JP2007177271A - High-strength cold-rolled steel sheet superior in hole expandability, and manufacturing method therefor - Google Patents

High-strength cold-rolled steel sheet superior in hole expandability, and manufacturing method therefor Download PDF

Info

Publication number
JP2007177271A
JP2007177271A JP2005375374A JP2005375374A JP2007177271A JP 2007177271 A JP2007177271 A JP 2007177271A JP 2005375374 A JP2005375374 A JP 2005375374A JP 2005375374 A JP2005375374 A JP 2005375374A JP 2007177271 A JP2007177271 A JP 2007177271A
Authority
JP
Japan
Prior art keywords
steel sheet
rolled
cold
strength
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005375374A
Other languages
Japanese (ja)
Other versions
JP4772496B2 (en
Inventor
Shigeto Takebayashi
重人 竹林
Naoki Yoshinaga
直樹 吉永
Masashi Azuma
昌史 東
Nobuhiro Fujita
展弘 藤田
Manabu Takahashi
学 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005375374A priority Critical patent/JP4772496B2/en
Publication of JP2007177271A publication Critical patent/JP2007177271A/en
Application granted granted Critical
Publication of JP4772496B2 publication Critical patent/JP4772496B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength cold-rolled steel sheet which has a tensile strength of 1,100 MPa or higher and has such superior hole-expandability as 40% or higher by a hole-expansion rate, and to provide a manufacturing method therefor. <P>SOLUTION: This high-strength cold-rolled steel sheet has a composition comprising, by mass%, 0.05-0.22% C, 0.001-0.8% Si, 2.0-3.0% Mn, 0.001-0.1% P, 0.0001-0.01% S, 0.001-0.2% Al, 0.0001-0.01% B, 0.005-0.3% Ti, and the balance Fe with unavoidable impurities; and has a microstructure comprising a martensite phase of 50-90 vol.%, a hard bainite phase of 5-35 vol.%, a soft bainite phase of 35% or less and a retained austenite of 0.1-5 vol.%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、建材、家電製品及び自動車等の用途に好適な穴拡げ性に優れた高強度冷延薄鋼板及びその製造方法に関する。   The present invention relates to a high-strength cold-rolled steel sheet excellent in hole expansibility suitable for applications such as building materials, home appliances, and automobiles, and a method for producing the same.

近年、特に自動車車体においては、燃費向上及び耐久性向上の観点から、加工性が優れた高強度鋼板の需要が高まっている。特に、衝突安全性及びキャビンスペースの拡大のニーズから、レインフォース等の一部の部材には、引張強度にして780MPa級クラス以上の鋼板が使用されつつある。   In recent years, especially in automobile bodies, demand for high-strength steel sheets with excellent workability is increasing from the viewpoint of improving fuel efficiency and durability. In particular, steel sheets of a 780 MPa class or higher in tensile strength are being used for some members such as reinforcement because of the need for collision safety and expansion of cabin space.

このような高強度材を用いて部材を組みあげる時には、延性、曲げ性及び穴拡げ性等が重要となる。このため、従来、引張強度で590MPa程度までの高強度鋼板においては、これらの特性を向上させるために種々の対策が講じられている(例えば、非特許文献1参照)。例えば、非特許文献1には、主相をベイナイトにすることにより穴拡げ性を向上させることができ、更に第2相に残留オーステナイトを生成させることにより、現行の残留オーステナイト鋼と同等の張り出し成形性が得られることが開示されている。また、非特許文献1には、Ms温度以下でオーステンパ処理して、体積率で2〜3%の残留オーステナイトを生成させると、引張強度と穴拡げ率との積が最大となり、伸びフランジ性を改善できることも示されている。   When a member is assembled using such a high-strength material, ductility, bendability, hole expansibility, and the like are important. For this reason, conventionally, various measures have been taken to improve these properties in high-strength steel sheets having a tensile strength of up to about 590 MPa (for example, see Non-Patent Document 1). For example, in Non-Patent Document 1, the hole expandability can be improved by using bainite as the main phase, and by forming retained austenite in the second phase, the same stretched forming as that of the current retained austenitic steel. It is disclosed that the property can be obtained. Further, in Non-Patent Document 1, when austempering is performed at a temperature equal to or lower than the Ms temperature to generate a retained austenite having a volume ratio of 2 to 3%, the product of the tensile strength and the hole expansion ratio is maximized, and stretch flangeability is obtained. It has also been shown that it can be improved.

また、従来の高強度鋼板においては、一般に、高強度材の高延性化を図るため、複合組織を積極的に活用しているが、第2相をマルテンサイト又は残留オーステナイトにすると、穴拡げ性が著しく低下してしまうという問題がある。そこで、従来、主相をフェライトとすると共に、第2相をマルテンサイトとして、主相と第2相との硬度差を減少させることにより、穴拡げ性を向上させる技術が開示されている(例えば、非特許文献2参照。)。   Also, in conventional high-strength steel sheets, the composite structure is actively used to increase the ductility of high-strength materials. However, if the second phase is martensite or retained austenite, the hole expandability There is a problem that remarkably decreases. Therefore, conventionally, a technique has been disclosed in which the hole expandability is improved by reducing the hardness difference between the main phase and the second phase by using ferrite as the main phase and martensite as the second phase (for example, Non-patent document 2).

更に、引張強度が900MPa以上の高強度鋼板についても、穴拡げ性向上を図った開示例もある(例えば、特許文献1〜5参照。)。特許文献1に記載の方法では、熱間圧延時の仕上圧延温度をAr点〜Ar点の範囲とすると共に、冷延鋼板の焼鈍条件を加熱温度:Ac点〜850℃、加熱時間:10秒以上、平均冷却速度:10℃/秒以上とし、更に、めっき処理後の合金化温度を450〜600℃の範囲とすることにより、オーステナイト相を硬質相に変態させて、製造される合金化溶融亜鉛めっき高強度冷延鋼板の引張り強さを680MPa(70kgf/mm)以上、降伏比を0.50以下にしている。 Furthermore, there are also disclosed examples in which the hole expandability is improved for high-strength steel sheets having a tensile strength of 900 MPa or more (see, for example, Patent Documents 1 to 5). In the method described in Patent Document 1, the finish rolling temperature during hot rolling is in the range of Ar 1 point to Ar 3 point, and the annealing conditions of the cold-rolled steel sheet are the heating temperature: Ac 1 point to 850 ° C., heating time. : 10 seconds or more, average cooling rate: 10 ° C./second or more, and further, the alloying temperature after plating is in the range of 450 to 600 ° C. to transform the austenite phase into a hard phase. The tensile strength of the alloyed hot-dip galvanized high-strength cold-rolled steel sheet is 680 MPa (70 kgf / mm 2 ) or more, and the yield ratio is 0.50 or less.

また、特許文献2に記載の方法では、鋼組成を規定すると共に、再結晶焼鈍加熱温度から亜鉛めっき温度までの冷却温度を制御することにより、C濃度が低いオーステナイトを、ベイナイトを主体とした微細均一なフェライト・ベイナイトの複合組織又はフェライト・ベイナイト・マルテンサイトの複合組織とし、引張強度が490MPa(50kgf/mm)以上、特に、580〜1170MPa(60〜120kgf/mm)級の高強度鋼板における穴拡げ性を向上させている。 Further, in the method described in Patent Document 2, the steel composition is defined and the cooling temperature from the recrystallization annealing heating temperature to the galvanizing temperature is controlled, so that austenite having a low C concentration is finely composed mainly of bainite. High-strength steel sheet having a uniform ferrite-bainite composite structure or a ferrite-bainite-martensite composite structure, and a tensile strength of 490 MPa (50 kgf / mm 2 ) or more, particularly 580-1170 MPa (60-120 kgf / mm 2 ) class The hole expansibility is improved.

一方、特許文献3には、C含有量を0.1〜0.2質量%、Mn含有量を2.0〜3.0質量%としてオーステナイト相を安定化させると共に、めっきラインにて再結晶温度以上で焼鈍した後、480〜560℃で低温保持して溶融亜鉛めっきすることにより、オーステナイト相を残留させて、溶融亜鉛めっき鋼板の強度及び加工性を向上させる方法が開示されている。   On the other hand, in Patent Document 3, the austenite phase is stabilized by setting the C content to 0.1 to 0.2% by mass and the Mn content to 2.0 to 3.0% by mass, and recrystallized in the plating line. A method for improving the strength and workability of a hot-dip galvanized steel sheet is disclosed by annealing at a temperature higher than that, and then maintaining the temperature low at 480 to 560 ° C. and hot-dip galvanizing to leave the austenite phase.

また、特許文献4に記載の高強度合金化溶融めっき鋼板は、鋼組成を規定すると共に、粒径が20μm以下の結晶粒を80%以上とし、更に組織をベイニティックフェライトの単相とすることにより、強度を490MPa以上、穴拡げ率を80%以上にしている。この特許文献4の実施例では、例えば、C:0.05質量%、Si:0.55質量%及びMn:1.59質量%に、Mo、Ti、Cr、Nb、B及びV等を微量に添加し、穴拡げ率を93%とした高強度合金化溶融めっき鋼板(試験番号27)を得ている。   In addition, the high-strength galvannealed steel sheet described in Patent Document 4 defines the steel composition, has a crystal grain size of 20 μm or less at 80% or more, and further has a single phase of bainitic ferrite. Thus, the strength is set to 490 MPa or more and the hole expansion rate is set to 80% or more. In the example of Patent Document 4, for example, C: 0.05% by mass, Si: 0.55% by mass, and Mn: 1.59% by mass, and trace amounts of Mo, Ti, Cr, Nb, B, V, and the like are contained. To obtain a high-strength galvannealed steel sheet (test number 27) with a hole expansion ratio of 93%.

更に、特許文献5には、オーステナイト域でも安定に存在し得る炭化物を形成するNb及びTiを適正量含有させることにより、焼鈍温度の適正範囲が広がり、製造条件の規制を緩和できること、オーステナイト安定化成分であるMn、Cr及びBを適正量含有させると、Si等のフェライト変態を促進する成分を特に添加しなくても、500℃前後の温度域に数分程度滞留させることにより、複合組織が得られること、更には滞留後の冷却速度を規制することにより、生成した第2相組織の必要以上の硬化を防止でき、結果として伸びフランジ性が向上することが開示されている。この特許文献5には、例えば、C:0.16質量%、Mn:2.3質量%、Ti:0.05質量%、Al:0.03質量%に、B、P及びSを微量に添加し、強度が1216MPa(124kgf/mm)、穴拡げ率が23%である実施例(試料番号No.10)が開示されている。 Furthermore, Patent Document 5 discloses that the proper range of annealing temperature can be expanded by containing appropriate amounts of Nb and Ti that can form carbides that can exist stably even in the austenite region, and the regulation of manufacturing conditions can be relaxed. When the components Mn, Cr and B are contained in proper amounts, the composite structure can be obtained by retaining the component in the temperature range of about 500 ° C. for several minutes without adding a component that promotes ferrite transformation such as Si. It is disclosed that by controlling the cooling rate after the retention and further retention, the generated second phase structure can be prevented from being hardened more than necessary, and as a result, stretch flangeability is improved. In Patent Document 5, for example, C: 0.16% by mass, Mn: 2.3% by mass, Ti: 0.05% by mass, Al: 0.03% by mass, and B, P, and S in trace amounts. In addition, an example (sample number No. 10) in which the strength is 1216 MPa (124 kgf / mm 2 ) and the hole expansion rate is 23% is disclosed.

特許第2607950号公報Japanese Patent No. 2607950 特許第2862187号公報Japanese Patent No. 2862187 特開平1−198459号公報JP-A-1-198459 特開2001−355043号公報JP 2001-355043 A 特許第3037767号公報Japanese Patent No. 3037767 杉本公一、“TRIP型ベイナイト冷延鋼板の伸びフランジ性”、CAMP−ISIJ、2000年、第13巻、p.395−398Sugimoto Koichi, “Stretch Flangeability of TRIP Type Bainitic Cold Rolled Steel Sheet”, CAMP-ISIJ, 2000, Vol. 13, p. 395-398 中村展之、“超高強度冷延鋼板の伸びフランジ成形性に及ぼす組成の影響”、CAMP−ISIJ、2000年、第13巻、p.391−394Nobuyuki Nakamura, “Effect of Composition on Stretch Flange Formability of Ultra High Strength Cold Rolled Steel Sheet”, CAMP-ISIJ, 2000, Vol. 13, p. 391-394

しかしながら、前述の従来の技術には、以下に示す問題点がある。先ず、非特許文献1に記載の技術は、引張強度が590MPa程度の鋼板を対象としており、引張強度が900MPa以上の高強度鋼板に単純に適用しても同様の効果は得られない。一方、特許文献1及び特許文献2に記載の方法では、引張強度が900MPa以上の高強度鋼板が得られるが、複合組織を主体としているため、各相間に硬度差が生じ、穴拡げ率は30%以下と低くなる。同様に特許文献5に記載の高強度合金化溶融めっき鋼板も、複合組織を基本としたものであるため、各相間に硬度差が生じ、穴拡げ率は最大でも40%程度にとどまっている。   However, the conventional techniques described above have the following problems. First, the technique described in Non-Patent Document 1 is intended for a steel plate having a tensile strength of about 590 MPa, and the same effect cannot be obtained even if it is simply applied to a high-strength steel plate having a tensile strength of 900 MPa or more. On the other hand, in the methods described in Patent Document 1 and Patent Document 2, a high-strength steel sheet having a tensile strength of 900 MPa or more is obtained. However, since the main structure is a composite structure, a hardness difference occurs between the phases, and the hole expansion ratio is 30. % Or less. Similarly, since the high-strength galvannealed steel sheet described in Patent Document 5 is based on a composite structure, a difference in hardness occurs between the phases, and the hole expansion rate is only about 40% at the maximum.

また、特許文献3に記載の溶融亜鉛めっき鋼板は、オーステナイト相が残留しているため、不均一な複合組織になりやすく、穴拡げ率の向上は見込めない。更に、特許文献4に記載の高強度合金化溶融めっき鋼板は、従来品に比べてMn含有量が少ないため、熱処理時の加熱温度が低い場合、及び熱処理後の冷却速度が低い場合等に不均一複合組織となってしまい、穴拡げ性が優れた鋼板を安定的に得ることは困難である。このように従来の技術は、主に、適当な相分率を持った複合組織を作りこむことに主眼が置かれているため、異なる相の間に硬度差が生じ、その結果穴拡げ率が高い鋼板が得られにくい。   Moreover, since the austenite phase remains in the hot dip galvanized steel sheet described in Patent Document 3, it tends to be a non-uniform composite structure, and an improvement in the hole expansion rate cannot be expected. Furthermore, the high-strength galvannealed steel sheet described in Patent Document 4 has a lower Mn content than conventional products, so it is not suitable when the heating temperature during heat treatment is low or when the cooling rate after heat treatment is low. It becomes a uniform composite structure, and it is difficult to stably obtain a steel sheet having excellent hole expansibility. As described above, the conventional technology mainly focuses on creating a composite structure having an appropriate phase fraction, so that a difference in hardness occurs between different phases, and as a result, the hole expansion rate is reduced. It is difficult to obtain a high steel plate.

