整した。この一部を表
1にしめす条件で0.8mmまで冷間圧延し、焼鈍を
施した。表1にしめす条件で製造した鋼板の機械
的特性値を表2にしめす。
The present invention relates to a method for manufacturing a high-strength steel sheet with excellent workability, in which fine ferrite grains are formed in a hot rolling process, and then a composite structure is formed through appropriate annealing. Recently, due to the deterioration of the global oil situation, there has been a strong demand for fuel savings in automobiles, and in order to meet this demand, efforts are being made to reduce the weight of automobiles, and the use of high-tensile steel sheets is being actively considered. However, in general, as the strength of steel increases, its ductility decreases, so high-strength steel plates are difficult to form when high-level processing is required, such as in the case of steel plates for automobiles. Therefore, it is desired to develop a steel plate that has high strength and excellent ductility. To meet these demands, composite steel sheets having a soft ferrite phase and a hard second phase have been developed. This steel plate is characterized by having better ductility and lower yield strength than conventional steel plates when compared with the same strength, and can be said to be a high-strength steel plate with excellent formability. A composite steel sheet has a soft ferrite phase and a small amount of a hard second phase consisting mainly of a martensite phase and a retained austenite phase.A typical method for forming this structure is to combine ferrite and austenite. There are two methods: rapid cooling from the phase region at 10 2 to 10 3 °C/s, and cooling steel containing appropriate amounts of Mn, Si, Cr, etc. from the two-phase region at 1 to 10 2 °C/s. Methods include using a large amount of alloying elements, winding at a high temperature during hot rolling to save some alloying elements, hot rolling in a two-phase region,
A method has been proposed in which the material is annealed for a long time in a two-phase region before final annealing. The former method of quenching from the two-phase region has the advantage of being able to save a considerable amount of alloying elements, but it has the disadvantage of poor workability, and many improvements are needed for high-strength steel sheets for automobiles where workability is important. The latter has relatively good workability and has the advantage of being able to use conventional production equipment, but it is expensive because it uses a large amount of alloying elements, and the workability decreases in proportion to the amount of alloying elements. In the case of high-temperature coiling, there is a problem with the uniformity of the material, resulting in a decrease in yield and pickling properties.In the case of two-phase hot rolling, there is a decrease in productivity and the load during cold rolling. In the case of long-term annealing, there is an increase in cost due to the increase in the number of processes.
It has drawbacks such as: As a result of various studies in order to solve the above-mentioned problems in the production of composite structure steel sheets, the present inventors have determined that by setting the conditions of the hot rolling process to form fine ferrite grains, We have invented a method that makes it extremely easy to manufacture composite steel sheets. The gist of the present invention is that C: 0.15% or less, Mn: 1 to
2%, Al: 0.1% or less as a basic component, or further Si: 2% or less, Cr: 1% or less, Mo:
1% or less, Cu: 0.5% or less, V: 0.2% or less,
A steel containing one or more of Nb: 0.15% or less, Ti: 0.1% or less, B: 0.01% or less, and the remainder being substantially Fe, is rolled into ferrite in a hot rolling process. After the grain size has been reduced to 10μ or less, it is hot rolled or cold rolled after hot rolling, and the annealing process is performed at 1000℃ or more at A c1 point.
Production of high-strength steel sheet with excellent workability, characterized by heating to a temperature below A r1 point and cooling at an average cooling rate of 5°C/S or more and less than 200°C/S in a temperature range of 300°C or more below the A r1 point It's in the method. Below, the technical idea of the present invention and the reasons for limiting the constituent elements will be described. The essential element added to create a composite structure is Mn, and the higher the amount of Mn, the easier the composite structure is formed, but it is desirable that the fine ferrite grains are clean to ensure good ductility, and from this point of view From
The smaller the amount of Mn, the better. Therefore, in order to obtain a steel sheet with a composite structure and good ductility, the upper limit of the amount of Mn is set to 2%. On the other hand, when the Mn content is less than 1%, it becomes difficult to form a composite structure under the hot rolling conditions and annealing conditions according to the present invention. Like Mn, C is an austenite stabilizing element, and the higher its content, the more advantageous it is to forming a composite structure. However, if it is included in a large amount, it suppresses the formation of clean ferrite grains and reduces ductility. In addition to this, it also causes a decrease in weldability, so it should be kept at 0.15% or less. Since the composite structure is basically formed by Mn, the lower limit of the C content is not particularly limited. However, since the composite structure is suppressed by decreasing the C content, if the C content is extremely low, Mn, Cr It is desirable to see many things such as Al acts as a deoxidizing agent, and Mn, Si, Cr
It is useful for making alloying elements such as
If the content exceeds 0.1%, the cost increases and problems due to surface oxidation increase, which is undesirable, so the upper limit was set at 0.1%. Si is an effective element for improving ductility,
Ductility improves with increasing Si content, but
If the content exceeds 2%, the appropriate hot rolling temperature becomes high, making it difficult to obtain fine ferrite grains, as well as increasing problems due to surface oxidation and increasing costs. This is not preferable because it causes the occurrence of oxidation, and the upper limit thereof is set to 2% or less. The addition of Cr and Mo is an element that is effective in suppressing the transformation from austenite to pearlite, and is preferable for forming a composite structure, and is desirable for suppressing room temperature aging due to solid solution C and N. Even if the content exceeds 10%, the effect will be small, leading to a decrease in ductility and increasing cost, which is not preferable. Therefore, the upper limit is set at 1%. Cu is an element that suppresses the transformation from austenite to pearlite and is advantageous for forming a composite structure, as well as improving corrosion resistance. However, if it is contained in an amount exceeding 0.5%, it may cause hot embrittlement. I'm worried. Therefore, the upper limit of Cu is set at 0.5%. V is an element that forms fine carbonitrides, and is useful for refining ferrite grains, as well as suppressing room-temperature aging caused by solid solution C and N, and is an element that is effective in suppressing increases in yield point. If the content exceeds 0.2%, fine precipitates not only impede the ductility of the ferrite matrix but also lead to an increase in cost. Therefore, the upper limit of V is set to 0.2%. Nb and Ti are carbonitride-forming elements and have the effect of refining ferrite grains, but when added in large amounts, fine precipitates increase in the ferrite matrix and inhibit the ductility of ferrite grains. It becomes like this. Therefore, the upper limit of Nb is set to 0.15
%, the upper limit of Ti is 0.1%. In addition, a trace amount of B increases the hardenability of austenite and is advantageous for forming a composite structure, but if it is contained in an amount exceeding 0.01%, ductility becomes poor, so it should be suppressed to 0.01% or less. As mentioned above, each of these elements contributes to improving the strength of steel sheets, and the differences in the contribution of each element to the strengthening mechanism of steel sheets include solid solution strengthening, precipitation strengthening, quenching strengthening, etc. However, it has the same effect in terms of improving the strength of the steel plate,
By adding one kind or two or more kinds as necessary, a high-strength, high-tensile steel plate can be provided. In the hot rolling process, the ferrite crystal grain size of the steel sheet after hot rolling and winding must be 10μ or less. Figure 1 shows the relationship between the ferrite grain size of a hot rolled steel sheet and the strength/ductility balance (tensile strength x elongation), which is a measure of ductility. A high value of strength/ductility balance indicates that ductility is excellent at the same strength, and it can be said that the higher this value is, the more preferable it is. From this figure, when the grain size is less than 10μ, the balance between strength and ductility is good.
If it exceeds 10μ, it shows a tendency for deterioration. Although the reason why the strength/ductility balance is good when the grain size is less than 10μ is not yet clear, it can be speculated as follows. In other words, pearlite phase, bainite phase, martensite phase, retained austenite phase, etc. exist at the grain boundaries of fine ferrite grains depending on the cooling rate and coiling temperature after hot rolling, but the spacing between these phases is approximately equal to the ferrite grain size. This interval remains unchanged even if it is left as it is or is annealed under the conditions of the present invention after cold rolling. For this reason, solid solution C in ferrite grains during annealing
can diffuse into the remaining austenite phase during cooling, so the interior of the ferrite grains is cleaned, and the austenite phase is stabilized by the diffused carbon, and this part becomes marten, leaving some austenite behind. Transform the site. For this reason, a composite structure of clean ferrite grains with little solid solution C and a martensite phase (partially retained austenite) is formed, so it is assumed that a composite structure steel sheet with excellent ductility can be obtained. In addition, as a method to reduce the ferrite crystal grain size of hot rolled steel sheets to 10μ or less, the finishing temperature during hot rolling is
The winding method is done by setting the A r3 point just above the A r3 point and cooling relatively slowly between the A r3 and A r1 points, and winding it relatively quickly by setting the finishing temperature just below the A r3 point and reducing the rolling amount in the two-phase region by less than 50%. A method of cooling and winding, a method of adding elements that lower the A r3 transformation point such as Mn and Cr and rolling at a low temperature to increase the nucleation of fine ferrite grains, a method of increasing the nucleation of fine ferrite grains, Nb,
Possible methods include adding Ti, Mo, etc. to suppress austenite recrystallization and increase the number of nuclei of fine ferrite grains. The hot-rolled steel sheet whose ferrite crystal grain size has been adjusted to 10 μm or less is subjected to an annealing process, either as it is or after cold rolling. In the annealing process, heating is performed above A c1 point and below 1000℃.
It is necessary to maintain Figure 2 shows the relationship between annealing temperature, yield ratio (yield strength/tensile strength), and strength/ductility balance. The lower the yield ratio, the better the workability, and for composite structure steel, the value is generally 0.6 or less. From this figure, A c1 point or more,
When heated and held at a temperature below 1000°C, the yield ratio is low and the strength/ductility balance is excellent. That is, annealing below the A c1 point does not produce an austenite phase, and therefore no transformation from an austenite phase to a martensite phase occurs, so a composite structure cannot be formed. In addition, annealing at 1000℃ or higher causes austenite crystal grains to become coarser.
For this reason, the ferrite grains generated during cooling also become coarse, making it impossible to obtain sufficient ductility. On the other hand, when the annealing temperature is above A c1 point and below A c3 point, there are fine ferrite grains and austenite grains, so during cooling, clean ferrite grains and austenite →
Martensitic transformation (some residual austenite)
occurs, resulting in a highly ductile composite steel. In addition, when the annealing temperature is above A c3 point and below 1000℃, it transforms into austenite grains, but since the temperature is not so high that the austenite grains become coarse, they are fine austenite grains, and therefore the subsequent cooling process It becomes a composite structure of fine ferrite grains and martensite phase (some retained austenite),
It shows good ductility. The cooling rate during annealing must be an average cooling rate of 5°C/S or more and less than 200°C/S in the temperature range of 300°C or more below the A r1 point. FIG. 3 is a diagram showing the relationship between cooling rate, yield ratio, and strength/ductility balance. If it is less than 5° C./S, the transformation from austenite to pearlite or bainite progresses, and a composite structure is not formed, resulting in a high yield ratio, which is not preferable. If it is cooled to a temperature exceeding 200° C./S, a large amount of solid solution C remains in the ferrite, and a clean ferrite phase cannot be obtained, resulting in a poor balance of strength and ductility, which is not preferable. The reason why we set the upper limit of the temperature range of the cooling rate to be controlled below A r1 point is because A r1
This is because there is no need to particularly regulate the cooling rate in this temperature range above this temperature range, and the reason why the lower limit of the temperature range was set at 300°C was to suppress the transformation from austenite to pearlite, etc., and to prevent age hardening due to solid solution C. This is to prevent Although there is no particular limitation on the cooling rate above the A r1 point, a slower rate is preferable for forming a composite structure, since cleaning of the ferrite grains and concentration of C, Mn, etc. in the austenite grains proceed. The steel sheet of the present invention may be plated with metals or alloys such as Zn, Sn, Cr, Al, Pb, etc., and may be tempered at 150°C or higher, such as baking paint, or lightly plated. It has the characteristic that its yield strength increases significantly if it is processed. Furthermore, rare earth elements (REM), Zr, Ca, etc. can be added for the purpose of improving stretch flangeability. Next, examples of the present invention will be described. Example 1 A steel having the composition shown in Table 1, which was formed into a slab using a converter and continuous casting method, was hot rolled to adjust the ferrite crystal grain size as shown in Table 1. A part of this was cold rolled to 0.8 mm under the conditions shown in Table 1 and annealed. Table 2 shows the mechanical property values of the steel sheets manufactured under the conditions shown in Table 1.

【表】【table】

【表】【table】

【表】 試料1〜13は本発明方法によつて製造した場合
であり、伸び特性がよく、かつ降伏比も低く、加
工性に優れた鋼板であることがわかる。これに対
して、試料14〜19は本発明範囲を外れた条件で製
造した場合、すなわち試料14のごとく熱延板の結
晶粒径が10μを超えている場合、試料15のごとく
焼鈍温度がAc1点以下の場合、試料16のごとく焼
鈍温度が1000℃を超えた場合、試料17のごとく焼
鈍時の冷却速度が5℃/Sよりも遅い場合、ある
いは試料18のごとく冷却速度が200℃/S以上を
超えて冷却された場合、試料19のごとく、Mn含
有量が1%未満の場合、いずれも本発明方法によ
る試料1〜13に比較して、伸び特性が悪く、降伏
比も高く、加工特性の劣つた鋼板となつている。 実施例 2 転炉によつて溶製したC:0.07%、Mn:1.5
%、Al:0.03%、Cr:0.3%の組成の鋼を連続鋳
造法によつてスラブとしたのち、熱間圧延工程に
おいて常法にしたがつて、仕上温度880℃、巻取
温度600℃で熱延鋼板としたフエライト結晶粒径
15μの鋼板と、仕上温度780℃、巻取温度500℃、
巻取までの前段を徐冷し、後段を急冷し、熱延板
でのフエライト結晶粒径を7μとした鋼板とを作
成した。この鋼板に2.7mmから0.8mmまでの冷間圧
延を施し、ついで焼鈍工程で750℃で30秒の保定
と300℃まで20℃/Sの冷却を施した。このよう
にして製造した冷却鋼板の機械的性質は第3表に
しめすごとく、熱延鋼板のフエライト結晶粒径が
本発明範囲内にある場合、複合組織を形成し良好
な強度・延性バランスと低降伏比をしめす。これ
に対し、本発明範囲を外れた15μのフエライト結
晶粒径をしめす熱延鋼板を利用する場合、複合組
織を形成せず、強度・延性バランスが劣り、降伏
比も高い値となつている。
[Table] Samples 1 to 13 were produced by the method of the present invention, and are found to be steel sheets with good elongation properties, low yield ratios, and excellent workability. On the other hand, samples 14 to 19 were manufactured under conditions outside the scope of the present invention, that is, when the grain size of the hot rolled sheet exceeded 10μ as in sample 14, the annealing temperature was A as in sample 15. If the temperature is below c1 , the annealing temperature exceeds 1000℃ as in sample 16, the cooling rate during annealing is slower than 5℃/s as in sample 17, or the cooling rate is 200℃/s as in sample 18. When cooled to a temperature exceeding S, when the Mn content is less than 1%, as in sample 19, the elongation properties are poor and the yield ratio is high, compared to samples 1 to 13 produced by the method of the present invention. It is a steel plate with poor processing properties. Example 2 C: 0.07%, Mn: 1.5 melted by converter
%, Al: 0.03%, Cr: 0.3% steel was made into a slab by a continuous casting method, and then hot rolled at a finishing temperature of 880℃ and a coiling temperature of 600℃ according to the usual method. Ferrite grain size in hot rolled steel sheet
15μ steel plate, finishing temperature 780℃, winding temperature 500℃,
A hot-rolled steel sheet with a ferrite crystal grain size of 7 μm was produced by slowly cooling the first stage before winding and quenching the second stage. This steel plate was cold rolled from 2.7 mm to 0.8 mm, and then annealed at 750°C for 30 seconds and cooled to 300°C at a rate of 20°C/S. The mechanical properties of the cooled steel sheet produced in this way are shown in Table 3. When the ferrite crystal grain size of the hot rolled steel sheet is within the range of the present invention, a composite structure is formed and a good balance of strength and ductility is achieved. Indicates the yield ratio. On the other hand, when a hot rolled steel sheet having a ferrite crystal grain size of 15μ, which is outside the range of the present invention, is used, a composite structure is not formed, the strength/ductility balance is poor, and the yield ratio is high.

【表】 以上のごとく、本発明は熱延工程で鋼板の結晶
粒径を10μ以下と細粒にすることによつて、加工
性に優れた複合組織鋼板を安価に製造することが
できるため、その工業的価値はきわめて高い。
[Table] As described above, the present invention makes it possible to inexpensively produce a composite structure steel sheet with excellent workability by reducing the crystal grain size of the steel sheet to 10μ or less in the hot rolling process. Its industrial value is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱延鋼板のフエライト結晶粒径と製品
の引張強さ×伸びの関係をしめす図、第2図は焼
鈍温度と製品の降伏比および引張強さ×伸びの関
係をしめす図、第3図は焼鈍時の冷却速度と降伏
比および引張強さ×伸びの関係をしめす図であ
る。
Figure 1 is a diagram showing the relationship between the ferrite grain size of hot rolled steel sheets and the tensile strength x elongation of the product. Figure 2 is a diagram showing the relationship between the annealing temperature and the yield ratio and tensile strength x elongation of the product. Figure 3 is a diagram showing the relationship between cooling rate during annealing, yield ratio, and tensile strength x elongation.

Claims (1)

【特許請求の範囲】 1 C:0.15%以下、Mn:1〜2%、Al:0.1%
以下を基本成分とし、残部が実質的にFeよりな
る鋼を、熱間圧延工程において巻取後のフエライ
ト結晶粒径を10μ以下としたのち、熱間圧延のま
ま、あるいは熱間圧延の後に冷間圧延を施し、焼
鈍工程でAc1点以上1000℃未満の温度に加熱し、
Ar1点以下300℃以上の温度範囲を5℃/s以上
200℃/s未満の平均冷却速度で冷却することを
特徴とする加工性に優れた高張力鋼板の製造方
法。 2 C:0.15%以下、Mn:1〜2%、Al:0.1%
以下を基本成分とし、Si:2%以下、Cr:1%
以下、Mo:1%以下、Cu:0.5%以下、V:0.2
%以下、Nb:0.15%以下、Ti:0.1%以下、B:
0.01%以下のうち、1種あるいは複数種類を含有
し、残部が実質的にFeよりなる鋼を、熱間圧延
工程において巻取後のフエライト結晶粒径を10μ
以下としたのち、熱間圧延のまま、あるいは熱間
圧延の後に冷間圧延を施し、焼鈍工程でAc1点以
上1000℃未満の温度に加熱し、Ar1点以下300℃
以上の温度範囲を5℃/s以上200℃/s未満の
平均冷却速度で冷却することを特徴とする加工性
に優れた高張力鋼板の製造方法。
[Claims] 1 C: 0.15% or less, Mn: 1 to 2%, Al: 0.1%
A steel having the following basic components and the remainder substantially Fe is rolled in a hot rolling process to reduce the ferrite crystal grain size to 10 μm or less after being rolled up, and then either as hot rolled or cooled after hot rolling. After rolling, the annealing process heats the material to a temperature above 1 point A and below 1000°C.
A Temperature range of 300°C or more below r1 point at 5°C/s or more
A method for producing a high-strength steel sheet with excellent workability, characterized by cooling at an average cooling rate of less than 200°C/s. 2 C: 0.15% or less, Mn: 1-2%, Al: 0.1%
The following are the basic ingredients: Si: 2% or less, Cr: 1%
Below, Mo: 1% or less, Cu: 0.5% or less, V: 0.2
% or less, Nb: 0.15% or less, Ti: 0.1% or less, B:
Steel containing one or more of the following 0.01% or less, with the remainder being substantially Fe, is rolled in a hot rolling process to reduce the ferrite crystal grain size to 10 μm.
After the following, cold rolling is performed as it is hot rolled or after hot rolling, and heated to a temperature of A c1 point or more and less than 1000°C in an annealing process, and A r1 point or less 300°C
A method for manufacturing a high-strength steel sheet with excellent workability, characterized by cooling in the above temperature range at an average cooling rate of 5°C/s or more and less than 200°C/s.
JP12101179A 1979-09-20 1979-09-20 Manufacture of high tensile strength steel sheet having excellent workability Granted JPS5644723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12101179A JPS5644723A (en) 1979-09-20 1979-09-20 Manufacture of high tensile strength steel sheet having excellent workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12101179A JPS5644723A (en) 1979-09-20 1979-09-20 Manufacture of high tensile strength steel sheet having excellent workability

Publications (2)

Publication Number Publication Date
JPS5644723A JPS5644723A (en) 1981-04-24
JPS638164B2 true JPS638164B2 (en) 1988-02-22

Family

ID=14800581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12101179A Granted JPS5644723A (en) 1979-09-20 1979-09-20 Manufacture of high tensile strength steel sheet having excellent workability

Country Status (1)

Country Link
JP (1) JPS5644723A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839736A (en) * 1981-09-01 1983-03-08 Kobe Steel Ltd Manufacture of composite structure type high tensile cold rolled steel plate
US4578124A (en) * 1984-01-20 1986-03-25 Kabushiki Kaisha Kobe Seiko Sho High strength low carbon steels, steel articles thereof and method for manufacturing the steels
US5074926A (en) * 1989-11-16 1991-12-24 Kawasaki Steel Corp. High tensile cold rolled steel sheet and high tensile hot dip galvanized steel sheet having improved stretch flanging property and process for producing same
JP3406094B2 (en) * 1994-11-10 2003-05-12 株式会社神戸製鋼所 Method for producing ultra-high strength steel sheet with excellent hydrogen embrittlement resistance
BR112017027412B1 (en) * 2015-06-30 2021-07-06 Nippon Steel Corporation COLD LAMINATED STEEL SHEET, HOT IMMERSION GALVANIZED STEEL SHEET AND GALVANIZED STEEL SHEET

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5097514A (en) * 1973-12-29 1975-08-02
JPS5098419A (en) * 1973-12-30 1975-08-05
JPS5178734A (en) * 1974-12-28 1976-07-08 Kobe Steel Ltd Kokyodoreienkobanno seizoho
JPS54114425A (en) * 1978-02-27 1979-09-06 Kawasaki Steel Co Production of low yield point high tensile steel plate with excellent processability
JPS54114426A (en) * 1978-02-27 1979-09-06 Kawasaki Steel Co Production of low yield point high tensile steel plate with excellent processability
JPS54163719A (en) * 1978-06-16 1979-12-26 Nippon Steel Corp Production of high tensile strength * low yield ratio and high extensibility composite textured steel panel with excellent workability

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5097514A (en) * 1973-12-29 1975-08-02
JPS5098419A (en) * 1973-12-30 1975-08-05
JPS5178734A (en) * 1974-12-28 1976-07-08 Kobe Steel Ltd Kokyodoreienkobanno seizoho
JPS54114425A (en) * 1978-02-27 1979-09-06 Kawasaki Steel Co Production of low yield point high tensile steel plate with excellent processability
JPS54114426A (en) * 1978-02-27 1979-09-06 Kawasaki Steel Co Production of low yield point high tensile steel plate with excellent processability
JPS54163719A (en) * 1978-06-16 1979-12-26 Nippon Steel Corp Production of high tensile strength * low yield ratio and high extensibility composite textured steel panel with excellent workability

Also Published As

Publication number Publication date
JPS5644723A (en) 1981-04-24

Similar Documents

Publication Publication Date Title
US7879160B2 (en) Cold rolled dual-phase steel sheet
EP3372703A1 (en) Ultra-high strength steel plate having excellent formability and hole-expandability, and method for manufacturing same
JP4071948B2 (en) High strength steel sheet having high bake hardenability at high pre-strain and its manufacturing method
KR102044693B1 (en) High strength cold rolled steel sheet and method of producing such steel sheet
CN109154051B (en) TWIP steel sheet with austenitic matrix
JP3233743B2 (en) High strength hot rolled steel sheet with excellent stretch flangeability
CN113840930A (en) Cold rolled and coated steel sheet and method for manufacturing the same
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JPH11279693A (en) Good workability/high strength hot rolled steel sheet excellent in baking hardenability and its production
JP2000265244A (en) Hot-dip galvanized steel sheet excellent in strength and ductility, and its manufacture
JP4367205B2 (en) Strain aging treatment method for steel sheet and method for producing high-strength structural member
JPS638164B2 (en)
JPH05195056A (en) Production of steel sheet having high ductility and high strength
EP2980228B1 (en) Manufacturing method for steel sheet
JP3451703B2 (en) High tensile cold rolled steel sheet for deep drawing with excellent strength-ductility balance and bake hardenability, and method for producing the same
JPH0665645A (en) Production of high ductility hot rolled high tensile strength steel sheet
JPH05195150A (en) Hot rolled high-strength steel sheet excellent in workability and its production
JP2658706B2 (en) Manufacturing method of high strength and high ductility cold rolled steel sheet with excellent aging resistance
JP2002003997A (en) Hot rolled steel plate excellent in strain aging hardening characteristic, and its manufacturing method
JP3718987B2 (en) Paint bake-hardening cold-rolled steel sheet excellent in aging resistance and method for producing the same
JP3175063B2 (en) Ferrite single-phase cold-rolled steel sheet for non-aging deep drawing at room temperature and method for producing the same
JPS63179046A (en) High-strength sheet metal excellent in workability and season cracking resistance and its production
JPH04333526A (en) Hot rolled high tensile strength steel plate having high ductility and its production
JPH0941040A (en) Production of high strength cold rolled steel sheet excellent in strength-flanging property
JPH05271759A (en) Manufacture of high strength hot rolled steel plate