JPH07107178B2 - Method for producing high strength dual phase chromium stainless steel strip with excellent ductility - Google Patents

Method for producing high strength dual phase chromium stainless steel strip with excellent ductility

Info

Publication number
JPH07107178B2
JPH07107178B2 JP10187A JP10187A JPH07107178B2 JP H07107178 B2 JPH07107178 B2 JP H07107178B2 JP 10187 A JP10187 A JP 10187A JP 10187 A JP10187 A JP 10187A JP H07107178 B2 JPH07107178 B2 JP H07107178B2
Authority
JP
Japan
Prior art keywords
less
heat treatment
steel strip
cold rolling
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10187A
Other languages
Japanese (ja)
Other versions
JPS63169331A (en
Inventor
照夫 田中
克久 宮楠
廣 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP10187A priority Critical patent/JPH07107178B2/en
Priority to EP87118422A priority patent/EP0273279B1/en
Priority to DE3787961T priority patent/DE3787961T2/en
Priority to ES87118422T priority patent/ES2044905T3/en
Priority to US07134873 priority patent/US4824491B1/en
Priority to CA000555161A priority patent/CA1308997C/en
Priority to BR8707115A priority patent/BR8707115A/en
Priority to CN87105997A priority patent/CN1011987B/en
Priority to KR1019870015473A priority patent/KR950013188B1/en
Publication of JPS63169331A publication Critical patent/JPS63169331A/en
Publication of JPH07107178B2 publication Critical patent/JPH07107178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,延性に優れ強度および延性の面内異方性の小
さい高強度複相組織クロムステンレス鋼帯の新規な工業
的製造法に関し,高強度が必要とされ且つプレス成形な
どの加工が施される成形用素材としての高強度高延性ス
テンレス鋼帯の製造法を提供するものである。
TECHNICAL FIELD The present invention relates to a novel industrial production method of a high-strength dual-phase chromium stainless steel strip having excellent ductility and strength and ductility with small in-plane anisotropy, It is intended to provide a method for producing a high-strength and high-ductility stainless steel strip as a forming material which requires high strength and is subjected to processing such as press forming.

〔この分野の背景〕[Background of this field]

クロムを主合金成分として含有するクロムステンレス鋼
にはマルテンサイト系ステンレス鋼とフエライト系ステ
ンレス鋼とがある。いずれも,クロムおよびニッケルを
主合金成分として含有するオーステナイト系ステンレス
鋼に比べて安価であり,そして強磁性を有し熱膨脹係数
が小さいなどの物性面でオーステナイト系ステンレス鋼
には見られない特徴を有するので,単に経済的な理由の
みならず特性面からクロムステンレス鋼に限定される用
途も多い。特に近年の電子機器や精密機械部品などの分
野では,その需要拡大にともなってクロムステンレス鋼
板を使用する用途において加工成品の高機能化,小型
化,一体化,高精度化並びに加工工程の簡略化に対する
要求が益々厳しくなってきている。このために,ステン
レス鋼本来の耐食性や上述のクロムステンレス鋼の特質
に加えて,クロムステンレス鋼板の素材面では,一層の
強度,加工性や精度が必要とされる。したがって,高強
度と高延性という相反する特性を兼備したもの,素材鋼
板時点での形状や板厚精度に優れたもの,加工後の形状
精度に優れるといった諸特性を合わせもつクロムステン
レス鋼板素材の出現が待たれている。
The chromium stainless steel containing chromium as a main alloy component includes martensitic stainless steel and ferrite stainless steel. All of them are less expensive than austenitic stainless steels containing chromium and nickel as main alloying components, and have characteristics not found in austenitic stainless steels in terms of physical properties such as ferromagnetism and small thermal expansion coefficient. As a result, there are many applications that are limited to chrome stainless steel not only for economic reasons but also for their characteristics. Especially in the fields of electronic devices and precision machine parts in recent years, the demand for chrome stainless steel sheets has increased, and the processing products have become highly functional, compact, integrated, highly accurate, and simplified. The demand for is becoming more and more severe. For this reason, in addition to the original corrosion resistance of stainless steel and the above-mentioned characteristics of chrome stainless steel, further strength, workability and precision are required in terms of the material surface of chrome stainless steel. Therefore, the advent of a chrome stainless steel sheet material that has various characteristics such as high strength and high ductility, which are contradictory characteristics, excellent shape and thickness accuracy at the time of material steel sheet, and excellent shape accuracy after processing. Is waiting.

〔従来の技術〕[Conventional technology]

従来のクロムステンレス鋼板素材について,強度の観点
から見ると,先ずマルテンサイト系ステンレス鋼が高強
度を有するクロムステンレス鋼として良く知られてい
る。例えばJIS G 4305の冷間圧延ステンレス鋼板にはマ
ルテンサイト系ステンレス鋼として7種の鋼が規定され
ている。これらのマルテンサイト系ステンレス鋼は,Cが
0.08%以下(SUS410S)から0.60〜0.75%(SUS440A)で
あり,フェライト系ステンレス鋼に比べて同一Cr量レベ
ルで見ると,高いCを含有し,焼入れ処理または焼入れ
焼もどし処理により高強度を付与することができる。例
えば,このJIS G 4305において,0.26〜0.40%のCおよ
び12.00〜14.00%のCrを含有するSUS420J2では,980〜10
40℃からの急冷による焼入れ後,150〜400℃空冷の焼も
どしによりHRC40以上の硬さが得られることが,そして,
0.60〜0.75%のCおよび16.00〜18.00%のCrを含有する
SUS440Aでは,1010〜1070℃からの急冷による焼入れ後,1
50〜400℃空冷の焼もどしにより,同じくHRC40以上の硬
さが得られることが示されている。
Regarding the conventional chromium stainless steel sheet material, from the viewpoint of strength, first, martensitic stainless steel is well known as chromium stainless steel having high strength. For example, JIS G 4305 cold-rolled stainless steel sheet defines seven types of steel as martensitic stainless steel. These martensitic stainless steels have C
0.08% or less (SUS410S) to 0.60 to 0.75% (SUS440A). Compared to ferritic stainless steel, when viewed at the same Cr content level, it contains high C and imparts high strength by quenching or tempering. can do. For example, in JIS G 4305, SUS420J2 containing 0.26 to 0.40% C and 12.00 to 14.00% Cr has 980 to 10
After quenching by quenching from 40 ℃, tempering of 150-400 ℃ air cooling can obtain hardness of HRC 40 or more, and
Contains 0.60 to 0.75% C and 16.00 to 18.00% Cr
For SUS440A, after quenching by quenching from 1010 to 1070 ℃,
It has been shown that a hardness of HRC 40 or higher can also be obtained by tempering at 50 to 400 ° C air cooling.

一方,クロムステンレス鋼であるフェライト系ステンレ
ス鋼板では熱処理による硬化があまり期待できないの
で,強度を上昇させる方法としては焼なまし後,さらに
冷間で調質圧延を行って加工硬化による強度上昇を図る
ことが行われている。しかし,フェライト系ステンレス
鋼は元来が高強度を必要とする用途にはあまり供されて
はいないのが実状である。
On the other hand, in ferritic stainless steel sheets, which are chrome stainless steels, hardening due to heat treatment cannot be expected so much. Therefore, as a method of increasing strength, after annealing, temper rolling is further performed to increase strength by work hardening. Is being done. However, the fact is that ferritic stainless steel has not been used so much for applications that originally require high strength.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

マルテンサイト系ステンレス鋼板では,焼入れまたは焼
入れ−焼もどし処理後の組織はその名称のごとく基本的
にはマルテンサイト組織であり,非常に高い強度および
硬さが得られる反面,伸びは非常に低い。そのため,焼
入れまたは焼入れ焼もどし処理を施したのではその後の
加工が困難となる。特にプレス成形などの加工は焼入れ
または焼入れ焼もどし後では不可能である。したがって
加工が施される場合には焼入れまたは焼入れ焼もどし前
に施される。すなわち,素材メーカーからは焼なました
状態,つまり,JIS G 4305の表16にも示されるように強
度および硬さの低い軟質な状態で出荷され,加工メーカ
ーにおいて最終成品にほぼ近い形状に加工された後,焼
入れまたは焼入れ焼もどし処理を施すのが通常である。
この焼入れまたは焼入れ焼もどし処理を施すことにより
生成する表面の酸化皮膜(スケール)は表面の美麗さが
重要視されるステンレス鋼では好ましくない場合が多
く,その対策として真空もしくは不活性ガス雰囲気によ
る熱処理を施したり,熱処理後に研磨などによりスケー
ルを除去するなどの工程が必要となる。いずれにして
も,マルテンサイト系ステンレス鋼板では高強度を得る
ためには加工メーカーでの熱処理工程が不可欠であると
いう加工メーカー側での負担増があり,またこのために
最終製品のコストアップは避けられないという問題があ
った。
In the martensitic stainless steel sheet, the structure after quenching or quenching-tempering is basically a martensitic structure as its name suggests, and although very high strength and hardness can be obtained, the elongation is very low. Therefore, the subsequent processing becomes difficult if the quenching or quenching and tempering treatment is performed. In particular, processing such as press molding is impossible after quenching or quenching and tempering. Therefore, when it is processed, it is applied before quenching or quenching and tempering. That is, the material manufacturer shipped in an annealed state, that is, in a soft state with low strength and hardness as shown in Table 16 of JIS G 4305, and processed into a shape close to the final product by the processing manufacturer. After that, it is usual to carry out quenching or quenching and tempering.
The surface oxide film (scale) generated by this quenching or quenching and tempering treatment is often not preferable in stainless steel where surface beauty is important, and as a countermeasure, heat treatment in a vacuum or an inert gas atmosphere It is necessary to perform steps such as applying heat treatment and removing scale by polishing after heat treatment. In any case, in order to obtain high strength with martensitic stainless steel sheets, the heat treatment process at the processing manufacturer is indispensable, which increases the burden on the processing manufacturer. Therefore, the cost increase of the final product is avoided. There was a problem that I could not.