一方、非特許文献2に記載の技術では、主相と第2相との硬度差を減少させることにより、穴拡げ性の向上を図っているが、この非特許文献2に記載の鋼板は、引張り強さが1000〜1070MPaであり、引張強度がそれ以上の鋼板でも同様の効果が得られるとは限らない。また、非特許文献2に記載の技術により得られる鋼板は、穴拡げ率が最大でも65%程度であり、従来品に比べて穴拡げ性を著しく向上させる効果は期待できない。   On the other hand, in the technique described in Non-Patent Document 2, the hole expandability is improved by reducing the difference in hardness between the main phase and the second phase. Even if the tensile strength is 1000 to 1070 MPa and the steel sheet has a tensile strength higher than that, the same effect is not always obtained. Moreover, the steel plate obtained by the technique described in Non-Patent Document 2 has a hole expansion rate of about 65% at the maximum, and an effect of significantly improving the hole expansion property as compared with the conventional product cannot be expected.

従って、これらの従来の技術では、引張強度が1100MPa以上で、かつ穴拡げ率が40%以上である冷延薄鋼板を、効率的に製造することは困難であるという問題点がある。   Therefore, these conventional techniques have a problem that it is difficult to efficiently produce a cold-rolled thin steel sheet having a tensile strength of 1100 MPa or more and a hole expansion ratio of 40% or more.

本発明は、上述した問題点に鑑みて案出されたものであり、引張強度が1100MPa以上で、かつ穴拡げ率が40%以上の穴拡げ性に優れた高強度冷延薄鋼板及びその製造方法を提供することを目的とする。   The present invention has been devised in view of the above-mentioned problems, a high-strength cold-rolled steel sheet excellent in hole expansibility having a tensile strength of 1100 MPa or more and a hole expansion ratio of 40% or more, and its production It aims to provide a method.

本発明に係る穴拡げ性に優れた高強度冷延薄鋼板は、質量%で、C:0.05〜0.22%、Si:0.001〜0.8%、Mn:2.0〜3.0%、P:0.001〜0.1%、S:0.0001〜0.01%、Al:0.001〜0.2%、B:0.0001〜0.01%、Ti:0.005〜0.3%を含有し、残部がFe及び不可避的不純物からなる組成を有し、ミクロ組織が、マルテンサイト相:50〜90体積%、硬質ベイナイト相:5〜35体積%、軟質ベイナイト相:35%以下、及び残留オーステナイト:0.1〜5体積%からなり、引張強度が1100MPa以上であり、かつ穴拡げ率が40%以上であることを特徴とする。   The high-strength cold-rolled steel sheet excellent in hole expansibility according to the present invention is mass%, C: 0.05 to 0.22%, Si: 0.001 to 0.8%, Mn: 2.0 to 3.0%, P: 0.001-0.1%, S: 0.0001-0.01%, Al: 0.001-0.2%, B: 0.0001-0.01%, Ti : 0.005 to 0.3% contained, the balance is composed of Fe and inevitable impurities, and the microstructure is martensite phase: 50 to 90% by volume, hard bainite phase: 5 to 35% by volume Soft bainite phase: 35% or less and residual austenite: 0.1-5% by volume, having a tensile strength of 1100 MPa or more and a hole expansion ratio of 40% or more.

なお、本発明においては、厚さ3mm以下の鋼板を薄鋼板と定義している。また、本発明で規定している穴拡げ率λ(%)は、鉄鋼連盟規格に記載されている穴拡げ試験を行い、試験前の初期の穴の直径をd、試験により亀裂が発生した時点の穴の直径をdとしたとき、下記数式(1)により求められる値である。 In the present invention, a steel plate having a thickness of 3 mm or less is defined as a thin steel plate. In addition, the hole expansion rate λ (%) specified in the present invention was subjected to the hole expansion test described in the Steel Federation Standard, the diameter of the initial hole before the test was d 0 , and cracks were generated by the test. when the diameter of the point hole of a d f, is the value obtained by the following equation (1).

Figure 2007177271
Figure 2007177271

本発明に係る他の穴拡げ性に優れた高強度冷延薄鋼板は、質量%で、C:0.05〜0.22%、Si:0.001〜0.8%、Mn:1.5〜3.0%、P:0.001〜0.1%、S:0.0001〜0.01%、Al:0.001〜0.2%、B:0.0001〜0.01%、Ti:0.005〜0.3%を含有すると共に、Crを含有し、残部がFe及び不可避的不純物からなり、Mn含有量(%)を[Mn]、Cr含有量(%)を[Cr]としたとき、下記数式(2)を満たす組成を有し、ミクロ組織が、マルテンサイト相:50〜90体積%、硬質ベイナイト相:5〜35体積%、軟質ベイナイト相:35%以下、及び残留オーステナイト:0.1〜5体積%からなり、引張強度が1100MPa以上であり、かつ穴拡げ率が40%以上であることを特徴とする。   The other high strength cold-rolled thin steel sheets excellent in hole expansibility according to the present invention are in mass%, C: 0.05 to 0.22%, Si: 0.001 to 0.8%, Mn: 1.%. 5-3.0%, P: 0.001-0.1%, S: 0.0001-0.01%, Al: 0.001-0.2%, B: 0.0001-0.01% , Ti: 0.005 to 0.3% and Cr, the balance being Fe and inevitable impurities, Mn content (%) [Mn], Cr content (%) [ Cr], the composition satisfies the following formula (2), and the microstructure is martensite phase: 50 to 90% by volume, hard bainite phase: 5 to 35% by volume, soft bainite phase: 35% or less, And retained austenite: 0.1 to 5% by volume, a tensile strength of 1100 MPa or more, and a hole expansion ratio of 4 Characterized in that at least%.

Figure 2007177271
Figure 2007177271

これらの穴拡げ性に優れた高強度冷延薄鋼板は、更に、質量%で、Mo:0.11〜1.0%及びNb:0.003〜0.3%からなる群から選択された1種又は2種の元素を含有していてもよい。   These high-strength cold-rolled steel sheets excellent in hole expansibility were further selected from the group consisting of Mo: 0.11 to 1.0% and Nb: 0.003 to 0.3% by mass%. One or two kinds of elements may be contained.

更に、質量%で、Co:0.01〜1%及びW:0.01〜0.3%からなる群から選択された1種又は2種の元素を含有することもできる。   Furthermore, it is also possible to contain one or two elements selected from the group consisting of Co: 0.01 to 1% and W: 0.01 to 0.3% by mass%.

更に、質量%で、Zr、Hf、Ta及びVからなる群から選択された1種又は2種以上の元素を合計で0.001〜1%含有していてもよい。   Furthermore, 0.001 to 1% in total of one or more elements selected from the group consisting of Zr, Hf, Ta, and V may be contained by mass%.

更に、質量%で、Ca、Mg、Remからなる群から選択された1種又は2種以上の元素を合計で0.0001〜0.5%含有することもできる。   Further, it may contain 0.0001 to 0.5% in total of one or more elements selected from the group consisting of Ca, Mg, and Rem in mass%.

本発明に係る穴拡げ性に優れた高強度冷延薄鋼板の製造方法は、質量%で、C:0.05〜0.22%、Si:0.001〜0.8%、Mn:2.0〜3.0%、P:0.001〜0.1%、S:0.0001〜0.01%、Al:0.001〜0.2%、B:0.0001〜0.01%、Ti:0.005〜0.3%を含有し、残部がFe及び不可避的不純物からなる組成の鋳造スラブを、直接又は一旦1000℃以下まで冷却した後で再度加熱して熱間圧延し、熱延コイルを得る工程と、前記熱延コイルを巻取り、酸洗した後、冷間圧延して冷延鋼板を得る工程と、前記冷延鋼板を、最高到達温度をAc変態温度以上860℃以下にして熱処理した後、0.1〜20℃/秒の冷却速度で680〜780℃の第1の温度域まで冷却し、引き続き40〜70℃/秒の冷却速度で250〜350℃の第2の温度域まで冷却した後、この第2の温度域で10〜500秒間保持する工程と、を有することを特徴とする。 The manufacturing method of the high intensity | strength cold-rolled thin steel plate excellent in the hole expansibility which concerns on this invention is the mass%, C: 0.05-0.22%, Si: 0.001-0.8%, Mn: 2 0.0-3.0%, P: 0.001-0.1%, S: 0.0001-0.01%, Al: 0.001-0.2%, B: 0.0001-0.01 %, Ti: 0.005 to 0.3%, with the balance consisting of Fe and unavoidable impurities, directly or once cooled to 1000 ° C. or lower and then heated again and hot rolled A step of obtaining a hot-rolled coil, a step of winding the hot-rolled coil, pickling, and cold-rolling to obtain a cold-rolled steel plate, and a maximum temperature of the cold-rolled steel plate equal to or higher than the Ac 3 transformation temperature. After heat treatment at 860 ° C. or lower, the sample is cooled to a first temperature range of 680 to 780 ° C. at a cooling rate of 0.1 to 20 ° C./second, and pulled. And continuously cooling to a second temperature range of 250 to 350 ° C. at a cooling rate of 40 to 70 ° C./second, and then maintaining the second temperature range for 10 to 500 seconds. .

本発明に係る他の穴拡げ性に優れた高強度冷延薄鋼板の製造方法は、質量%で、C:0.05〜0.22%、Si:0.001〜0.8%、Mn:1.5〜3.0%、P:0.001〜0.1%、S:0.0001〜0.01%、Al:0.001〜0.2%、B:0.0001〜0.01%、Ti:0.005〜0.3%を含有すると共に、Crを含有し、残部がFe及び不可避的不純物からなり、Mn含有量(%)を[Mn]、Cr含有量(%)を[Cr]としたとき、下記数式(3)を満たす組成の鋳造スラブを、直接又は一旦1000℃以下まで冷却した後で再度加熱して熱間圧延し、熱延コイルを得る工程と、前記熱延コイルを巻取り、酸洗した後、冷間圧延して冷延鋼板を得る工程と、前記冷延鋼板を、最高到達温度をAc変態温度以上860℃以下にして熱処理した後、0.1〜20℃/秒の冷却速度で680〜780℃の第1の温度域まで冷却し、引き続き40〜70℃/秒の冷却速度で250〜350℃の第2の温度域まで冷却した後、この第2の温度域で10〜500秒間保持する工程と、を有することを特徴とする。 The manufacturing method of the other high strength cold-rolled thin steel sheet excellent in hole expansibility according to the present invention is mass%, C: 0.05 to 0.22%, Si: 0.001 to 0.8%, Mn : 1.5-3.0%, P: 0.001-0.1%, S: 0.0001-0.01%, Al: 0.001-0.2%, B: 0.0001-0 .01%, Ti: 0.005 to 0.3% and Cr, with the balance being Fe and inevitable impurities, Mn content (%) is [Mn], Cr content (% ) Is [Cr], a casting slab having a composition satisfying the following formula (3) is directly or once cooled to 1000 ° C. or less and then heated and hot-rolled to obtain a hot-rolled coil; winding the hot-rolled coil, after pickling, obtaining a cold-rolled steel sheet by cold rolling, the cold-rolled steel sheet, Ac 3 varying the maximum temperature After heat treatment at a state temperature of 860 ° C. or less, the sample is cooled to a first temperature range of 680 to 780 ° C. at a cooling rate of 0.1 to 20 ° C./second, and then 250 at a cooling rate of 40 to 70 ° C./second. And after cooling to a second temperature range of ˜350 ° C., the step of holding in the second temperature range for 10 to 500 seconds.

Figure 2007177271
Figure 2007177271

これらの穴拡げ性に優れた高強度鋼板の製造方法において、前記鋳造スラブは、更に、質量%で、Mo:0.11〜1.0%及びNb:0.003〜0.3%からなる群から選択された1種又は2種の元素を含有していてもよい。   In these high-strength steel sheet manufacturing methods excellent in hole expansibility, the cast slab further comprises, in mass%, Mo: 0.11 to 1.0% and Nb: 0.003 to 0.3%. One or two elements selected from the group may be contained.

また、前記鋳造スラブは、更に、質量%で、Co:0.01〜1%及びW:0.01〜0.3%からなる群から選択された1種又は2種の元素を含有することもできる。   Moreover, the said casting slab contains 1 type or 2 types of elements further selected from the group which consists of Co: 0.01-1% and W: 0.01-0.3% by the mass%. You can also.

更に、前記鋳造スラブは、質量%で、Zr、Hf、Ta及びVからなる群から選択された1種又は2種以上の元素を合計で0.001〜1%含有することもできる。   Further, the cast slab can contain 0.001 to 1% in total of one or more elements selected from the group consisting of Zr, Hf, Ta, and V in mass%.

更にまた、前記鋳造スラブは、質量%で、Ca、Mg、Remからなる群から選択された1種又は2種以上の元素を合計で0.0001〜0.5%含有していてもよい。   Furthermore, the cast slab may contain 0.0001 to 0.5% in total of one or more elements selected from the group consisting of Ca, Mg, and Rem in mass%.

本発明によれば、鋼組成を適正化すると共に、ミクロ組織における各相の体積分率を適正化しているため、引張強度が1100MPaで、かつ穴拡げ率が40%である穴拡げ性が優れ、更には溶接熱影響部の軟化を抑制し、溶接部の疲労耐久性にも優れた高強度冷延薄鋼板が得られる。   According to the present invention, since the steel composition is optimized and the volume fraction of each phase in the microstructure is optimized, the hole expandability is excellent with a tensile strength of 1100 MPa and a hole expansion ratio of 40%. Furthermore, it is possible to obtain a high-strength cold-rolled thin steel sheet that suppresses softening of the weld heat-affected zone and is excellent in fatigue durability of the weld zone.

以下、本発明を実施するための最良の形態について、詳細に説明する。穴拡げ率が高い高強度鋼板を得るためには、ミクロ組織を単一相にして、硬度差のない均一な組織にすることが重要である。このような均一相を得る方法としては、例えば、冷間圧延後の鋼板をAc変態温度(例えば、W.C.Leslie著,幸田成康監訳,「鉄鋼材料学」,丸善,P273参照。)よりも高い温度で熱処理して、その組織を一旦均一なオーステナイト相とした後、この鋼板を急冷することにより、オーステナイト相を均一なマルテンサイトにする方法がある。 Hereinafter, the best mode for carrying out the present invention will be described in detail. In order to obtain a high-strength steel sheet with a high hole expansion rate, it is important to make the microstructure a single phase and a uniform structure with no hardness difference. As a method of obtaining such a homogeneous phase, for example, a steel sheet after cold rolling Ac 3 transformation temperature (e.g., W.C.Leslie al, Nariyasu Koda translation supervisor, "Steels Studies", Maruzen, P273 reference.) There is a method in which the austenite phase is made uniform martensite by heat-treating at a higher temperature to make the structure once a uniform austenite phase and then rapidly cooling the steel sheet.

しかしながら、前述の方法で穴拡げ率が高い均一なマルテンサイト単相を得るためには、Ac変態温度よりも40℃以上高い温度まで加熱する必要があり、このときの具体的な熱処理温度は、製造する鋼板の成分にもよるが、860〜1000℃程度と高温になる。このような高温熱処理を行うと、エネルギーコストがかさみ、生産効率も低下する。また、高温熱処理後の急冷における到達温度も重要であり、急冷後にその到達温度で一定時間保持することにより、マルテンサイト変態が停止し、未変態の残留オーステナイトは、ベイナイト変態する。このとき、急冷時の到達温度が高い程、生成するベイナイト相の体積分率が大きくなる。更に、このような高温熱処理は、マルテンサイト組織を焼き戻す効果も同時に有する。 However, in order to obtain a uniform martensite single phase with a high hole expansion ratio by the above-described method, it is necessary to heat to a temperature higher by 40 ° C. than the Ac 3 transformation temperature, and the specific heat treatment temperature at this time is Depending on the components of the steel sheet to be manufactured, the temperature becomes as high as about 860 to 1000 ° C. When such a high-temperature heat treatment is performed, the energy cost increases and the production efficiency also decreases. In addition, the ultimate temperature in the rapid cooling after the high-temperature heat treatment is also important. By holding at the ultimate temperature for a certain time after the rapid cooling, the martensitic transformation stops, and the untransformed retained austenite undergoes bainite transformation. At this time, the volume fraction of the bainite phase produced | generated becomes large, so that the ultimate temperature at the time of rapid cooling is high. Furthermore, such high-temperature heat treatment has an effect of tempering the martensite structure at the same time.

