JP3920185B2 - Stainless steel tire rim material and motorcycle frame material with excellent flexibility - Google Patents

Stainless steel tire rim material and motorcycle frame material with excellent flexibility Download PDF

Info

Publication number
JP3920185B2
JP3920185B2 JP2002283413A JP2002283413A JP3920185B2 JP 3920185 B2 JP3920185 B2 JP 3920185B2 JP 2002283413 A JP2002283413 A JP 2002283413A JP 2002283413 A JP2002283413 A JP 2002283413A JP 3920185 B2 JP3920185 B2 JP 3920185B2
Authority
JP
Japan
Prior art keywords
less
martensite
stainless steel
steel
tire rim
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002283413A
Other languages
Japanese (ja)
Other versions
JP2004115888A (en
JP2004115888A5 (en
Inventor
宏紀 冨村
廣 藤本
憲一 森本
直人 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2002283413A priority Critical patent/JP3920185B2/en
Priority to CNA031570852A priority patent/CN1490184A/en
Priority to TW92126429A priority patent/TWI275649B/en
Priority to EP20030021820 priority patent/EP1403394A1/en
Publication of JP2004115888A publication Critical patent/JP2004115888A/en
Publication of JP2004115888A5 publication Critical patent/JP2004115888A5/ja
Application granted granted Critical
Publication of JP3920185B2 publication Critical patent/JP3920185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、溶接熱影響部の耐食性ならびに耐たわみ性に優れた自転車,オートバイ,車いす等の二輪車用のタイヤリム材またはフレーム材に関する。
【0002】
【従来の技術】
自転車,オートバイ,車いす等の二輪車に使用されるタイヤリム材またはフレーム材としては、使用環境によっては耐食性が要求されるため、従来のめっき品に代わってSUS430系のフェライト系ステンレス鋼が使用されている。
また上記部材は溶接接合されて使用されるので、優れた溶接性も要求される。このため、例えば特開昭61−73866号公報では、10〜20%のCrを含有するフェライト系ステンレス鋼に、0.1〜0.3%のTiと0.15〜0.3%のNbを添加して、溶接部の靭性,延性及び耐食性を確保しつつ溶接時の座屈を防止することが提案されている。また、特開昭62−164857号公報では、12.5〜17%のCrを含有するフェライト系ステンレス鋼において、C,Nを適度に低減した上で、Ni,Mn,Cu等のオーステナイト形成元素を適量添加し、溶接部にマルテンサイトを形成させることにより、Ti,Nbの安定化元素を用いなくても、溶接部靭性及び加工性に問題を生じさせることなく、溶接部の耐粒界腐食性を向上させた高強度のリム用ステンレス鋼材が得られることが報告されている。そして当該公報においては、マルテンサイト相を形成しやすくするために、その指標であるCE値を所定の範囲にすることが示されている。
【0003】
しかながら、特開昭61−73866号公報に記載されたような、Tiを多量に含むフェライト系ステンレス鋼は、Ti介在物に起因したTiストリークが生成するといった問題点がある。
また、特開昭62−164857号公報に記載されたステンレス鋼では、C+Nを0.04%以下に規定しているために、マルテンサイトを形成しても充分な強度がでない。強度向上のためには、合金元素の添加量を多くする必要が有り、結果的にコストが高くなっている。
本発明は、このような問題を解消すべく案出されたものであり、溶接性に優れ、溶接熱影響部及び母材の耐食性に優れ、且つ強度が高く、耐たわみ性も良好な自転車,オートバイ,車いす等の二輪車用のタイヤリム材またはフレーム材を低コストで提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明の耐たわみ性に優れたステンレス鋼製の二輪車用タイヤリム材は、その目的を達成するため、質量%で、C:0.04%以下,Si:2.0%以下,Mn:2.0%以下,Cr:10.0〜20.0%,Ni:4.0%以下,Cu:3.0%以下,N:0.12%以下を含み、残部が不純物を除きFeからなる鋼組成を有し、5〜75体積%のフェライトと25〜95体積%のマルテンサイトからなる複相組織であって、しかも下記(1)式で表される鋭敏化指数Stの値が−31以上−7未満の範囲となるように調整されたマルテンサイト量の組織を有するとともに、表面硬度がHV270以上の鋼板からなることを特徴とする。
St=100C+30N−0.32γ ・・・・(1)
ただし、γは複相化焼鈍後の室温でのマルテンサイト量( )
【0005】
また、本発明の耐たわみ性に優れたステンレス鋼製の二輪車用フレーム材は、質量%で、C:0.04%以下,Si:2.0%以下,Mn:2.0%以下,Cr:10.0〜20.0%,Ni:4.0%以下,Cu:3.0%以下,N:0.12%以下を含み、残部が実質的にFeからなる鋼組成を有し、5〜75体積%のフェライトと25〜95体積%のマルテンサイトからなる複相組織であって、しかも下記(1)式で表される鋭敏化指数Stの値が−31以上−7未満の範囲となるマルテンサイト量の組織を有する鋼板を素材として造管され、母材部の表面硬度がHV270以上の鋼管からなることを特徴とする。
St=100C+30N−0.32γ ・・・・(1)
ただし、γは複相化焼鈍後の室温でのマルテンサイト量(%)である。
【0006】
このステンレス鋼製の二輪車用タイヤリム材及び二輪車用フレーム材は、さらに0.015%以下のB,3.0%以下のMo,0.10%以下のTi,0.40%以下のNb,0.30%以下のVを1種または2種以上含有するものでもよい。
そして、このような溶接熱影響部の耐食性に優れる高強度複相ステンレス鋼帯,鋼板は、所定組成の冷延鋼帯を連続焼鈍炉に導入し、フェライト+オーステナイトの二相域となる温度850〜1100℃に加熱した後冷却する仕上げ複相化焼鈍を施すことにより、5体積%以上のフェライトを含むフェライト+マルテンサイトの二相組織に調整することにより製造される。
【0007】
【作用】
本発明者等は、溶接熱影響部の耐食性ならびに耐たわみ性に優れた自転車,オートバイ,車いす等の二輪車用のタイヤリム材或いはフレーム材に使用されるステンレス鋼板を得る手段について、種々検討した。なお、以下の説明では、自転車部品に限って説明する。オートバイ,車いす等でも同様であることは言うまでもない。
自転車の車体を構成する主要材料としては、タイヤリム材や各種パイプ材が挙げられる。これらの材料には、走行中の自転車に対してその安定性を維持するために、剛性、すなわちたわみ難いことが必要である。また、路面に近いタイヤリム材については、走行環境での腐食環境の影響を受けやすく、耐食性も必要である。さらに、タイヤリム材については、ブレーキ部品であるゴムに対する耐摩耗性も必要である。さらにまた、タイヤリム材或いはフレーム材では、走行中の小石等の飛散による凹凸の発生を抑制する耐デント性の改善も必要である。
【0008】
その結果、加工誘起マルテンサイトとオーステナイトからなる準安定オーステナイト系ステンレス鋼ではなく、C含有量0.04%以下,N含有量0.12%以下,Cr含有量10.0〜20.0%のフェライトとマルテンサイトの複相組織のステンレス鋼において、複相化処理後の室温でのマルテンサイト量と、含有C量及び含有N量が関係する鋭敏化指数Stを所定の範囲内に設定することにより、目標とする耐たわみ性と耐食性を有する二輪車用タイヤリム材及び二輪車用フレーム材を得ることができたものである。
耐たわみ性は、硬度HVを270以上に硬くすること、およびフェライト+マルテンサイトの微細複合組織にすることでヤング率を大きくすることにより改善することができる。また、マルテンサイト相の生成により強度が上昇するため、耐デント性や耐摩耗性も向上されることになる。
【0009】
ところで、フェライト+マルテンサイトの複相組織を呈する母材に溶接を施すと、その入熱で温度が600〜900℃の温度域に達する。このような高温に達すると、Cr系炭窒化物が析出して母相にCr欠乏層が生じ、鋭敏化現象が起きて耐食性が低下することになる。