一方,フェライト系ステンレス鋼板を調質圧延により強
度を上昇させた場合には,伸びの低下が著しくなって強
度−延性バランスが悪くなる結果,加工性に劣ることに
なる。そして,調質圧延による強度上昇の程度は引張強
さよりも耐力の方が著しく高い。このために高圧延率に
なると耐力と引張強さの差が小さくなり,降伏比(=耐
力/引張強さ)が1に近くなって材料の塑性加工域が非
常に狭くなると共に,耐力が高いとスプリングバックが
大きくなってプレス加工などの後の形状性が悪くなる。
さらに調質圧延材は強度および伸びの面内異方性が非常
に大きく,軽度のプレス加工などでも加工後の形状が悪
くなる。また,圧延による加工歪みは板の表面に近いほ
ど大きいという特徴があるため,調質圧延材では板厚方
向のひずみ分布が不均一になることが避けられない。こ
れは残留応力の板厚方向の不均一分布をもたらし,特に
極薄鋼板では打抜き加工やフオトエッチング処理による
穴あけ加工後に板の反りなどの形状変化を生ずる場合が
あり,電子部品などの高精度が必要とされる用途では大
きな問題となる。以上の材質特性面での問題のみなら
ず,調質圧延材はその製造性においても多くの問題を抱
えている。先ず強度の制御について見ると,調質圧延は
冷間圧延による加工硬化を利用しているため圧延率が強
度を決定する最も重要な因子である。したがって,成品
として板厚精度に優れ且つ目標の強度レベルを精度よく
安定して得るためには,圧延率の厳密な制御,具体的に
は調質圧延前の初期板厚の厳密な管理が非常に重要であ
ることに加えて,調質圧延前の素材の強度レベルの管理
が必要となる。また形状制御の面では,いわゆるスキン
パス圧延やテンパーローリングと呼ばれる形状修正を目
的とした高々2〜3%の軽圧延率の調質圧延とは異な
り,高強度化を目的とする調質圧延では圧延率が数十パ
ーセントにもおよぶ実質的な冷間圧延であるため,冷延
ままで形状性に優れた鋼帯を得ることは困難である。こ
のため,形状修正を目的として材料の回復・再結晶温度
域よりも低く軟化しない温度域に加熱し,応力除去処理
を必要とする場合がある。このように調質圧延材は製造
性においても数々の問題がある。
On the other hand, when the strength of a ferritic stainless steel sheet is increased by temper rolling, the elongation decreases significantly and the balance between strength and ductility deteriorates, resulting in poor workability. The degree of strength increase due to temper rolling is significantly higher in proof stress than in tensile strength. For this reason, when the rolling ratio is high, the difference between the yield strength and the tensile strength becomes small, the yield ratio (= yield strength / tensile strength) approaches 1, and the plastic working area of the material becomes extremely narrow and the yield strength is high. And the spring back becomes large and the formability after pressing etc. deteriorates.
Furthermore, the temper-rolled material has a very large in-plane anisotropy of strength and elongation, and the shape after processing deteriorates even with mild press working. In addition, since the processing strain due to rolling increases as it approaches the surface of the plate, it is unavoidable that strain distribution in the plate thickness direction becomes uneven in temper-rolled material. This causes a non-uniform distribution of residual stress in the plate thickness direction, and especially for ultra-thin steel plates, shape changes such as plate warpage may occur after punching or hole-punching by photo-etching, which makes high precision of electronic components and the like difficult. It is a big problem in the required application. In addition to the above problems in terms of material properties, temper rolled materials have many problems in terms of manufacturability. Looking first at the strength control, temper rolling is the most important factor that determines strength, because it uses work hardening by cold rolling. Therefore, strict control of the rolling rate, specifically, strict control of the initial plate thickness before temper rolling is extremely important for obtaining a product with excellent plate thickness accuracy and stable and accurate target strength level. It is important to control the strength level of the material before temper rolling. In terms of shape control, unlike temper rolling with a light rolling rate of at most 2 to 3% for the purpose of shape correction called so-called skin pass rolling or temper rolling, temper rolling for the purpose of increasing strength requires rolling. Since it is a substantial cold rolling with a rate of several tens of percent, it is difficult to obtain a steel strip with excellent shape as cold rolled. Therefore, in order to correct the shape, the stress relieving process may be required by heating the material to a temperature range lower than the material recovery / recrystallization temperature range and not softening. As described above, the temper rolled material has various problems in terms of manufacturability.

以上の調質圧延に起因する問題のみならず,フェライト
系ステンレス鋼板では本質的な欠点とも言えるリジング
の問題がある。リジングは通常,フェライト系ステンレ
ス鋼の冷延焼鈍板にプレス成形などの加工を施した際に
生ずる表面欠陥の一種であるが,冷間圧延後においても
一般に冷延リジングと呼ばれるリジングを発生する場合
があり,表面の粗度が重視される用途ではやはり大きな
問題となる。
In addition to the above problems caused by temper rolling, ferritic stainless steel sheets have a problem of ridging, which can be said to be an essential defect. Ridging is usually a type of surface defect that occurs when cold-rolled and annealed ferritic stainless steel plates are subjected to processing such as press forming. However, when ridging that is commonly called cold-rolled ridging occurs even after cold rolling However, this is still a major problem in applications where surface roughness is important.

〔問題点を解決する手段〕[Means for solving problems]

前述のような問題は,適度な高強度を有し且つ所望の形
状に加工し得る良好な延性および加工性を具備し,異方
性が小さくリジング発生のないクロムステンレス鋼材料
が素材メーカー側で鋼板または鋼帯の形で提供できれば
解決し得る。そこで本発明者らはこの解決を目的として
化学成分並びに製造条件の両面からクロムステンレス鋼
について広範な研究を続けて来た。その結果,鋼成分を
適正に制御し,さらに製造条件として,熱間圧延のあ
と,更に必要に応じての熱圧延焼鈍を行ったあと,冷間
圧延を行って製品板厚の冷延鋼帯を製造し,この冷延鋼
帯を,従来のフエライト単相域温度での仕上焼鈍つまり
鋼板または鋼帯成品に施す焼なまし処理ではなく,適正
なフエライト+オーステナイト二相域への加熱とその後
の急冷処理からなる特定条件下での連続仕上熱処理を施
すならば,実質的に軟質なフェライト相と硬質なマルテ
ンサイト相が均一に混在した複相組織とすることがで
き,前記の問題点の実質上すべてが解決できるという素
晴らしい成果を得ることができた。
As for the above-mentioned problems, the material manufacturer has a chrome stainless steel material that has moderately high strength, good ductility and workability that can be processed into a desired shape, and has little anisotropy and no ridging. It can be solved if it can be provided in the form of steel plate or strip. Therefore, the inventors of the present invention have conducted extensive research on chromium stainless steel from the viewpoint of both chemical composition and manufacturing conditions for the purpose of solving this problem. As a result, the steel components were properly controlled, and as a manufacturing condition, after hot rolling, if necessary, hot rolling annealing was performed, and then cold rolling was performed to perform cold rolling of the product strip thickness. This cold-rolled steel strip is not subjected to conventional finish annealing at the ferrite single-phase region temperature, that is, annealing treatment applied to a steel sheet or a steel strip product, and is appropriately heated to the ferrite-austenite two-phase region and then If a continuous finishing heat treatment under specific conditions consisting of the rapid cooling treatment of is carried out, it is possible to obtain a multiphase structure in which a substantially soft ferrite phase and a hard martensite phase are mixed uniformly. We were able to get the wonderful result that virtually everything can be solved.

かくして本発明は, 重量%において, C:0.10%以下, Si:2.0%以下, Mn:4.0%以下, P:0.040%以下, S:0.030%以下, Ni:4.0%以下, Cr:10.0%以上で20.0%以下, N:0.12%以下, O:0.02%以下, Cu:4.0%以下, を含有し,場合によっては,さらに0.20%以下のAl,0.0
050%以下のB,1.0%以下のMo,0.10%以下のREM,0.20%
以下のYの一種または二種以上を含有し,残部がFeおよ
び不可避的不純物からなる鋼であって,且つ 0.01%≦C+N≦0.20% 0.5%≦Ni+(Mn+Cu)/3≦5.0% の関係を満足する鋼のスラブを製造し,これを熱間圧延
して熱延鋼帯を製造する工程, 中間焼鈍無しの一回冷延によって製品板厚にまで冷間圧
延して冷延鋼帯を製造する冷間圧延工程,そして, 得られた冷延鋼帯を連続熱処理炉に通板して,Ac1点以上
1100℃以下のフェライト+オースナイトの二相域温度に
10分以内の保持のあと,最高加熱温度から100℃までを
平均冷却速度1℃/sec以上500℃/sec以下で冷却する仕
上熱処理を施す連続仕上熱処理工程, からなる,HV200以上の硬さを有し且つ延性に優れた高強
度複相組織クロムステンレス鋼帯の製造法を提供するも
のである。
Thus, the present invention, in wt%, C: 0.10% or less, Si: 2.0% or less, Mn: 4.0% or less, P: 0.040% or less, S: 0.030% or less, Ni: 4.0% or less, Cr: 10.0% or more 20.0% or less, N: 0.12% or less, O: 0.02% or less, Cu: 4.0% or less, and in some cases, 0.20% or less of Al, 0.0
050% or less B, 1.0% or less Mo, 0.10% or less REM, 0.20%
A steel containing one or more of the following Y and the balance being Fe and inevitable impurities, and having a relationship of 0.01% ≤ C + N ≤ 0.20% 0.5% ≤ Ni + (Mn + Cu) / 3 ≤ 5.0%. Manufacture a slab of satisfying steel, and hot-roll it to produce hot-rolled steel strip, cold-rolled steel strip by cold-rolling to product thickness by single cold rolling without intermediate annealing cold rolling step to, then, Tsuban the resulting cold-rolled steel strip in a continuous heat treatment furnace, Ac 1 or more points
For two-phase temperature of 1100 ℃ or less ferrite + ausnite
After holding for less than 10 minutes, a continuous finishing heat treatment process is performed in which the maximum heating temperature to 100 ° C is cooled at an average cooling rate of 1 ° C / sec or more and 500 ° C / sec or less. The present invention provides a method for producing a high-strength dual-phase chromium stainless steel strip having excellent ductility.

本発明法によれば前述の問題点の実質上すべてが解決さ
れるのみならず,鋼組成または仕上熱処理時の加熱温度
並びに冷却速度を制御することにより強度を自在に且つ
簡単に調整できるという点でクロムステンレス鋼板また
は鋼帯素材の工業的製造にあたっての有利且つ新しい製
造技術を提供するものであり,従来より市場に出荷され
ているマルテンサイト系ステンレス鋼板または鋼帯やフ
ェライト系ステンレス鋼板または鋼帯では有しない延性
と強度の両特性を兼備し且つ延性と強度の面内異方性の
少ない新規クロムステンレス鋼材料を市場に提供するも
のである。なお,本発明法によれば,最終の連続仕上熱
処理工程を経た成品は鋼帯の形態で工業的に製造される
ものであり,これが市場に出荷される場合には鋼帯のま
ま(コイル)か或いは鋼板に整形された状態となる。
According to the method of the present invention, not only substantially all of the above problems are solved, but also the strength can be freely and easily adjusted by controlling the steel composition or the heating temperature and the cooling rate during the finish heat treatment. It provides an advantageous and new manufacturing technology for the industrial production of chrome stainless steel sheet or steel strip material, and has been hitherto marketed in the martensitic stainless steel sheet or steel strip or ferritic stainless steel sheet or steel strip. The present invention provides the market with a new chromium stainless steel material having both ductility and strength, which does not exist, and having low in-plane anisotropy of ductility and strength. According to the method of the present invention, the product which has undergone the final continuous finishing heat treatment step is industrially manufactured in the form of a steel strip, and when it is shipped to the market, the steel strip remains a coil (coil). Alternatively, it is in a state of being shaped into a steel plate.

従来より,例えばフェライト系ステンレス鋼の代表鋼種
であるSUS430においても二相域温度に加熱すればオース
テナイトが生成し,このオーステナイトは急冷によって
マルテンサイトに変態してフエライト+マルテンサイト
の二層組織になること自体は知られていた。しかしなが
ら,高温でオーステナイトを生成するフェライト系ステ
ンレス鋼帯の製造においては,冷延後の熱処理はあくま
でもフエライト単相域温度での焼なまし処理であり,マ
ルテンサイトを生成するような高温の熱処理は延性の低
下などの材質上の劣下をもたらすものとして回避するこ
とが常識であり,工業的な鋼帯の実際の製造面では全く
顧みられなかった。
Conventionally, for example, SUS430, which is a representative ferritic stainless steel, also produces austenite when heated to the two-phase region temperature. This austenite is transformed into martensite by quenching and becomes a double-layer structure of ferrite and martensite. The thing itself was known. However, in the production of ferritic stainless steel strips that produce austenite at high temperatures, the heat treatment after cold rolling is merely an annealing treatment at the ferrite single-phase region temperature, and high-temperature heat treatment that produces martensite is not possible. It is common sense to avoid it as a material inferior such as a decrease in ductility, and it was never considered in the actual manufacturing of industrial steel strips.

したがって,クロムステンレス鋼の冷延工程後に本発明
のような連続熱処理を想定し且つフェライト+オーステ
ナイト二相域に加熱する仕上熱処理を施した場合の加熱
温度と強度および延性の関係や延性および強度の異方性
などについて詳細に研究がなされた例もない。本発明
は,高強度クロムステンレス鋼帯の工業的製造法として
従来顧みられることのなかった全く新しい製造方法を提
供するものであり,その結果として従来のクロムステン
レス鋼板または鋼帯では有しなかった優れた特性をもつ
新規なクロムステンレス鋼板材料を提供するものであ
る。
Therefore, the relationship between the heating temperature and the strength and the ductility, the ductility and the strength of the ductility and the strength in the case where the continuous heat treatment as in the present invention is assumed after the cold rolling process of the chromium stainless steel and the finishing heat treatment for heating to the ferrite + austenite two-phase region is performed. There are no examples of detailed research on anisotropy. INDUSTRIAL APPLICABILITY The present invention provides a completely new manufacturing method which has never been neglected as an industrial manufacturing method of high strength chromium stainless steel strip, and as a result, does not have the conventional chromium stainless steel sheet or steel strip. It is intended to provide a novel chrome stainless steel plate material having excellent properties.

〔発明の詳述〕[Detailed Description of the Invention]

以下に,本発明で規制する鋼の化学成分値の範囲限定の
理由並びに本発明法で採用する各製造工程の内容を具体
的に詳述する。
The reason for limiting the range of the chemical composition value of steel controlled by the present invention and the content of each manufacturing process adopted in the method of the present invention will be specifically described below.

まず,本発明法を適用するクロムステンレス鋼の成分の
含有量範囲(重量%)の限定理由は次のとおりである。
First, the reasons for limiting the content range (% by weight) of the components of chromium stainless steel to which the method of the present invention is applied are as follows.

CおよびNは,Ni,Mn,Cuなどに比べて強力且つ安価なオ
ーステナイト生成元素であると共にマルテンサイト強化
能の大きい元素であるから,連続仕上熱処理後の強度の
制御並びに高強度化に有効な元素である。したがって,
連続仕上熱処理工程後に10%以上のマルテンサイトを含
む複相組織としHv200以上の十分な強度を得るには,Ni,M
n,Cuなどのオーステナイト生成元素が添加されていて
も,(C+N)量として少なくとも0.01%以上を必要と
する。しかし,CとN量があまり高いと連続仕上熱処理工
程後に生成するマルテンサイト量が多くなり,場合によ
っては100%マルテンサイトとなると共にマルテンサイ
ト相そのものの硬さも非常に高くなるので高強度は得ら
れるものの延性は低下する。したがって,(C+N)量
として0.20%以下とし,0.01%≦C+N≦0.20%の関係
を満足させることが必要である。
C and N are stronger and cheaper austenite-forming elements than Ni, Mn, Cu, etc., and have a large martensite strengthening ability, so they are effective in controlling strength and increasing strength after continuous finishing heat treatment. It is an element. Therefore,
In order to obtain a multiphase structure containing 10% or more of martensite after the continuous finishing heat treatment process and to obtain sufficient strength of Hv 200 or more, Ni, M
Even if an austenite-forming element such as n or Cu is added, the (C + N) content must be at least 0.01% or more. However, if the C and N contents are too high, the amount of martensite formed after the continuous finishing heat treatment step increases, and in some cases, the martensite phase becomes 100% and the hardness of the martensite phase itself becomes very high. However, the ductility decreases. Therefore, it is necessary to set the amount of (C + N) to 0.20% or less and satisfy the relationship of 0.01% ≦ C + N ≦ 0.20%.

またCを多量に添加すると連続仕上熱処理での冷却時に
Cr炭化物が結晶粒界に析出し,耐食性が劣化する場合が
ある。したがって,C量としては0.10%以下とする。
Also, if a large amount of C is added, it will be cooled during the continuous finishing heat treatment.
Corrosion resistance may deteriorate due to precipitation of Cr carbides at grain boundaries. Therefore, the C content should be 0.10% or less.

また,Nは溶解度の関係から多量に添加することは困難で
あると共に,多量の添加は表面欠陥の増加を招くため0.
12%以下とする。
Further, it is difficult to add a large amount of N due to its solubility, and addition of a large amount causes an increase in surface defects.
12% or less.

Siはフェライト生成元素であると共にフェライトおよび
マルテンサイトの両相に対し強力な固溶強化能を有す
る。したがってマルテンサイト量の制御および強度レベ
ルの制御に有効な元素である。しかしながら多量の添加
は熱間加工性や冷間加工性の低下を招くために2.0%を
上限とする。
Si is a ferrite-forming element and has a strong solid solution strengthening ability for both ferrite and martensite phases. Therefore, it is an effective element for controlling the amount of martensite and controlling the strength level. However, addition of a large amount causes deterioration of hot workability and cold workability, so the upper limit is 2.0%.

Mn,Ni,Cuはオーステナイト生成元素であり,連続仕上熱
処理後のマルテンサイト量並びに強度の制御に有効な元
素である。またMn,Ni,Cuの添加によりCの添加量を低減
することができ,軟質なマルテンサイトとして延性を向
上させたり粒界へのCr炭化物の析出を抑制して耐食性の
劣下を防止することができる。更にMn,Ni,Cuの重要な効
果は,後記の試験結果(例えば第1図の関係)や実施例
にも示すが,本発明に従う連続仕上熱処理工程におい
て,Mn,Ni,Cuの添加によってより低温側から且つ広い温
度範囲にわたって硬さ変動の小さい安定領域が得られる
ことであり,連続仕上熱処理のために必要な高温強度の
点でもまた省エネルギーの点でも実操業において多大の
メリットがもたらされることである。したがってMn,Ni,
Cuの添加は,安定した強度特性を有する複相組織鋼帯の
製造に寄与するのみならず,高温強度のより高い低温で
の熱処理が可能になることによって連続仕上熱処理によ
る炉内のコイル破断などの高温強度低下にもとづくトラ
ブルの発生を回避できるとともに,省エネルギーの観点
からも多大の効果をもたらす。このような効果を得るに
はMn,Ni,Cuはその総量で少なくとも0.5%以上を必要と
するが,連続仕上熱処理後の複相組織材の硬さ上昇に対
してはNiの影響が最も大きく,MnとCuはおおむねNiの3
分の1程度である。したがって,Mn,Ni,Cuの添加量を定
めるにあたっては,Ni+(Mn+Cu)/3の関係式を用いて
規制し,Ni+(Mn+Cu)/3として少なくとも0.5%以上添
加する。しかし,多量に添加すると製品が高価となり,
本発明鋼帯の特徴の一つである経済性に影響を与える。
したがってMn,Ni,Cuの各々単独ではそれぞれ4.0%以下
とし,Ni+(Mn+Cu)/3として5.0%以下とする。
Mn, Ni, and Cu are austenite-forming elements and are effective elements for controlling the amount and strength of martensite after continuous finishing heat treatment. In addition, the addition of Mn, Ni, Cu can reduce the amount of C added, improve ductility as soft martensite, and suppress precipitation of Cr carbide at grain boundaries to prevent deterioration of corrosion resistance. You can Further, the important effects of Mn, Ni, Cu are shown in the test results described later (for example, the relationship of FIG. 1) and Examples, but in the continuous finishing heat treatment step according to the present invention, it is more effective by adding Mn, Ni, Cu. It is possible to obtain a stable region where the hardness variation is small from the low temperature side over a wide temperature range, and to bring great advantages in actual operation in terms of high temperature strength required for continuous finishing heat treatment and energy saving. Is. Therefore, Mn, Ni,
The addition of Cu not only contributes to the production of multi-phase steel strips with stable strength properties, but also enables heat treatment at lower temperatures with higher high-temperature strength, which leads to coil rupture in the furnace due to continuous finishing heat treatment. It is possible to avoid the occurrence of troubles due to the decrease in high-temperature strength, and to bring about a great effect from the viewpoint of energy saving. To obtain this effect, the total amount of Mn, Ni, and Cu must be at least 0.5%, but Ni has the greatest effect on the increase in hardness of the multi-phase structure material after continuous finishing heat treatment. , Mn and Cu are about 3 of Ni
It is about one-third. Therefore, when determining the addition amount of Mn, Ni, Cu, it is regulated by using the relational expression of Ni + (Mn + Cu) / 3, and at least 0.5% or more is added as Ni + (Mn + Cu) / 3. However, adding a large amount makes the product expensive,
It affects the economical efficiency, which is one of the features of the steel strip of the present invention.
Therefore, Mn, Ni, and Cu alone should be 4.0% or less and Ni + (Mn + Cu) / 3 should be 5.0% or less.