ここで生成するベイナイト相は、荷重を100〜1000gとしたときのビッカース硬さHv(以下、単にビッカース硬さHvという。)が340〜360である。また、より高い温度から低速冷却したときに生成するベイナイト相のビッカース硬さHvは300以上340未満である。以下、低速冷却等により生成するビッカース硬さHvが340未満のベイナイト相を軟質ベイナイト相、ビッカース硬さHvが340以上のベイナイト相を硬質ベイナイト相という。   The bainite phase produced here has a Vickers hardness Hv (hereinafter simply referred to as Vickers hardness Hv) of 340 to 360 when the load is 100 to 1000 g. Moreover, the Vickers hardness Hv of the bainite phase produced | generated when it cools slowly from a higher temperature is 300-340. Hereinafter, a bainite phase having a Vickers hardness Hv of less than 340 generated by low-speed cooling or the like is referred to as a soft bainite phase, and a bainite phase having a Vickers hardness Hv of 340 or more is referred to as a hard bainite phase.

上述の方法で製造された鋼板は、本質的にマルテンサイト相の単一組織ではなく、焼き戻しマルテンサイト相と硬質ベイナイト相との混相組織が支配的となる。このような理由から、熱処理後の急冷における到達温度は、鋼板の機械的性質に重要な影響を与える。このため、到達温度を200〜290℃程度の低温にすると、強度は得られるが、マルテンサイト炭化物の生成等により組織の均一性が乱れ、硬質ベイナイト相との間に硬度差が生じて、穴拡げ率が低下する。また、急冷する際の到達温度が低温であると、熱処理時の最高到達温度との差が大きくなり、エネルギーコストがかさみ、生産効率へも悪影響を及ぼす。一方、急冷する際の到達温度を高くして生産効率向上を図ると、マルテンサイト相の硬度が低くなり、鋼板の強度が低下してしまう。更に、鋼板の厚さが1.6mm以上である場合は、その熱容量が大きくなるため充分な冷却速度が得られず、安定的に急冷することが困難となる。その結果、部分的に緩冷却となり、この緩冷却された部分はマルテンサイト変態せずにベイナイト相等が生じ、均一組織が得られなくなる。   The steel sheet produced by the above-described method is essentially not a single structure of martensite phase but a mixed structure of tempered martensite phase and hard bainite phase. For these reasons, the ultimate temperature in the rapid cooling after the heat treatment has an important influence on the mechanical properties of the steel sheet. For this reason, when the ultimate temperature is as low as about 200 to 290 ° C., the strength is obtained, but the uniformity of the structure is disturbed due to the formation of martensite carbide, etc., resulting in a hardness difference with the hard bainite phase, The spread rate decreases. Moreover, if the temperature reached at the time of rapid cooling is low, the difference from the maximum temperature achieved during heat treatment becomes large, increasing the energy cost and adversely affecting production efficiency. On the other hand, when the ultimate temperature at the time of rapid cooling is increased to improve the production efficiency, the hardness of the martensite phase is lowered and the strength of the steel sheet is lowered. Furthermore, when the thickness of the steel sheet is 1.6 mm or more, the heat capacity becomes large, so that a sufficient cooling rate cannot be obtained, and it is difficult to perform stable rapid cooling. As a result, the portion is slowly cooled, and the slowly cooled portion does not undergo martensitic transformation and a bainite phase or the like is generated, and a uniform structure cannot be obtained.

そこで、本発明者は、上述した問題点を解決するために、種々検討を行った結果、鋼組成に加えて、ミクロ組織を構成する各相の体積分率を適正化することにより、引張強度が1100MPa以上で、優れた穴拡げ性を有する高強度冷延薄鋼板が得られることを見出し、本発明に至った。   Therefore, the present inventor has conducted various studies to solve the above-described problems, and as a result, in addition to the steel composition, by optimizing the volume fraction of each phase constituting the microstructure, the tensile strength Is 1100 MPa or more, and found that a high-strength cold-rolled thin steel sheet having excellent hole expansibility can be obtained, leading to the present invention.

先ず、本発明の第1の実施形態に係る高強度冷延薄鋼板について説明する。なお、以下の説明においては、組成における質量%は、単に%と記載する。本実施形態の高強度冷延薄鋼板は、板厚が3mm以下、引張強度が1100MPa以上で、かつ穴拡げ率が40%以上の薄鋼板である。そして、その組成は、C:0.05〜0.22%、Si:0.001〜0.8%、Mn:2.0〜3.0%、P:0.001〜0.1%、S:0.0001〜0.01%、Al:0.001〜0.2%、B:0.0001〜0.01%、Ti:0.005〜0.3%を含有し、残部がFe及び不可避的不純物からなる。また、そのミクロ組織は、マルテンサイト相を50〜90体積%、硬質ベイナイト相を5〜35体積%及び残留オーステナイトを0.1〜5体積%を含有すると共に、軟質ベイナイト相を35%以下に規制している。   First, the high-strength cold-rolled thin steel sheet according to the first embodiment of the present invention will be described. In the following description, mass% in the composition is simply described as%. The high-strength cold-rolled thin steel plate of this embodiment is a thin steel plate having a plate thickness of 3 mm or less, a tensile strength of 1100 MPa or more, and a hole expansion rate of 40% or more. And the composition is C: 0.05-0.22%, Si: 0.001-0.8%, Mn: 2.0-3.0%, P: 0.001-0.1%, S: 0.0001 to 0.01%, Al: 0.001 to 0.2%, B: 0.0001 to 0.01%, Ti: 0.005 to 0.3%, the balance being Fe And inevitable impurities. Further, the microstructure contains 50 to 90% by volume of martensite phase, 5 to 35% by volume of hard bainite phase and 0.1 to 5% by volume of retained austenite, and the soft bainite phase to 35% or less. It is regulated.

以下、本実施形態の高強度冷延薄鋼板における鋼成分の数値限定理由について説明する。   Hereinafter, the reason for limiting the numerical values of the steel components in the high-strength cold-rolled thin steel sheet of this embodiment will be described.

C:0.05〜0.22%
Cは、マルテンサイト相の体積分率を制御し、鋼板の強度と穴拡げ性とのバランスを良好にするために添加する元素である。また、Cは、素地の微細均一化についても影響を与える。しかしながら、C含有量が0.05%未満の場合、十分な強度が得られない。また、C含有量が0.22%を超えると、穴拡げ性が低下すると共に溶接部の強度が劣化しやすくなる。よって、C含有量は0.05〜0.22%とする。なお、C含有量は、0.08%以上にすることが好ましく、より好ましくは0.1〜0.16%である。
C: 0.05 to 0.22%
C is an element added to control the volume fraction of the martensite phase and to improve the balance between the strength of the steel sheet and the hole expandability. C also affects the uniform fineness of the substrate. However, when the C content is less than 0.05%, sufficient strength cannot be obtained. On the other hand, when the C content exceeds 0.22%, the hole expansibility decreases and the strength of the welded portion tends to deteriorate. Therefore, the C content is set to 0.05 to 0.22%. Note that the C content is preferably 0.08% or more, and more preferably 0.1 to 0.16%.

Si:0.001〜0.8%
Siは、鋼板の強度と延性とのバランスを劣化させる比較的粗大な炭化物の生成を抑制する目的で添加する元素である。しかしながら、Si含有量が0.8%を超えると、めっき性が著しく劣化すると共に、溶接性にも悪影響を及ぼす。一方、Si含有量を0.001%未満にするような極低Si化は、製造コストの高騰を招く。よって、Si含有量は0.001〜0.8%とする。なお、Si含有量は、0.6%以下にすることが好ましく、これにより表面性状を良好にすることができる。
Si: 0.001 to 0.8%
Si is an element added for the purpose of suppressing the formation of relatively coarse carbides that deteriorate the balance between the strength and ductility of the steel sheet. However, if the Si content exceeds 0.8%, the plateability is significantly deteriorated and the weldability is also adversely affected. On the other hand, ultra-low Si such that the Si content is less than 0.001% leads to an increase in manufacturing cost. Therefore, the Si content is set to 0.001 to 0.8%. In addition, it is preferable that Si content shall be 0.6% or less, and thereby surface property can be made favorable.

Mn:2.0〜3.0%
Mnは、フェライト変態を抑制する効果があり、Mnを適量添加することにより、体積分率が最大の相である主相をマルテンサイトにして、均一組織を得ることができる。しかしながら、Mn含有量が2.0%未満の場合、強度低下及び穴拡げ性劣化を招く炭化物の析出及びパーライトの生成を抑制する効果が得られない。一方、Mnを過剰に添加すると、具体的には、Mn含有量が3.0%を超えると、偏析等が生じ、延性及び穴拡げ性が著しく低下する。よって、Mn含有量は2.0〜3.0%とする。なお、Mn含有量は、2.3%以上にすることが好ましく、2.4%を超えることがより好ましい。
Mn: 2.0 to 3.0%
Mn has an effect of suppressing ferrite transformation, and by adding an appropriate amount of Mn, the main phase, which is the phase with the largest volume fraction, can be converted into martensite and a uniform structure can be obtained. However, when the Mn content is less than 2.0%, the effect of suppressing the precipitation of carbides and the formation of pearlite that causes a decrease in strength and deterioration of hole expansibility cannot be obtained. On the other hand, when Mn is added excessively, specifically, when the Mn content exceeds 3.0%, segregation or the like occurs, and ductility and hole expandability are remarkably lowered. Therefore, the Mn content is set to 2.0 to 3.0%. In addition, it is preferable to make Mn content 2.3% or more, and it is more preferable to exceed 2.4%.

P:0.001〜0.1%
Pは、鋼板を高強度化する強化元素である。しかしながら、P含有量が0.1%を超える程の多量添加は、溶接性、鋳造時及び熱延時の製造性、並びに穴拡げ性に悪影響を及ぼす。一方、P含有量を低減すると、穴拡げ性が向上するが、P含有量を0.001%未満にするような極低P化は、経済的にも不利である。よって、P含有量は0.001〜0.1%とする。
P: 0.001 to 0.1%
P is a strengthening element that increases the strength of the steel sheet. However, the addition of such a large amount that the P content exceeds 0.1% adversely affects weldability, manufacturability during casting and hot rolling, and hole expandability. On the other hand, when the P content is reduced, hole expansibility is improved, but extremely low P such that the P content is less than 0.001% is also economically disadvantageous. Therefore, the P content is set to 0.001 to 0.1%.

S:0.0001〜0.01%
Sは、不可避的不純物であり、S含有量が0.01%を超えると、穴拡げ性が劣化する。一方、S含有量を低減する低S化は、穴拡げ性向上に有効であるが、S含有量を0.0001%未満にするような極低S化は経済的に不利である。よって、S含有量は0.0001〜0.01%とする。なお、S含有量は、0.003%以下とすることが好ましい。
S: 0.0001 to 0.01%
S is an unavoidable impurity, and if the S content exceeds 0.01%, the hole expandability deteriorates. On the other hand, lowering the S content to reduce the S content is effective for improving the hole expansibility, but extremely lower S to make the S content less than 0.0001% is economically disadvantageous. Therefore, the S content is set to 0.0001 to 0.01%. The S content is preferably 0.003% or less.

Al:0.001〜0.2%
Alは、脱酸元素として有効な元素である。しかしながら、Al含有量が0.001質量%未満では、その効果が得られない。一方、Alを過剰に添加すると、具体的には、Al含有量が0.2%を超えると、穴拡げ性、溶接性及びめっき濡れ性が損なわれる。よって、Al含有量は0.001〜0.2%とする。なお、Al含有量は、0.005〜0.08%の範囲にすることが望ましい。
Al: 0.001 to 0.2%
Al is an effective element as a deoxidizing element. However, if the Al content is less than 0.001% by mass, the effect cannot be obtained. On the other hand, when Al is added excessively, specifically, when the Al content exceeds 0.2%, hole expansibility, weldability and plating wettability are impaired. Therefore, the Al content is 0.001 to 0.2%. The Al content is preferably in the range of 0.005 to 0.08%.

B:0.0001〜0.01%及びTi:0.005〜0.3%
B及びTiは、本発明の高強度冷延薄鋼板にとって極めて重要な元素である。具体的には、Bは、粒界の強化及び鋼材の高強度化に有効な元素であると共に、焼入れ性を向上させてベイナイト相等の生成を強く抑制し、マルテンサイト単一相の生成に寄与する元素でもある。また、Tiは、鋼中に不可避的に存在するNとBとが結合することによりBの添加効果が失われて、焼入れ性が低下することを防止する効果がある。更に、Tiには、主相をマルテンサイトとし、フェライト変態を抑制する効果もある。そこで、本発明においては、B及びTiを複合添加し、更に前述したようにMn含有量を2.0%以上とすることにより、穴拡げ性を良好にしている。
B: 0.0001 to 0.01% and Ti: 0.005 to 0.3%
B and Ti are extremely important elements for the high-strength cold-rolled thin steel sheet of the present invention. Specifically, B is an element effective for strengthening grain boundaries and increasing the strength of steel materials, and improves hardenability and strongly suppresses the formation of bainite phase and the like, contributing to the formation of a martensite single phase. It is also an element. Further, Ti has an effect of preventing the effect of addition of B from being lost due to the combination of N and B which are inevitably present in the steel, and the hardenability being lowered. Furthermore, Ti has the effect of suppressing the ferrite transformation by using martensite as the main phase. Therefore, in the present invention, B and Ti are added in combination, and the Mn content is set to 2.0% or more as described above to improve the hole expandability.

しかしながら、B含有量が0.0001%未満の場合、前述した添加効果が得られない。一方、B含有量が0.01%を超えると、その効果が飽和するばかりでなく、熱間加工性が低下する。また、Ti含有量が0.005%未満の場合、焼入れ性の低下防止及びフェライト変態抑制の効果が得られない。一方、Tiを過剰に添加すると、具体的には、Ti含有量が0.3%を超えると、穴拡げ性が劣化する。よって、B含有量は0.0001〜0.01%とし、Ti含有量は0.005〜0.3%とする。   However, when the B content is less than 0.0001%, the above-described addition effect cannot be obtained. On the other hand, if the B content exceeds 0.01%, not only the effect is saturated but also the hot workability is lowered. On the other hand, when the Ti content is less than 0.005%, the effect of preventing the deterioration of hardenability and suppressing the ferrite transformation cannot be obtained. On the other hand, when Ti is added excessively, specifically, when the Ti content exceeds 0.3%, the hole expandability deteriorates. Therefore, the B content is 0.0001 to 0.01%, and the Ti content is 0.005 to 0.3%.

また、本実施形態の高強度冷延薄鋼板は、上記各成分に加えて、Mo及び/又はNbを添加することができる。これにより、強度と穴拡げ性とのバランスを更に向上させることができる。また、Moは、焼入れ性を向上させると共に、溶接時に熱影響部の軟化を防止する効果もある。しかしながら、Mo含有量が0.11%未満の場合、前述した添加効果が得られない。一方、Mo含有量が1.0%を超えると、製造コストが上昇する。更に、Nbは、微細な炭化物、窒化物又は炭窒化物を形成して、鋼板の強化に極めて有効な元素でもある。更にまた、Nbは、フェライト変態を遅滞させ、ベイナイト及びベイニティックフェライトの生成を助長し、更には、溶接熱影響部の軟化抑制にも効果がある。しかしながら、Nb含有量が0.003%未満の場合、前述した効果が得られない。一方、Nbを過剰に添加すると、具体的には、Nb含有量が0.3%を超えると、延性及び熱間加工性が劣化する。よって、Mo及び/又はNbを添加する場合は、Mo含有量を0.11〜1.0%、Nb含有量を0.003〜0.3%とする。   Moreover, the high-strength cold-rolled thin steel sheet of this embodiment can add Mo and / or Nb in addition to the above components. Thereby, the balance between strength and hole expandability can be further improved. Mo also has the effect of improving the hardenability and preventing softening of the heat affected zone during welding. However, when the Mo content is less than 0.11%, the above-described addition effect cannot be obtained. On the other hand, when the Mo content exceeds 1.0%, the manufacturing cost increases. Furthermore, Nb is a very effective element for strengthening steel sheets by forming fine carbides, nitrides or carbonitrides. Furthermore, Nb delays the ferrite transformation, promotes the formation of bainite and bainitic ferrite, and is effective in suppressing softening of the weld heat affected zone. However, when the Nb content is less than 0.003%, the above-described effects cannot be obtained. On the other hand, when Nb is added excessively, specifically, when the Nb content exceeds 0.3%, ductility and hot workability deteriorate. Therefore, when adding Mo and / or Nb, the Mo content is 0.11 to 1.0% and the Nb content is 0.003 to 0.3%.

更に、本実施形態の高強度冷延薄鋼板は、上記各成分に加えて、Co及び/又はWを含有していてもよい。Coは、ベイナイト変態を制御し、強度と穴拡げ性とのバランスを良好にする効果がある。しかしながら、Co含有量が0.01%未満の場合、その効果が得られない。一方、Co含有量の上限は特に限定する必要はないが、Coは高価な元素であり、多量に添加すると経済性が損なわれるため、Co含有量は1.0%以下にすることが望ましい。また、Wは、鋼の強度を高める強化元素であるが、W含有量が0.01%未満の場合、その効果が得られない。一方、W含有量が0.3%を超えると、加工性が劣化する。よって、Co及び/又はWを添加する場合は、Co含有量を0.01〜1.0%、W含有量を0.01〜0.3%とする。   Furthermore, the high-strength cold-rolled thin steel sheet of this embodiment may contain Co and / or W in addition to the above components. Co has the effect of controlling the bainite transformation and improving the balance between strength and hole expansibility. However, when the Co content is less than 0.01%, the effect cannot be obtained. On the other hand, the upper limit of the Co content is not particularly limited, but Co is an expensive element, and if added in a large amount, the economic efficiency is impaired. Therefore, the Co content is preferably 1.0% or less. W is a strengthening element that increases the strength of the steel. However, when the W content is less than 0.01%, the effect cannot be obtained. On the other hand, when the W content exceeds 0.3%, workability deteriorates. Therefore, when adding Co and / or W, the Co content is 0.01 to 1.0% and the W content is 0.01 to 0.3%.

更にまた、本実施形態の高強度冷延薄鋼板は、上記各成分に加えて、強炭化物形成元素であるZr、Hf、Ta及びVからなる群から選択された1種又は2種以上の元素を添加してもよい。これにより、強度と穴拡げ性とのバランスを更に向上させることができる。なお、これらの元素の総含有量が0.001%未満の場合、前述した添加効果が得られない。一方、これらの元素の総含有量が1.0%を超えると、延性及び熱間加工性が劣化する。よって、Zr、Hf、Ta及び/又はVを添加する場合は、その総含有量が0.001〜1.0%になるようにする。   Furthermore, the high-strength cold-rolled steel sheet of the present embodiment includes one or more elements selected from the group consisting of Zr, Hf, Ta, and V, which are strong carbide forming elements, in addition to the above components. May be added. Thereby, the balance between strength and hole expandability can be further improved. In addition, when the total content of these elements is less than 0.001%, the above-described addition effect cannot be obtained. On the other hand, when the total content of these elements exceeds 1.0%, ductility and hot workability deteriorate. Therefore, when adding Zr, Hf, Ta and / or V, the total content is made 0.001 to 1.0%.

更にまた、本実施形態の高強度冷延薄鋼板は、上記各成分に加えて、Ca、Mg及びRemからなる群から選択された1種又は2種以上の元素を含有していてもよい。Ca、Mg及びRemは、適量添加により介在物制御することができ、特に、介在物の微細分散化に寄与する。しかしながら、Ca、Mg及びRemの総含有量が0.0001%未満の場合、その添加効果が得られない。一方、これらの元素を過剰に添加すると、鋳造性及び熱間加工性等の製造性、並びに鋼板製品の延性が低下する。よって、Ca、Mg及び/又はRemを添加する場合は、その総含有量が0.0001〜0.5%になるようにする。   Furthermore, the high-strength cold-rolled thin steel sheet of the present embodiment may contain one or more elements selected from the group consisting of Ca, Mg, and Rem, in addition to the above components. Ca, Mg, and Rem can control inclusions by adding appropriate amounts, and particularly contribute to fine dispersion of inclusions. However, when the total content of Ca, Mg and Rem is less than 0.0001%, the addition effect cannot be obtained. On the other hand, when these elements are added excessively, the manufacturability such as castability and hot workability, and the ductility of the steel sheet product are lowered. Therefore, when adding Ca, Mg and / or Rem, the total content is made 0.0001 to 0.5%.

なお、本実施形態の高強度冷延薄鋼板における残部は、Fe及び不可避的不純物である。この不可避的不純物としては、例えば、N及びSn等が挙げられるが、本実施形態の高強度冷延薄鋼板は、これら元素を合計で0.2%以下の範囲で含有しても前述した効果が損なわれることはない。   Note that the balance of the high-strength cold-rolled thin steel sheet of the present embodiment is Fe and inevitable impurities. Examples of this unavoidable impurity include N and Sn, but the high-strength cold-rolled thin steel sheet of the present embodiment has the above-described effects even when these elements are contained in a total range of 0.2% or less. Will not be damaged.

次に、本実施形態の高強度冷延薄鋼板におけるミクロ組織の定義について説明する。マルテンサイト相及びベイナイト相は、冷却によって、オーステナイト相が変態して生成する相である。具体的には、マルテンサイト相は、冷却過程においてマルテンサイト開始温度(本実施形態の高強度冷延薄鋼板においては、290〜300℃近傍)以下で生成し、冷却終了又は終了以前に生成が終了する。このマルテンサイト相は、硬度が高く、ビッカース硬さHvで400〜430程度である。また、軟質ベイナイト相は、冷却過程において、前述のマルテンサイト開始温度よりも高い温度で生成し、そのビッカース硬さHvは、前述したように300以上340未満である。更に、硬質ベイナイト相は、冷却後の等温保持過程(時効処理)において生成し、そのビッカース硬さHvは340〜360である。そして、変態しきらずに残るオーステナイト相が残留オーステナイト相であり、これは不可避的に残留するものである。   Next, the definition of the microstructure in the high-strength cold-rolled thin steel sheet of this embodiment will be described. The martensite phase and the bainite phase are phases formed by transformation of the austenite phase by cooling. Specifically, the martensite phase is generated below the martensite start temperature (around 290 to 300 ° C. in the case of the high-strength cold-rolled thin steel sheet of the present embodiment) in the cooling process, and is generated before or after the end of cooling. finish. This martensite phase has a high hardness and a Vickers hardness Hv of about 400 to 430. Further, the soft bainite phase is generated at a temperature higher than the martensite start temperature described above in the cooling process, and the Vickers hardness Hv is 300 or more and less than 340 as described above. Further, the hard bainite phase is generated in the isothermal holding process (aging treatment) after cooling, and the Vickers hardness Hv is 340 to 360. And the austenite phase which remains without transformation is the retained austenite phase, which inevitably remains.

次に、本実施形態の高強度冷延薄鋼板のミクロ組織における各相の数値限定理由について説明する。   Next, the reason for limiting the numerical value of each phase in the microstructure of the high-strength cold-rolled thin steel sheet of the present embodiment will be described.

マルテンサイト相:50〜90体積%
マルテンサイト相は、硬度が高く、鋼板の引張強度を担保するために必要な相である。基本的に、マルテンサイト相が多い程、引張強度は高くなり、マルテンサイト相の体積分率が50%未満では、十分な引張強度が得られない。よって、マルテンサイト相の体積分率は50体積%以上とする。なお、マルテンサイト相の体積分率の上限は、硬質ベイナイト相及び軟質ベイナイト相の体積分率によって決まるが、本発明においては90体積%とする。なお、マルテンサイト相の上限値は、60体積%とすることが好ましい。
Martensite phase: 50-90% by volume
The martensite phase has a high hardness and is a phase necessary for ensuring the tensile strength of the steel sheet. Basically, the more the martensite phase, the higher the tensile strength. If the volume fraction of the martensite phase is less than 50%, sufficient tensile strength cannot be obtained. Therefore, the volume fraction of the martensite phase is 50% by volume or more. In addition, although the upper limit of the volume fraction of a martensite phase is decided by the volume fraction of a hard bainite phase and a soft bainite phase, it is 90 volume% in this invention. In addition, it is preferable that the upper limit of a martensite phase shall be 60 volume%.

硬質ベイナイト相:5〜35体積%
本実施形態の高強度冷延薄鋼板においては、硬質ベイナイト相は、冷延鋼板を焼鈍し冷却した後で行う時効処理時に生成する。この時効処理によってマルテンサイト相中の転位をある程度除去し、これにより靭性を向上させることができるが、鋼中にベイナイト相が出現するとその効果が増幅され、穴拡げ性が向上する。しかしながら、硬質ベイナイト相が5体積%未満の場合、その効果が得られない。一方、硬質ベイナイト相の割合があまりに多いと、具体的には、硬質ベイナイト相を35体積%以上含んでいると、引張強度が低下する。よって、硬質ベイナイト相の体積分率は5〜35体積%とする。なお、硬質ベイナイト相の体積分率は、10体積%以上とすることが好ましく、より好ましくは15体積%以上である。
Hard bainite phase: 5-35% by volume
In the high-strength cold-rolled thin steel sheet of this embodiment, the hard bainite phase is generated during the aging treatment performed after the cold-rolled steel sheet is annealed and cooled. This aging treatment can remove dislocations in the martensite phase to some extent and thereby improve the toughness. However, when the bainite phase appears in the steel, the effect is amplified and the hole expandability is improved. However, when the hard bainite phase is less than 5% by volume, the effect cannot be obtained. On the other hand, when the ratio of the hard bainite phase is too large, specifically, when the hard bainite phase is contained in an amount of 35% by volume or more, the tensile strength is lowered. Therefore, the volume fraction of the hard bainite phase is 5 to 35% by volume. In addition, it is preferable that the volume fraction of a hard bainite phase shall be 10 volume% or more, More preferably, it is 15 volume% or more.

軟質ベイナイト相:35体積%以下
本実施形態の高強度冷延薄鋼板においては、軟質ベイナイト相は、焼鈍後の冷却時に生成する。この軟質ベイナイト相の出現により、鋼板の引張強度は低下するため、本発明においては、この軟質ベイナイト相を35体積%以下に規制する。なお、後述するように、本実施形態の高強度冷延薄鋼板においては、冷却条件を調節することにより、軟質ベイナイトの生成を抑制することができ、その結果、軟質ベイナイト相の体積含有率を0%にすることも可能である。このため、本発明においては、軟質ベイナイト相が0%の場合も含むが、製造コスト等の観点から軟質ベイナイト相の下限値は、5体積%とすることが好ましい。
Soft bainite phase: 35% by volume or less In the high-strength cold-rolled thin steel sheet of the present embodiment, the soft bainite phase is generated during cooling after annealing. The appearance of the soft bainite phase decreases the tensile strength of the steel sheet. Therefore, in the present invention, the soft bainite phase is regulated to 35% by volume or less. As will be described later, in the high-strength cold-rolled thin steel sheet of the present embodiment, by adjusting the cooling conditions, the generation of soft bainite can be suppressed, and as a result, the volume content of the soft bainite phase is reduced. It is also possible to make it 0%. For this reason, in this invention, although the case where a soft bainite phase is 0% is included, from a viewpoint of manufacturing cost etc., it is preferable that the lower limit of a soft bainite phase shall be 5 volume%.

残留オーステナイト:0.1〜5体積%
本実施形態の高強度冷延薄鋼板において、残留オーステナイト相に重要な役割はない。しかしながら、焼鈍熱処理時の変態によって生成したオーステナイト相は、その後の冷却過程におけるマルテンサイト変態において変態せずに、全て残留する。そして、その後の時効処理において硬質ベイナイトに変態するが、このときも全てが変態するのではなく、0.1体積%以上の量が不可避的に残留する。この残留オーステナイトの量があまりにも多いと、具体的には、残留オーステナイトが5体積%を超えると、組織の均一性が低下し、穴拡げ性が低下する。よって、残留オーステナイトの体積分率は5体積%以下とする。なお、残留オーステナイトの体積分率は、3体積%以下であることが好ましい。
Residual austenite: 0.1 to 5% by volume
In the high-strength cold-rolled thin steel sheet of this embodiment, there is no important role for the retained austenite phase. However, the austenite phase generated by the transformation during the annealing heat treatment remains without being transformed in the martensitic transformation in the subsequent cooling process. Then, in the subsequent aging treatment, it is transformed into hard bainite, but at this time, not all is transformed, and an amount of 0.1% by volume or more inevitably remains. If the amount of retained austenite is too large, specifically, if the amount of retained austenite exceeds 5% by volume, the uniformity of the structure is lowered and the hole expansibility is lowered. Therefore, the volume fraction of retained austenite is 5% by volume or less. In addition, it is preferable that the volume fraction of a retained austenite is 3 volume% or less.

また、ミクロ組織における各相の体積分率は、以下に示す方法で測定することができる。昇温過程において、鋼のミクロ組織がフェライト相からオーステナイト相に変態すると、鋼の体積に収縮が生じる。また、冷却過程において、オーステナイト相がマルテンサイト相又は軟質ベイナイト相に変態すると、鋼板に体積膨張が生じる。更に、マルテンサイト変態と軟質ベイナイト変態とでは、その変態温度及び変態速さが異なる。更にまた、冷却後の等温熱処理(時効処理)時には、硬質ベイナイト変態による体積膨張が生じる。従って、昇温、焼鈍、冷却及び等温熱処理(時効処理)について、トータルの熱処理サイクルに伴う体積変化を観察することによって、マルテンサイト相、軟質ベイナイト相及び硬質ベイナイト相の体積比を測定することができる。   Moreover, the volume fraction of each phase in a microstructure can be measured by the method shown below. When the microstructure of the steel transforms from the ferrite phase to the austenite phase during the temperature raising process, the steel volume shrinks. Further, in the cooling process, when the austenite phase is transformed into a martensite phase or a soft bainite phase, volume expansion occurs in the steel sheet. Furthermore, the martensitic transformation and the soft bainite transformation have different transformation temperatures and transformation speeds. Furthermore, during the isothermal heat treatment (aging treatment) after cooling, volume expansion occurs due to the hard bainite transformation. Therefore, measure the volume ratio of martensite phase, soft bainite phase and hard bainite phase by observing volume change with total heat treatment cycle for temperature rise, annealing, cooling and isothermal heat treatment (aging treatment). Can do.

具体的には、体積膨張曲線においては、Ac変態点までの昇温では、フェライト相の熱膨張率に起因し、温度増加に対して直線的に鋼板の体積は膨張する。この領域を領域1とする。そして、温度がAc変態点を超えるとオーステナイト変態が始まる。オーステナイト相の熱膨張率はフェライト相よりも小さいため、体積膨張率は小さくなり、オーステナイト相の分率が増加するに従い、鋼板の体積は膨張から収縮に転ずる。ここで、体積収縮率は、オーステナイト相の比率によって変化するため、鋼板は非線形的に収縮する。 Specifically, in the volume expansion curve, when the temperature rises to the Ac 1 transformation point, the volume of the steel sheet linearly expands as the temperature increases due to the thermal expansion coefficient of the ferrite phase. This region is referred to as region 1. When the temperature exceeds the Ac 1 transformation point, the austenite transformation starts. Since the thermal expansion coefficient of the austenite phase is smaller than that of the ferrite phase, the volume expansion coefficient decreases, and the volume of the steel sheet changes from expansion to contraction as the fraction of the austenite phase increases. Here, since the volume shrinkage ratio changes depending on the ratio of the austenite phase, the steel sheet shrinks nonlinearly.

次に、温度がAc変態温度に達すると、組織はオーステナイト相単相になるため、体積膨張率は一定となり、体積膨張曲線は再度直線的な膨張に転ずる。この領域を領域2とする。その後、鋼板の体積は、熱処理(焼鈍処理)温度域に到達するまで直線的に膨張する。そして、保持温度(最高到達温度)で保持すると、体積は一定に保持され、その後冷却を開始すると、体積は直線的に収縮する。 Next, when the temperature reaches the Ac 3 transformation temperature, the structure becomes an austenite single phase, so that the volume expansion coefficient becomes constant, and the volume expansion curve starts to linear expansion again. This region is referred to as region 2. Thereafter, the volume of the steel sheet linearly expands until reaching the heat treatment (annealing) temperature range. And if it hold | maintains at holding temperature (maximum reach | attainment temperature), a volume will be hold | maintained uniformly, and if cooling is started after that, a volume will shrink | contract linearly.

更に冷却を続けると、本実施形態の高強度冷延薄鋼板では、条件により、300〜500℃の温度領域で軟質ベイナイト相が析出し始める。この軟質ベイナイト相は、1モル当たりの体積が大きいため、鋼板全体として体積が膨張し始める。このとき、鋼板の体積は、温度の低下に対して比較的ゆっくりと膨張する。その後、290〜300℃程度でマルテンサイト相が析出する。このマルテンサイト相の析出は急激に進行するため、急激な体積膨張が観察される。そして、冷却後に時効処理温度で一定時間保持すると、残留しているオーステナイト相が炭化物とフェライト相とに分解し、硬質ベイナイト相が析出するため、鋼板の体積は更に膨張する。   When the cooling is further continued, in the high-strength cold-rolled thin steel sheet of this embodiment, a soft bainite phase starts to precipitate in a temperature range of 300 to 500 ° C. depending on conditions. Since the soft bainite phase has a large volume per mole, the volume of the entire steel sheet begins to expand. At this time, the volume of the steel sheet expands relatively slowly as the temperature decreases. Thereafter, a martensite phase precipitates at about 290 to 300 ° C. Since the precipitation of this martensite phase proceeds rapidly, rapid volume expansion is observed. And if it hold | maintains for a fixed time at the aging treatment temperature after cooling, since the remaining austenite phase will decompose | disassemble into a carbide | carbonized_material and a ferrite phase and a hard bainite phase will precipitate, the volume of a steel plate will expand further.

以上の熱処理過程の全てにおいて鋼板の体積変化を測定し、その結果と、前述の領域1におけるフェライト単相の体積変化直線、及び前述の領域2における体積変化直線の結果を代数処理することにより、各相の体積分率の値を求めることができる。   By measuring the volume change of the steel sheet in all of the above heat treatment processes, and algebraically treating the result and the volume change straight line of the ferrite single phase in the region 1 and the volume change straight line in the region 2 described above, The volume fraction value of each phase can be obtained.

また、残留オーステナイト相については、X線回折法で熱処理後の鋼を分析することにより、その体積分率絶対値を求めることができる。従って、熱処理中の鋼板の体積変化と熱処理後の鋼板のX線回折結果とを組み合わせることによって、これらの相の体積分率を求めることができる。   Moreover, about a retained austenite phase, the volume fraction absolute value can be calculated | required by analyzing the steel after heat processing by a X ray diffraction method. Therefore, the volume fraction of these phases can be obtained by combining the volume change of the steel sheet during the heat treatment and the X-ray diffraction result of the steel sheet after the heat treatment.

次に、上述の如く構成された本実施形態の高強度冷延薄板鋼板の製造方法について説明する。先ず、鋼成分が前述した範囲になるように調整した鋳造スラブを、直接又は一旦1000℃以下に冷却した後再加熱して熱間圧延し、熱延コイルとする。その際、鋳造後のスラブをそのまま加熱して熱間圧延すると、加熱原単位を減少することができる。一方、鋳造スラブを一旦1000℃以下まで冷却した後、再加熱して熱間圧延すると、最終製品の延性を向上させることができる。このときの再加熱温度は、1100〜1300℃とすることが望ましい。この再加熱温度が高温になると、粗粒化したり、厚い酸化スケールが形成されたりする。一方、再加熱温度が低いと、圧延時の変形抵抗が高くなってしまう。また、熱間圧延の終了温度は、鋼組成によって決まるAr変態温度以上で行うのが一般的であるが、Ar変態温度よりも100℃程度低い温度までの範囲であれば製造される薄鋼板の特性は劣化しない。 Next, a method for manufacturing the high-strength cold-rolled thin steel plate of the present embodiment configured as described above will be described. First, a cast slab adjusted so that the steel component is in the above-described range is directly or once cooled to 1000 ° C. or less and then reheated and hot-rolled to obtain a hot-rolled coil. At that time, when the cast slab is heated and hot-rolled as it is, the heating unit can be reduced. On the other hand, when the cast slab is once cooled to 1000 ° C. or less and then reheated and hot-rolled, the ductility of the final product can be improved. The reheating temperature at this time is desirably 1100 to 1300 ° C. When this reheating temperature becomes high, it becomes coarse and a thick oxide scale is formed. On the other hand, when the reheating temperature is low, deformation resistance during rolling becomes high. The end temperature of hot rolling is generally carried out at an Ar 3 transformation temperature or higher determined by the steel composition, but it is thin as long as it is within a range of about 100 ° C. lower than the Ar 3 transformation temperature. The properties of the steel sheet do not deteriorate.

次に、熱延コイルを巻取り、酸洗した後、冷間圧延して冷延鋼板を得る。このとき、冷却後の熱延コイルの巻取温度は、鋼成分によって決まるベイナイト変態開始温度以上とすることが望ましい。これにより、冷間圧延時の荷重が必要以上に高くなることを防止することができる。但し、冷間圧延時の全圧下率が40%以下と小さい場合にはこの限りでなく、鋼のベイナイト変態温度以下で巻き取られても最終的に得られる薄鋼板の特性は劣化しない。また、熱間圧延後には、高圧デスケーリング装置又は酸洗等により、表面のスケールを除去する。これにより、製品での表面状態を改善することができる。更に、酸洗い後に行う冷間圧延における全圧下率は、最終製品における板厚と冷延荷重との関係から設定されるが、再結晶させるには30%以上であれば十分であり、この範囲であれば最終的に得られる薄鋼板の特性は劣化しない。   Next, the hot-rolled coil is wound, pickled, and then cold-rolled to obtain a cold-rolled steel sheet. At this time, the coiling temperature of the hot-rolled coil after cooling is preferably not less than the bainite transformation start temperature determined by the steel component. Thereby, it can prevent that the load at the time of cold rolling becomes higher than necessary. However, this is not the case when the total rolling reduction during cold rolling is as small as 40% or less, and the properties of the finally obtained thin steel sheet will not deteriorate even if the steel sheet is wound below the bainite transformation temperature of the steel. Further, after hot rolling, the surface scale is removed by a high-pressure descaling apparatus or pickling. Thereby, the surface state in a product can be improved. Further, the total rolling reduction in the cold rolling performed after pickling is set based on the relationship between the sheet thickness and the cold rolling load in the final product, but 30% or more is sufficient for recrystallization, and this range. If so, the properties of the finally obtained thin steel sheet will not deteriorate.

次に、冷延鋼板を、最高到達温度をAc変態温度〜860℃の範囲にして熱処理した後、0.1〜20℃/秒の冷却速度で680〜780℃の第1の温度域まで冷却し、引き続き40〜70℃/秒の冷却速度で250〜350℃の第2の温度域まで冷却した後、この第2の温度域で10〜500秒間保持する。 Then, the cold rolled steel sheet, the highest temperature after heat treatment in the range of Ac 3 transformation temperature ~860 ° C., to a first temperature range of six hundred and eighty to seven hundred and eighty ° C. at a cooling rate of 0.1 to 20 ° C. / sec After cooling and subsequently cooling to a second temperature range of 250 to 350 ° C. at a cooling rate of 40 to 70 ° C./second, the temperature is held for 10 to 500 seconds in this second temperature range.

一般に、冷延鋼板に対して最高到達温度をAc変態温度未満にして熱処理を施した場合、加熱時に得られるオーステナイト量が少なくなり、最終的に得られる薄鋼板の組織が均一にならない。また、従来品は、Ac変態温度の直上の温度域では、オーステナイト組織の均一性が十分でなく、(Ac変態温度+30℃)程度の温度で熱処理する必要があった。これに対して、本発明の製造方法によれば、最高到達温度を低く設定しても、強度と穴拡げ性とのバランスが良好な薄鋼板が得られる。即ち、本実施形態の高強度冷延薄鋼板の特徴は、最高到達温度をAc変態温度まで低くできることである。一方、エネルギーコストを低減するためには、熱処理時の最高到達温度は低い方が望ましい。よって、熱処理時の最高到達温度の上限は860℃とする。 Generally, when heat treatment is performed with the maximum temperature reached below the Ac 3 transformation temperature for a cold-rolled steel sheet, the amount of austenite obtained during heating decreases, and the structure of the finally obtained thin steel sheet does not become uniform. Further, the conventional product, in a temperature range immediately above the Ac 3 transformation temperature, uniformity is not sufficient austenite structure had to be heat-treated at a temperature of about (Ac 3 transformation temperature + 30 ° C.). On the other hand, according to the manufacturing method of the present invention, a thin steel plate having a good balance between strength and hole expansibility can be obtained even when the maximum temperature reached is set low. That is, the feature of the high-strength cold-rolled thin steel sheet of the present embodiment is the ability to lower the maximum reached temperature to Ac 3 transformation temperature. On the other hand, in order to reduce energy costs, it is desirable that the maximum temperature reached during heat treatment is low. Therefore, the upper limit of the maximum temperature reached during heat treatment is 860 ° C.

また、この熱処理では、鋼板の温度を均一化するため、上述した温度域で1秒間以上保持することが好ましい。一方、保持時間が10分を超えると、粒界酸化相生成が促進されると共に、コストの上昇を招くことがある。よって、冷間圧延後の熱処理時間は、1秒〜10分間とすることが好ましい。上述の如く、本実施形態の高強度冷延薄鋼板の製造方法においては、従来の方法に比べて、冷間圧延後の熱処理における最高到達温度が低いため、エネルギーコストを低減し、効率の高い生産が可能となる。   Moreover, in this heat processing, in order to make the temperature of a steel plate uniform, it is preferable to hold | maintain for 1 second or more in the temperature range mentioned above. On the other hand, if the holding time exceeds 10 minutes, the production of grain boundary oxidized phases is promoted and the cost may increase. Therefore, the heat treatment time after cold rolling is preferably 1 second to 10 minutes. As described above, in the manufacturing method of the high-strength cold-rolled thin steel sheet according to the present embodiment, the maximum ultimate temperature in the heat treatment after cold rolling is lower than in the conventional method, so that the energy cost is reduced and the efficiency is high. Production becomes possible.

更に、熱処理後の冷却工程は、マルテンサイト相及び硬質な未変態フェライト相の混相組織を得るために重要な工程である。本実施形態においては、ラインの構造上、熱処理後直ちに急速冷却することができないため、緩冷却を行った後で急速冷却している。先ず、緩冷却では、フェライトの生成を充分に抑制することが必要である。この緩冷却時の冷却速度を0.1℃/秒未満にすると、フェライト及びパーライトの生成が促進され、薄鋼板の強度が低下する。また、緩冷却時の冷却速度が20℃/秒を超えると、急速冷却の開始温度が低くなりすぎてしまう。この急速冷却開始温度が680℃未満になると、フェライト変態が開始され、所望の特性が得られなくなる懸念がある。一方、急冷開始温度は高いほうが有利であるが、この温度は熱処理における最高到達温度の影響を受けるため、急冷開始温度を780℃よりも高い温度にすることは困難である。よって、熱処理後の緩冷却においては、冷却速度を0.1〜20℃/秒とし、急冷開始温度である680〜780℃の温度域まで冷却する。   Furthermore, the cooling step after the heat treatment is an important step for obtaining a mixed phase structure of the martensite phase and the hard untransformed ferrite phase. In the present embodiment, because of the structure of the line, rapid cooling cannot be performed immediately after the heat treatment, so rapid cooling is performed after slow cooling. First, in slow cooling, it is necessary to sufficiently suppress the formation of ferrite. When the cooling rate during this slow cooling is less than 0.1 ° C./second, the formation of ferrite and pearlite is promoted, and the strength of the thin steel sheet is lowered. On the other hand, if the cooling rate during slow cooling exceeds 20 ° C./second, the start temperature of rapid cooling becomes too low. When the rapid cooling start temperature is less than 680 ° C., ferrite transformation is started, and there is a concern that desired characteristics cannot be obtained. On the other hand, although it is advantageous that the rapid cooling start temperature is high, this temperature is affected by the maximum temperature reached in the heat treatment, and therefore it is difficult to make the rapid cooling start temperature higher than 780 ° C. Therefore, in the slow cooling after the heat treatment, the cooling rate is set to 0.1 to 20 ° C./second, and the cooling is performed to the temperature range of 680 to 780 ° C. which is the rapid cooling start temperature.

このような緩冷却の後、急速冷却を行う。この急速冷却における冷却速度は、軟質ベイナイト相の生成を抑制し、マルテンサイト相を得るために重要な条件である。急速冷却時の冷却速度が40℃/秒未満であると、軟質ベイナイトの生成が顕著になる。一方、1.6mmを超える板厚の鋼板を製造する場合、急速冷却時の冷却速度が70℃/秒を超えると、冷却コストがかかり、実用的ではない。よって、急速冷却時の冷却速度は40〜70℃/秒とする。この緩冷却及び急速冷却の2段階の冷却工程において、硬質なマルテンサイト相及び残留オーステナイト相が生成する。   Rapid cooling is performed after such slow cooling. The cooling rate in this rapid cooling is an important condition for suppressing the formation of a soft bainite phase and obtaining a martensite phase. When the cooling rate during rapid cooling is less than 40 ° C./second, the formation of soft bainite becomes significant. On the other hand, when manufacturing a steel plate having a thickness exceeding 1.6 mm, if the cooling rate at the time of rapid cooling exceeds 70 ° C./second, the cooling cost is required and it is not practical. Therefore, the cooling rate during rapid cooling is set to 40 to 70 ° C./second. In this two-stage cooling process of slow cooling and rapid cooling, a hard martensite phase and a residual austenite phase are generated.

引き続き、急速冷却時の到達温度を過時効処理温度として、過時効処理を行う。即ち、熱処理後の冷延鋼板を、急速冷却時の到達温度のまま10〜500秒間保持する。この過時効処理時に、残留オーステナイトが硬質ベイナイトに変態すると共に、マルテンサイト相が焼き戻される。このとき、過時効処理温度が350℃を超えると、薄鋼板の強度が低下する。一方、過時効処理温度が250℃未満の場合、生産効率が低下する。よって、過時効処理温度は250〜350℃とする。なお、過時効処理温度の下限値は270℃とすることが好ましい。また、この温度域での保持時間が10秒間未満の場合、硬質ベイナイト変態が十分に行われない。一方、保持時間を10秒間以上にすると、マルテンサイト相が焼戻されて組織が均一化し、穴拡げ性が向上するが、あまりにも長時間にわたって保持すると、具体的には、保持時間が500秒間を超えると薄鋼板の強度が低下する。よって、過時効処理温度での保持時間は、10〜500秒間とする。   Subsequently, overaging treatment is performed with the temperature reached at the time of rapid cooling as the overaging treatment temperature. That is, the cold-rolled steel sheet after the heat treatment is held for 10 to 500 seconds with the temperature reached at the time of rapid cooling. During this overaging treatment, the retained austenite is transformed into hard bainite and the martensite phase is tempered. At this time, if the overaging temperature exceeds 350 ° C., the strength of the thin steel sheet is lowered. On the other hand, when the overaging temperature is less than 250 ° C., the production efficiency is lowered. Therefore, the overaging treatment temperature is set to 250 to 350 ° C. In addition, it is preferable that the lower limit of overaging temperature is 270 degreeC. Further, when the holding time in this temperature range is less than 10 seconds, the hard bainite transformation is not sufficiently performed. On the other hand, if the holding time is 10 seconds or more, the martensite phase is tempered to make the structure uniform, and the hole expandability is improved. However, if the holding time is too long, specifically, the holding time is 500 seconds. If it exceeds, the strength of the thin steel sheet will decrease. Therefore, the holding time at the overaging temperature is 10 to 500 seconds.

上述した製造方法により、引張強度が1100MPa以上で穴拡げ率が40%以上の穴拡げ性に優れた高強度冷延薄鋼板が得られる。なお、本実施形態の高強度冷延鋼板においては、引張強度を1180MPa以上にすることが好ましい。また、引張強度の上限は特に限定しないが、1600MPa以上にすることは技術的に困難であるため、この値を上限とすることが経済的である。一方、穴拡げ性は45%以上にすることが好ましく、より好ましくは50%以上である。そして、穴拡げ率を200%以上にすることは技術的に困難であるため、この値が実質的な上限値である。   By the manufacturing method described above, a high-strength cold-rolled steel sheet having excellent hole expandability with a tensile strength of 1100 MPa or more and a hole expansion rate of 40% or more is obtained. In the high-strength cold-rolled steel sheet of this embodiment, the tensile strength is preferably 1180 MPa or more. Further, the upper limit of the tensile strength is not particularly limited, but it is technically difficult to set it to 1600 MPa or more. Therefore, it is economical to set this value as the upper limit. On the other hand, the hole expansibility is preferably 45% or more, more preferably 50% or more. And since it is technically difficult to make a hole expansion rate 200% or more, this value is a substantial upper limit.

次に、本発明の第2の実施形態の高強度冷延鋼板について説明する。本実施形態の鋼強度冷延薄鋼板は、前述の第1の実施形態の高強度冷延鋼板における各成分に加えて、更にCrを添加したものである。Crは、Mnと同様にフェライト変態を抑制する効果があるため、MnをCrで置換することにより、Mn含有量を低減し、強度と穴拡げ性とのバランスを向上させることができる。このようにMnとCrとを複合添加する場合は、Cr置換によるMn当量は([Mn]+1.06×[Cr])と表される。ここで、[Mn]はMn含有量(%)、[Cr]はCr含有量(%)である。   Next, a high-strength cold-rolled steel sheet according to the second embodiment of the present invention will be described. The steel-strength cold-rolled thin steel plate of this embodiment is obtained by further adding Cr in addition to the components in the high-strength cold-rolled steel plate of the first embodiment described above. Since Cr has the effect of suppressing ferrite transformation like Mn, substitution of Mn with Cr can reduce the Mn content and improve the balance between strength and hole expansibility. Thus, when Mn and Cr are added together, the Mn equivalent due to Cr substitution is expressed as ([Mn] + 1.06 × [Cr]). Here, [Mn] is the Mn content (%), and [Cr] is the Cr content (%).

上述した第1の実施形態の鋼強度冷延薄鋼板のように、Crを添加せずに、Mnを単独で添加する場合は、Mn含有量を2.0%以上にする必要があるが、本実施形態の高強度冷延薄鋼板では、Crを複合添加しているため、Mn含有量を2.0%よりも少なくすることができる。しかしながら、Mn含有量を過度に低減すると、具体的には、Mn含有量を1.5%未満にすると、鋼板の強度が低下する。一方、Mnを単独で添加する場合と同様に、3.0%を超えてMnを過剰に添加すると、偏析等が生じ、延性及び穴拡げ性が著しく低下する。よって、Cr及びMnを複合添加する場合は、Mn含有量を1.5〜3.0%とする。   As in the case of the steel strength cold-rolled thin steel sheet of the first embodiment described above, when adding Mn alone without adding Cr, the Mn content needs to be 2.0% or more, In the high-strength cold-rolled thin steel sheet of the present embodiment, since Cr is added in a composite manner, the Mn content can be reduced to less than 2.0%. However, when the Mn content is excessively reduced, specifically, when the Mn content is less than 1.5%, the strength of the steel sheet decreases. On the other hand, as in the case of adding Mn alone, when Mn is added in excess of 3.0%, segregation or the like occurs, and ductility and hole expansibility are significantly reduced. Therefore, when Cr and Mn are added in combination, the Mn content is set to 1.5 to 3.0%.

更に、本実施形態の高強度冷延薄鋼板では、Mn含有量を前述の範囲にすると共に、Cr置換によるMn当量([Mn]+1.06×[Cr])が下記数式(4)を満たすようにする。Mn当量([Mn]+1.06×[Cr])が2.4%未満の場合、十分な強度を確保することができない。一方、Mn当量([Mn]+1.06×[Cr])が4.5%を超えると、鋼板の表面にスケールが発生してしまう。よって、Mn当量([Mn]+1.06×[Cr])は、2.4〜4.5%とする。これにより、強度と穴拡げ性とのバランスを向上させることができる。

Figure 2007177271
Furthermore, in the high-strength cold-rolled thin steel sheet of the present embodiment, the Mn content is within the above range, and the Mn equivalent ([Mn] + 1.06 × [Cr]) by Cr substitution satisfies the following formula (4). Like that. When the Mn equivalent ([Mn] + 1.06 × [Cr]) is less than 2.4%, sufficient strength cannot be ensured. On the other hand, when the Mn equivalent ([Mn] + 1.06 × [Cr]) exceeds 4.5%, scale is generated on the surface of the steel sheet. Therefore, the Mn equivalent ([Mn] + 1.06 × [Cr]) is set to 2.4 to 4.5%. Thereby, the balance between strength and hole expansibility can be improved.
Figure 2007177271

なお、本実施形態の鋼強度冷延薄鋼板における上記以外の構成及び効果、並びに製造方法は、前述の第1実施形態の鋼強度冷延薄鋼板と同様である。   In addition, the structure other than the above in the steel strength cold-rolled thin steel plate of this embodiment, an effect, and a manufacturing method are the same as that of the steel strength cold-rolled thin steel plate of the above-mentioned 1st Embodiment.

また、前述の第1及び第2の実施形態の高強度冷延鋼板は、溶接性にも優れている。その溶接方法としては、例えばアーク溶接、スポット溶接、TIG溶接、MIG溶接、マッシュ溶接及びレーザ溶接等のように通常行われている溶接方法を適用することができる。   Moreover, the high-strength cold-rolled steel sheets of the first and second embodiments described above are also excellent in weldability. As the welding method, a welding method that is usually performed, such as arc welding, spot welding, TIG welding, MIG welding, mash welding, laser welding, or the like can be applied.

以下、本発明の実施例について説明する。先ず、本発明の実施例1として、本発明の範囲内の実施例、及び本発明の範囲から外れる比較例の冷延薄鋼板を作製し、そのミクロ組織観察、鉄鋼連盟規定の穴拡げ試験及びJISに準拠した引張試験を行った。具体的には、下記表1及び表2に示す組成の鋳造スラブを、一旦室温まで冷却した後、1200℃に加熱して熱間圧延し、Ar変態温度以上である880〜910℃の範囲で熱間圧延を完了して、厚さが4mmの熱延コイルにした。次に、この熱延コイルを、冷却した後、各鋼の化学成分で決まるベイナイト変態開始温度以上の550℃で巻き取り、更に表面を酸洗した後で冷間圧延し、厚さが2mmの冷延鋼板を作製した。次に、各冷延鋼板を、昇温速度を2.8℃/秒にして、(Ar変態温度+50℃)〜(Ar変態温度+10℃)の温度範囲にまで昇温し、この温度で140秒間保持した。その後、2.7℃/秒の冷却速度で700℃まで冷却し、引き続き50℃/秒の冷却速度で300℃まで冷却した。更に、そのままの温度、即ち300℃で150秒間保持して過時効処理を施した後、冷却して実施例及び比較例の冷延薄鋼板とした。なお、下記表1及び表2に示す鋼組成における残部は、Fe及び不可避的不純物である。また、下記表1及び表2においては、本発明の範囲外の条件には下線を付して示している。更に、下記表1及び表2には、各鋼のAr変態温度及び冷間圧延後の熱処理温度(最高到達温度)を併せて示す。 Examples of the present invention will be described below. First, as Example 1 of the present invention, an example within the scope of the present invention and a comparative cold-rolled thin steel sheet that is out of the scope of the present invention were produced, and its microstructure was observed, a hole expansion test prescribed by the Federation of Steels, and A tensile test based on JIS was performed. Specifically, a cast slab having the composition shown in Table 1 and Table 2 below is once cooled to room temperature, heated to 1200 ° C. and hot-rolled, and a range of 880 to 910 ° C. which is not lower than the Ar 3 transformation temperature. Then, the hot rolling was completed to form a hot rolled coil having a thickness of 4 mm. Next, after this hot-rolled coil is cooled, it is wound at 550 ° C., which is higher than the bainite transformation start temperature determined by the chemical composition of each steel, and the surface is pickled and cold-rolled, and the thickness is 2 mm. A cold-rolled steel sheet was produced. Next, each cold-rolled steel sheet was heated to a temperature range of (Ar 3 transformation temperature + 50 ° C.) to (Ar 3 transformation temperature + 10 ° C.) at a heating rate of 2.8 ° C./second. Held for 140 seconds. Thereafter, it was cooled to 700 ° C. at a cooling rate of 2.7 ° C./second, and subsequently cooled to 300 ° C. at a cooling rate of 50 ° C./second. Furthermore, after carrying out an overaging process by hold | maintaining at the same temperature, ie, 300 degreeC, for 150 second, it cooled and it was set as the cold rolled sheet steel of the Example and the comparative example. The balance in the steel compositions shown in Tables 1 and 2 below is Fe and inevitable impurities. In Tables 1 and 2 below, conditions outside the scope of the present invention are underlined. Further, Tables 1 and 2 below also show the Ar 3 transformation temperature of each steel and the heat treatment temperature (maximum ultimate temperature) after cold rolling.

Figure 2007177271
Figure 2007177271

Figure 2007177271
Figure 2007177271

次に、実施例及び比較例の各冷延薄鋼板について、前述した方法でそのミクロ組織における各相の体積分率を測定した。また、各冷延薄鋼板からJIS5号引張り試験片を採取し、その引張強度及び伸びを測定した。また、鉄鋼連盟規格に準拠した穴拡げ試験を行い、各冷延薄鋼板の穴拡げ率を求めた。以上の結果を下記表3にまとめて示す。なお、下記表3においては、引張強度が1100MPa未満、穴拡げ率が40%未満、又はミクロ組織における体積分率が本発明の範囲から外れるものには、下線を付して示している。   Next, the volume fraction of each phase in the microstructure was measured for each cold-rolled thin steel sheet of Examples and Comparative Examples by the method described above. Moreover, a JIS No. 5 tensile test piece was collected from each cold-rolled thin steel sheet, and its tensile strength and elongation were measured. Moreover, the hole expansion test based on the steel federation standard was done, and the hole expansion rate of each cold-rolled thin steel plate was calculated | required. The above results are summarized in Table 3 below. In Table 3 below, the tensile strength is less than 1100 MPa, the hole expansion rate is less than 40%, or the volume fraction in the microstructure is out of the scope of the present invention, is underlined.

Figure 2007177271
Figure 2007177271

上記表3に示すように、比較例No.4(鋼種D)及びNo.6(鋼種F)の冷延薄鋼板は、Mn含有量が本発明の範囲を超えていたため、穴拡げ性が40%に満たなかった。このNo.4(鋼種D)の冷延薄鋼板は、硬質ベイナイトの体積分率も本発明の範囲未満であった。一方、No.7(鋼種G)の冷延鋼板は、Mn含有量が本発明の範囲よりも少ないため、穴拡げ性が40%に満たなかった。また、No.12(鋼種L)の冷延薄鋼板は、C含有量が本発明の範囲よりも少ないため、穴拡げ性が40%未満で、引張強度も1100MPa未満であった。一方、No.15(鋼種O)及びNo.16(鋼種P)の冷延薄鋼板は、C含有量が本発明の範囲を超えていたため、穴拡げ性が40%未満であった。このNo.16(鋼種P)の冷延薄鋼板は、硬質ベイナイトの体積分率も本発明の範囲未満であった。   As shown in Table 3 above, Comparative Example No. 4 (steel grade D) and No. 4 The cold rolled thin steel sheet No. 6 (steel type F) had a Mn content exceeding the range of the present invention, so that the hole expandability was less than 40%. This No. The cold rolled steel sheet No. 4 (steel type D) also had a volume fraction of hard bainite that was less than the range of the present invention. On the other hand, no. Since the cold rolled steel sheet of No. 7 (steel type G) has a Mn content smaller than the range of the present invention, the hole expandability was less than 40%. No. The cold rolled thin steel sheet of No. 12 (steel type L) had a C content less than the range of the present invention, so that the hole expandability was less than 40% and the tensile strength was also less than 1100 MPa. On the other hand, no. 15 (steel grade O) and No. Since the C content of the cold rolled steel sheet of 16 (steel type P) exceeded the range of the present invention, the hole expandability was less than 40%. This No. The cold rolled thin steel plate of 16 (steel type P) also had a volume fraction of hard bainite that was less than the range of the present invention.

No.17(鋼種Q)の冷延薄鋼板は、鋼組成は本発明の範囲内であるが、マルテンサイトの体積分率が37%と本発明の範囲よりもすくないため、穴拡げ性が40%未満で、引張強度も1100MPa未満であった。また、No.19(鋼種S)の冷延薄鋼板は、Bの添加効果を示す比較例である。この冷延薄鋼板は、Bが添加されていなかったため、穴拡げ性が40%に満たなかった。更に、No.26(鋼種Z)及びNo.27(鋼種AA)の冷延薄鋼板は、Si含有量が本発明の範囲を超えているため、穴拡げ性が40%未満であった。このNo.26(鋼種Z)の冷延薄鋼板は、軟質ベイナイト及びマルテンサイトの体積分率も本発明の範囲から外れていた。更にまた、No.31(鋼種AE)の冷延薄鋼板は、C含有量が本発明の範囲よりも少なく、更にミクロ組織における軟質ベイナイト及びマルテンサイトの体積分率が本発明の範囲から外れているため、穴拡げ性が40%未満であった。   No. The cold rolled thin steel sheet of No. 17 (steel type Q) has a steel composition within the scope of the present invention, but the martensite volume fraction is 37%, which is less than the scope of the present invention, so that the hole expandability is less than 40%. The tensile strength was less than 1100 MPa. No. The cold rolled thin steel plate of 19 (steel type S) is a comparative example showing the effect of addition of B. Since this cold-rolled thin steel sheet had no B added, the hole expandability was less than 40%. Furthermore, no. 26 (steel grade Z) and No. The cold rolled thin steel plate No. 27 (steel type AA) had a hole expandability of less than 40% because the Si content exceeded the range of the present invention. This No. The cold-rolled thin steel sheet of No. 26 (steel type Z) also had soft bainite and martensite volume fractions outside the scope of the present invention. Furthermore, no. 31 (steel type AE) has a C content less than the range of the present invention, and the volume fraction of soft bainite and martensite in the microstructure is out of the range of the present invention. The property was less than 40%.

No.32(鋼種AF)の冷延鋼板は、C含有量及びMn含有量が本発明の範囲を超えており、更に軟質ベイナイト及びマルテンサイトの体積分率が本発明の範囲から外れているため、穴拡げ性が40%未満で、引張強度も1100MPa未満であった。また、No.33(鋼種AG)の冷延薄鋼板は、Tiの添加効果を示す比較例である。この冷延薄鋼板は、Tiが添加されておらず、マルテンサイトの体積分率も本発明の範囲から外れていたため、穴拡げ性が40%未満で、引張強度も1100MPa未満であった。更に、No.35(鋼種AI)の冷延薄鋼板は、C含有量、Ti含有量、軟質ベイナイトの体積分率及びマルテンサイトの体積分率が本発明の範囲から外れているため、穴拡げ性が40%未満で、引張強度も1100MPa未満であった。   No. The cold-rolled steel sheet of 32 (steel type AF) has a C content and a Mn content exceeding the scope of the present invention, and the volume fraction of soft bainite and martensite is outside the scope of the present invention. The expansibility was less than 40% and the tensile strength was also less than 1100 MPa. Moreover, No. 33 (steel type AG) cold-rolled thin steel sheet is a comparative example showing the effect of addition of Ti. Since this cold-rolled thin steel sheet was not added with Ti and the volume fraction of martensite was also outside the scope of the present invention, the hole expandability was less than 40% and the tensile strength was less than 1100 MPa. Furthermore, the cold rolled thin steel sheet of No. 35 (steel grade AI) has a C content, a Ti content, a volume fraction of soft bainite and a volume fraction of martensite that are out of the scope of the present invention. The tensile strength was less than 1100 MPa.

これに対して、本発明の要件を満たす実施例No.1〜No.3、No.5、No.8〜No.11、No.13、No.14、No.18、No.20〜No.25、No.28〜No.30、No.34、No.36〜No.45の冷延薄鋼板は、いずれも穴拡げ性が40%以上で、かつ引張強度が1100MPa以上であり、強度と穴拡げ性とのバランスが優れていた。特に、Mo及びNbの両方を添加したNo.1〜3(鋼種A〜C)、No.5(鋼種E)、No.8(鋼種H)、No.9(鋼種I)、No.13(鋼種M)、No.14(鋼種N)、No.18(鋼種R)、No.20〜No.24(鋼種T〜X)は、その他の実施例の冷延薄鋼板に比べて、穴拡げ性が優れていた。これは、実施例の冷延薄鋼板のうち、Mo及びNbを添加していないか、又はこれらの一方しか添加していないものは、冷却過程において、Mo及びNbの両方を添加したものよりも、組織に不均一性が生じやすくなっているためである。この結果は、実用に供するにあたって何ら問題になるものではなく、Mo及びNbを本発明の範囲内で添加することが好ましいことを示すものである。   On the other hand, Example No. satisfying the requirements of the present invention. 1-No. 3, no. 5, no. 8-No. 11, no. 13, no. 14, no. 18, no. 20-No. 28-No. 30, no. 34, no. 36-No. All 45 cold-rolled thin steel sheets had a hole expansibility of 40% or more and a tensile strength of 1100 MPa or more, and the balance between strength and hole expansibility was excellent. In particular, No. with both Mo and Nb added. 1 to 3 (steel types A to C), No. 1 5 (steel grade E), No. 8 (steel grade H), No. 8 9 (steel type I), No. 9 13 (steel grade M), No. 14 (steel type N), No. 14 18 (steel type R), No. 18 20-No. 24 (steel types T to X) was excellent in hole expansibility as compared with the cold-rolled thin steel sheets of other examples. This is because, among the cold-rolled thin steel plates of the examples, Mo and Nb are not added, or only one of them is added in comparison with the case where both Mo and Nb are added in the cooling process. This is because non-uniformity is likely to occur in the tissue. This result does not pose any problem in practical use, and indicates that it is preferable to add Mo and Nb within the scope of the present invention.

次に、本発明の実施例2として、下記表4に示す組成の鋳造スラブを使用し、前述の実施例1と同様の方法及び条件で、実施例及び比較例の冷延薄鋼板を作製した。そして、これらの冷延薄鋼板についても、前述の実施例1と同様の方法で、引張強度、伸び、穴拡げ率及びミクロ組織における各相の体積分率を測定した。その結果を下記表5にまとめて示す。なお、下記表4に示す鋼組成における残部は、Fe及び不可避的不純物である。また、下記表4においては、本発明の範囲外の条件には下線を付して示しており、下記表5においては、引張強度が1100MPa未満、穴拡げ率が40%未満、ミクロ組織における体積分率が本発明の範囲から外れるものには、下線を付して示している。   Next, as Example 2 of the present invention, a cast slab having the composition shown in Table 4 below was used, and cold-rolled thin steel sheets of Examples and Comparative Examples were produced in the same manner and conditions as in Example 1 described above. . And about these cold-rolled thin steel plates, the tensile strength, the elongation, the hole expansion rate, and the volume fraction of each phase in the microstructure were measured in the same manner as in Example 1 described above. The results are summarized in Table 5 below. The balance in the steel composition shown in Table 4 below is Fe and inevitable impurities. In Table 4 below, conditions outside the scope of the present invention are underlined, and in Table 5 below, the tensile strength is less than 1100 MPa, the hole expansion rate is less than 40%, and the volume in the microstructure. Those whose fractions fall outside the scope of the present invention are underlined.

Figure 2007177271
Figure 2007177271

Figure 2007177271
Figure 2007177271

上記表5に示すように、Cr及びMnを複合添加することにより、Mn含有量が2.0%未満であっても、穴拡げ率を40%以上とすることができ、十分な強度と穴拡げ性とのバランスが得られた。一方、比較例No.57(鋼種AZ)の冷延薄鋼板は、[Mn]+1.06×[Cr]が本発明の範囲よりも少ないため、穴拡げ性が劣っていた。   As shown in Table 5 above, by adding Cr and Mn in combination, even if the Mn content is less than 2.0%, the hole expansion rate can be made 40% or more, and sufficient strength and hole can be obtained. A balance with expansibility was obtained. On the other hand, the cold rolled thin steel sheet of Comparative Example No. 57 (steel type AZ) had poor hole expansibility because [Mn] + 1.06 × [Cr] was less than the range of the present invention.

Claims (12)

質量%で、
C:0.05〜0.22%、
Si:0.001〜0.8%、
Mn:2.0〜3.0%、
P:0.001〜0.1%、
S:0.0001〜0.01%、
Al:0.001〜0.2%、
B:0.0001〜0.01%、
Ti:0.005〜0.3%を含有し、
残部がFe及び不可避的不純物からなる組成を有し、
ミクロ組織が、マルテンサイト相:50〜90体積%、硬質ベイナイト相:5〜35体積%、軟質ベイナイト相:35%以下、及び残留オーステナイト:0.1〜5体積%からなり、
引張強度が1100MPa以上であり、
かつ穴拡げ率が40%以上であることを特徴とする穴拡げ性に優れた高強度冷延薄鋼板。
% By mass
C: 0.05 to 0.22%,
Si: 0.001 to 0.8%,
Mn: 2.0 to 3.0%,
P: 0.001 to 0.1%,
S: 0.0001 to 0.01%,
Al: 0.001 to 0.2%,
B: 0.0001 to 0.01%
Ti: 0.005 to 0.3% is contained,
The balance has a composition consisting of Fe and inevitable impurities,
The microstructure consists of martensite phase: 50-90% by volume, hard bainite phase: 5-35% by volume, soft bainite phase: 35% or less, and retained austenite: 0.1-5% by volume,
The tensile strength is 1100 MPa or more,
A high-strength cold-rolled thin steel sheet excellent in hole expandability, characterized by having a hole expansion ratio of 40% or more.
質量%で、
C:0.05〜0.22%、
Si:0.001〜0.8%、
Mn:1.5〜3.0%、
P:0.001〜0.1%、
S:0.0001〜0.01%、
Al:0.001〜0.2%、
B:0.0001〜0.01%、
Ti:0.005〜0.3%を含有すると共に、
Crを含有し、
残部がFe及び不可避的不純物からなり、
Mn含有量(%)を[Mn]、Cr含有量(%)を[Cr]としたとき、下記数式(A)を満たす組成を有し、
ミクロ組織が、マルテンサイト相:50〜90体積%、硬質ベイナイト相:5〜35体積%、軟質ベイナイト相:35%以下、及び残留オーステナイト:0.1〜5体積%からなり、
引張強度が1100MPa以上であり、
かつ穴拡げ率が40%以上であることを特徴とする穴拡げ性に優れた高強度冷延薄板鋼板。
Figure 2007177271
% By mass
C: 0.05 to 0.22%,
Si: 0.001 to 0.8%,
Mn: 1.5-3.0%
P: 0.001 to 0.1%,
S: 0.0001 to 0.01%,
Al: 0.001 to 0.2%,
B: 0.0001 to 0.01%
While containing Ti: 0.005 to 0.3%,
Containing Cr,
The balance consists of Fe and inevitable impurities,
When the Mn content (%) is [Mn] and the Cr content (%) is [Cr], the composition satisfies the following mathematical formula (A).
The microstructure consists of martensite phase: 50-90% by volume, hard bainite phase: 5-35% by volume, soft bainite phase: 35% or less, and retained austenite: 0.1-5% by volume,
The tensile strength is 1100 MPa or more,
And the high-strength cold-rolled thin steel plate excellent in hole expandability characterized by having a hole expansion ratio of 40% or more.
Figure 2007177271
更に、質量%で、
Mo:0.11〜1.0%及びNb:0.003〜0.3%からなる群から選択された1種又は2種の元素を含有することを特徴とする請求項1又は2に記載の穴拡げ性に優れた高強度冷延薄鋼板。
Furthermore, in mass%,
The element according to claim 1 or 2, comprising one or two elements selected from the group consisting of Mo: 0.11 to 1.0% and Nb: 0.003 to 0.3%. High-strength cold-rolled thin steel sheet with excellent hole expandability.
更に、質量%で、
Co:0.01〜1%及びW:0.01〜0.3%からなる群から選択された1種又は2種の元素を含有することを特徴とする請求項1乃至3のいずれか1項に記載の穴拡げ性に優れた高強度冷延薄鋼板。
Furthermore, in mass%,
4. One or more elements selected from the group consisting of Co: 0.01 to 1% and W: 0.01 to 0.3% are contained. A high-strength cold-rolled thin steel sheet excellent in hole expansibility described in the item.
更に、質量%で、
Zr、Hf、Ta及びVからなる群から選択された1種又は2種以上の元素を合計で0.001〜1%含有することを特徴とする請求項1乃至4のいずれか1項に記載の穴拡げ性に優れた高強度冷延薄鋼板。
Furthermore, in mass%,
5. One or more elements selected from the group consisting of Zr, Hf, Ta, and V are contained in a total amount of 0.001 to 1%. 5. High-strength cold-rolled thin steel sheet with excellent hole expandability.
更に、質量%で、
Ca、Mg及びRemからなる群から選択された1種又は2種以上の元素を合計で0.0001〜0.5%含有することを特徴とする請求項1乃至5のいずれか1項に記載の穴拡げ性に優れた高強度冷延薄鋼板。
Furthermore, in mass%,
The total content of one or more elements selected from the group consisting of Ca, Mg, and Rem is 0.0001 to 0.5%. High-strength cold-rolled thin steel sheet with excellent hole expandability.
質量%で、C:0.05〜0.22%、Si:0.001〜0.8%、Mn:2.0〜3.0%、P:0.001〜0.1%、S:0.0001〜0.01%、Al:0.001〜0.2%、B:0.0001〜0.01%、Ti:0.005〜0.3%を含有し、残部がFe及び不可避的不純物からなる組成の鋳造スラブを、直接又は一旦1000℃以下まで冷却した後で再度加熱して熱間圧延し、熱延コイルを得る工程と、
前記熱延コイルを巻取り、酸洗した後、冷間圧延して冷延鋼板を得る工程と、
前記冷延鋼板を、最高到達温度をAc変態温度以上860℃以下にして熱処理した後、0.1〜20℃/秒の冷却速度で680〜780℃の第1の温度域まで冷却し、引き続き40〜70℃/秒の冷却速度で250〜350℃の第2の温度域まで冷却した後、この第2の温度域で10〜500秒間保持する工程と、を有することを特徴とする穴拡げ性に優れた高強度冷延薄鋼板の製造方法。
In mass%, C: 0.05 to 0.22%, Si: 0.001 to 0.8%, Mn: 2.0 to 3.0%, P: 0.001 to 0.1%, S: 0.0001-0.01%, Al: 0.001-0.2%, B: 0.0001-0.01%, Ti: 0.005-0.3%, the balance being Fe and inevitable A step of obtaining a hot-rolled coil by directly or directly cooling the cast slab having a composition composed of impurities to 1000 ° C. or less and then hot-rolling it again.
Winding the hot rolled coil, pickling, and cold rolling to obtain a cold rolled steel sheet; and
The cold-rolled steel sheet is heat-treated at a maximum temperature of Ac 3 transformation temperature or more and 860 ° C. or less, and then cooled to a first temperature range of 680 to 780 ° C. at a cooling rate of 0.1 to 20 ° C./second, And subsequently cooling to a second temperature range of 250 to 350 ° C. at a cooling rate of 40 to 70 ° C./second, and then maintaining the second temperature range for 10 to 500 seconds. A method for producing a high-strength cold-rolled steel sheet with excellent spreadability.
質量%で、C:0.05〜0.22%、Si:0.001〜0.8%、Mn:1.5〜3.0%、P:0.001〜0.1%、S:0.0001〜0.01%、Al:0.001〜0.2%、B:0.0001〜0.01%、Ti:0.005〜0.3%を含有すると共に、Crを含有し、残部がFe及び不可避的不純物からなり、Mn含有量(%)を[Mn]、Cr含有量(%)を[Cr]としたとき、下記数式(A)を満たす組成の鋳造スラブを、直接又は一旦1000℃以下まで冷却した後で再度加熱して熱間圧延し、熱延コイルを得る工程と、
前記熱延コイルを巻取り、酸洗した後、冷間圧延して冷延鋼板を得る工程と、
前記冷延鋼板を、最高到達温度をAc変態温度以上860℃以下にして熱処理した後、0.1〜20℃/秒の冷却速度で680〜780℃の第1の温度域まで冷却し、引き続き40〜70℃/秒の冷却速度で250〜350℃の第2の温度域まで冷却した後、この第2の温度域で10〜500秒間保持する工程と、を有することを特徴とする穴拡げ性に優れた高強度冷延薄鋼板の製造方法。
Figure 2007177271
In mass%, C: 0.05 to 0.22%, Si: 0.001 to 0.8%, Mn: 1.5 to 3.0%, P: 0.001 to 0.1%, S: 0.0001-0.01%, Al: 0.001-0.2%, B: 0.0001-0.01%, Ti: 0.005-0.3% and Cr When the balance is Fe and inevitable impurities, the Mn content (%) is [Mn] and the Cr content (%) is [Cr], a cast slab having a composition satisfying the following formula (A) is directly Or, once cooled to 1000 ° C. or lower, heated again and hot rolled to obtain a hot rolled coil,
Winding the hot rolled coil, pickling, and cold rolling to obtain a cold rolled steel sheet; and
The cold-rolled steel sheet is heat-treated at a maximum temperature of Ac 3 transformation temperature or more and 860 ° C. or less, and then cooled to a first temperature range of 680 to 780 ° C. at a cooling rate of 0.1 to 20 ° C./second, And subsequently cooling to a second temperature range of 250 to 350 ° C. at a cooling rate of 40 to 70 ° C./second, and then maintaining the second temperature range for 10 to 500 seconds. A method for producing a high-strength cold-rolled steel sheet with excellent spreadability.
Figure 2007177271
前記鋳造スラブは、更に、質量%で、Mo:0.11〜1.0%及びNb:0.003〜0.3%からなる群から選択された1種又は2種の元素を含有することを特徴とする請求項7又は8に記載の穴拡げ性に優れた高強度冷延薄鋼板の製造方法。   The cast slab further contains one or two elements selected from the group consisting of Mo: 0.11 to 1.0% and Nb: 0.003 to 0.3% by mass%. The method for producing a high-strength cold-rolled thin steel sheet excellent in hole expansibility according to claim 7 or 8. 前記鋳造スラブは、更に、質量%で、Co:0.01〜1%及びW:0.01〜0.3%からなる群から選択された1種又は2種の元素を含有することを特徴とする請求項7乃至9のいずれか1項に記載の穴拡げ性に優れた高強度冷延薄鋼板の製造方法。   The cast slab further contains one or two elements selected from the group consisting of Co: 0.01 to 1% and W: 0.01 to 0.3% by mass%. The manufacturing method of the high intensity | strength cold-rolled thin steel plate excellent in the hole expansibility of any one of Claim 7 thru | or 9. 前記鋳造スラブは、更に、質量%で、Zr、Hf、Ta及びVからなる群から選択された1種又は2種以上の元素を合計で0.001〜1%含有することを特徴とする請求項7乃至10のいずれか1項に記載の穴拡げ性に優れた高強度冷延薄鋼板の製造方法。   The cast slab further contains 0.001 to 1% in total of one or more elements selected from the group consisting of Zr, Hf, Ta and V in mass%. Item 11. A method for producing a high-strength cold-rolled thin steel sheet excellent in hole expansibility according to any one of Items 7 to 10. 前記鋳造スラブは、更に、質量%で、Ca、Mg、Remからなる群から選択された1種又は2種以上の元素を合計で0.0001〜0.5%含有することを特徴とする請求項7乃至11のいずれか1項に記載の穴拡げ性に優れた高強度冷延薄鋼板の製造方法。   The cast slab further contains 0.0001 to 0.5% in total of one or more elements selected from the group consisting of Ca, Mg, and Rem in mass%. The manufacturing method of the high intensity | strength cold-rolled thin steel plate excellent in the hole expansibility of any one of claim | item 7 thru | or 11.
JP2005375374A 2005-12-27 2005-12-27 High-strength cold-rolled thin steel sheet excellent in hole expansibility and manufacturing method thereof Active JP4772496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005375374A JP4772496B2 (en) 2005-12-27 2005-12-27 High-strength cold-rolled thin steel sheet excellent in hole expansibility and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005375374A JP4772496B2 (en) 2005-12-27 2005-12-27 High-strength cold-rolled thin steel sheet excellent in hole expansibility and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007177271A true JP2007177271A (en) 2007-07-12
JP4772496B2 JP4772496B2 (en) 2011-09-14

Family

ID=38302743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005375374A Active JP4772496B2 (en) 2005-12-27 2005-12-27 High-strength cold-rolled thin steel sheet excellent in hole expansibility and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4772496B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059452A (en) * 2008-09-02 2010-03-18 Sumitomo Metal Ind Ltd Cold-rolled steel sheet and producing method therefor
JP2010526935A (en) * 2007-05-11 2010-08-05 アルセロールミタル・フランス Process for producing cold-rolled annealed steel sheet having extremely high strength and board produced thereby
WO2013038741A1 (en) * 2011-09-15 2013-03-21 臼井国際産業株式会社 Trip-type two-phase martensitic steel and ultrahigh-strength-steel processed article obtained therefrom
JP2013108154A (en) * 2011-11-24 2013-06-06 Nippon Steel & Sumitomo Metal Corp Hot-dip galvanized steel sheet and method for manufacturing the same
WO2013146606A1 (en) * 2012-03-27 2013-10-03 株式会社神戸製鋼所 High-strength hot-dip galvanized steel sheet and high-strength alloyed hot-dip galvanized steel sheet having excellent bending workability and minimal strength difference between center part and end parts in sheet width direction, and method for manufacturing same
JP2013213232A (en) * 2012-03-30 2013-10-17 Kobe Steel Ltd High-yield-ratio high-strength steel sheet having excellent workability
JP2014196557A (en) * 2013-03-06 2014-10-16 株式会社神戸製鋼所 High-strength cold-rolled steel sheet excellent in steel sheet shape and shape fixability and production method thereof
WO2015133550A1 (en) * 2014-03-06 2015-09-11 株式会社神戸製鋼所 High-strength hot-dip galvannealed steel sheet having excellent bake hardening property and bendability
KR20160096611A (en) * 2013-12-11 2016-08-16 아르셀러미탈 High-strength steel and method for producing same
US9738956B2 (en) 2010-03-29 2017-08-22 Kobe Steel, Ltd. Ultrahigh-strength steel sheet with excellent workability, and manufacturing method thereof
CN114107794A (en) * 2020-08-31 2022-03-01 宝山钢铁股份有限公司 980 MPa-grade ultra-low carbon martensite and residual austenite type ultrahigh reaming steel and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH101740A (en) * 1996-06-12 1998-01-06 Kobe Steel Ltd Ultrahigh strength steel sheet excellent in delayed fracture resistance, and its production
JPH11189839A (en) * 1997-12-26 1999-07-13 Nippon Steel Corp High strength steel plate with high dynamic deformation resistance, and its production
JP2001081533A (en) * 1999-09-16 2001-03-27 Sumitomo Metal Ind Ltd High tensile strength cold rolled steel sheet and its manufacture
JP2002161336A (en) * 2000-09-12 2002-06-04 Nkk Corp Super high tensile-strength cold-rolled steel sheet and manufacturing method therefor
JP2004010991A (en) * 2002-06-10 2004-01-15 Jfe Steel Kk Method of producing ultrahigh strength cold rolled steel sheet having excellent spot weldability
JP4430511B2 (en) * 2004-10-29 2010-03-10 新日本製鐵株式会社 Manufacturing method of high-strength cold-rolled steel sheet with excellent hole expandability

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH101740A (en) * 1996-06-12 1998-01-06 Kobe Steel Ltd Ultrahigh strength steel sheet excellent in delayed fracture resistance, and its production
JPH11189839A (en) * 1997-12-26 1999-07-13 Nippon Steel Corp High strength steel plate with high dynamic deformation resistance, and its production
JP2001081533A (en) * 1999-09-16 2001-03-27 Sumitomo Metal Ind Ltd High tensile strength cold rolled steel sheet and its manufacture
JP2002161336A (en) * 2000-09-12 2002-06-04 Nkk Corp Super high tensile-strength cold-rolled steel sheet and manufacturing method therefor
JP2004010991A (en) * 2002-06-10 2004-01-15 Jfe Steel Kk Method of producing ultrahigh strength cold rolled steel sheet having excellent spot weldability
JP4430511B2 (en) * 2004-10-29 2010-03-10 新日本製鐵株式会社 Manufacturing method of high-strength cold-rolled steel sheet with excellent hole expandability

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10612106B2 (en) 2007-05-11 2020-04-07 Arcelormittal Process for manufacturing cold-rolled and annealed steel sheet with a very high strength, and sheet thus produced
JP2010526935A (en) * 2007-05-11 2010-08-05 アルセロールミタル・フランス Process for producing cold-rolled annealed steel sheet having extremely high strength and board produced thereby
US11414722B2 (en) 2007-05-11 2022-08-16 Arcelormittal Process for manufacturing cold-rolled and annealed steel sheet with a very high strength, and sheet thus produced
JP2010059452A (en) * 2008-09-02 2010-03-18 Sumitomo Metal Ind Ltd Cold-rolled steel sheet and producing method therefor
US9738956B2 (en) 2010-03-29 2017-08-22 Kobe Steel, Ltd. Ultrahigh-strength steel sheet with excellent workability, and manufacturing method thereof
WO2013038741A1 (en) * 2011-09-15 2013-03-21 臼井国際産業株式会社 Trip-type two-phase martensitic steel and ultrahigh-strength-steel processed article obtained therefrom
JP2013076155A (en) * 2011-09-15 2013-04-25 Usui Kokusai Sangyo Kaisha Ltd Trip-type two-phase martensitic steel and ultrahigh-strength-steel processed article obtained therefrom
CN103827332A (en) * 2011-09-15 2014-05-28 臼井国际产业株式会社 Trip-type two-phase martensitic steel and ultrahigh-strength-steel processed article obtained therefrom
JP2013108154A (en) * 2011-11-24 2013-06-06 Nippon Steel & Sumitomo Metal Corp Hot-dip galvanized steel sheet and method for manufacturing the same
KR20140129288A (en) * 2012-03-27 2014-11-06 가부시키가이샤 고베 세이코쇼 High-strength hot-dip galvanized steel sheet and high-strength alloyed hot-dip galvanized steel sheet having excellent bending workability and minimal strength difference between center part and end parts in sheet width direction, and method for manufacturing same
CN104204256A (en) * 2012-03-27 2014-12-10 株式会社神户制钢所 High-strength alloyed hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet which have excellent bending workability and minimal strength difference between center part and end parts in sheet width direction, and method for manufacturing same
JP2013227660A (en) * 2012-03-27 2013-11-07 Kobe Steel Ltd High-strength hot-dip galvanized steel sheet and high-strength alloyed hot-dip galvanized steel sheet having excellent bendability and minimal strength difference between center part and end part in sheet width direction, and method for producing the same
KR101653085B1 (en) 2012-03-27 2016-08-31 가부시키가이샤 고베 세이코쇼 High-strength hot-dip galvanized steel sheet and high-strength alloyed hot-dip galvanized steel sheet having excellent bending workability and minimal strength difference between center part and end parts in sheet width direction, and method for manufacturing same
WO2013146606A1 (en) * 2012-03-27 2013-10-03 株式会社神戸製鋼所 High-strength hot-dip galvanized steel sheet and high-strength alloyed hot-dip galvanized steel sheet having excellent bending workability and minimal strength difference between center part and end parts in sheet width direction, and method for manufacturing same
JP2013213232A (en) * 2012-03-30 2013-10-17 Kobe Steel Ltd High-yield-ratio high-strength steel sheet having excellent workability
JP2014196557A (en) * 2013-03-06 2014-10-16 株式会社神戸製鋼所 High-strength cold-rolled steel sheet excellent in steel sheet shape and shape fixability and production method thereof
KR20160096611A (en) * 2013-12-11 2016-08-16 아르셀러미탈 High-strength steel and method for producing same
JP2017507241A (en) * 2013-12-11 2017-03-16 アルセロールミタル High strength steel and manufacturing method
KR102264641B1 (en) 2013-12-11 2021-06-14 아르셀러미탈 High-strength steel and method for producing same
US10597745B2 (en) 2013-12-11 2020-03-24 Arcelormittal High strength steel and manufacturing method
WO2015133550A1 (en) * 2014-03-06 2015-09-11 株式会社神戸製鋼所 High-strength hot-dip galvannealed steel sheet having excellent bake hardening property and bendability
US10023934B2 (en) 2014-03-06 2018-07-17 Kobe Steel, Ltd. High-strength hot-dip galvannealed steel sheet having excellent bake hardening property and bendability
JP2015168841A (en) * 2014-03-06 2015-09-28 株式会社神戸製鋼所 High strength alloy galvanized steel sheet excellent in baking hardenability and bendability
CN114107794A (en) * 2020-08-31 2022-03-01 宝山钢铁股份有限公司 980 MPa-grade ultra-low carbon martensite and residual austenite type ultrahigh reaming steel and manufacturing method thereof
CN114107794B (en) * 2020-08-31 2023-08-11 宝山钢铁股份有限公司 980 MPa-grade ultra-low carbon martensite and residual austenite ultra-high hole-enlarging steel and manufacturing method thereof

Also Published As

Publication number Publication date
JP4772496B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP4772497B2 (en) High-strength cold-rolled thin steel sheet excellent in hole expansibility and manufacturing method thereof
JP4772496B2 (en) High-strength cold-rolled thin steel sheet excellent in hole expansibility and manufacturing method thereof
JP5493986B2 (en) High-strength steel sheet and high-strength hot-dip galvanized steel sheet excellent in workability and methods for producing them
JP6179461B2 (en) Manufacturing method of high-strength steel sheet
JP5780086B2 (en) High strength steel plate and manufacturing method thereof
JP5003785B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP5157215B2 (en) High rigidity and high strength steel plate with excellent workability
JP5924332B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP6846522B2 (en) High-strength cold-rolled steel sheets with excellent yield strength, ductility, and hole expansion properties, hot-dip galvanized steel sheets, and methods for manufacturing these.
JP4843981B2 (en) High-rigidity and high-strength steel sheet and manufacturing method thereof
JP2010090475A (en) High-strength steel plate and manufacturing method thereof
JP2007138262A (en) High strength cold rolled steel sheet reduced in dispersion in mechanical characteristic, and its manufacturing method
JP2009209450A (en) High-strength hot-dip galvanized steel sheet with excellent processability and method for producing the same
JP5256690B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same
JP2010070843A (en) High-strength hot-dip galvanized steel sheet having excellent workability and method for producing the same
JPWO2019159771A1 (en) High strength steel sheet and method for producing the same
JP2019512608A (en) High strength cold rolled steel sheet excellent in yield strength and ductility, plated steel sheet, and manufacturing method thereof
JP4506434B2 (en) High strength steel plate with excellent rigidity and method for producing the same
JP5456026B2 (en) High-strength steel sheet, hot-dip galvanized steel sheet with excellent ductility and no cracks at the edge, and manufacturing method thereof
JP5365758B2 (en) Steel sheet and manufacturing method thereof
JP5256689B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4265153B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP2002241897A (en) Steel sheet having small variation in yield strength and fracture elongation, high formability and low yield ratio, and method for manufacturing the same
JP4506439B2 (en) High-rigidity and high-strength steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4772496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350