フェライト,マルテンサイトともに結晶構造がbcc系で、C及びNの固溶限がほとんどない。さらにfcc系のオーステナイトに比べ拡散が速いために炭窒化物系析出物が形成されやすい。そして、マルテンサイトは温度が上昇するとオーステナイトに逆変態する。このオーステナイトでは、フェライトやマルテンサイトに比べてはるかに多くのCやNを固溶する。特にNは多く固溶する。逆変態に伴い、フェライトやマルテンサイト中に一度析出した炭窒化物は、逆変態で生成したオーステナイト中に再度固溶していく。もしくは、炭化物の生成には時間がかかるので、フェライトやマルテンサイト中に炭窒化物が析出する前に、オーステナイト域まで素早く昇温して逆変態すれば、炭窒化物生成によるCr欠乏層に起因した鋭敏化は回避できると考えられる。速度論的にも、昇温過程でまずフェライトやマルテンサイトでの析出物形成領域を通過するが、析出現象にある程度潜伏期があることを考えると、析出前に逆変態が生じることは十分予想される。
そして、Cを含有したオーステナイトを冷却すると、C固溶オーステナイト相はマルテンサイト相に変態し、炭化物を析出させることなく強度も向上することができる。
【0010】
本発明者等は、このようなメカニズムから、鋭敏化現象を促進する要素がC量とN量(特にCはNよりその作用が大きい)で、逆に鋭敏化を抑制する要素が複相化加熱状態での逆変態オーステナイト量(言い換えれば、逆変態し得る室温でのマルテンサイト量)であることを見出したものである。そして、室温でのマルテンサイト量を、高温で逆変態させたオーステナイト相に含有C,Nを固溶させるように、室温でのマルテンサイト量と含有C,N量を所定の関係にすれば、Cr炭化物の析出に起因する鋭敏化を防止でき、耐食性が良くなることを見出したものである。この3者の関係については、後に詳述する。
以下に、本発明タイヤリム材或いはフレーム材に含まれる合金成分,含有量等について詳しく説明する。なお、各元素の含有量を示す「%」は、本明細書中では、特に示さない限り「質量%」を意味する。
【0011】
C:0 . 04%以下
Cはオーステナイト形成元素で、マルテンサイト相の強化に極めて有効であり、高温でのオーステナイト化温度Ac1点以上の温度に加熱熱処理を行った後のマルテンサイト量を調整でき、強度の制御及び高強度化に有効に作用する。これらの作用は、0.1%以上のC含有量で顕著になる。しかし、多量のC含有は複相化処理後の冷却中や時効処理で粒界にCr炭化物が析出し、耐粒界腐食性低下の原因となるので、Cは0.04%以下とした。
Si:2.0%以下
Siは通常脱酸の目的で添加される。また、Siはマルテンサイト相を硬くするとともに、オーステナイト相にも固溶しこれを硬化させ、冷間加工後の強度を大きくする。さらに時効処理においては歪み時効により時効硬化能を促進する。このようにSiには種々の効果があるが、過度の添加は高温割れを誘発しやすくし、製造上種々の問題が生じる。このため、Si添加量は2.0%以下とした。
【0012】
Cr:10.0〜20.0質量%
Crは耐食性上、必須の成分である。意図する耐食性を賦与するためには、少なくとも10.0%のCrを必要とする。しかし、20.0%を超える過剰のCrは、靭性を低下する。またマルテンサイトを生成させて高強度を得るために必要なオーステナイト形成元素(C,N,Ni,Mn,Cu等)を添加しなければならなくなって、鋼帯,鋼板のコスト上昇を招くばかりでなく、室温でのオーステナイトの安定化をもたらして高強度を得ることが不可能になる。したがって、Cr含有量の上限は20.0%とする。
【0013】
Mn:2.0%以下
Ni:4.0%以下
Cu:3.0%以下
Ni,Mn及びCuはオーステナイト形成元素で、高温でフェライト+オーステナイトの組織(室温でフェライト+マルテンサイトの組織)を得るために必要である。これらの元素の含有量が増加するにしたがってマルテンサイト量が増加し、高強度化をもたらすことができる。しかし、過剰の添加は、高温で生成したオーステナイト相が室温までの冷却中にマルテンサイトに変態せず、オーステナイトのまま残留し、強度低下を招くことになる。したがって、Mn量は2.0%以下、Ni量は4.0%以下、さらにCu量は3.0%以下とした。
【0014】
N:0.12%以下
NもCと同様にオーステナイト形成元素で、Cほどではないがマルテンサイト相の強化に極めて有効であり、高温でのオーステナイト化温度Ac1点以上の温度に加熱熱処理を行った後のマルテンサイト量を調整でき、強度の制御及び高強度化に有効に作用する。また、Cに比較して鋭敏化が起こり難いので、複相化処理後の冷却中や時効処理で粒界に窒化物として析出して耐食性を低下させる窒素量は、Cに比べて高い。ただし、過度の含有はブローホール等の内部欠陥をもたらすので、N含有量の上限は0.12%とした。
【0015】
B:0.015%以下
Bは、熱間圧延温度域でのフェライト相とオーステナイト相の変形抵抗の差異により生じる熱延鋼帯でのエッジクラックの発生防止に有効な元素であるが、過度の添加は低融点硼化物を形成しやすくし、逆に熱間加工性や溶接高温割れをもたらすので、添加する場合も、上限は0.015%とする。
Mo:1.0%以下
Moは、耐食性向上に寄与するので、必要に応じて添加される。しかし、過剰のMo添加は、熱間加工性の低下や鋼材コスト上昇の原因となるので、添加する場合、その上限は1.0%とする。
【0016】
Ti:0.10%以下
Nb:0.40%以下
V:0.30%以下
Ti,NbならびにVは、CやNを炭窒化物として固定することにより、溶接熱影響部の耐食性を改善する元素である。さらに、結晶粒を微細にする作用があり、強度上昇面でも有効な元素である。しかし、TiはTiクラスター起因の表面欠陥をもたらすので、添加する場合、その上限は0.10%とする。Nbは低融点合金層もしくは酸化に起因した溶接高温割れをもたらすので、添加する場合、その上限は0.40%とする。また、Vは過剰添加で極端に高温強度が上昇して製造面で障害となるので、添加する場合、その上限は0.30%とする。
【0017】
なお、本発明が対象とする溶接熱影響部の耐食性ならびに耐たわみ性に優れた自転車,オートバイ,車いす等の二輪車用のタイヤリム材或いはフレーム材に適した高強度複相組織のステンレス鋼では、各合金成分の個々の含有量を以上のように規制するとともに、フェライト形成元素であるAl等を添加し、常温でフェライト+マルテンサイトの複合組織が得られるように各合金成分を調整してもよい。また、必要とする強度を低下させない限り、耐酸化性や熱間加工性を向上させる目的で、Y,CaやREM(希土類元素)を添加することもできる。
【0018】
鋭敏化指数St:−31以上−7未満
先に説明したように、溶接時に高温下に曝されると、Cr系炭窒化物が析出して母相にCr欠乏層が生じ鋭敏化現象が起きて耐食性が低下することになる。そして、鋭敏化現象を促進する要素がC量とN量で、逆に鋭敏化を抑制する要素が複相化加熱状態での逆変態オーステナイト量(言い換えれば、逆変態し得る室温でのマルテンサイト量)である。そして、鋭敏化指数値Stとして、含有C量,含有N量及び室温でのマルテンサイト量を所定の関係にすれば、鋭敏化し難く、耐食性が良くなることを見出した。その鋭敏化指数値Stは後述する種々の予備実験を繰り返すことにより、下記(1)式なる関係式で表され、この値が−7未満であれば鋭敏化が起こらなくなることを見出した。しかし、−31より小さくなると、強化元素であるCやNが不足してHV270以上の高強度が得られなくなる。
St=100C+30N−0.32γ ・・・・(1)
ただし、γは複相化焼鈍後の室温でのマルテンサイト量(%)である。
このようなマルテンサイト量の鋼板は、例えば、780℃×12時間均熱・炉冷の熱延板焼鈍を施した後、80%の冷間圧延を行い、その後950℃×1分均熱・空冷の焼鈍を施すような熱処理法で得られる。
【0019】
母材表面硬度:HV270以上
CやN、Ni含有量の選定及びマルテンサイト量の調整により、本発明鋼の溶接熱影響部の耐食性ならびに耐たわみ性に優れた自転車,オートバイ,車いす等の二輪車に使用されるタイヤリム材やフレーム材の硬度は調整されるが、軽量化やばね性も加味すると、溶接の熱影響のない母材での表面硬度はHV270以上が必要である。この値に満たないと、二輪車に使用する際、所望の強度を持たせるためには肉厚を厚くせざるを得ず、結果的に重くなる。
このような強度を発現させ、二輪車に使用するのに充分な耐デント性や耐摩耗性を持たせるためには、室温で25体積%以上のマルテンサイト相を形成させる必要がある。
【0020】
【予備実験】
表1に示す成分の鋼材を真空溶解炉にて溶製し、鋳造,熱延にて板厚4.5mmとし、780℃×12時間均熱・炉冷の熱延板焼鈍を施した。さらに酸洗後、冷間圧延をして板厚1.5mmとし、800℃×1分均熱・空冷の中間焼鈍を施した後、再度、冷間圧延後、950℃×1分加熱での連続複相化熱処理を施し、最終板厚0.5mmとした。
上記方法で製造した板厚0.5mmmのステンレス鋼板を素材にし、タイヤリム材を模擬した図1に示す形状の枠を作製した。溶接はTIG溶接で実施した。
複相化処理後のマルテンサイト量は、板厚断面の200μm×200μm10視野で算出した。溶接は溶接芯線を使用しないなめづけ溶接であり、溶接条件は以下の通りである
TIG溶接条件;
電極:W(直径1.6mm),溶接電流:70A,トーチ移動速度:300mm/min,シールガス:アルゴン,流量:10L/min
溶接ビード部凸部をグラインダーで平滑化し、最終的に母材部と併せて#400研磨で仕上げた。試験片サイズは100mm×150mmとした。
耐食性試験はJIS H8502に基づいたキャス試験で、200時間実施した。キャス試験の条件は、pH3.0〜3.1の(5%NaCl+0.26g/lCuCl2+酢酸)で、温度35±2℃で行った。
そして溶接熱影響部の発銹の有無を調べて耐食性評価を評価した。その結果を図2に示す。なお、図中、発銹が認められなかったものを○で、発銹があったものを×で示している。
この結果から、100C+30N−0.32γ=−7を境に溶接部発銹の有無が整理でき、溶接部の耐食性を維持するためには、St=100C+30N−0.32γのStを−7未満にする必要がある。なお、Stが−31より小さくなると、強化元素であるCやNが不足してHV270以上の高強度が得られなくなることは前記した通りである。
【0021】

Figure 0003920185
【0022】
【実施例】
表2に示す成分の鋼材を真空溶解炉にて溶製し、鋳造,熱延にて板厚4.5mmとし、780℃×12時間均熱・炉冷の熱延板焼鈍を施した。さらに酸洗後、冷間圧延をして板厚1.5mmとし、800℃×1分均熱・空冷の中間焼鈍を施した後、再度、冷間圧延後、1030℃で均熱1分の焼鈍を施し、最終板厚0.5mmとした。なお、表2中、鋼No.KはSUS430LXであり、この鋼については、熱延板焼鈍ならびに冷延板の中間焼鈍条件は1000℃×1分均熱とした。
【0023】
表2の成分組成をもつ板厚0.5mmのステンレス鋼板を素材にし、タイヤリム材を模擬した図1に示す形状の枠、及び直径30mmのステンレス鋼管を作製した。いずれもTIG溶接を行った。TIG溶接は、溶接電流密度150A,移動速度500mm/minで実施した。溶接ビード部凸部をグラインダーで平滑化し、最終的に母材部と併せて、#400研磨で仕上げた。
耐たわみ試験は、図3に示したようなタイヤリム材を模擬した形状のハーフサイズ形状枠試験片Rに荷重50kgの重りWをのせる試験の、試験前のL方向の高さと荷重を除去した後の高さの差を永久歪みとして評価した。50kg荷重の重りを1時間のせて、荷重除去後の永久歪みが1mm以下であったものを合格(表3中では○)とした。
【0024】
Figure 0003920185
【0025】
以上のようにして作製した各鋼板について、複相化処理後の室温でマルテンサイト量を測定して前記(1)式でSt値を算出するとともに、表面ビッカース硬度(荷重1kg)、リム材たわみ試験前後のたわみ量ならびにリム材・フレーム材の耐食性試験を行った。
複相化処理後のマルテンサイト量は、板厚断面の200μm×200μm10視野で算出した。耐食性試験はJIS H8502に基づいたキャス試験で、200時間実施した。キャス試験の条件は、pH3.0〜3.1の(5%NaCl+0.26g/lCuCl2+酢酸)で、温度35±2℃で行った。そして溶接熱影響部ならびに母材部の発銹の有無を調べて耐食性評価を評価した。
その結果を、耐たわみ試験の結果と併せて表3に示す。なお、表中、200時間のキャス試験後、発銹が認められなかったものを○で、発銹があったものを×で示している。
【0026】
表3の結果に見られるように、本発明鋼では、母材硬度HV270以上を維持しつつ、リム材ならびにステンレス鋼管はいずれもキャス試験で溶接部熱影響部・母材とも発銹していなかった。溶接熱影響部の耐食性も優れていることがわかった。また、耐たわみ試験でも、永久歪み量は1mm以下であった。
これに対して、比較鋼No.I、ならびにNo.Jは、マルテンサイトとフェライトの複相組織が得られず、硬度HV270以上の高強度材が得られなかった。このため、耐たわみ試験でも永久歪み量は1mmを大きく超えていた。
比較鋼No.G〜Jは、本発明鋼から成分もしくは鋭敏化指数St値が請求項に規定した範囲を外れるものである。比較鋼No.Gは含有Cが高く、比較鋼No.Hは含有C,N量が高いものである。このため溶接熱影響部の耐食性が十分でなかった。また比較鋼No.IはCr含有量が低いために十分な耐食性を得ることができず、耐たわみ性も十分でなかった。比較鋼No.Jは成分含有量は規定の範囲内であるが、鋭敏化指数St値が請求項に規定した範囲を外れるために、溶接熱影響部の耐食性が劣っていた。溶接時の熱で鋭敏化が進み耐食性が低下したものである。
なお、比較鋼No.KはSUS430LXであり、耐たわみ性が十分でなかった。
【0027】
Figure 0003920185
【0028】
【発明の効果】
以上に説明したように、本発明では、フェライトとマルテンサイトの複相組織からなるステンレス鋼において、C及びNの含有量をさほど低減させることなく、含有C量及び含有N量と、複相化処理でオーステナイトに逆変態するマルテンサイト量との関係を、所定の関係にすることにより、溶接後の溶接熱影響部等で鋭敏化することなく、目標とする耐たわみ性と耐食性を併せ持つ二輪車用タイヤリム材及び二輪車用フレーム材を得ることができたものである。
【図面の簡単な説明】
【図1】 タイヤリム模擬成形品形状を説明する断面図
【図2】 C,N含有量及びγ量と溶接部耐食性の関係を示す図
【図3】 耐たわみ試験方法の概略を説明する図[0001]
[Industrial application fields]
The present invention relates to a tire rim material or a frame material for motorcycles such as bicycles, motorcycles, and wheelchairs, which are excellent in corrosion resistance and deflection resistance of a weld heat affected zone.
[0002]
[Prior art]
As tire rim materials or frame materials used for motorcycles such as bicycles, motorcycles, wheelchairs, etc., corrosion resistance is required depending on the usage environment, so SUS430 ferritic stainless steel is used instead of conventional plated products. .
Moreover, since the said member is welded and used, the outstanding weldability is also requested | required. For this reason, for example, in JP-A-61-73866, ferritic stainless steel containing 10 to 20% Cr is added to 0.1 to 0.3% Ti and 0.15 to 0.3% Nb. It has been proposed to prevent buckling during welding while ensuring toughness, ductility and corrosion resistance of the weld. Japanese Patent Laid-Open No. 62-164857 discloses an austenite-forming element such as Ni, Mn, Cu and the like in a ferritic stainless steel containing 12.5 to 17% of Cr, while C and N are appropriately reduced. By adding an appropriate amount of martensite in the welded part, intergranular corrosion resistance of the welded part can be obtained without causing problems in welded part toughness and workability without using Ti and Nb stabilizing elements. It has been reported that a high-strength stainless steel material for rims with improved properties can be obtained. And in the said gazette, in order to make a martensite phase easy to form, it is shown that the CE value which is the parameter | index is made into a predetermined range.
[0003]
However, ferritic stainless steel containing a large amount of Ti as described in JP-A-61-73866 has a problem that Ti streaks due to Ti inclusions are generated.
Further, in the stainless steel described in Japanese Patent Application Laid-Open No. 62-164857, since C + N is regulated to 0.04% or less, sufficient strength is not obtained even if martensite is formed. In order to improve the strength, it is necessary to increase the amount of alloy element added, resulting in an increase in cost.
The present invention has been devised to solve such problems, and has excellent weldability, excellent corrosion resistance of the weld heat-affected zone and the base material, high strength, and good flexibility. The object is to provide tire rim materials or frame materials for motorcycles, wheelchairs and other motorcycles at low cost.
[0004]
[Means for Solving the Problems]
In order to achieve the object, the stainless steel tire rim material for motorcycles having excellent flexibility resistance according to the present invention is mass%, C: 0.04% or less, Si: 2.0% or less, Mn: 2. Steel containing 0% or less, Cr: 10.0 to 20.0%, Ni: 4.0% or less, Cu: 3.0% or less, N: 0.12% or less, with the balance being Fe except for impurities It has a composition and is a multiphase structure consisting of 5 to 75% by volume of ferrite and 25 to 95% by volume of martensite, and the value of the sensitization index St represented by the following formula (1) is −31 or more. It has a structure with a martensite amount adjusted to be in a range of less than −7, and is made of a steel sheet having a surface hardness of HV270 or more.
St = 100C + 30N−0.32γ (1)
However, γ is the amount of martensite at room temperature after double phase annealing ( % )
[0005]
Further, the frame material for a motorcycle made of stainless steel having excellent deflection resistance according to the present invention is, in mass%, C: 0.04% or less, Si: 2.0% or less, Mn: 2.0% or less, Cr The steel composition comprises: 10.0-20.0%, Ni: 4.0% or less, Cu: 3.0% or less, N: 0.12% or less, and the balance being substantially Fe. A multiphase structure composed of 5 to 75 volume% ferrite and 25 to 95 volume% martensite, and the value of the sensitization index St represented by the following formula (1) is −31 or more and less than −7 The steel sheet is made of a steel plate having a martensite structure as a raw material, and the base material portion has a surface hardness of HV270 or more.
St = 100C + 30N−0.32γ (1)
However, γ is the amount of martensite (%) at room temperature after the multiphase annealing.
[0006]
This stainless steel tire rim material for motorcycles and frame materials for motorcycles further comprise 0.015% or less B, 3.0% or less Mo, 0.10% or less Ti, 0.40% or less Nb, 0. It may contain one or more kinds of V of 30% or less.
And, the high-strength duplex stainless steel strip and steel plate excellent in the corrosion resistance of the weld heat affected zone are introduced into a continuous annealing furnace with a cold-rolled steel strip having a predetermined composition, and the temperature becomes 850 which becomes a two-phase region of ferrite + austenite. It is manufactured by adjusting to a two-phase structure of ferrite + martensite containing 5% by volume or more of ferrite by applying a finish multiphase annealing that is heated to ˜1100 ° C. and then cooled.
[0007]
[Action]
The present inventors have made various studies on means for obtaining a stainless steel plate used for tire rim materials or frame materials for bicycles, motorcycles, wheelchairs and other motorcycles having excellent corrosion resistance and deflection resistance of the weld heat affected zone. In the following description, only bicycle parts will be described. It goes without saying that the same applies to motorcycles and wheelchairs.
Tire rim materials and various pipe materials are examples of main materials that make up the bicycle body. These materials need to be rigid, i.e., difficult to deflect, in order to maintain their stability relative to the running bicycle. Further, the tire rim material close to the road surface is easily affected by the corrosive environment in the traveling environment, and needs to have corrosion resistance. Furthermore, the tire rim material must also have wear resistance against rubber as a brake component. Furthermore, in the tire rim material or the frame material, it is also necessary to improve the dent resistance which suppresses the generation of irregularities due to the scattering of pebbles and the like while traveling.
[0008]
As a result, it is not a metastable austenitic stainless steel consisting of work-induced martensite and austenite, but a C content of 0.04% or less, an N content of 0.12% or less, and a Cr content of 10.0 to 20.0%. In stainless steel having a multiphase structure of ferrite and martensite, the sensitization index St related to the amount of martensite at room temperature after the multiphase treatment, the content of C and the content of N is set within a predetermined range. As a result, the tire rim material for motorcycles and the frame material for motorcycles having the desired flexibility and corrosion resistance can be obtained.
The bending resistance can be improved by increasing the Young's modulus by increasing the hardness HV to 270 or higher and by forming a fine composite structure of ferrite and martensite. Moreover, since the strength is increased by the formation of the martensite phase, the dent resistance and the wear resistance are also improved.
[0009]
By the way, when welding is performed on a base material exhibiting a ferrite + martensite multiphase structure, the temperature reaches a temperature range of 600 to 900 ° C. due to the heat input. When such a high temperature is reached, Cr-based carbonitride precipitates and a Cr-deficient layer is formed in the matrix, resulting in a sensitization phenomenon and reduced corrosion resistance.
Both ferrite and martensite have a bcc crystal structure and almost no solid solubility limit of C and N. Furthermore, since the diffusion is faster than that of fcc-based austenite, carbonitride-based precipitates are easily formed. And martensite reverse transforms to austenite when the temperature rises. This austenite dissolves much more C and N than ferrite and martensite. In particular, N is a solid solution. Along with the reverse transformation, the carbonitrides once precipitated in ferrite and martensite are dissolved again in the austenite generated by the reverse transformation. Or, since it takes time to generate carbides, if carbon nitride is precipitated in ferrite or martensite, if the temperature is quickly raised to the austenite region and reverse transformation occurs, it is caused by the Cr-deficient layer due to carbonitride formation. Sensitization is considered to be avoided. Kinetics also first pass through the precipitate formation region in ferrite and martensite during the temperature rising process, but considering that the precipitation phenomenon has a certain incubation period, it is fully expected that reverse transformation will occur before precipitation. The
When austenite containing C is cooled, the C solid solution austenite phase is transformed into a martensite phase, and the strength can be improved without precipitating carbides.
[0010]
Based on this mechanism, the present inventors have found that the elements that promote the sensitization phenomenon are the C amount and the N amount (especially C is more effective than N), and the element that suppresses sensitization is double-phased. It has been found that the amount of reverse transformed austenite in a heated state (in other words, the amount of martensite at room temperature at which reverse transformation is possible). And, if the martensite amount at room temperature and the contained C, N amount are in a predetermined relationship so that the contained C, N is dissolved in the austenite phase reversely transformed at high temperature, the martensite amount at room temperature is It has been found that sensitization due to precipitation of Cr carbide can be prevented and corrosion resistance is improved. The relationship between the three will be described in detail later.
Hereinafter, the alloy components, contents, and the like included in the tire rim material or frame material of the present invention will be described in detail. In the present specification, “%” indicating the content of each element means “mass%” unless otherwise specified.
[0011]
C:. 0 04% or less C is an austenite forming element, is very effective to strengthen the martensitic phase, can adjust the amount of martensite after thermal annealing treatment to the austenitizing temperature Ac1 point or higher temperature at a high temperature Effectively controls the strength and increases the strength. These effects become significant when the C content is 0.1% or more. However, if a large amount of C is contained, Cr carbide precipitates at the grain boundaries during cooling after the multi-phase treatment or during aging treatment, causing a decrease in intergranular corrosion resistance. Therefore, C is set to 0.04% or less.
Si: 2.0% or less Si is usually added for the purpose of deoxidation. Further, Si hardens the martensite phase and also dissolves in the austenite phase to harden it, thereby increasing the strength after cold working. Furthermore, in the aging treatment, the age hardening ability is promoted by strain aging. As described above, Si has various effects, but excessive addition easily induces hot cracking and causes various problems in production. For this reason, Si addition amount was made into 2.0% or less.
[0012]
Cr: 10.0-20.0 mass%
Cr is an essential component for corrosion resistance. In order to provide the intended corrosion resistance, at least 10.0% Cr is required. However, excess Cr exceeding 20.0% reduces toughness. In addition, the austenite forming elements (C, N, Ni, Mn, Cu, etc.) necessary for generating martensite and obtaining high strength have to be added, which only increases the cost of steel strips and steel plates. In other words, it becomes impossible to obtain high strength by stabilizing austenite at room temperature. Therefore, the upper limit of the Cr content is 20.0%.
[0013]
Mn: 2.0% or less
Ni: 4.0% or less