Sは,高すぎると耐食性や熱間加工性に悪影響をおよぼ
すので低いほうが好ましく,0.030%を上限とする。
If S is too high, it adversely affects corrosion resistance and hot workability, so S is preferably low, and the upper limit is 0.030%.

Pは,固溶強化能の大きい元素であるが,多量の添加は
靭性の低下を招く場合があるため,通常許容されている
程度の0.040%以下とする。
P is an element having a large solid solution strengthening ability, but addition of a large amount may lead to a decrease in toughness, so the content of P is set to 0.040% or less, which is the generally accepted level.

Crは,ステンレス鋼としての耐食性を維持するうえで少
なくとも10.0%は必要最低量として含有させるべきであ
るが,あまりCr量が高いと,マルテンサイト相を生成さ
せて高強度を得るに必要なオーステナイト生成元素の量
が多くなると共に製品が高価となるので,20.0%を上限
とする。
At least 10.0% of Cr should be contained as a minimum necessary amount for maintaining the corrosion resistance as stainless steel. However, if the Cr amount is too high, the austenite necessary for forming the martensite phase and obtaining high strength is obtained. Since the amount of produced elements increases and the product becomes expensive, the upper limit is 20.0%.

Oは,酸化物系の非金属介在物を形成し,鋼の清浄度を
低下させるので低い方が望ましく,0.02%以下とする。
O forms an oxide-based non-metallic inclusion and reduces the cleanliness of steel, so O is preferably low, and is made 0.02% or less.

Alは,脱酸に有効な元素であると共にプレス加工性に悪
影響を及ぼすA2系介在物を著減せしめる効果がある。し
かし,0.20%を超えて含有させてもその効果が飽和する
ばかりでなく表面欠陥の増加を招くなどの悪影響をもた
らすのでその上限を0.20%とする。
Al is an effective element for deoxidation and has the effect of significantly reducing A 2 -based inclusions that adversely affect press workability. However, if the content exceeds 0.20%, not only the effect is saturated but also adverse effects such as increase in surface defects are caused, so the upper limit is made 0.20%.

Bは,靭性改善に有効な成分であるが,極く微量でその
効果はもたらされ,0.0050%を超えるとその効果が飽和
するのでその上限を0.0050%とする。
B is a component effective for improving toughness, but its effect is brought about by a very small amount, and when the amount exceeds 0.0050%, the effect is saturated, so the upper limit is made 0.0050%.

Moは,耐食性の向上に有効な元素であるが,多量に添加
すると製品が高価となるために1.0%を上限とする。
Mo is an element effective in improving the corrosion resistance, but if it is added in a large amount, the product becomes expensive, so the upper limit is 1.0%.

REMおよびYは,熱間加工性の向上に有効な元素であ
る。また,耐酸化性の向上にも有効な元素である。高温
での連続仕上熱処理を施す本発明法においては酸化スケ
ールの発生を抑制してデスケール後に良好な表面肌を得
るのに有効に作用する。しかし,これらの効果は,REMで
は0.10%を超えると,またYでは0.20%を超えると飽和
するので,上限をREMは0.10%,Yは0.20%とする。
REM and Y are effective elements for improving hot workability. It is also an effective element for improving oxidation resistance. In the method of the present invention in which continuous finishing heat treatment is performed at a high temperature, generation of oxide scale is suppressed and it effectively acts to obtain a good surface texture after descaling. However, these effects saturate when the REM exceeds 0.10% and when the Y exceeds 0.20%, so the upper limits are 0.10% for REM and 0.20% for Y.

次に,本発明による複相組織鋼帯の各製造工程の内容に
ついて説明する。
Next, the content of each manufacturing process of the multiphase structure steel strip according to the present invention will be described.

本発明法においては,以上の鋼成分範囲に調整したクロ
ムステンレス鋼のスラブを通常の製鋼鋳造技術によって
製造し,このスラブを通常の熱間圧延によって熱延鋼帯
を製造する。熱間圧延後は熱延板焼鈍とデスケールを行
なうのがよい。熱延板焼鈍は必ずしも実施する必要はな
いが,この焼鈍によって熱延鋼帯を軟質化させて冷延性
の向上を図ったり,熱延鋼帯に残存する変態相(高温で
オーステナイト相であった部分)をフェライト+炭化物
に変態・分解させることができるので,冷間圧延・連続
仕上熱処理後に均一な複相組織をもつ鋼帯とするうえで
望ましい。この熱延板焼鈍は連続焼鈍または箱焼鈍のい
ずれでもよい。またデスケール工程は通常の酸洗を行な
えばよい。ここまでのスラブ製造工程,熱間圧延工程,
熱延板焼鈍工程および脱スケール工程は従来のクロムス
テンレス鋼帯の製造技術をそのまま本発明法に適用する
ことができる。
In the method of the present invention, a slab of chromium stainless steel adjusted to the above steel composition range is manufactured by a normal steel casting technique, and this slab is manufactured by a normal hot rolling to produce a hot rolled steel strip. After hot rolling, it is preferable to anneal the hot rolled sheet and descale. Although it is not always necessary to anneal the hot-rolled sheet, this annealing softens the hot-rolled steel strip to improve the cold-rolling property, and the transformation phase remaining in the hot-rolled steel strip (it was an austenite phase at high temperature). Since it is possible to transform and decompose (part) into ferrite + carbide, it is desirable to make a steel strip with a uniform multiphase structure after cold rolling and continuous finishing heat treatment. This hot-rolled sheet annealing may be either continuous annealing or box annealing. In the descaling step, ordinary pickling may be performed. Slab manufacturing process up to this point, hot rolling process,
For the hot-rolled sheet annealing step and the descaling step, the conventional chrome stainless steel strip manufacturing technique can be directly applied to the method of the present invention.

次いで冷間圧延工程と連続仕上熱処理工程を経て複相組
織鋼帯を製造するのであるが,これらの工程は本発明法
において特徴的な工程であるので詳しく説明する。
Next, a cold rolling process and a continuous finishing heat treatment process are carried out to produce a multi-phase steel strip, and these processes are characteristic steps in the method of the present invention and will be described in detail.

「冷間圧延工程」 冷間圧延工程では,熱延鋼帯(熱延板焼鈍後の熱延鋼
帯)を中間焼鈍無しの一回冷延によって製品板厚まで冷
間圧延して冷延鋼帯を製造する。ここで,“中間焼鈍無
しの一回冷延”とは,中間焼鈍を挟んだ二回以上の冷延
ではないという意味である。より具体的には,冷間圧延
を1パス冷延または中間焼鈍無しの多パス冷延によって
実施することにより,製品板厚にまで冷間圧延して冷延
鋼帯を製造することを意味し,したがって,熱延鋼帯の
板厚から冷延鋼帯の製品板厚にまで圧延ロールへの通板
回数は問わず中間焼鈍無しに板厚減少を冷間で行なうこ
とである。
"Cold rolling process" In the cold rolling process, the hot rolled steel strip (hot rolled steel strip after hot rolled sheet annealing) is cold rolled to the product sheet thickness by single cold rolling without intermediate annealing. Manufacture obi. Here, “single cold rolling without intermediate annealing” means that cold rolling is not performed twice or more with intermediate annealing. More specifically, it means that cold rolling is performed by one-pass cold rolling or multi-pass cold rolling without intermediate annealing to cold-roll to a product sheet thickness to produce a cold-rolled steel strip. Therefore, regardless of the number of times the strip is passed through the rolling rolls, from the thickness of the hot-rolled steel strip to the product thickness of the cold-rolled steel strip, the strip thickness reduction is performed cold without intermediate annealing.

本発明法の場合には,冷間圧延工程のあとに後述の連続
仕上熱処理工程を有するので,冷延鋼帯に生じている方
向性をもった圧延組織に由来する強度や伸びに関する面
内異方性の履歴が後続の連続仕上熱処理によって得られ
た複相組織鋼帯では実質上消去されることがわかった。
したがって,本発明による冷延鋼帯の製造は中間焼鈍を
行なうことなく製品板厚まで板厚減少を行っても最終的
な複相組織では強度および伸びの面内異方性が小さい鋼
帯とすることができる。もっとも,中間焼鈍を行って複
数回冷延を行なった場合には複相組織鋼帯の特に伸びの
面内異方性が一層小さくなることが判明したが,この場
合には中間焼鈍を実施することによる工数の増加と熱エ
ネルギー消費による製造コスト増は避けられない。した
がって,中間焼鈍を行わない本発明法によると経済的有
利に複相組織鋼帯を製造することができる。このような
理由から,本発明では熱延鋼帯を1パスで製品板厚まで
圧下するか,中間焼鈍を行わないで多パスで製品板厚ま
で圧下する一回冷延を採用して冷延鋼帯を製造する。そ
のさいの圧下率は30%以上95%以下であるのが好まし
い。
In the case of the method of the present invention, since there is a continuous finishing heat treatment step described later after the cold rolling step, there is an in-plane difference in strength and elongation due to the directional rolling structure generated in the cold rolled steel strip. It was found that the hysteresis of the anisotropy was virtually eliminated in the multiphase steel strip obtained by the subsequent continuous finishing heat treatment.
Therefore, in the production of the cold-rolled steel strip according to the present invention, even if the sheet thickness is reduced to the product sheet thickness without performing the intermediate annealing, the final multi-phase structure is a steel strip having a small in-plane anisotropy of strength and elongation. can do. However, it was found that the in-plane anisotropy of elongation of the multi-phase microstructured steel strip became even smaller when the intermediate annealing was performed and cold rolling was performed multiple times. In this case, the intermediate annealing is performed. Due to this, an increase in man-hours and an increase in manufacturing cost due to heat energy consumption cannot be avoided. Therefore, according to the method of the present invention in which intermediate annealing is not performed, it is possible to economically manufacture a dual-phase steel strip. For this reason, in the present invention, the hot-rolled steel strip is rolled down to the product sheet thickness in one pass, or cold rolling is performed by adopting single cold rolling in which the hot-rolled steel strip is rolled down to the product sheet thickness in multiple passes without performing intermediate annealing. Manufacture steel strip. At that time, the rolling reduction is preferably 30% or more and 95% or less.

以下に,この中間焼鈍なしの冷間圧延によっても面内異
方性の小さい複相組織鋼帯が得られることを代表的な試
験結果に基づいて説明する。
Below, it will be explained based on typical test results that a multiphase steel strip having a small in-plane anisotropy can be obtained by cold rolling without intermediate annealing.

第1表に示す化学成分を有する鋼A,BおよびCの鋼を溶
製し,通常の条件の熱間圧延にて板厚3.6mmの熱延板と
し,780℃×6時間加熱,炉冷の焼鈍を施したあと酸洗を
行なった。この熱延板を中間焼鈍を行なうことなく冷間
圧延し,ついで仕上熱処理条件を変えて試験を行った
(第1図および第2図のデータもこの試験結果を示した
ものであるが,その内容については後述する)。
Steels A, B and C having the chemical composition shown in Table 1 were smelted and hot-rolled under normal conditions to form hot-rolled sheets with a thickness of 3.6 mm, heated at 780 ° C for 6 hours, and cooled at the furnace. After being annealed, it was pickled. This hot-rolled sheet was cold-rolled without intermediate annealing, and then tested under different finishing heat treatment conditions (the data in FIGS. 1 and 2 also show the test results. The contents will be described later).

下記の第2表は,第1表の鋼Bの熱延板(熱延焼鈍およ
び酸洗後の熱延板)を用いて, (a).0.7mm厚まで中間焼鈍を行なうことなく冷間圧延
し(冷間圧延率80.6%),この冷間圧延板を1000℃に1
分間均熱したあと,この温度から100℃までを平均冷却
速度20℃/secで仕上熱処理した複相組織材, (b).前記の(a)の複相組織材と同等の強度を冷間
圧延によって板厚0.7mmの状態で付与した調質圧延材, の各板の引張強さ(kgf/mm2)および伸び(%)を圧延
方向の値(L),圧延方向に対して45゜方向の値(D)
および圧延方向に対し90゜方向の値(T)を示したもの
である。
Table 2 below shows (a) cold-rolled steel without hot-rolled steel (hot-rolled annealed and hot-rolled after pickling) in Table 1 without intermediate annealing to a thickness of 0.7 mm. After rolling (cold rolling rate 80.6%), this cold rolled sheet was heated to 1000 ° C
After soaking for a minute, a multiphase structure material obtained by finishing heat treatment from this temperature to 100 ° C at an average cooling rate of 20 ° C / sec, (b). Tensile strength (kgf / mm 2 ) and elongation (%) of each tempered rolled sheet with the same strength as the multi-phase structure material of (a) given by cold rolling at a sheet thickness of 0.7 mm. ) Is the value in the rolling direction (L), and the value in the 45 ° direction with respect to the rolling direction (D)
And the value (T) in the 90 ° direction with respect to the rolling direction.

第2表から明らかなように,複相組織材の伸びは,同等
の硬さおよび強度レベルの調質圧延材に比べて著しく優
れており,強度−伸びバランスに優れていることがわか
る。また,面内異方性について見ると,引張強さでは複
相組織材は方向による引張強さの差,つまり面内異方性
が小さいのに対し,調質圧延材は引張強さの最も低いL
方向と最も高いT方向の引張強さの差は14kgf/mm2以上
もあり面内異方性が大きい。また,伸びについては,伸
びが高い複相組織材は伸びが低い調質圧延材よりも面内
異方性も比較的小さいことがわかる。すなわち,冷間圧
延を中間焼鈍なしで行っても複相組織化することで延性
に優れ強度および延性の面内異方性の小さい高強度クロ
ムステンレス鋼板が得られることが明らかである。
As is clear from Table 2, the elongation of the multiphase structure material is remarkably superior to that of the temper-rolled material having the same hardness and strength level, and the strength-elongation balance is excellent. Regarding the in-plane anisotropy, in the tensile strength, the difference in tensile strength depending on the direction in the multiphase structure material, that is, the in-plane anisotropy is small, whereas the temper-rolled material has the highest tensile strength. Low L
Direction and the highest tensile strength in the T direction are 14 kgf / mm 2 or more, and the in-plane anisotropy is large. Regarding the elongation, it can be seen that the in-plane anisotropy of the multi-phase structure material with high elongation is relatively smaller than that of the temper-rolled material with low elongation. In other words, it is clear that even if cold rolling is performed without intermediate annealing, it is possible to obtain a high-strength chromium stainless steel sheet with excellent ductility and low ductility in-plane anisotropy by forming a multi-phase structure.

「連続仕上熱処理工程」 冷間圧延工程で得られた製品板厚の冷延鋼帯を次に連続
熱処理炉に通板して,Ac1点以上で1100℃以下のフェライ
ト+オーステナイトの二相域温度に10分以内の保持のあ
と,最高加熱温度から100℃までを平均冷却速度1℃/se
c以上,500℃/sec以下で冷却する連続仕上熱処理を施す
のであるが,この連続仕上熱処理工程は本発明法の最も
特徴とする工程であり,この連続仕上熱処理条件は後記
の実施例でも示すとおり本発明において重要な意義を有
している。この連続仕上熱処理工程での加熱条件と冷却
条件を規制した理由の概要を説明すると次のとおりであ
る。
"Continuous finishing heat treatment process" The cold-rolled steel strip having the product thickness obtained in the cold rolling process is then passed through a continuous heat treatment furnace, and the two-phase region of ferrite + austenite at 1100 ° C or more above Ac 1 point. After keeping the temperature within 10 minutes, the average cooling rate is 1 ℃ / se from the maximum heating temperature to 100 ℃.
The continuous finishing heat treatment is performed at a temperature of not less than c and not more than 500 ° C / sec. This continuous finishing heat treatment step is the most characteristic step of the method of the present invention, and the continuous finishing heat treatment conditions are also shown in the examples described later. As described above, it has important significance in the present invention. The outline of the reason why the heating condition and the cooling condition in this continuous finishing heat treatment step are regulated is as follows.

連続仕上熱処理時の加熱温度はフエライト+オーステナ
イト二相域温度であることが絶対条件である。本発明法
の実施にさいし、連続熱処理炉で鋼帯を低温から加熱し
た場合にオーステナイトが生成し始める温度(つまりAc
1点の温度)の近傍では温度変化に対するオーステナイ
ト量の変動が大きく,急冷後に安定した硬さが得られな
い場合がある。しかし,本発明が対象とする鋼成分範囲
においては,Ac1点より100℃以上の高温域に加熱した場
合にはこのような硬さの変動が実質上生じないことがわ
かった。したがって,連続仕上熱処理時の加熱温度はAc
1点+100℃以上とするのがよい。より具体的には850℃
以上,さらに好ましくは900℃以上とするのがよい。一
方,加熱温度の上限については,あまり高温では強度上
昇が飽和するのみならず,場合によっては低下すること
もあり,また製造コストの面でも不利となるので1100℃
を上限とするのがよい。
It is an absolute condition that the heating temperature during the continuous finishing heat treatment is a ferrite + austenite two-phase region temperature. In carrying out the method of the present invention, the temperature at which austenite begins to form when the steel strip is heated from a low temperature in a continuous heat treatment furnace (that is, Ac
(Temperature of 1 point), the amount of austenite varies greatly with temperature change, and stable hardness may not be obtained after rapid cooling. However, it has been found that in the steel composition range targeted by the present invention, such hardness fluctuations do not substantially occur when heated to a high temperature range of 100 ° C. or higher from the Ac 1 point. Therefore, the heating temperature during continuous heat treatment is Ac
1 point + 100 ℃ or higher is recommended. More specifically, 850 ℃
More preferably, it is 900 ° C or higher. On the other hand, regarding the upper limit of the heating temperature, the strength increase may not only saturate at too high a temperature, but may decrease in some cases, and it is disadvantageous in terms of manufacturing cost.
The upper limit is

本発明法における連続仕上熱処理時のフエライト+オー
ステナイト二相域加熱の冶金的意義として,Cr炭化
物,窒化物の固溶,オーステナイト相の生成,生成
したオーステナイト中へのCおよびNの濃縮の3点を挙
げることができる。本発明法で対象とするクロムステン
レス鋼帯の場合には,これらの現象はいずれも短時間の
うちにほぼ平衡状態に達するので,本発明における連続
仕上熱処理時の上記二相温度域での加熱時間は短時間,
おおむね10分間以内の加熱でよい。この短時間加熱でよ
いことは本発明法の実際操業の点でも生産効率,製造コ
ストの面から非常に有利である。以上の加熱条件および
保持時間によって以後の冷却によって生成するマルテン
サイト量が10容量%以上となるに必要なオーステナイト
を生成させることができる。
The metallurgical significance of the two-phase heating of ferrite + austenite during the continuous finishing heat treatment in the method of the present invention is as follows: solid solution of Cr carbide and nitride, formation of austenite phase, and concentration of C and N in the formed austenite. Can be mentioned. In the case of the chromium stainless steel strip targeted by the method of the present invention, all of these phenomena reach an almost equilibrium state in a short time, so heating in the above two-phase temperature range during continuous finishing heat treatment in the present invention is performed. Time is short,
Heating for about 10 minutes is enough. The fact that this short-time heating is sufficient is very advantageous in terms of production efficiency and manufacturing cost in the actual operation of the method of the present invention. Under the above heating conditions and holding time, austenite necessary for the amount of martensite generated by subsequent cooling to be 10% by volume or more can be generated.

仕上熱処理時の冷却速度についてはマルテンサイト相と
軟質なフエライト相との複相組織を得るうえから1℃/s
ec以上の冷却速度とする必要があるが,500℃/secを超え
る冷却速度を得るのは実質上困難である。したがって,
本発明において二相温度域加熱からの冷却は1〜500℃/
secの範囲の冷却速度で実施する。この冷却速度は最高
加熱温度から100℃までの平均冷却速度とするが,オー
ステナイトがマルテンサイトに変態してしまった後の冷
却過程では必ずしもこの冷却速度を採用する必要はな
い。この冷却速度と冷却終点温度は前述の加熱条件によ
って高温で生成したオーステナイトがマルテンサイトに
変態するに十分なものである。冷却の方法としては気体
および/または液体の冷却媒体を鋼帯に吹き付ける強制
冷却方式または水冷ロールによるロール冷却方式などを
適用できる。このような条件での連続加熱と冷却はコイ
ル巻戻し機から巻取り機に至る間に加熱均熱帯域と急冷
帯域を有する連続熱処理炉を用いて実施することができ
る。
The cooling rate during the finishing heat treatment is 1 ℃ / s in order to obtain a multi-phase structure of the martensite phase and the soft ferrite phase.
It is necessary to set the cooling rate to ec or more, but it is practically difficult to obtain the cooling rate to exceed 500 ° C / sec. Therefore,
In the present invention, the cooling from the two-phase temperature range heating is 1 to 500 ° C /
Perform at a cooling rate within the range of sec. This cooling rate is the average cooling rate from the maximum heating temperature to 100 ° C, but it is not always necessary to adopt this cooling rate in the cooling process after the transformation of austenite into martensite. The cooling rate and the cooling end temperature are sufficient to transform the austenite produced at high temperature under the above heating conditions into martensite. As a cooling method, a forced cooling method in which a gas and / or liquid cooling medium is sprayed on a steel strip, a roll cooling method using a water cooling roll, or the like can be applied. Continuous heating and cooling under such conditions can be carried out using a continuous heat treatment furnace having a heating soaking zone and a quenching zone between the coil rewinding machine and the winding machine.

第1図は,前記第1表の各鋼について,既に説明した方
法で製造した熱延板(熱延板焼鈍および酸洗後の熱延
板)を,中間焼鈍なしの冷間圧延により板厚0.7mmの冷
間圧延板とし(冷間圧延率;80.6%),そして,この冷
間圧延板を800〜1100℃の間の各温度で1分間均熱した
あと,その温度から100℃までを平均冷却速度20℃/sec
で冷却する仕上熱処理を施した場合に得られた仕上熱処
理材のマルテンサイト量(容量%)と硬さ(HV)を,仕
上熱処理時の加熱温度の関係で示したものである(図中
のA,B,Cは第1表の各鋼を表す)。
Fig. 1 shows the thickness of the hot-rolled sheet (hot-rolled sheet after hot-rolled sheet annealing and pickling) manufactured by the method already described for each steel in Table 1 by cold rolling without intermediate annealing. A cold rolled sheet of 0.7 mm (cold rolling rate; 80.6%), and after soaking this cold rolled sheet for 1 minute at each temperature between 800 and 1100 ℃, from that temperature to 100 ℃ Average cooling rate 20 ℃ / sec
The martensite content (% by volume) and hardness (HV) of the finished heat-treated material obtained when the finishing heat treatment is performed in the form of temperature are shown in relation to the heating temperature during the finishing heat treatment (in the figure, A, B, C represent each steel in Table 1).

第1図から明らかなように,加熱温度がフェライト+オ
ーステナイト二相域になると,仕上熱処理後にマルテン
サイトが出現し,加熱温度の上昇とともにマルテンサイ
ト量は増加するが,鋼AおよびBについては850〜900℃
を超えるとその増加の程度は小さくなって次第に飽和す
る傾向を示す。硬さの挙動もマルテンサイト量の変化に
対応して同様の傾向を示し,またマルテンサイト量が多
いほど硬さは高い。これに対し,Mn,Ni,Cu量が本発明の
規定以下である鋼Cはマルテンサイト量および硬さの飽
和する温度域が高温側にあるとともにその範囲が狭い。
この第1図の結果は仕上熱処理を連続熱処理ラインで行
なう上での重要な意義を有している。すなわち連続熱処
理ラインでは或る程度の温度変動はやむを得ず,特に鋼
帯の長さ方向での変動,および目標温度は同じであって
も通板チャンスの違いによる熱処理温度の違いは,実ラ
インでの操業では目標温度に対して±20℃程度の変動を
見込む必要がある。第1図は,冷却速度をほぼ一定にし
且つ硬さ変動の小さい熱処理温度域を採用するならば,
連続熱処理ラインにおいて多少の温度変動があったとし
ても,硬さすなわち強度の変動の小さい鋼帯が製造でき
ることを示している。そして,特にMn,Ni,Cuを適正量添
加することにより,硬さ変動の小さい仕上熱処理温度域
が低温側で且つ広範囲に得られることになるので一層有
利となる。そして強度レベルの制御は前記のような成分
制御によって行なうことによって目標とする強度は安定
して得ることができ,鋼帯の全長にわたって強度変動の
小さい,また鋼帯間での強度差の小さい高強度素材が既
存の連続熱処理ラインを用いて容易に且つ安価に製造で
きる。
As is clear from Fig. 1, when the heating temperature is in the ferrite + austenite two-phase region, martensite appears after the finishing heat treatment, and the amount of martensite increases as the heating temperature rises. ~ 900 ℃
When it exceeds, the degree of increase becomes small and it tends to be gradually saturated. The behavior of hardness also shows the same tendency corresponding to the change of the amount of martensite, and the hardness increases as the amount of martensite increases. On the other hand, the steel C in which the amounts of Mn, Ni, and Cu are below the specifications of the present invention has a narrow temperature range in which the temperature range where the amount of martensite and hardness are saturated is on the high temperature side.
The results shown in FIG. 1 have important significance in performing finishing heat treatment on a continuous heat treatment line. In other words, in the continuous heat treatment line, some temperature fluctuations are unavoidable. In particular, fluctuations in the length direction of the steel strip, and even if the target temperature is the same, the difference in heat treatment temperature due to the difference in strip passing chance is In operation, it is necessary to expect a fluctuation of about ± 20 ° C with respect to the target temperature. Figure 1 shows that if the heat treatment temperature range where the cooling rate is almost constant and the hardness variation is small is adopted,
This indicates that even if there is some temperature fluctuation in the continuous heat treatment line, it is possible to manufacture steel strips with small fluctuations in hardness, that is, strength. Further, in particular, by adding an appropriate amount of Mn, Ni, and Cu, it is possible to obtain a wide range of temperature range for finishing heat treatment with small hardness variation, which is even more advantageous. By controlling the strength level by the above-mentioned component control, the target strength can be stably obtained, and the strength variation is small over the entire length of the steel strip and the strength difference between the steel strips is small. The strength material can be easily and inexpensively manufactured using the existing continuous heat treatment line.

第2図は,本発明で規制する範囲の鋼成分と製造条件内
でマルテンサイト量の異なる複相組織材を幾つか作りそ
の硬さと伸び(3方向の重みつき平均値)の相関を調
べ,これを調質圧延材の相関と比較して示したものであ
る。なお複相組織材の製造は第1図で説明したのと同じ
であり仕上熱処理の加熱温度は900℃以上である。また
調質圧延材は冷延後に焼鈍を行ったあと図中の添字で示
す調質圧延率を変えることによって硬さを変えたもので
ある。
FIG. 2 is a graph showing the correlation between hardness and elongation (weighted average value in three directions) of several multiphase structural materials having different martensite contents within the steel composition and manufacturing conditions controlled by the present invention. This is shown in comparison with the correlation of the temper-rolled material. The production of the multi-phase structure material is the same as that explained in FIG. 1, and the heating temperature of the finish heat treatment is 900 ° C. or higher. Further, the temper-rolled material has its hardness changed by annealing after cold rolling and then changing the temper-rolling rate indicated by the suffix in the figure.

第2図から明らかなように,調質圧延材は調質圧延率の
上昇に伴う硬さの上昇につれて伸びは急激に低下する。
これに対して複相組織材は硬さが上昇しても伸びの低下
は緩やかである。特に,複相組織材の伸びが調質圧延材
に比べて優るのは硬さの高い領域,具体的にはHv200以
上の領域において顕著となる。すなわち複相組織材とす
ることによる高延性化はHv200以上の領域で一段と顕著
に発揮されるのであり,そのためには前述の第1図から
もわかるように,約10容量%以上のマルテンサイト量の
ところである。このように硬さがHv200以上での高延性
が図れる点に調質圧延材では達成できない本発明法によ
る複相組織材の特徴があり,この強度−伸びバランスが
良好なことから本発明法によって得られた複相組織鋼帯
はプレス成形性などの加工性についても調質圧延では得
られない特質をもつことになる。
As is clear from FIG. 2, in the temper-rolled material, the elongation sharply decreases as the hardness increases as the temper-rolling rate increases.
On the other hand, in the multiphase structure material, the decrease in elongation is slow even if the hardness increases. In particular, the elongation of the multi-phase structure material is superior to that of the temper-rolled material in the high hardness region, specifically in the region of Hv200 or higher. In other words, the high ductility achieved by using a multi-phase structure material is even more pronounced in the Hv200 and above regions. To this end, as can be seen from Fig. 1 above, the martensite content of about 10% by volume or more is used. Is where Thus, there is a feature of the multi-phase structure material according to the method of the present invention that cannot be achieved with the temper-rolled material in that high ductility at hardness of Hv200 or more can be achieved. The obtained multiphase structure steel strip has properties such as press formability that cannot be obtained by temper rolling.

第3図は,第1表の鋼Bを第2表の(a)の方法で製造
した場合の金属組織写真である。写真中の白く見える領
域がフエライト,黒もしくは灰色に見える領域がマルテ
ンサイトである。この写真からわかるように,この材料
は微細なフエライトおよびマルテンサイトが均一に混在
した複相組織を有している。
FIG. 3 is a photograph of the metallographic structure when Steel B in Table 1 was manufactured by the method (a) in Table 2. Areas that appear white in the photo are ferrite and areas that appear black or gray are martensite. As can be seen from this photograph, this material has a multiphase structure in which fine ferrite and martensite are uniformly mixed.

以上に説明したように,強度並びに延性の異方性の小さ
い高延性高強度の鋼帯材料が得られたのは,熱間圧延,
熱延板焼鈍,冷間圧延のあとにフエライト+オーステナ
イトの二相域に加熱し急冷する仕上熱処理によって,微
細なフエライトと急冷によってオーステナイトから変態
して生成したマルテンサイトとが均一に混在した複相組
織としたことで達成し得たものである。すなわち,硬質
なマルテンサイトによる強度(硬さ)を得,軟質なフェ
ライトにより延性を得たものであり,両相を微細且つ均
一に混在させたことにより強度と延性の面内異方性を小
さくし得たものである。なお仕上熱処理後の組織はX線
的な調査では微量の残留オーステナイトが検出される場
合がある。
As explained above, high-strength and high-strength steel strip materials with small anisotropy of strength and ductility were obtained by hot rolling,
A multi-phase in which fine ferrite and martensite formed by transformation from austenite by quenching are uniformly mixed by the finishing heat treatment of heating and quenching in the two-phase region of ferrite and austenite after hot-rolled sheet annealing and cold rolling. This was achieved by forming an organization. In other words, the strength (hardness) of hard martensite and the ductility of soft ferrite were obtained. By mixing both phases finely and uniformly, the in-plane anisotropy of strength and ductility was reduced. It was possible. In the structure after the finish heat treatment, a trace amount of retained austenite may be detected by X-ray examination.

以下に,本発明法を実施した実施例を挙げて,本発明法
で得られた複相組織鋼帯の特性を比較例と対比しながら
具体的に示す。
Hereinafter, the characteristics of the multiphase steel strip obtained by the method of the present invention will be concretely described by giving examples of the method of the present invention in comparison with comparative examples.

実施例 第3表に示す化学成分を有する鋼を溶製してスラブを製
造した。そしていずれも板厚3.6mmに熱間圧延後,780℃
×6時間加熱・炉冷の熱延板焼鈍を行い,酸洗のあと,
中間焼鈍を施すことなく冷間圧延して板厚0.7mmの冷延
鋼帯とし(冷間圧延率80.6%),第4表に示した仕上熱
処理条件のもとで連続熱処理炉にて連続仕上熱処理(た
だし比較例No.4は箱型炉によるバッチ焼鈍処理)を施し
た。得られた鋼帯材料の特性を第4表に併記した。
Example A slab was manufactured by melting steel having the chemical composition shown in Table 3. And in each case, after hot rolling to a plate thickness of 3.6 mm, 780 ℃
× Hot-rolled sheet annealing with heating and furnace cooling for 6 hours, after pickling,
Cold rolling without intermediate annealing to form a cold-rolled steel strip with a plate thickness of 0.7 mm (cold rolling rate 80.6%). Continuous finishing in a continuous heat treatment furnace under the finishing heat treatment conditions shown in Table 4. Heat treatment (however, Comparative Example No. 4 was batch annealing treatment in a box furnace) was performed. The properties of the obtained steel strip material are also shown in Table 4.

第4表から明らかなように,本発明法によればいずれも
高い引張強さと硬さおよび良好な伸びを有した複相組織
鋼帯が得られたことがわかる。また,本発明法による鋼
帯は,0.2%耐力,引張強さおよび伸びの異方性が小さい
ことが明らかであり,また破断後の引張試験片にもリジ
ングの発生が見られない。
As is clear from Table 4, according to the method of the present invention, it was found that a multiphase structure steel strip having high tensile strength, hardness and good elongation was obtained. Further, it is clear that the steel strip produced by the method of the present invention has a small 0.2% proof stress, tensile strength and anisotropy of elongation, and no ridging is observed in the tensile test piece after fracture.

これに対し比較例No.1では製造条件は本発明で規定する
範囲であるが,鋼のMn,Ni,Cu量が本発明で規定するNi+
(Mn+Cu)/3≧0.5%の要件から外れる0.24%と低い第
3表のNo.8の鋼であるため,連続仕上熱処理後にマルテ
ンサイトが生成しておらず,硬さが低い。
On the other hand, in Comparative Example No. 1, the manufacturing conditions are within the range specified by the present invention, but the Mn, Ni, and Cu contents of steel are Ni + specified by the present invention.
Since it is No. 8 steel in Table 3 which is as low as 0.24%, which is out of the requirement of (Mn + Cu) / 3 ≥ 0.5%, martensite is not formed after continuous finishing heat treatment and its hardness is low.

比較例No.2では,やはり製造条件は本発明の範囲内にあ
るが,鋼のC量およびNi量がそれぞれ本発明で規定する
0.10%以下および4.0%以下よりも高い0.405%および5.
07%のCおよびNiを含有する鋼No.9であるため,連続仕
上熱処理後のマルテンサイト量が100%となり,強度は
高いものの,伸びが低い。
In Comparative Example No. 2, the manufacturing conditions are also within the scope of the present invention, but the C content and Ni content of the steel are specified by the present invention.
0.405% and 5, higher than 0.10% and 4.0%.
Since it is steel No. 9 containing 07% C and Ni, the amount of martensite after continuous finishing heat treatment is 100%, and although the strength is high, the elongation is low.

比較例No.3では連続仕上熱処理での加熱温度が750℃と
低く,この加熱温度では鋼No.1の鋼はフエライト+オー
ステナイト二相域にならず,したがって仕上熱処理後の
金属組織はマルテンサイトの存在しないフエライト単相
組織であり,伸びは高いものの強度および硬さが低い。
In Comparative Example No. 3, the heating temperature in the continuous finishing heat treatment was as low as 750 ° C, and at this heating temperature, the steel of Steel No. 1 was not in the ferrite + austenite two-phase region, so the metal structure after the finishing heat treatment was martensite. It is a ferrite single-phase microstructure in which no elongation exists, and although the elongation is high, the strength and hardness are low.

比較例No.4は,仕上熱処理を箱型炉で行ない,その冷却
も炉冷によるため冷却速度が0.03℃/secと非常に低いの
で熱処理後にマルテンサイトが生成しておらず,比較例
No.3と同様に伸びは高いものの,強度および硬さが低
い。
In Comparative Example No. 4, the finishing heat treatment was performed in a box furnace, and the cooling rate was very low at 0.03 ° C / sec because the furnace cooling was also used, so martensite did not form after the heat treatment.
Similar to No.3, it has high elongation but low strength and hardness.

比較例No.5は,調質圧延材であり,本発明のものに比較
して伸びが著しく低い。また引張強さに対する0.2%耐
力の比,すなわち降伏比が高いと共に,0.2%耐力,引張
強さ,伸びの異方性が大きい。したがって本発明法によ
って得られた鋼帯に比べて加工性並びに加工後の形状性
に劣ることが明らかである。
Comparative Example No. 5 is a temper-rolled material, and the elongation is significantly lower than that of the present invention. The ratio of 0.2% proof stress to tensile strength, that is, the yield ratio is high, and the anisotropy of 0.2% proof stress, tensile strength, and elongation is large. Therefore, it is clear that the workability and the formability after working are inferior to those of the steel strip obtained by the method of the present invention.

なお,比較例No.1,3,4および5の鋼帯については,破断
後の引張試験片でいずれもリジングの発生が見られたの
に対し,本発明例の複相組織鋼帯はリジングの発生が見
られず,プレス成形などの加工が良好に行えることがわ
かる。
For the steel strips of Comparative Examples Nos. 1, 3, 4 and 5, ridging was observed in the tensile test pieces after fracture, whereas the multiphase structure steel strips of the present invention were ridged. It can be seen that there is no occurrence of cracks and that processing such as press molding can be performed well.

以上のように,本発明法によれば,高延性と高強度を兼
備し,強度と延性の面内異方性が小さく且つ低耐力,低
降伏比の複相組織鋼帯が提供される。クロムステンレス
鋼板の分野において,従来かような良好な加工性を兼備
したHv200以上の高強度素材が鋼板または鋼帯の形で市
場に出荷された例は見ない。したがって,本発明は従来
のクロムステンレス鋼板分野に新規素材鋼板または鋼帯
を提供するものである。本発明に従う材料は電子部品,
精密機械部品などへの加工性が要求される高強度材とし
て特に有用であり,この分野において多大の成果が発揮
され得る。
As described above, according to the method of the present invention, a multi-phase steel strip having both high ductility and high strength, small in-plane anisotropy of strength and ductility, low yield strength, and low yield ratio is provided. In the field of chrome stainless steel sheets, there are no examples of Hv200 or higher high-strength materials with good workability that have been shipped to the market in the form of steel sheets or strips. Therefore, the present invention provides a new material steel plate or steel strip in the conventional chromium stainless steel plate field. The material according to the invention is an electronic component,
It is especially useful as a high-strength material that is required to be processed into precision machine parts, and can exert great results in this field.

【図面の簡単な説明】[Brief description of drawings]

第1図は,本発明に従う仕上熱処理の加熱温度とマルテ
ンサイト量および硬さとの関係を示した図, 第2図は本発明に従う仕上熱処理材と調質圧延材につい
て硬さ−伸びの相関関係を示した図, 第3図は本発明に従う連続仕上熱処理を施したクロムス
テンレス鋼帯の金属組織を示した顕微鏡写真である。
FIG. 1 shows the relationship between the heating temperature, the amount of martensite and the hardness of the finish heat treatment according to the present invention, and FIG. 2 shows the hardness-elongation correlation for the finish heat treatment material and the temper rolled material according to the present invention. And FIG. 3 are micrographs showing the metallographic structure of the chromium stainless steel strip subjected to the heat treatment for continuous finishing according to the present invention.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】重量%において, C:0.10%以下, Si:2.0%以下, Mn:4.0%以下, P:0.040%以下, S:0.030%以下, Ni:4.0%以下, Cr:10.0%以上で20.0%以下, N:0.12%以下, O:0.02%以下, Cu:4.0%以下, を含有し,残部がFeおよび不可避的不純物からなる鋼で
あって,且つ 0.01%≦C+N≦0.20% 0.5%≦Ni+(Mn+Cu)/3≦5.0% の関係を満足する鋼のスラブを製造し,これを熱間圧延
して熱延鋼帯を製造する工程, 中間焼鈍無しの一回冷延によって製品板厚にまで冷間圧
延して冷延鋼帯を製造する冷間圧延工程,そして, 得られた冷延鋼帯を連続熱処理炉に通板して,Ac1点以上
1100℃以下のフェライト+オースナイトの二相域温度に
10分以内の保持のあと,最高加熱温度から100℃までを
平均冷却速度1℃/sec以上500℃/sec以下で冷却する仕
上熱処理を施す連続仕上熱処理工程, からなる,HV200以上の硬さを有し且つ延性に優れた高強
度複相組織クロムステンレス鋼帯の製造法。
1. In weight%, C: 0.10% or less, Si: 2.0% or less, Mn: 4.0% or less, P: 0.040% or less, S: 0.030% or less, Ni: 4.0% or less, Cr: 10.0% or more Steel containing 20.0% or less, N: 0.12% or less, O: 0.02% or less, Cu: 4.0% or less, and the balance being Fe and inevitable impurities, and 0.01% ≦ C + N ≦ 0.20% 0.5 % S Ni + (Mn + Cu) / 3 ≤ 5.0% A steel slab that satisfies the relationship of 0% is manufactured, and this is hot rolled to manufacture a hot-rolled steel strip. One-time cold rolling without intermediate annealing Cold rolling process to produce cold rolled steel strip by cold rolling to thickness, and then pass the obtained cold rolled steel strip through a continuous heat treatment furnace to obtain Ac 1 point or more.
For two-phase temperature of 1100 ℃ or less ferrite + ausnite
After holding for 10 minutes or less, a continuous finishing heat treatment process, in which the finishing heating heat treatment is performed to cool from the maximum heating temperature to 100 ° C at an average cooling rate of 1 ° C / sec or more and 500 ° C / sec or less. A method for producing a high-strength dual-phase chromium stainless steel strip having excellent ductility.
【請求項2】連続仕上熱処理工程における加熱温度はAc
1点+100℃以上で1100℃以下である特許請求の範囲第1
項記載の製造法。
2. The heating temperature in the continuous finishing heat treatment step is Ac
1 point + 100 ° C or more and 1100 ° C or less
The manufacturing method described in the item.
【請求項3】連続仕上熱処理工程における加熱温度は85
0℃以上1100℃以下である特許請求の範囲第1項記載の
製造法。
3. The heating temperature in the continuous finishing heat treatment step is 85.
The production method according to claim 1, which is 0 ° C or higher and 1100 ° C or lower.
【請求項4】冷間圧延工程での冷間圧延率は30%以上95
%以下である特許請求の範囲第1項,第2項または第3
項記載の製造法。
4. The cold rolling ratio in the cold rolling process is 30% or more 95
% Or less Claims 1, 2, or 3
The manufacturing method described in the item.
【請求項5】重量%において, C:0.10%以下, Si:2.0%以下, Mn:4.0%以下, P:0.040%以下, S:0.030%以下, Ni:4.0%以下, Cr:10.0%以上で20.0%以下, N:0.12%以下, O:0.02%以下, Cu:4.0%以下, および,0.20%以下のAl,0.0050%以下のB,1.0%以下のM
o,0.10%以下のREM,0.20%以下のYの一種または二種以
上を含有し,残部がFeおよび不可避的不純物からなる鋼
であって,且つ 0.01%≦C+N≦0.20% 0.5%≦Ni+(Mn+Cu)/3≦5.0% の関係を満足する鋼のスラブを製造し,これを熱間圧延
して熱延鋼帯を製造する工程, 中間焼鈍無しの一回冷延によって製品板厚にまで冷間圧
延して冷延鋼帯を製造する冷間圧延工程,そして, 得られた冷延鋼帯を連続熱処理炉に通板して,Ac1点以上
1100℃以下のフェライト+オースナイトの二相域温度に
10分以内の保持のあと,最高加熱温度から100℃までを
平均冷却速度1℃/sec以上500℃/sec以下で冷却する仕
上熱処理を施す連続仕上熱処理工程, からなる,HV200以上の硬さを有し且つ延性に優れた高強
度複相組織クロムステンレス鋼帯の製造法。
5. In% by weight, C: 0.10% or less, Si: 2.0% or less, Mn: 4.0% or less, P: 0.040% or less, S: 0.030% or less, Ni: 4.0% or less, Cr: 10.0% or more 20.0% or less, N: 0.12% or less, O: 0.02% or less, Cu: 4.0% or less, and Al of 0.20% or less, B of 0.0050% or less, M of 1.0% or less
O, 0.10% or less REM, 0.20% or less Y one or more kinds, and the balance of Fe and inevitable impurities, 0.01% ≦ C + N ≦ 0.20% 0.5% ≦ Ni + ( Mn + Cu) /3≦5.0% of the steel slab is manufactured and hot-rolled to manufacture hot-rolled steel strip. It is cooled to the product sheet thickness by single cold rolling without intermediate annealing. Cold rolling process to produce cold-rolled steel strip by hot rolling, and then pass the obtained cold-rolled steel strip through a continuous heat treatment furnace to obtain Ac 1 point or more.
For two-phase temperature of 1100 ℃ or less ferrite + ausnite
After holding for 10 minutes or less, a continuous finishing heat treatment process, in which the finishing heating heat treatment is performed to cool from the maximum heating temperature to 100 ° C at an average cooling rate of 1 ° C / sec or more and 500 ° C / sec or less. A method for producing a high-strength dual-phase chromium stainless steel strip having excellent ductility.
【請求項6】連続仕上熱処理工程における加熱温度はAc
1点+100℃以上で1100℃以下である特許請求の範囲第5
項記載の製造法。
6. The heating temperature in the continuous finishing heat treatment step is Ac
1 point + 100 ° C or more and 1100 ° C or less
The manufacturing method described in the item.
【請求項7】連続仕上熱処理工程における加熱温度は85
0℃以上1100℃以下である特許請求の範囲第5項記載の
製造法。
7. The heating temperature in the continuous finishing heat treatment step is 85.
The manufacturing method according to claim 5, which is 0 ° C or higher and 1100 ° C or lower.
【請求項8】冷間圧延工程での冷間圧延率は30%以上95
%以下である特許請求の範囲第5項,第6項または第7
項記載の製造法。
8. The cold rolling ratio in the cold rolling process is 30% or more 95
% Or less, Claims 5, 6, or 7
The manufacturing method described in the item.
JP10187A 1986-12-30 1987-01-03 Method for producing high strength dual phase chromium stainless steel strip with excellent ductility Expired - Fee Related JPH07107178B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP10187A JPH07107178B2 (en) 1987-01-03 1987-01-03 Method for producing high strength dual phase chromium stainless steel strip with excellent ductility
EP87118422A EP0273279B1 (en) 1986-12-30 1987-12-11 Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as well as reduced plane anisotropy
DE3787961T DE3787961T2 (en) 1986-12-30 1987-12-11 Process for the production of stainless chrome steel strip with two-phase structure with high strength and high elongation and with low anisotropy.
ES87118422T ES2044905T3 (en) 1986-12-30 1987-12-11 PROCESS FOR THE PRODUCTION OF A CHROME STAINLESS STEEL BELT OF A DOUBLE STRUCTURE THAT HAS A HIGH STRENGTH AND EXTENSION AS WELL AS A BETTER FLAT ANISTROPY.
US07134873 US4824491B1 (en) 1986-12-30 1987-12-18 Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as well as reduced plane anisotropy
CA000555161A CA1308997C (en) 1986-12-30 1987-12-22 Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as well as reduced plane anisotropy
BR8707115A BR8707115A (en) 1986-12-30 1987-12-26 PROCESS FOR THE PRODUCTION OF A STEEL STEEL STRIP TO THE DUPLEX STRUCTURE CHROME, HAVING HIGH RESISTANCE AND STRETCHING AND ALSO REDUCED FLAT ANISOTROPY
CN87105997A CN1011987B (en) 1986-12-30 1987-12-29 Process for production of double structure stainless cr-steel band having high strength, high ductility and low degree aeolotropy
KR1019870015473A KR950013188B1 (en) 1986-12-30 1987-12-30 Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as will as reduced plane anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10187A JPH07107178B2 (en) 1987-01-03 1987-01-03 Method for producing high strength dual phase chromium stainless steel strip with excellent ductility

Publications (2)

Publication Number Publication Date
JPS63169331A JPS63169331A (en) 1988-07-13
JPH07107178B2 true JPH07107178B2 (en) 1995-11-15

Family

ID=11464703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10187A Expired - Fee Related JPH07107178B2 (en) 1986-12-30 1987-01-03 Method for producing high strength dual phase chromium stainless steel strip with excellent ductility

Country Status (1)

Country Link
JP (1) JPH07107178B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138704A (en) * 1993-11-12 1995-05-30 Nisshin Steel Co Ltd High strength and high ductility dual-phase stainless steel and its production
JP2003089851A (en) * 2001-09-14 2003-03-28 Nisshin Steel Co Ltd High strength duplex stainless steel sheet having high elasticity, and production method therefor
JP3920185B2 (en) * 2002-09-27 2007-05-30 日新製鋼株式会社 Stainless steel tire rim material and motorcycle frame material with excellent flexibility
US7294212B2 (en) 2003-05-14 2007-11-13 Jfe Steel Corporation High-strength stainless steel material in the form of a wheel rim and method for manufacturing the same
JP5388589B2 (en) * 2008-01-22 2014-01-15 新日鐵住金ステンレス株式会社 Ferritic / austenitic stainless steel sheet for structural members with excellent workability and shock absorption characteristics and method for producing the same
JP5291479B2 (en) * 2009-01-29 2013-09-18 大同特殊鋼株式会社 Duplex stainless steel and steel and steel products using the same
JP5970796B2 (en) * 2010-12-10 2016-08-17 Jfeスチール株式会社 Steel foil for solar cell substrate and manufacturing method thereof, and solar cell substrate, solar cell and manufacturing method thereof
CN115449717B (en) * 2022-08-10 2023-11-03 山东泰山钢铁集团有限公司 Strong and durable wear-resistant cutter steel and preparation method of wide coiled plate thereof

Also Published As

Publication number Publication date
JPS63169331A (en) 1988-07-13

Similar Documents

Publication Publication Date Title
KR950013188B1 (en) Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as will as reduced plane anisotropy
KR100324892B1 (en) High-strength, high-strength superstructure tissue stainless steel and its manufacturing method
KR950013187B1 (en) Process for the production of a strip of a chromium staimless steel of a duplex structure having high strength and elong tion as wellas reduced plane anisotropy
US6500280B2 (en) Ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties
JPH0814004B2 (en) Method for producing high-ductility and high-strength dual-phase chrome stainless steel strip with excellent corrosion resistance
EP0436032B1 (en) Method of producing high-strength stainless steel strip having duplex structure and excellent spring characteristics
JP3317303B2 (en) High tensile strength thin steel sheet with excellent local ductility and its manufacturing method
JP2000144258A (en) Production of titanium-containing ferritic stainless steel sheet excellent in ridging resistance
JP3125978B2 (en) Method for producing high carbon steel strip with excellent workability
JPH07107178B2 (en) Method for producing high strength dual phase chromium stainless steel strip with excellent ductility
JP2003113442A (en) High-tensile steel sheet superior in warm forming property
JPH07100822B2 (en) Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.
JPH07100824B2 (en) Method for producing high strength dual phase chromium stainless steel strip with excellent ductility
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP3172561B2 (en) Manufacturing method of composite structure stainless steel spring
JP2002155339A (en) Medium and high carbon steel having excellent deep drawability
JP2001098328A (en) Method of producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JPH07100823B2 (en) Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.
JPH07100821B2 (en) Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.
JPH0814005B2 (en) Manufacturing method of high ductility and high strength dual phase chromium stainless steel strip with excellent intergranular corrosion resistance
JP3418928B2 (en) Ferritic stainless steel sheet for cold forging and its manufacturing method
JPH07100820B2 (en) Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.
JPH0572449B2 (en)
JPH0892652A (en) Production of stainless steel sheet
JP2000282147A (en) Manufacture of high strength dual-phase stainless steel strip excellent in resistance to stress corrosion crack sensitivity, and steel strip

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees