JPH0941040A - Production of high strength cold rolled steel sheet excellent in strength-flanging property - Google Patents

Production of high strength cold rolled steel sheet excellent in strength-flanging property

Info

Publication number
JPH0941040A
JPH0941040A JP20008895A JP20008895A JPH0941040A JP H0941040 A JPH0941040 A JP H0941040A JP 20008895 A JP20008895 A JP 20008895A JP 20008895 A JP20008895 A JP 20008895A JP H0941040 A JPH0941040 A JP H0941040A
Authority
JP
Japan
Prior art keywords
less
steel sheet
temperature
weight
flangeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20008895A
Other languages
Japanese (ja)
Inventor
Goro Anami
吾郎 阿南
Tetsuo Toyoda
哲夫 十代田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP20008895A priority Critical patent/JPH0941040A/en
Publication of JPH0941040A publication Critical patent/JPH0941040A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the generation of an abnormal structure in a steel sheet and to impart excellent stretch-flanging properties thereto by specifying the compsn. of a low carbon steel and executing annealing after cold rolling at a two phase region temp. SOLUTION: The compsn. of a steel is composed of, by weight, 0.04 to <0.20% C, 0.50 to <2.00% Mn, <=1.50% Si, <=0.10% P, <=0.005% S, <=2.00% Cr, and the balance Fe with inevitable impurities. Preferably, at least one kind of element selected from the groups composed of <=1.0% Cu, <=0.0020% Ca, <=0.05% Ti, <=0.05% Nb, <=1.0% Ni and <=0.0020% rare earth metals is added thereto. The steel sheet having the above compsn. is subjected to cold rolling, is thereafter annealed in a two phase region, is subjected to cooling in such a manner that it stays in the temp. ragion of 650 deg.C to a temp. T deg.C at which pearlitic transformation stops for >=10sec and is subjected to water cooling so as to regulate the cooling time from the T deg.C to 450 deg.C to <=5sec.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、複雑なプレス加工
部品の原板として好適に用いることができる伸びフラン
ジ性にすぐれる高強度冷延鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength cold-rolled steel sheet having excellent stretch-flangeability, which can be suitably used as an original plate for a complicated stamped part.

【0002】[0002]

【従来の技術】伸びフランジ性を確保するためには、介
在物や硬質相の生成を制御し、打ち抜き断面の亀裂やボ
イドの発生を抑える必要がある。高強度冷延鋼板は、通
常、連続焼鈍設備を用いて製造されるが、未変態のオー
ステナイトが残存した状態で急冷すれば、マルテンサイ
ト等の硬質の組織が生成し、伸びフランジ性が劣化す
る。このマルテンサイトは、焼き戻すことによって、そ
れによる特性の劣化を低減することができるが、しか
し、これには工程数の増加によるコスト増等の問題が生
じる。
2. Description of the Related Art In order to secure stretch flangeability, it is necessary to control the generation of inclusions and hard phases to suppress the generation of cracks and voids in punched cross sections. High-strength cold-rolled steel sheet is usually manufactured using continuous annealing equipment, but if rapidly cooled in a state where untransformed austenite remains, a hard structure such as martensite is generated and stretch flangeability deteriorates. . By tempering this martensite, it is possible to reduce the deterioration of its characteristics, but this causes problems such as an increase in cost due to an increase in the number of steps.

【0003】後述するように、本発明者らは、500℃
以上で変態途中の鋼板を保持すると、細かなマルテンサ
イトが内在する異常な組織が生成する場合が多く、これ
によって伸びフランジ性が劣化することを見い出した。
従って、伸びフランジ性のよい冷延鋼板を得るために
は、このような異常組織の生成を避ける必要がある。し
かしながら、従来、この点を考慮した製造方法は、知ら
れておらず、従って、予期せざる伸びフランジ不良が発
生して、歩留まりの低下を生じることがある。
As will be described later, the present inventors have found that
As described above, it was found that holding a steel sheet in the process of transformation often produces an abnormal structure containing fine martensite, which deteriorates the stretch flangeability.
Therefore, in order to obtain a cold-rolled steel sheet having a good stretch flangeability, it is necessary to avoid generation of such an abnormal structure. However, a manufacturing method that takes this point into consideration has not been heretofore known, and therefore an unexpected stretch flange defect may occur, resulting in a decrease in yield.

【0004】例えば、特公昭49−1690号公報や特
公昭49−22285号公報には、Crを添加した伸び
フランジ性にすぐれる熱・冷延鋼板の製造方法が記載さ
れているが、しかし、焼鈍条件の規定がなく、必ずしも
十分な伸びフランジ性を得ることができない。特開昭5
2−46323号公報や特開昭56−75521号公報
においても、パーライト変態に注目した冷却制御が規定
されておらず、このため十分な伸びフランジ性を得るこ
とができない。
[0004] For example, Japanese Patent Publication No. Sho 49-1690 and Japanese Patent Publication No. Sho 22-22285 describe a method for producing a hot / cold rolled steel sheet containing Cr and having excellent stretch flange formability. There is no stipulation of annealing conditions, and it is not always possible to obtain sufficient stretch flangeability. JP 5
Even in JP-A 2-46323 and JP-A-56-75521, cooling control paying attention to pearlite transformation is not specified, and therefore sufficient stretch-flangeability cannot be obtained.

【0005】特開昭58−167750号公報には、ポ
リゴナルフェライト、ベイナイト及びマルテンサイトか
らなる冷延鋼板が記載されているが、このような鋼板
は、硬質のマルテンサイトを含むので、伸びフランジ性
に不利である。特開平3−277742号公報には、A
c3±50℃で焼鈍する方法が記載されているが、疑似パ
ーライトの析出を考慮した冷却を行なわないので、十分
な伸びフランジ性を得ることができるとは限らない。
Japanese Unexamined Patent Publication (Kokai) No. 58-167750 describes a cold-rolled steel sheet made of polygonal ferrite, bainite and martensite. Since such a steel sheet contains hard martensite, it has a stretch flange. It is disadvantageous to sex. Japanese Patent Laid-Open No. 3-277742 discloses A
Although a method of annealing at c 3 ± 50 ° C. is described, it is not always possible to obtain sufficient stretch-flangeability because cooling is not performed in consideration of precipitation of pseudo-pearlite.

【0006】以上のように、従来、伸びフランジ性の向
上を図った冷延鋼板の製造方法が種々、提案されている
ものの、異常組織の生成を避けるように考慮した製造方
法は知られていない。そこで、本発明者らは、高強度冷
延鋼板を連続焼鈍設備にて製造するに際して、異常組織
の発生を抑えて、すぐれた伸びフランジ性を有する鋼板
を製造する方法を確立すべく、種々の研究を行なった。
As described above, although various methods for manufacturing cold-rolled steel sheets having improved stretch flangeability have been proposed in the past, a manufacturing method that takes into consideration the generation of abnormal structure is not known. . Therefore, the present inventors, when producing a high-strength cold-rolled steel sheet in continuous annealing equipment, to suppress the occurrence of abnormal structure, to establish a method of producing a steel sheet having excellent stretch flangeability, various I did a research.

【0007】先ず、表1の鋼種H1の鋼板を図1に示す
ように、Ac1とAc3との間の温度である730℃に5分
間保持した後、Ac1より低い温度t(これを保持温度と
いう。)まで冷却し、その温度tに10秒間保持し、つ
いで、水焼入れを行なった。図2にこのような熱処理を
施した鋼板中の第2相中のパーライト分率を示す。パー
ライトは、上記保持温度tが650℃から540℃の間
の温度である場合にのみ、第2相中にみられる。図2の
結果から、鋼種H1の鋼板を図1に示した条件で熱処理
した場合、パーライト変態の停止温度Tは540℃であ
る。
First, as shown in FIG. 1, a steel sheet of steel type H1 in Table 1 was held at 730 ° C., which is a temperature between Ac 1 and Ac 3 , for 5 minutes, and then a temperature t lower than Ac 1 ( The holding temperature was maintained for 10 seconds, and then water quenching was performed. FIG. 2 shows the pearlite fraction in the second phase in the steel sheet subjected to such heat treatment. Perlite is found in the second phase only when the holding temperature t is between 650 ° C and 540 ° C. From the result of FIG. 2, when the steel sheet of the steel type H1 is heat-treated under the conditions shown in FIG. 1, the pearlite transformation stop temperature T is 540 ° C.

【0008】図3は、650℃から温度Tまでの範囲の
温度での滞留時間が穴拡げ性(λ)に及ぼす影響を示
す。穴拡げ性(λ)、打ち抜き穴を円錐ポンチで亀裂が
生じるまで拡げた際の穴径の拡大率であって、λが大き
いほど、伸びフランジ性がよい。図3から明らかなよう
に、前記した650℃から温度Tまでの範囲の温度での
滞留時間が長いほど、λが高い。しかし、実用上、この
滞留時間の上限は、20秒程度である。
FIG. 3 shows the influence of the residence time at the temperature in the range from 650 ° C. to the temperature T on the hole expandability (λ). Hole expandability (λ), which is the expansion ratio of the hole diameter when a punched hole is expanded by a conical punch until a crack occurs, and the larger λ, the better the stretch flangeability. As is clear from FIG. 3, the longer the residence time at the temperature in the range from 650 ° C. to the temperature T, the higher λ. However, in practice, the upper limit of this residence time is about 20 seconds.

【0009】図4は、滞留時間が12秒のものについ
て、温度Tから450℃までの範囲の温度での滞留時間
が穴拡げ性(λ)に及ぼす影響を示す。この滞留時間が
短いほど、穴拡げ性(λ)が良好である。この原因は、
完全には明らかではないが、650℃からパーライト変
態の停止温度Tまでの間に、パーライトに変態できなか
った未変態のオーステナイトが温度Tから450℃まで
の間に伸びフランジ性に有害な組織に変態してしまうた
めと推定される。温度Tから450℃までの範囲の温度
での保持時間が短かければ、有害な組織も少なくなり、
伸びフランジ性が良好になる。反対に、温度Tから45
0℃までの範囲の温度での保持時間が短かくても、未変
態のオーテスナイトの量が多ければ、有害組織の量や硬
質の低温変態生成物の量が多くなるので、650℃から
Tまでの保持時間が短いときは、伸びフランジ性が劣化
する。原理的には、温度Tから450℃までの温度域を
極めて早く冷却すれば異常組織は析出しないはずである
が、実験した以上の冷却速度は、熱歪みによって、板の
平坦度を悪くし、平坦度修正のためコストが増大する。
通常、実用的には、1〜5秒の範囲である。
FIG. 4 shows the effect of the residence time at the temperature range from T to 450 ° C. on the hole expandability (λ) for the residence time of 12 seconds. The shorter the residence time, the better the hole expandability (λ). This is because
Although it is not completely clear, untransformed austenite that could not be transformed into pearlite from 650 ° C to the stop temperature T of pearlite transformation became a structure detrimental to stretch-flangeability between temperature T and 450 ° C. It is presumed that it will be transformed. If the holding time in the temperature range from the temperature T to 450 ° C is short, the harmful tissues are reduced,
Good stretch flangeability. On the contrary, from the temperature T to 45
Even if the holding time at temperatures up to 0 ° C is short, if the amount of untransformed autesnite is large, the amount of harmful structures and the amount of hard low-temperature transformation products are large, so from 650 ° C to T When the holding time is short, the stretch flangeability deteriorates. In principle, if the temperature range from the temperature T to 450 ° C. is cooled very quickly, no abnormal structure should be precipitated, but the cooling rate above the experiment deteriorates the flatness of the plate due to thermal strain, The cost is increased due to the flatness correction.
Usually, it is practically in the range of 1 to 5 seconds.

【0010】後述するように、パーライト変態の停止温
度Tは、鋼の成分に依存する。また、Ac1とAc3点の間
で保持した際のオーステナイト中のC濃度にも依存す
る。かくして、本発明によれば、鋼の成分や熱処理に応
じて、温度Tを測定し、650℃からTまでの範囲の温
度での滞留時間を10秒以上とし、Tから450℃まで
の範囲の温度での滞留時間を5秒以下となるように冷却
することによって、伸びフランジ性にすぐれた高強度冷
延鋼板を得ることができる。
As will be described later, the stop temperature T of the pearlite transformation depends on the composition of the steel. It also depends on the C concentration in austenite when held between points Ac 1 and Ac 3 . Thus, according to the present invention, the temperature T is measured according to the composition of the steel and the heat treatment, and the residence time at the temperature in the range of 650 ° C. to T is set to 10 seconds or longer, and the temperature in the range of T to 450 ° C. is set. A high-strength cold-rolled steel sheet having excellent stretch-flangeability can be obtained by cooling so that the residence time at the temperature is 5 seconds or less.

【0011】従来は、このように、鋼の成分や熱処理の
条件によって変動する最適の製造条件を設定することが
できないので、伸びフランジ性の良好な冷延鋼板を高い
歩留まりで製造することができない。図5は、Cr量が
温度Tに及ぼす影響を示す図であり、図6は、オーステ
ナイト中のC濃度が温度Tに及ぼす影響を示す図であ
る。オーステナイト中のC濃度は、鋼の成分が同じで
も、2相域でのオーステナイト化の温度変化を変えるこ
とで変動する。温度Tが鋼の成分や熱処理の条件によっ
て変動することが明らかである。
[0011] Conventionally, as described above, it is not possible to set the optimum manufacturing conditions that fluctuate depending on the composition of the steel and the conditions of heat treatment, and therefore it is not possible to manufacture a cold-rolled steel sheet having a good stretch flangeability at a high yield. . FIG. 5 is a diagram showing the influence of the Cr amount on the temperature T, and FIG. 6 is a diagram showing the influence of the C concentration in the austenite on the temperature T. The C concentration in austenite fluctuates by changing the temperature change of austenitization in the two-phase region even if the steel composition is the same. It is clear that the temperature T varies depending on the composition of the steel and the heat treatment conditions.

【0012】[0012]

【発明が解決しようとする課題】本発明は、上述した知
見に基づいてなされたものであって、高強度冷延鋼板を
連焼設備にて製造するに際して、異常組織の発生を抑え
て、すぐれた伸びフランジ性を有する鋼板を製造する方
法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made based on the above-mentioned findings, and when manufacturing a high-strength cold-rolled steel sheet in a continuous firing facility, it suppresses the occurrence of an abnormal structure and is excellent. It is an object of the present invention to provide a method for producing a steel sheet having stretch flangeability.

【0013】[0013]

【課題を解決するための手段】本発明による伸びフラン
ジ性にすぐれる高強度冷延鋼板の製造方法は、重量%に
てC 0.04%以上、0.20重量%未満、Mn 0.5
0%以上、2.00重量%未満、Si 1.50重量%以
下、P 0.10重量%以下、S 0.005重量%以
下、Cr 2.00重量%以下 残部鉄及び不可避的不純物よりなる鋼板を冷間圧延した
後、焼鈍を2相域で行ない、650℃とパーライト変態
が停止する温度Tとの間の範囲の温度に10秒以上滞在
するよう冷却し、Tから450℃までの範囲の温度での
滞在時間を5秒以下となるように冷却することを特徴と
する。
A method for producing a high-strength cold-rolled steel sheet excellent in stretch-flangeability according to the present invention is C 0.04% or more by weight%, less than 0.20% by weight, and Mn 0.5.
0% or more, less than 2.00% by weight, Si 1.50% by weight or less, P 0.10% by weight or less, S 0.005% by weight or less, Cr 2.00% by weight or less Residual iron and inevitable impurities After cold rolling the steel sheet, it is annealed in the two-phase region, cooled so that it stays at a temperature between 650 ° C. and the temperature T at which pearlite transformation stops for 10 seconds or more, and then from T to 450 ° C. It is characterized in that it is cooled so that the residence time at the temperature is 5 seconds or less.

【0014】本発明においては、用いる鋼板は、上記の
元素のほか、必要に応じて、Cu 1.0重量%以下、C
a 0.0020重量%以下、Ti 0.05重量%以下、
Nb 0.05重量%以下 REM 0.0020重量%以下、Ni 1.0重量%以下
よりなる群から選ばれる少なくとも1種の元素を含んで
いてもよい。
In the present invention, the steel sheet to be used is, in addition to the above-mentioned elements, Cu 1.0% by weight or less and C, if necessary.
a 0.0020% by weight or less, Ti 0.05% by weight or less,
Nb: 0.05 wt% or less REM: 0.0020 wt% or less, Ni: 1.0 wt% or less, may contain at least one element selected from the group consisting of.

【0015】[0015]

【発明の実施の形態】先ず、本発明において、用いる鋼
板の化学成分について説明する。Cは、得られる鋼板に
おいて、所要の強度を確保するために必要であって、添
加量が0.04重量%未満のときは、強度が不足する。し
かし、添加量が0.20重量%以上では、硬質のセメンタ
イト相の量が増加し、また、硬質の低温変態生成物が多
くなり、伸びフランジ性が不足する。特に、本発明にお
いては、C量は、0.08〜0.16重量%の範囲が好まし
い。
BEST MODE FOR CARRYING OUT THE INVENTION First, the chemical composition of a steel sheet used in the present invention will be described. C is necessary to secure the required strength in the obtained steel sheet, and when the addition amount is less than 0.04% by weight, the strength is insufficient. However, if the addition amount is 0.20% by weight or more, the amount of the hard cementite phase increases, and the hard low-temperature transformation product increases, resulting in insufficient stretch flangeability. Particularly, in the present invention, the amount of C is preferably in the range of 0.08 to 0.16% by weight.

【0016】Mnも、得られる鋼板において、所要の強
度を確保するために必要であって、添加量が0.50重量
%未満のときは、強度が不足する。しかし、添加量が2.
00重量%以上では、硬質のマルテンサイトが生じやす
く、伸びフランジ性が劣化する。特に、本発明において
は、Mn量は、0.80〜1.60重量%の範囲が好まし
い。
[0016] Mn is also necessary to secure the required strength in the obtained steel sheet, and when the addition amount is less than 0.50% by weight, the strength becomes insufficient. However, the amount added is 2.
When it is more than 00% by weight, hard martensite is apt to occur and stretch flangeability is deteriorated. Particularly, in the present invention, the amount of Mn is preferably in the range of 0.80 to 1.60% by weight.

【0017】Siは、その量が1.50重量%を越えると
きは、伸びフランジ性に有害で不安定な残留オーステナ
イトを生じやすい。Pは、その量が0.10重量%を越え
るときは、鋼が脆化してもろくなる。Sは、0.005重
量%を越えるときは、伸びフランジ性に有害なSの析出
物が増大し、伸びフランジ性が劣化する。
When the amount of Si exceeds 1.50% by weight, residual austenite which is detrimental to stretch flangeability and unstable is likely to be produced. When the amount of P exceeds 0.10% by weight, it becomes brittle even if the steel becomes brittle. When S exceeds 0.005% by weight, the precipitates of S, which are harmful to the stretch-flange formability, increase and the stretch-flange formability deteriorates.

【0018】Crは、鋼板の高強度化のために、必要に
応じて添加される。しかし、添加量が2.00重量%を越
えるときは、通常の連続焼鈍工程ではパーライトの析出
が困難となり、伸びフランジ性に有害な組織が生成する
温度域において、多量の未変態オーステナイトが残存
し、未変態オーステナイトが伸びフランジ性に有害な異
常組織に変態する。パーライトを十分に析出させれば、
未変態オーステナイトの量が少なくなるので、異常組織
が析出する温度域をできるだけ速く冷却すれば、異常組
織の量を伸びフランジ性が劣化しない程度に抑えること
が可能になる。好ましくは、Cr量は、1.20重量%以
下である。
[0018] Cr is added as needed to increase the strength of the steel sheet. However, when the amount added exceeds 2.00% by weight, precipitation of pearlite becomes difficult in the normal continuous annealing process, and a large amount of untransformed austenite remains in the temperature range where a structure detrimental to stretch-flangeability is generated. , Untransformed austenite transforms into an abnormal structure that is harmful to stretch flangeability. If pearlite is sufficiently deposited,
Since the amount of untransformed austenite decreases, if the temperature range in which the abnormal structure precipitates is cooled as fast as possible, the amount of the abnormal structure can be suppressed to such an extent that the stretch flangeability does not deteriorate. Preferably, the Cr content is 1.20% by weight or less.

【0019】CuやNiは、その添加によって、本発明
の効果に有害な影響を及ぼすことがないので、必要に応
じて、添加してもよい。Cuは、析出強化や耐食性の改
善等に有用であるが、Cuの添加によって、熱間加工割
れや表面割れが生じやすい問題がある。そこで、これを
抑えるために、NiをCuの半分から同量程度、添加す
ることか有用である。しかし、Cuの添加量が1%を越
えるときは、上記効果が飽和するのみならず、経済的に
も不利である。Niの添加量も、1%以下がコストの観
点から望ましい。
Since Cu and Ni do not adversely affect the effects of the present invention by their addition, they may be added if necessary. Cu is useful for precipitation strengthening, improvement of corrosion resistance, etc., but there is a problem that hot working cracks and surface cracks easily occur due to addition of Cu. Therefore, in order to suppress this, it is useful to add Ni in the same amount from half of Cu. However, when the added amount of Cu exceeds 1%, not only the above effects are saturated, but also economically disadvantageous. The amount of Ni added is also preferably 1% or less from the viewpoint of cost.

【0020】CaとREMは、伸びフランジ性を改善す
るのに有用である。本発明による上記元素と組み合わせ
ることによって伸びフランジ性を一層向上させることが
できる。しかし、過多に添加するときは、介在物が増加
するので、添加量は0.0020重量%以下の範囲が好ま
しい。
Ca and REM are useful for improving stretch flangeability. By combining with the above elements according to the present invention, stretch flangeability can be further improved. However, when excessively added, inclusions increase, so the addition amount is preferably in the range of 0.0020% by weight or less.

【0021】TiとNbは、本発明の効果に有害な影響
を与えないので、必要に応じて、添加してもよい。Ti
は、S析出物の性質を改善することによって伸びフラン
ジ性を改善するのに有用であり、また、Nbは、鋼板の
高強度化のために有用であるが、しかし、いずれの元素
も、過多に添加しても、製品価格を高くするので、それ
ぞれ、その添加量は0.05%以下とする。
Since Ti and Nb do not adversely affect the effects of the present invention, they may be added if necessary. Ti
Is useful for improving the stretch-flangeability by improving the properties of S precipitates, and Nb is useful for increasing the strength of the steel sheet. However, both elements are excessive. However, since the product price will be increased even if added to, the amount of each added should be 0.05% or less.

【0022】本発明の方法によれば、上述したような成
分を有する鋼板を冷間圧延した後、焼鈍を2相域で行な
い、650℃からパーライト変態の停止温度Tまでの範
囲の温度で10秒以上滞在するように冷却すると共に、
上記パーライト変態の停止温度Tから450℃までの範
囲の温度での滞在時間を5秒以下となるように冷却する
ことによって、伸びフランジ性にすぐれる高強度冷延鋼
板を得る。
According to the method of the present invention, after cold rolling a steel sheet having the above-mentioned components, annealing is carried out in the two-phase region, and the temperature is in the range from 650 ° C. to the pearlite transformation stop temperature T for 10 times. While cooling to stay for more than a second,
A high-strength cold-rolled steel sheet having excellent stretch-flange formability is obtained by cooling the pearlite transformation at a temperature in the range from the stop temperature T to 450 ° C. for 5 seconds or less.

【0023】本発明によれば、連続焼鈍を2相域で行な
うことが必要である。連続焼鈍をオーステナイト単相域
で行なうときは、本発明にて規定する化学成分を有する
鋼板においては、パーライトの析出が困難になり、異常
組織の生成を抑えることが困難になる。異常組織の生成
を抑えるためには、異常組織の析出する温度域を極めて
速冷却する必要があるので、板の平坦度が悪くなり、平
坦度修正のためのコストが増大する。オーステナイトへ
の逆変態が生じないような低い温度で連続焼鈍を行うと
きは、再結晶に時間がかかるので、通板速度を下げる必
要があり、生産性が悪くなる。
According to the present invention, it is necessary to carry out continuous annealing in the two-phase region. When the continuous annealing is performed in the austenite single phase region, in the steel sheet having the chemical composition defined in the present invention, it becomes difficult to precipitate pearlite and it is difficult to suppress the formation of an abnormal structure. In order to suppress the generation of the abnormal structure, it is necessary to cool the temperature range in which the abnormal structure is precipitated extremely rapidly, so that the flatness of the plate becomes poor and the cost for correcting the flatness increases. When continuous annealing is performed at a low temperature at which reverse transformation to austenite does not occur, recrystallization takes time, so it is necessary to reduce the strip running speed, resulting in poor productivity.

【0024】かくして、本発明によれば、連続焼鈍を2
相域で行なった後、図3に示したように、650℃から
パーライト変態が停止する温度Tまでの間を10秒以上
の時間、滞在するように冷却することによって、伸びフ
ランジ性を向上させることができる。この伸びフランジ
性の向上は、オーステナイトがパーライトに変態し、伸
びフランジ性に有害な組織に変態するオーテスナイトの
量が減少するためと思われる。
Thus, according to the present invention, continuous annealing is performed in two steps.
After performing in the phase region, as shown in FIG. 3, the stretch flangeability is improved by cooling so as to stay for 10 seconds or more from 650 ° C. to the temperature T at which the pearlite transformation stops. be able to. This improvement in stretch-flangeability is considered to be because austenite transforms into pearlite, and the amount of autesnite that transforms into a structure detrimental to stretch-flangeability decreases.

【0025】次いで、本発明によれば、図4に示したよ
うに、上記パーライト変態が停止する温度Tから450
℃までの間の滞在時間を5秒以下となるように冷却する
ことによって、伸びフランジ性を向上させることができ
る。これによる伸びフランジ性の向上の原因は、完全に
は明らかではないが、伸びフランジ性に有害な異常組織
の量が減少するためと考えられる。
Next, according to the present invention, as shown in FIG. 4, the temperature from the temperature T at which the pearlite transformation is stopped to 450
The stretch-flangeability can be improved by cooling so that the residence time up to ° C is 5 seconds or less. The cause of the improvement in stretch-flangeability is not completely clear, but it is considered that the amount of abnormal tissue harmful to stretch-flangeability is reduced.

【0026】[0026]

【実施例】表1及び表2に示す化学成分を有する鋼板を
表3から表5に示す条件にて熱処理し、その結果、得ら
れた鋼板の機械的性質を表3から表5に示す。本発明に
よる鋼板は、すぐれた伸びフランジ性を有している。鋼
種C6の鋼のように、Crの量が多いときは、パーライ
トの析出が困難になり、パーライト析出の停止温度を測
定できない。また、C7の鋼種の鋼では、合金元素の量
が少なく、パーライト変態が停止しない。本発明の方法
は、パーライト変態の停止温度が測定できる鋼について
のみ、適用することができる。
EXAMPLES Steel sheets having the chemical compositions shown in Tables 1 and 2 were heat treated under the conditions shown in Tables 3 to 5, and as a result, the mechanical properties of the obtained steel sheets are shown in Tables 3 to 5. The steel sheet according to the present invention has excellent stretch flangeability. When the amount of Cr is large like the steel of the steel type C6, it becomes difficult to precipitate pearlite, and the stop temperature of pearlite precipitation cannot be measured. Further, in the steel of the C7 steel type, the amount of alloying elements is small and the pearlite transformation does not stop. The method of the present invention can be applied only to steel whose pearlite transformation stop temperature can be measured.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【表4】 [Table 4]

【0031】[0031]

【表5】 [Table 5]

【0032】[0032]

【発明の効果】本発明の方法によれば、高強度冷延鋼板
を連続焼鈍設備にて製造するに際して、異常組織の発生
を抑えて、すぐれた伸びフランジ性を有する鋼板を製造
することができ、かくして、本発明による鋼板を用いる
ことによって、プレス部品の原板の薄肉化が可能にな
り、例えば、自動車の車体重量の軽量化に寄与すること
ができる。また、本発明による鋼板は、これに溶融亜鉛
めっき等を付与しても、何ら特性が損なわれるものでは
ない。
According to the method of the present invention, when a high-strength cold-rolled steel sheet is manufactured by continuous annealing equipment, it is possible to suppress the occurrence of abnormal structure and manufacture a steel sheet having excellent stretch-flangeability. Thus, by using the steel sheet according to the present invention, it becomes possible to reduce the thickness of the original plate of the pressed part, which can contribute to the weight reduction of the vehicle body of an automobile, for example. Further, the properties of the steel sheet according to the present invention are not impaired even if hot dip galvanizing or the like is applied thereto.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、供試材の実験を行なった熱処理条件を示す
グラフである。
FIG. 1 is a graph showing heat treatment conditions under which an experiment of a test material was performed.

【図2】は、2相域焼鈍の後の保持温度と第2相中のパ
ーライト分率との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the holding temperature after two-phase region annealing and the pearlite fraction in the second phase.

【図3】は、650℃からパーライト変態停止温度Tま
での範囲の温度での滞留時間が伸びフランジ性(λ)に
及ぼす影響を示すグラフである。
FIG. 3 is a graph showing the influence of the residence time at a temperature in the range from 650 ° C. to the pearlite transformation stop temperature T on the stretch flangeability (λ).

【図4】は、Tから500℃までの範囲の温度での滞留
時間が伸びフランジ性(λ)に及ぼす影響を示すグラフ
である。
FIG. 4 is a graph showing the effect of residence time at a temperature in the range from T to 500 ° C. on stretch flangeability (λ).

【図5】は、パーライト変態の停止温度Tに及ぼすCr
量の影響を示すグラフである。
FIG. 5 shows the effect of Cr on the stop temperature T of pearlite transformation.
It is a graph which shows the influence of quantity.

【図6】は、パーライト変態の停止温度Tに及ぼすオー
ステナイト中のC濃度の影響を示すグラフである。
FIG. 6 is a graph showing the effect of C concentration in austenite on the stop temperature T of pearlite transformation.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/50 C22C 38/50 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C22C 38/50 C22C 38/50

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%にてC 0.04%以上、0.20重
量%未満、 Mn 0.50%以上、2.00重量%未満、 Si 1.50重量%以下、 P 0.10重量%以下、 S 0.005重量%以下、 Cr 2.00重量%以下 残部鉄及び不可避的不純物よりなる鋼板を冷間圧延した
後、焼鈍を2相域で行ない、650℃とパーライト変態
が停止する温度Tとの間の温度に10秒以上滞在するよ
うに冷却し、Tから450℃までの滞在時間を5秒以下
となるように冷却することを特徴とする伸びフランジ性
にすぐれる高強度冷延鋼板の製造方法。
1. C wt.% 0.04% or more, less than 0.20 wt%, Mn 0.50% or more, less than 2.00 wt%, Si 1.50 wt% or less, P 0.10 wt% % Or less, S 0.005% by weight or less, Cr 2.00% by weight or less After cold rolling a steel sheet composed of balance iron and unavoidable impurities, annealing is performed in the two-phase region, and pearly transformation stops at 650 ° C. High-strength cold with excellent stretch-flangeability, characterized by cooling so that it stays at a temperature between T and 10 seconds or more, and so that the staying time from T to 450 ° C. becomes 5 seconds or less. Manufacturing method of rolled steel sheet.
【請求項2】(a) C 0.04%以上、0.20重量%未
満、 Mn 0.50%以上、2.00重量%未満、 Si 1.50重量%以下、 P 0.10重量%以下、 S 0.005重量%以下、 Cr 2.00重量%以下を含み、更に、(b) Cu 1.0
重量%以下、 Ca 0.0020重量%以下、 Ti 0.05重量%以下、 Nb 0.05重量%以下 REM 0.0020重量%以下、 Ni 1.0重量%以下よりなる群から選ばれる少なくと
も1種の元素を含み、残部鉄及び不可避的不純物よりな
る鋼板を冷間圧延した後、焼鈍を2相域で行ない、65
0℃とパーライト変態が停止する温度Tとの間の温度に
10秒以上滞在するように冷却し、Tから450℃まで
の滞在時間を5秒以下となるように冷却することを特徴
とする伸びフランジ性にすぐれる高強度冷延鋼板の製造
方法。
(A) C 0.04% or more, less than 0.20% by weight, Mn 0.50% or more, less than 2.00% by weight, Si 1.50% by weight or less, P 0.10% by weight. Hereinafter, S 0.005 wt% or less, Cr 2.00 wt% or less, and (b) Cu 1.0
At least 1 selected from the group consisting of wt% or less, Ca 0.0020 wt% or less, Ti 0.05 wt% or less, Nb 0.05 wt% or less, REM 0.0000 wt% or less, Ni 1.0 wt% or less After cold rolling a steel sheet containing the other elements and the balance iron and unavoidable impurities, annealing is performed in the two-phase region,
Elongation characterized by cooling so that it stays at a temperature between 0 ° C. and a temperature T at which pearlite transformation stops for 10 seconds or more, and so that the staying time from T to 450 ° C. becomes 5 seconds or less. A method for producing a high-strength cold-rolled steel sheet having excellent flangeability.
JP20008895A 1995-08-04 1995-08-04 Production of high strength cold rolled steel sheet excellent in strength-flanging property Pending JPH0941040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20008895A JPH0941040A (en) 1995-08-04 1995-08-04 Production of high strength cold rolled steel sheet excellent in strength-flanging property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20008895A JPH0941040A (en) 1995-08-04 1995-08-04 Production of high strength cold rolled steel sheet excellent in strength-flanging property

Publications (1)

Publication Number Publication Date
JPH0941040A true JPH0941040A (en) 1997-02-10

Family

ID=16418662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20008895A Pending JPH0941040A (en) 1995-08-04 1995-08-04 Production of high strength cold rolled steel sheet excellent in strength-flanging property

Country Status (1)

Country Link
JP (1) JPH0941040A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2017363A2 (en) 2002-06-14 2009-01-21 JFE Steel Corporation High strength cold-rolled steel sheet and method for manufacturing the same
US7507307B2 (en) 2002-06-10 2009-03-24 Jfe Steel Corporation Method for producing cold rolled steel plate of super high strength
WO2012033210A1 (en) 2010-09-06 2012-03-15 Jfeスチール株式会社 High-strength cold-rolled steel sheet having excellent stretch flange properties, and process for production thereof
WO2020121034A1 (en) * 2018-12-13 2020-06-18 Arcelormittal Steels for laser cutting

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7507307B2 (en) 2002-06-10 2009-03-24 Jfe Steel Corporation Method for producing cold rolled steel plate of super high strength
EP2017363A2 (en) 2002-06-14 2009-01-21 JFE Steel Corporation High strength cold-rolled steel sheet and method for manufacturing the same
WO2012033210A1 (en) 2010-09-06 2012-03-15 Jfeスチール株式会社 High-strength cold-rolled steel sheet having excellent stretch flange properties, and process for production thereof
WO2020121034A1 (en) * 2018-12-13 2020-06-18 Arcelormittal Steels for laser cutting
WO2020121088A1 (en) * 2018-12-13 2020-06-18 Arcelormittal Method of laser cutting a steel

Similar Documents

Publication Publication Date Title
US11111553B2 (en) High-strength steel sheet and method for producing the same
JP3857939B2 (en) High strength and high ductility steel and steel plate excellent in local ductility and method for producing the steel plate
JP4071948B2 (en) High strength steel sheet having high bake hardenability at high pre-strain and its manufacturing method
JP2601581B2 (en) Manufacturing method of high strength composite structure cold rolled steel sheet with excellent workability
JP3233743B2 (en) High strength hot rolled steel sheet with excellent stretch flangeability
JP2007177272A (en) High-strength cold-rolled steel sheet superior in hole expandability, and manufacturing method therefor
JPS61217529A (en) Manufacture of high strength steel sheet superior in ductility
JP2004232022A (en) Dual phase type high tensile strength steel sheet having excellent elongation and stretch flanging property, and production method therefor
JP2007177271A (en) High-strength cold-rolled steel sheet superior in hole expandability, and manufacturing method therefor
US20040118489A1 (en) Dual phase hot rolled steel sheet having excellent formability and stretch flangeability
JP4457681B2 (en) High workability ultra-high strength cold-rolled steel sheet and manufacturing method thereof
KR101917452B1 (en) Cold rolled steel sheet with excellent bendability and hole expansion property, and method for manufacturing the same
WO2013051714A1 (en) Steel plate and method for producing same
CN113840930A (en) Cold rolled and coated steel sheet and method for manufacturing the same
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4265153B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JPH0759726B2 (en) Method for manufacturing high strength cold rolled steel sheet with excellent local ductility
CN108950150A (en) Manganese Q&amp;P steel heat treatment process in superhigh intensity cold rolling based on complete austenitizing
JP2004300452A (en) Method for producing high strength cold-rolled steel sheet having excellent impact property and shape-fixability
JPH1180890A (en) High strength hot rolled steel plate and its production
JP3918589B2 (en) Steel plate for heat treatment and manufacturing method thereof
KR101830538B1 (en) Ultra high strength steel sheet having excellent yield ratio, and method for manufacturing the same
JPH10237547A (en) Cold rolled steel sheet with high ductility and high strength, and its production
JP2005154872A (en) Method for manufacturing high-strength cold-rolled steel sheet superior in formability for extension flange
JPH0941040A (en) Production of high strength cold rolled steel sheet excellent in strength-flanging property