Cu: 3.0% or less Ni, Mn, and Cu are austenite forming elements, and are necessary for obtaining a ferrite + austenite structure at high temperature (ferrite + martensite structure at room temperature). As the content of these elements increases, the amount of martensite increases, and the strength can be increased. However, excessive addition does not transform the austenite phase generated at high temperature into martensite during cooling to room temperature, and remains as austenite, leading to a decrease in strength. Therefore, the Mn content is 2.0% or less, the Ni content is 4.0% or less, and the Cu content is 3.0% or less.
[0014]
N: 0.12% or less N is also an austenite-forming element like C, and is not as effective as C, but is extremely effective for strengthening the martensite phase, and heat treatment is performed at a temperature higher than the austenitizing temperature Ac1 at a high temperature. After that, the amount of martensite can be adjusted, which effectively works for strength control and high strength. Further, since sensitization is less likely to occur compared to C, the amount of nitrogen that precipitates as a nitride at the grain boundary during cooling after aging treatment or during aging treatment and lowers the corrosion resistance is higher than C. However, excessive content causes internal defects such as blow holes, so the upper limit of N content was set to 0.12%.
[0015]
B: 0.015% or less B is an element effective for preventing the occurrence of edge cracks in the hot-rolled steel strip caused by the difference in deformation resistance between the ferrite phase and the austenite phase in the hot rolling temperature range. Addition makes it easy to form a low-melting boride, and conversely causes hot workability and weld hot cracking. Therefore, even when added, the upper limit is made 0.015%.
Mo: 1.0% or less Since Mo contributes to the improvement of corrosion resistance, it is added as necessary. However, excessive addition of Mo causes a decrease in hot workability and an increase in steel material cost, so when added, the upper limit is made 1.0%.
[0016]
Ti: 0.10% or less
Nb: 0.40% or less
V: 0.30% or less Ti, Nb, and V are elements that improve the corrosion resistance of the weld heat affected zone by fixing C and N as carbonitrides. Furthermore, it has the effect of making the crystal grains fine and is an effective element in terms of strength increase. However, since Ti brings about surface defects caused by Ti clusters, when added, the upper limit is made 0.10%. Since Nb causes welding hot cracking due to the low melting point alloy layer or oxidation, when added, the upper limit is made 0.40%. Further, V is excessively added and the high-temperature strength is extremely increased, resulting in an obstacle in production. Therefore, when V is added, the upper limit is made 0.30%.
[0017]
In the stainless steel having a high-strength multiphase structure suitable for tire rim materials or frame materials for bicycles, motorcycles, wheelchairs and the like that are excellent in corrosion resistance and deflection resistance of the weld heat-affected zone targeted by the present invention, In addition to regulating the individual contents of the alloy components as described above, each alloy component may be adjusted so that a ferrite + martensite composite structure can be obtained at room temperature by adding a ferrite forming element such as Al. . Moreover, Y, Ca, and REM (rare earth element) can also be added for the purpose of improving oxidation resistance and hot workability unless the required strength is lowered.
[0018]
Sensitization index St: not less than −31 and less than −7 As described above, when exposed to high temperature during welding, Cr-based carbonitride precipitates and a Cr-depleted layer is generated in the parent phase. A corrosion phenomenon will occur and the corrosion resistance will decrease. The elements that promote the sensitization phenomenon are the C amount and the N amount, and the element that suppresses the sensitization is the amount of reverse transformed austenite in the double phase heating state (in other words, martensite at room temperature that can undergo reverse transformation). Amount). It has been found that if the content C content, the content N content, and the martensite content at room temperature are in a predetermined relationship as the sensitization index value St, it is difficult to sensitize and the corrosion resistance is improved. The sensitization index value St is represented by the following relational expression (1) by repeating various preliminary experiments to be described later, and it has been found that sensitization does not occur if this value is less than −7. However, if it becomes smaller than −31, the strengthening elements C and N are insufficient, and a high strength higher than HV270 cannot be obtained.
St = 100C + 30N−0.32γ (1)
However, γ is the amount of martensite (%) at room temperature after the multiphase annealing.
A steel sheet having such a martensite amount is subjected to, for example, 780 ° C. × 12 hours soaking / furnace-cooled hot-rolled sheet annealing, 80% cold rolling, and then 950 ° C. × 1 minute soaking / heating. It is obtained by a heat treatment method such as air-cooling annealing.
[0019]
Base material surface hardness: HV 270 or higher For bicycles, motorcycles, wheelchairs, etc. with excellent corrosion resistance and deflection resistance of the weld heat affected zone of the steel of the present invention by selecting C, N, Ni content and adjusting martensite content The hardness of the tire rim material and frame material used is adjusted, but considering the weight reduction and springiness, the surface hardness of the base material that does not have the heat effect of welding needs to be HV270 or more. If it is less than this value, the thickness must be increased in order to provide the desired strength when used in a motorcycle, resulting in a heavy load.
In order to exhibit such strength and provide sufficient dent resistance and wear resistance for use in a motorcycle, it is necessary to form a martensite phase of 25% by volume or more at room temperature.
[0020]
【Preliminary experiment】
Steel materials having the components shown in Table 1 were melted in a vacuum melting furnace, cast and hot rolled to a thickness of 4.5 mm, and subjected to hot rolling and annealing at 780 ° C. for 12 hours. Further, after pickling, cold rolling to a thickness of 1.5 mm, intermediate annealing of 800 ° C. × 1 minute soaking / air cooling, and after cold rolling again, heating at 950 ° C. × 1 minute A continuous multiphase heat treatment was applied to a final thickness of 0.5 mm.
A stainless steel plate having a thickness of 0.5 mm manufactured by the above method was used as a raw material, and a frame having the shape shown in FIG. 1 simulating a tire rim material was produced. Welding was performed by TIG welding.
The amount of martensite after the biphasic treatment was calculated from 10 μm × 200 μm 10 views of the plate thickness cross section. Welding is tanning welding without using a welding core, and welding conditions are as follows: TIG welding conditions;
Electrode: W (diameter 1.6 mm), welding current: 70 A, torch moving speed: 300 mm / min, seal gas: argon, flow rate: 10 L / min
The convex part of the weld bead part was smoothed with a grinder and finally finished with # 400 polishing together with the base material part. The test piece size was 100 mm × 150 mm.
The corrosion resistance test was a cast test based on JIS H8502 and was performed for 200 hours. The conditions of the casting test were (5% NaCl + 0.26 g / lCuCl 2 + acetic acid) having a pH of 3.0 to 3.1 and a temperature of 35 ± 2 ° C.
And the corrosion resistance evaluation was evaluated by investigating the presence or absence of cracking in the weld heat affected zone. The result is shown in FIG. In the figure, the case where no bruising was observed is indicated by ◯, and the case where bruising was observed is indicated by ×.
From this result, it is possible to organize the presence / absence of the welded portion with 100C + 30N−0.32γ = −7 as a boundary, and in order to maintain the corrosion resistance of the welded portion, St = 100C + 30N−0.32γ with St of less than −7 There is a need to. As described above, when St is smaller than −31, the strengthening elements C and N are insufficient and high strength of HV270 or higher cannot be obtained.
[0021]
Figure 0003920185
[0022]
【Example】
Steel materials having the components shown in Table 2 were melted in a vacuum melting furnace, cast and hot rolled to a thickness of 4.5 mm, and subjected to hot rolling and annealing at 780 ° C. for 12 hours. Further, after pickling, cold-rolled to a thickness of 1.5 mm, subjected to 800 ° C. × 1 minute soaking / air-cooling intermediate annealing, again after cold rolling, soaking at 1030 ° C. for 1 min. Annealing was performed to a final thickness of 0.5 mm. In Table 2, steel No. K is SUS430LX, and for this steel, the hot-rolled sheet annealing and the intermediate annealing conditions of the cold-rolled sheet were set to 1000 ° C. × 1 minute soaking.
[0023]
A stainless steel plate with a thickness of 0.5 mm having the composition shown in Table 2 was used as a raw material, and a frame having the shape shown in FIG. 1 simulating a tire rim material and a stainless steel pipe with a diameter of 30 mm were produced. In either case, TIG welding was performed. TIG welding was performed at a welding current density of 150 A and a moving speed of 500 mm / min. The convex part of the weld bead part was smoothed with a grinder and finally finished with # 400 polishing together with the base material part.
In the bending resistance test, the height and load in the L direction before the test of the test in which the weight W with a load of 50 kg was applied to the half-size frame test piece R having a shape simulating the tire rim material as shown in FIG. 3 was removed. Later height differences were evaluated as permanent strains. A weight of 50 kg load was applied for 1 hour, and the permanent distortion after load removal was 1 mm or less was determined to be acceptable (O in Table 3).
[0024]
Figure 0003920185
[0025]
For each steel plate produced as described above, the amount of martensite is measured at room temperature after the multi-phase treatment, and the St value is calculated by the above equation (1). The surface Vickers hardness (load 1 kg), the rim material deflection The amount of deflection before and after the test and the corrosion resistance test of the rim material and frame material were conducted.
The amount of martensite after the biphasic treatment was calculated from 10 μm × 200 μm 10 views of the plate thickness cross section. The corrosion resistance test was a cast test based on JIS H8502 and was performed for 200 hours. The conditions of the casting test were (5% NaCl + 0.26 g / lCuCl 2 + acetic acid) having a pH of 3.0 to 3.1 and a temperature of 35 ± 2 ° C. Then, the corrosion resistance evaluation was evaluated by examining the presence or absence of cracking in the weld heat affected zone and the base metal.
The results are shown in Table 3 together with the results of the deflection test. In addition, in the table | surface, after 200-hour cast test, the thing which was not recognized as wrinkles is shown by (circle), and the thing with wrinkles is shown by x.
[0026]
As can be seen from the results of Table 3, in the steel of the present invention, while maintaining the base material hardness HV270 or more, neither the rim material nor the stainless steel pipe has spawned in the heat-affected zone / base metal of the welded part in the cast test. It was. It was found that the corrosion resistance of the heat affected zone was also excellent. In the deflection test, the permanent strain was 1 mm or less.
On the other hand, comparative steel No. I, and No. For J, a multiphase structure of martensite and ferrite was not obtained, and a high-strength material having a hardness of HV270 or higher was not obtained. For this reason, the amount of permanent distortion greatly exceeded 1 mm even in the deflection resistance test.
Comparative steel No. G to J are components or sensitization index St values outside the range defined in the claims from the steel of the present invention. Comparative steel No. G has a high content C, and comparative steel No. H has a high content of C and N. For this reason, the corrosion resistance of the weld heat affected zone was not sufficient. Comparative steel No. Since I had a low Cr content, it was not possible to obtain sufficient corrosion resistance, and the deflection resistance was not sufficient. Comparative steel No. Although the component content of J is within the specified range, the sensitization index St value deviates from the range specified in the claims, so that the corrosion resistance of the weld heat affected zone was inferior. Sensitization progressed due to heat during welding, and corrosion resistance decreased.
In addition, comparative steel No. K was SUS430LX, and the deflection resistance was not sufficient.
[0027]
Figure 0003920185
[0028]
【The invention's effect】
As described above, in the present invention, in the stainless steel having a multiphase structure of ferrite and martensite, the content of C and N and the content of C and N are reduced without reducing the content of C and N so much. By making the relationship with the amount of martensite that transforms back to austenite in the treatment into a predetermined relationship, it will not be sensitized at the weld heat affected zone after welding, etc., for motorcycles that have both target deflection resistance and corrosion resistance A tire rim material and a motorcycle frame material could be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating the shape of a tire rim simulated molded product. FIG. 2 is a diagram illustrating the relationship between C and N content and γ content and corrosion resistance of a welded portion. FIG. 3 is a diagram illustrating an outline of a deflection resistance test method.

Claims (4)

質量%で、C:0.04%以下,Si:2.0%以下,Mn:2.0%以下,Cr:10.0〜20.0%,Ni:4.0%以下,Cu:3.0%以下,N:0.12%以下を含み、残部が不純物を除きFeからなる鋼組成を有し、5〜75体積%のフェライトと25〜95体積%のマルテンサイトからなる複相組織であって、しかも下記(1)式で表される鋭敏化指数Stの値が−31以上−7未満の範囲となるように調整されたマルテンサイト量の組織を有するとともに、表面硬度がHV270以上の鋼板からなることを特徴とする耐たわみ性に優れたステンレス鋼製の二輪車用タイヤリム材。
St=100C+30N−0.32γ ・・・・(1)
ただし、γは複相化焼鈍後の室温でのマルテンサイト量( )
By mass%, C: 0.04% or less, Si: 2.0% or less, Mn: 2.0% or less, Cr: 10.0 to 20.0%, Ni: 4.0% or less, Cu: 3 0.0% or less, N: 0.12% or less, with the balance being a steel composition made of Fe excluding impurities, and a multiphase structure consisting of 5-75% by volume ferrite and 25-95% by volume martensite In addition, it has a martensite structure adjusted so that the value of the sensitization index St represented by the following formula (1) is in the range of −31 or more and less than −7, and the surface hardness is HV270 or more. A tire rim material for motorcycles made of stainless steel and having excellent deflection resistance.
St = 100C + 30N−0.32γ (1)
However, γ is the amount of martensite at room temperature after double phase annealing ( % )
鋼組成が、さらに0.015%以下のB,3.0%以下のMo,0.10%以下のTi,0.40%以下のNb,0.30%以下のVを1種または2種以上含有するものである請求項1に記載された耐たわみ性に優れたステンレス鋼製の二輪車用タイヤリム材。  Steel composition is B or less of 0.015%, Mo of 3.0% or less, Ti of 0.10% or less, Nb of 0.40% or less, 1 or 2 kinds of V of 0.30% or less. The tire rim material for motorcycles made of stainless steel having excellent deflection resistance according to claim 1, which is contained above. 質量%で、C:0.04%以下,Si:2.0%以下,Mn:2.0%以下,Cr:10.0〜20.0%,Ni:4.0%以下,Cu:3.0%以下,N:0.12%以下を含み、残部が不純物を除きFeからなる鋼組成を有し、5〜75体積%のフェライトと25〜95体積%のマルテンサイトからなる複相組織であって、しかも下記(1)式で表される鋭敏化指数Stの値が−31以上−7未満の範囲となるように調整されたマルテンサイト量の組織を有する鋼板を素材として造管され、母材部の表面硬度がHV270以上の鋼管からなることを特徴とする耐たわみ性に優れたステンレス鋼製の二輪車用フレーム材。
St=100C+30N−0.32γ ・・・・(1)
ただし、γは複相化焼鈍後の室温でのマルテンサイト量( )
In mass%, C: 0.04% or less, Si: 2.0% or less, Mn: 2.0% or less, Cr: 10.0 to 20.0%, Ni: 4.0% or less, Cu: 3 0.0% or less, N: 0.12% or less, with the balance being a steel composition made of Fe excluding impurities, and a multiphase structure consisting of 5-75% by volume ferrite and 25-95% by volume martensite In addition, a steel plate having a martensite structure adjusted so that the value of the sensitization index St represented by the following formula (1) is in the range of −31 or more and less than −7 is used as a raw material. A frame material for a motorcycle made of stainless steel having excellent deflection resistance, characterized in that the surface hardness of the base material portion is made of a steel pipe of HV270 or higher.
St = 100C + 30N−0.32γ (1)
However, γ is the amount of martensite at room temperature after double phase annealing ( % )
鋼組成が、さらに0.015%以下のB,3.0%以下のMo,0.10%以下のTi,0.40%以下のNb,0.30%以下のVを1種または2種以上含有するものである請求項3に記載された耐たわみ性に優れたステンレス鋼製の二輪車用フレーム材。  Steel composition is B or less of 0.015%, Mo of 3.0% or less, Ti of 0.10% or less, Nb of 0.40% or less, 1 or 2 kinds of V of 0.30% or less. The frame material for motorcycles made of stainless steel having excellent deflection resistance according to claim 3, which is contained above.
JP2002283413A 2002-09-27 2002-09-27 Stainless steel tire rim material and motorcycle frame material with excellent flexibility Expired - Fee Related JP3920185B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002283413A JP3920185B2 (en) 2002-09-27 2002-09-27 Stainless steel tire rim material and motorcycle frame material with excellent flexibility
CNA031570852A CN1490184A (en) 2002-09-27 2003-09-12 Bicycle frame parts made from anti-bending stainless steel
TW92126429A TWI275649B (en) 2002-09-27 2003-09-25 Deflection-resistant stainless steel-made structural members of a two-wheeled vehicle
EP20030021820 EP1403394A1 (en) 2002-09-27 2003-09-26 Deflection-resistant stainless steel-made structural members of a two-wheeled vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002283413A JP3920185B2 (en) 2002-09-27 2002-09-27 Stainless steel tire rim material and motorcycle frame material with excellent flexibility

Publications (3)

Publication Number Publication Date
JP2004115888A JP2004115888A (en) 2004-04-15
JP2004115888A5 JP2004115888A5 (en) 2005-11-04
JP3920185B2 true JP3920185B2 (en) 2007-05-30

Family

ID=31973350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002283413A Expired - Fee Related JP3920185B2 (en) 2002-09-27 2002-09-27 Stainless steel tire rim material and motorcycle frame material with excellent flexibility

Country Status (4)

Country Link
EP (1) EP1403394A1 (en)
JP (1) JP3920185B2 (en)
CN (1) CN1490184A (en)
TW (1) TWI275649B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100532579C (en) * 2007-04-30 2009-08-26 郑州永通特钢有限公司 Method for smelting base material of low phosphorous stainless steel by using low-grade limonite containing nickel-chromium
CN100516274C (en) * 2007-08-20 2009-07-22 江阴市江东不锈钢制造有限公司 03Cr22Ni4NbN austenite-ferritic stainless steel and production technology therefor
CA2826880C (en) * 2011-02-14 2017-07-25 Nippon Steel & Sumitomo Metal Corporation Duplex stainless steel and production method therefor
CN102605292A (en) * 2012-03-30 2012-07-25 宝山钢铁股份有限公司 Stainless steel for economical railway vehicle panel and preparation method of stainless steel
US20140065005A1 (en) * 2012-08-31 2014-03-06 Eizo Yoshitake Ferritic Stainless Steel with Excellent Oxidation Resistance, Good High Temperature Strength, and Good Formability
US20150275340A1 (en) * 2014-04-01 2015-10-01 Ati Properties, Inc. Dual-phase stainless steel
JP6142837B2 (en) * 2014-04-15 2017-06-07 Jfeスチール株式会社 Stainless steel with a structure consisting of two phases: ferrite phase and martensite phase
FR3047254B1 (en) * 2016-02-02 2018-02-16 Vallourec Tubes France STEEL COMPOSITION WITH IMPROVED ANTI-COKAGE PROPERTIES
JP6093063B1 (en) * 2016-03-09 2017-03-08 日新製鋼株式会社 High-strength stainless steel material excellent in workability and its manufacturing method
CN106834965A (en) * 2017-01-05 2017-06-13 宝钢不锈钢有限公司 A kind of two phase stainless steel cut deal and its manufacture method
CN109778080A (en) * 2019-01-22 2019-05-21 宋鑫 A kind of superhigh intensity super high-low temperature impact fracturing pump pump head body
CN109778066A (en) * 2019-01-22 2019-05-21 宋鑫 The pump head body production method of pump head body service life can be extended

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4078919A (en) * 1973-11-21 1978-03-14 Nippon Steel Corporation Ferritic stainless steel having excellent workability and high toughness
JPS60238456A (en) * 1984-05-10 1985-11-27 Nippon Steel Corp Ferritic stainless steel having superior resistance to intergranular corrosion and superior toughness
FR2567151B1 (en) * 1984-07-04 1986-11-21 Ugine Aciers METHOD FOR MANUFACTURING MARTENSITIC STAINLESS STEEL BARS OR MACHINE WIRE AND CORRESPONDING PRODUCTS
JPS6228543Y2 (en) * 1985-09-12 1987-07-22
JPS62164857A (en) * 1986-01-16 1987-07-21 Nippon Steel Corp Stainless steel for bicycle rim
JPS6311618A (en) * 1986-06-30 1988-01-19 Kawasaki Steel Corp Production of ferritic stainless steel sheet for bicycle rim
JPH07107178B2 (en) * 1987-01-03 1995-11-15 日新製鋼株式会社 Method for producing high strength dual phase chromium stainless steel strip with excellent ductility
JPH07100822B2 (en) * 1986-12-30 1995-11-01 日新製鋼株式会社 Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.
JPH0751737B2 (en) * 1987-08-26 1995-06-05 新日本製鐵株式会社 Cr-based stainless steel
JPH0814004B2 (en) * 1987-12-28 1996-02-14 日新製鋼株式会社 Method for producing high-ductility and high-strength dual-phase chrome stainless steel strip with excellent corrosion resistance
JPH03146642A (en) * 1989-10-31 1991-06-21 Aichi Steel Works Ltd High strength ferritic stainless steel
JPH07138704A (en) * 1993-11-12 1995-05-30 Nisshin Steel Co Ltd High strength and high ductility dual-phase stainless steel and its production
JP3422864B2 (en) * 1995-01-19 2003-06-30 新日本製鐵株式会社 Stainless steel with excellent workability and method for producing the same
JPH09249942A (en) * 1996-03-14 1997-09-22 Nisshin Steel Co Ltd Aperture frame using double layer stainless steel stock
JPH09263912A (en) * 1996-03-29 1997-10-07 Nisshin Steel Co Ltd High strength double phase structure chromium stainless steel sheet for punching and its production
JPH1099595A (en) * 1996-09-30 1998-04-21 Nisshin Steel Co Ltd Stainless steel clothes-drying bar and manufacture thereof
US6464803B1 (en) * 1999-11-30 2002-10-15 Nippon Steel Corporation Stainless steel for brake disc excellent in resistance to temper softening
JP4202573B2 (en) * 2000-01-07 2008-12-24 新日鐵住金ステンレス株式会社 Martensitic stainless steel for disc brakes
JP4518645B2 (en) * 2000-01-21 2010-08-04 日新製鋼株式会社 High strength and high toughness martensitic stainless steel sheet
JP2001213377A (en) * 2000-02-03 2001-08-07 Honda Motor Co Ltd Frame for motorcycle
JP2002038242A (en) * 2000-07-27 2002-02-06 Kawasaki Steel Corp Stainless steel tube for structural member of automobile excellent in secondary working property
KR100765661B1 (en) * 2000-08-31 2007-10-10 제이에프이 스틸 가부시키가이샤 Low carbon martensitic stainless steel and production method thereof
JP3961341B2 (en) * 2002-05-10 2007-08-22 日新製鋼株式会社 Manufacturing method of high strength duplex stainless steel sheet for welded structures

Also Published As

Publication number Publication date
JP2004115888A (en) 2004-04-15
EP1403394A1 (en) 2004-03-31
TWI275649B (en) 2007-03-11
CN1490184A (en) 2004-04-21
TW200406494A (en) 2004-05-01

Similar Documents

Publication Publication Date Title
JP5233020B2 (en) Yield strength 800 MPa class low weld crack sensitive steel plate and method for producing the same
JP5750546B2 (en) Low yield ratio high toughness steel sheet and manufacturing method thereof
CN107109561B (en) The excellent heavy wall high tenacity high-tensile steel of property uniform in material and its manufacturing method
JP4581665B2 (en) High-strength hot-rolled steel sheet and its manufacturing method
JP3920185B2 (en) Stainless steel tire rim material and motorcycle frame material with excellent flexibility
JP2021523301A (en) High-strength double-sided stainless steel clad plate and its manufacturing method
CN103930585A (en) Thin steel sheet and process for producing same
JP2004011009A (en) Electric resistance welded steel tube for hollow stabilizer
JP2005002406A (en) High strength hot rolled steel sheet and its production method
JP2022548144A (en) High-strength extra-thick steel material with excellent low-temperature impact toughness and its manufacturing method
TWI629366B (en) Ferrous iron series stainless steel plate
CN105917016A (en) Ferritic stainless steel and method for producing same
JP6411881B2 (en) Ferritic stainless steel and manufacturing method thereof
JP3602471B2 (en) High tensile strength steel sheet excellent in weldability and method for producing the same
JP2017510703A (en) Hot forming air hardenability weldable steel plate
JP3961341B2 (en) Manufacturing method of high strength duplex stainless steel sheet for welded structures
WO2019153764A1 (en) Hot-rolled, abrasion-resistant steel plate and manufacturing method thereof
JP7410438B2 (en) steel plate
JP2004218081A (en) Method for producing high-tension steel plate
JP4083391B2 (en) Ferritic stainless steel for structural members
JP7291222B2 (en) High-strength steel sheet with excellent ductility and workability, and method for producing the same
JP2005154809A (en) High strength thin steel sheet for welded joint having excellent press formability, and welded joint obtained by using the same
JP3491625B2 (en) Fe-Cr alloy with excellent initial rust resistance, workability and weldability
JP7410437B2 (en) steel plate
WO2007125571A1 (en) Steel sheet with less weld buckling deformation, and process for producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050915

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees