JPH03146642A - High strength ferritic stainless steel - Google Patents

High strength ferritic stainless steel

Info

Publication number
JPH03146642A
JPH03146642A JP28401389A JP28401389A JPH03146642A JP H03146642 A JPH03146642 A JP H03146642A JP 28401389 A JP28401389 A JP 28401389A JP 28401389 A JP28401389 A JP 28401389A JP H03146642 A JPH03146642 A JP H03146642A
Authority
JP
Japan
Prior art keywords
steel
strength
stainless steel
ferritic stainless
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28401389A
Other languages
Japanese (ja)
Inventor
Yoshinobu Motokura
義信 本蔵
Hiroyuki Toki
土岐 浩之
Shoji Kanazawa
金沢 昭二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP28401389A priority Critical patent/JPH03146642A/en
Publication of JPH03146642A publication Critical patent/JPH03146642A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve strength by using a conventional steel as a base, increasing or adding solid solution-strengthening-type elements, such as C and Si, by proper amounts, and controlling respective contents of the above elements so that relations among them satisfy inequality in the steel used after work hardening. CONSTITUTION:This ferritic stainless steel has a composition which consists of, by weight, 0.01-0.20% C, <=2.0% Si, <=3.0% Mn, 0.15-2.0% Cu, 15-25% Cr, 0.05-0.20% N, and the balance Fe and in which respective contents of Mn, Cu, C, N, and Si satisfy the relations in an inequality. Moreover, in addition to the above elements, 1.0-3.0% Ni and/or 0.5-2.0% Mo can further be added. When this steel is used, e.g. for spokes of a bicycle wheel, tensile strength after drawing at 90% draft reaches >=130kgf/mm<2> and the occurrence of deterioration in ductility can be practically prevented.

Description

【発明の詳細な説明】 Ll上L1月±1 本発明は、自転車の車輪のスポーク等のよ、うに、加工
により強化された後使用されるフェライト系ステンレス
鋼に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to ferritic stainless steel that is used after being strengthened through processing, such as in the spokes of bicycle wheels.

盗】bλ改迷− 自転車の高級化に伴い、軽量な車体が求められているが
、車輪を構成する主要部品であるスポークについても、
その高強度化による軽量化が求められている。スポーク
は、その引張応力により自転車の車体を車輪のリム上に
支えるものである。
[Theft] bλ reform - As bicycles become more sophisticated, lightweight bodies are required, but spokes, which are the main parts that make up wheels,
There is a need to reduce weight by increasing its strength. Spokes support the bicycle body on the wheel rim by their tensile stress.

従って、第一に、長期間にわたる繰り返し荷重に耐える
ことが求められ、疲労に対する強度の高いことがスポー
ク材の最大の要求特性となっている。
Therefore, first of all, spoke materials are required to withstand repeated loads over a long period of time, and high strength against fatigue is the most required characteristic of spoke materials.

疲労強度は、通常、引張強さに比例するため、具体的要
求特性としては、引張強度の高いことが求められている
。また、衝撃が加わった場合に、いきなり折損しては危
険であるため、延性も必要とされる。更に、自転車は当
然、風雨にさらされるという使用状態もあるため、耐食
性も求められる。
Fatigue strength is usually proportional to tensile strength, so high tensile strength is specifically required. In addition, ductility is also required because it is dangerous if the material suddenly breaks when an impact is applied. Furthermore, since bicycles are of course exposed to wind and rain, corrosion resistance is also required.

耐食性の要請より、ステンレス鋼の採用が考えられるが
、5O8403等のマルテンサイト系ステンレス鋼は、
耐食性に劣ると共に、スポーク材のような細い材料の場
合には焼入れ・焼戻し処理の際の曲がりが著しいため、
適当ではない。5O8304等のオーステナイト系ステ
ンレス鋼は強度及び耐食性の面から満足すべき性質を有
するが、コスト面から一般用途には採用が困難である。
Due to the requirement for corrosion resistance, stainless steel can be considered, but martensitic stainless steel such as 5O8403
Not only does it have poor corrosion resistance, but thin materials such as spokes tend to bend significantly during quenching and tempering.
It's not appropriate. Austenitic stainless steels such as 5O8304 have satisfactory properties in terms of strength and corrosion resistance, but are difficult to employ for general purposes due to cost.

従って、スポーク材として上記基本特性を満足し、かつ
、コスト面からも妥当な材料として、従来、5O543
0等のフェライト系ステンレス鋼線材を引き抜き加工し
たちのが使用されていた。
Therefore, conventionally, 5O543 has been used as a spoke material that satisfies the above basic characteristics and is reasonable from a cost perspective.
The material used was drawn from 0 grade ferritic stainless steel wire.

と スポーク材としては、5tlS430線材に対して90
%程度の加工度で引き抜き加工を加え、最終製品径的2
mmの寸法に仕上げたものが使用される。しかし、通常
の808430鋼では90%程度の加工度では引張強さ
が90kgf/mm”程度しか得られず、軽量車に対す
る最近の高度な市場の要求レベルをとても満足し得ない
。これに対して、5US430に固溶強化元素を少量添
加して強度を上昇させることも可能であるが、この場合
でも引張強さは120kgf/mm2程度しか上昇せず
、近年のスポーク強度に対する要求レベル130kgf
/mm2には達しない。
And the spoke material is 90% for 5tlS430 wire.
The final product diameter is 2.
The one finished to the size of mm is used. However, with ordinary 808430 steel, a tensile strength of only about 90 kgf/mm'' can be obtained at a working degree of about 90%, which does not quite satisfy the demands of the recent advanced market for lightweight cars. It is also possible to increase the strength by adding a small amount of solid solution strengthening elements to 5US430, but even in this case, the tensile strength only increases by about 120 kgf/mm2, which is lower than the required level for spoke strength of 130 kgf in recent years.
/mm2.

本発明はこのような問題を解決し、特に加工により強化
される高強度フェライト系ステンレス鋼を提供すること
を目的とする。
It is an object of the present invention to solve these problems and provide a high-strength ferritic stainless steel that is particularly strengthened through processing.

めの 上記目的を達成するため、本発明に係る高強度フェライ
ト系ステンレス鋼は、重量比にして、C0.01〜0.
20%、 Si2.0%以下、Mn3.0%以下、Cu
 0.15〜2.0%、Cr15〜25%、N 0.0
5〜0゜20%を含有し、残部Fe及び不純物元素から
成り、かつ、M n 、 Cu 、 C、N及びSLの
各含有量が4X(Mn+Cu)+55X(C+N)+1
8XS i≧20の関係式を満足すること特徴とする。
In order to achieve the above object, the high strength ferritic stainless steel according to the present invention has a weight ratio of C0.01 to C0.01.
20%, Si2.0% or less, Mn3.0% or less, Cu
0.15-2.0%, Cr15-25%, N 0.0
5~0°20%, the balance consists of Fe and impurity elements, and each content of Mn, Cu, C, N and SL is 4X (Mn + Cu) + 55X (C + N) + 1
It is characterized by satisfying the relational expression 8XS i≧20.

また、同じ目的を達成すると共に、耐食性をより優れた
ものにするため、第2発明鋼では、上記成分に加え、重
量比にして1.0〜3.0%のNi及び0.5〜2.0
%のMOのうちの1種又は2種を更に含有する。
In order to achieve the same purpose and to improve corrosion resistance, in addition to the above components, the second invention steel also contains 1.0 to 3.0% Ni and 0.5 to 2% by weight of Ni. .0
% of MO.

高強度に加え、更に延性の優れた鋼にするために、第3
発明鋼では、−圧延後の状態で結晶粒度番号9以上の微
粒に調整する。また、耐食性と延性とを同時に向上させ
るために、第4発明鋼では、前記基本成分に加えて1.
0〜3.0%のNi及び0.5〜2.0%のMoを含有
するとともに、圧延後の結晶粒度番号で9以上の微粒に
調整したものとした。
In addition to high strength, in order to make the steel even more ductile, the third
In the invention steel, the grain size is adjusted to be fine with grain size number 9 or more in the state after rolling. Moreover, in order to improve corrosion resistance and ductility at the same time, in the fourth invention steel, in addition to the above basic components, 1.
It contained 0 to 3.0% Ni and 0.5 to 2.0% Mo, and was adjusted to have a fine grain size of 9 or more in terms of grain size number after rolling.

作−1− 本発明の基本的考え方は、従来のフェライト系ステンレ
ス鋼をベースとし、C,SL、Mn、Cu。
Production-1- The basic idea of the present invention is based on conventional ferritic stainless steel, and C, SL, Mn, and Cu.

Nという固溶強化型の元素を適正量増量又は新たに添加
することにより強度を向上させるとともに、N添加によ
り結晶粒を微細化して延性をも確保するというものであ
る。ここで、これらの元素を単に増量あるいは添加する
のみでは、強度は向上するものの、延性、加工性、耐食
性等、その他の特性において実用に耐えない材料となっ
てしまう。
Strength is improved by increasing or newly adding a solid solution strengthening element called N, and ductility is also ensured by making crystal grains finer by adding N. Here, if the amount of these elements is simply increased or added, although the strength is improved, the material becomes unusable in other properties such as ductility, workability, and corrosion resistance.

そこで、本発明者らは、冷間加工を前提に、これら特性
を十分実用に耐え得るレベルに保ちつつ、なおかつ、従
来よりも強度の高いフェライト系ステンレス鋼を目標に
種々研究した。その結果、各元素の成分範囲を個々に上
記の通り限定すると同時に、それら各元素の強化に対す
る寄与度を考慮した関係式を上記の通り満たすように規
定することにより、相反する緒特性がすべて満足される
ことを知見した。以下に、各成分の限定理由を述べる。
Therefore, the present inventors conducted various research with the aim of creating a ferritic stainless steel that maintains these properties at a level that can be used in practical use, and that also has higher strength than conventional steels, on the premise of cold working. As a result, by limiting the component range of each element individually as described above, and at the same time specifying the relational expression that takes into account the contribution of each element to strengthening as described above, all contradictory characteristics can be satisfied. I found out that this happens. The reasons for limiting each component will be described below.

Cは強度の向上に最も寄与する元素であるため、下限値
を0.01%と定めて所定の強度を確保するようにした
。しかし、0.20%以上含有させると冷間加工性及び
耐食性を著しく劣化させるため、上限をこのように定め
た。
Since C is an element that contributes most to improving strength, the lower limit was set at 0.01% to ensure a predetermined strength. However, if the content exceeds 0.20%, the cold workability and corrosion resistance will be significantly deteriorated, so the upper limit was set in this way.

Siは製鋼時の脱酸元素として添加されるものであるが
、フェライト中に固溶することによシ1−その強度を上
昇させる元素でもある。本発明ではその強度向上効果を
積極的に利用するために2.0%以下のSLを含有させ
ることにした。しかし、過度の添加は延性・靭性の低下
につながるため、冷間加工が行われることも考慮して、
その上限を2゜0%とし、加工性の確保と共に加工後の
延性の低下の防止を図った。なお、更に加工性を容易に
し、延性の確保を図るためには、上記関係式を満足する
限り、1.0%以下とすることが望ましい。
Si is added as a deoxidizing element during steel manufacturing, but it is also an element that increases the strength of ferrite by forming a solid solution therein. In the present invention, it was decided to contain 2.0% or less of SL in order to actively utilize its strength-improving effect. However, excessive addition leads to a decrease in ductility and toughness, so taking into account that cold working will be performed,
The upper limit was set at 2.0% to ensure workability and to prevent a decrease in ductility after working. In addition, in order to further facilitate workability and ensure ductility, it is desirable that the content be 1.0% or less as long as the above relational expression is satisfied.

Mnも製鋼時に脱酸剤として利用される他、固溶・強化
に寄与する元素であるため、従来の308430鋼の成
分範囲の上限を大きく超えて含有させることにして、そ
の強化作用を利用した。しかし、Mnはオーステナイト
生成元素であり、また、耐食性及び熱間加工性を低下さ
せるため、3%以上の含有は望ましくない。なお、この
強化作用を安定させるためには、0.5〜2.0%の範
囲に限定することが望ましい。
In addition to being used as a deoxidizing agent during steel manufacturing, Mn is also an element that contributes to solid solution and strengthening, so we decided to include it far beyond the upper limit of the conventional 308430 steel composition range to take advantage of its strengthening effect. . However, since Mn is an austenite-forming element and also reduces corrosion resistance and hot workability, it is undesirable to contain Mn in an amount of 3% or more. Note that in order to stabilize this reinforcing effect, it is desirable to limit the content to a range of 0.5 to 2.0%.

Cuも固溶強化元素であり、本発明ではその強化作用を
積極的に利用するために0.15%以上の添加を必須と
した。しかし、Cuはオーステナイト生成元素であり、
過度の含有は特に熱間時の延性の低下を引き起こして圧
延等の加工を困難にするとともに、冷間時においても延
性の低下をもたらすため、2.0%以下とした。
Cu is also a solid solution strengthening element, and in the present invention, in order to actively utilize its strengthening effect, it is essential to add 0.15% or more. However, Cu is an austenite-forming element,
Excessive content causes a decrease in ductility especially when hot, making processing such as rolling difficult, and also causes a decrease in ductility when cold, so the content was set to 2.0% or less.

Crはステンレス鋼に耐食性を付与する基本元素であり
、この効果を得るためには15%以上含有させる必要が
ある。しかし、25%以上含有させてもその耐食性向上
効果はほとんど向上しないため、コスト面のことも考慮
して、上限をそのように定めた。より限定された範囲と
しては、16〜23%程度が望ましい。
Cr is a basic element that imparts corrosion resistance to stainless steel, and in order to obtain this effect, it must be contained in an amount of 15% or more. However, even if the content is 25% or more, the effect of improving corrosion resistance is hardly improved, so the upper limit was set in consideration of cost. A more limited range is preferably about 16 to 23%.

N−tcと同様、フェライトの格子間に侵入することに
より、顕著な強化作用を顕すと共に、炭窒化物を形成し
て結晶粒の微細化に寄与することにより、延性を向上さ
せる効果を有する0本発明では、その強化作用及び結晶
粒微細化作用を積極的に利用するため、  0.05%
以上添加することとした。
Like N-tc, it exhibits a remarkable strengthening effect by penetrating between the lattices of ferrite, and also has the effect of improving ductility by forming carbonitrides and contributing to grain refinement. In the present invention, in order to actively utilize its strengthening effect and crystal grain refining effect, 0.05%
I decided to add the above.

しかし、過度の添加は製鋼時(凝固時のブローホール発
生)及び圧延時(熱間加工性の低下)の困難をもたらす
ため、本発明ではその上限を0.20%とした。
However, excessive addition causes difficulties during steel manufacturing (occurrence of blowholes during solidification) and during rolling (deterioration of hot workability), so in the present invention, the upper limit is set at 0.20%.

Niもフェライトに固溶することにより、その強度を高
める元素であるが、耐食性を向上させる効果も大きい。
Ni is also an element that increases the strength of ferrite by solid solution, but it also has a great effect of improving corrosion resistance.

この両特性を積極的に利用する観点から、1.0%以上
含有させることとした。しがしNiはオーステナイト生
成元素であり、また、高価な元素であるため、多量の添
加はオーステナイト系ステンレス鋼を排除した前記趣旨
に沿わなくなる。従って、3.0%を上限とした。
From the viewpoint of actively utilizing both of these characteristics, the content was decided to be 1.0% or more. However, since Ni is an austenite-forming element and is an expensive element, adding a large amount of Ni will not comply with the above-mentioned purpose of excluding austenitic stainless steel. Therefore, the upper limit was set at 3.0%.

MOは、Niと同様、その固溶強化作用と耐食性向上作
用とを利用するものである。0.5%以下の添加では、
これらの効果が十分に期待し得ない。
Like Ni, MO utilizes its solid solution strengthening effect and corrosion resistance improving effect. When adding 0.5% or less,
These effects cannot be fully expected.

しかし、本発明鋼の適用対象を考慮した場合、2゜0%
以上の添加は、耐食性向上に対する寄与が大きくない反
面、コスト的に不利となる。
However, when considering the application target of the steel of the present invention, 2°0%
The above additions do not make a large contribution to improving corrosion resistance, but are disadvantageous in terms of cost.

第1及び第2発明鋼において各元素の個々の成分範囲を
限定した理由は以上の通りであるが、本発明では、更に
、M n 、 Cu 、 C、N及びSiの各含有量が 4X(Mn+Cu)+55X(C+N)+18XS i
≧2゜なる関係式を満足するように規定している。この
式における各元素の含有量の係数は、フェライト強化に
対する寄与度を考慮して定めたものであり、例えば、C
及びNに対する係数55が他の元素に対する係数4ある
いは18よりも大きく設定されているのは、C及びNは
少量でもフェライトの強度向上に大きく寄与することを
考慮したものである。
The reasons for limiting the individual component ranges of each element in the first and second invention steels are as described above, but in the present invention, the contents of M n , Cu , C, N and Si are further reduced to 4X ( Mn+Cu)+55X(C+N)+18XS i
It is specified that the relational expression ≧2° is satisfied. The coefficient of content of each element in this formula is determined by considering the contribution to ferrite strengthening. For example, C
The reason why the coefficient 55 for C and N is set larger than the coefficient 4 or 18 for other elements is to take into consideration that even a small amount of C and N greatly contributes to improving the strength of ferrite.

従って、本発明鋼では、各元素について定めた成分範囲
の下限値近くの量ばかりを添加して製造しても所望の特
性は得られず、それらに所定係数を乗じた後の和が所定
値(20)以上になるようにする必要がある。
Therefore, in the steel of the present invention, the desired properties cannot be obtained even if the amount of each element is added close to the lower limit of the specified component range, and the sum after multiplying these by a specified coefficient is the specified value. (20) or more.

第3及び第4発明鋼では、その結晶粒度番号9以上の細
粒に調整することとしたが、これは、強度と共に、十分
な延性を与えるために規定したものである。なお、これ
は、圧延後、冷間加工前の状態に対する規定である。同
一の圧延条件であれば、上記の通りNを添加することに
より結晶粒の微細化は容易に実現できるが、更に、最終
圧延温度を通常よりも低目に(例えば800〜900℃
)抑えることにより、より確実に末弟3及び第4発明鋼
を製造することができる。なお、低温圧延により歪が残
留する場合には、焼鈍工程を入れることもできるが、こ
のときには、結晶粒の成長防止のため、低温で焼鈍を行
うようにする。
In the third and fourth invention steels, the grain size was adjusted to be fine with a grain size number of 9 or more, and this was specified in order to provide sufficient ductility as well as strength. Note that this is a regulation for the state after rolling and before cold working. Under the same rolling conditions, grain refinement can be easily achieved by adding N as described above;
), the youngest third and fourth invention steels can be manufactured more reliably. Note that if strain remains due to low-temperature rolling, an annealing step may be performed, but in this case, annealing is performed at a low temperature to prevent crystal grain growth.

炎1江 以下、本発明鋼の具体例の特性を、比較鋼及び従来鋼と
比較して説明する。第1表に、本発明鋼、比較鋼及び従
来鋼の化学成分を示す。発明鋼については、前記式の計
算結果も併せて示した。第1表において、A、B及びC
は第1及び第3発明鋼であり、D、E及びFは第2及び
第4発明鋼である。
Below, the characteristics of specific examples of the steel of the present invention will be explained in comparison with comparative steel and conventional steel. Table 1 shows the chemical components of the invention steel, comparative steel, and conventional steel. Regarding the invention steel, the calculation results using the above formula are also shown. In Table 1, A, B and C
are the first and third invention steels, and D, E, and F are the second and fourth invention steels.

「従来鋼」トシタ工及ヒJハ5US430aテアリ、 
「比較鋼」としたG及びHは5US430に単にCu及
びNiを添加しただけのものである。
"Conventional Steel" Toshita Kogyo Hi Jha 5US430a Tearari,
G and H, which were used as "comparative steels", were made by simply adding Cu and Ni to 5US430.

これら供試鋼をφ6.5mmまで熱間圧延を行った。These test steels were hot rolled to a diameter of 6.5 mm.

このときの圧延温度は約950℃としたが、発明#IA
、B、C,D、E及びFについては、そのような通常圧
延の他に、圧延終了温度を低目(約880℃)にし、更
に低温焼鈍(約800℃)したものも用意した。これら
供試鋼の圧延終了後のフェライト結晶粒度(測定はJI
S G 0552による)を第2表に示す。他の供試鋼
の結晶粒度番号は9を超えないのに対し、低温圧延を行
った第3及び第4発明鋼では9以上となった。
The rolling temperature at this time was approximately 950°C.
, B, C, D, E, and F, in addition to the normal rolling, those were also prepared by lowering the rolling end temperature (approximately 880°C) and further low-temperature annealing (approximately 800°C). Ferrite grain size after rolling of these test steels (measured by JI
SG 0552) are shown in Table 2. While the grain size numbers of the other test steels did not exceed 9, the grain size numbers of the third and fourth invention steels subjected to low-temperature rolling were 9 or more.

その後、φ6.5mm圧延材をφ1.97mmまで引き
抜き加工を行い(加工率91.9%)、スポーク材とし
た。
Thereafter, the φ6.5 mm rolled material was drawn to a diameter of φ1.97 mm (processing rate 91.9%) to obtain a spoke material.

各供試鋼について、引き抜き加工を行ったままの状態(
φ1.97mm)で引張試験を行った。そのときの引張
強さ及び絞りの値を第2表に示す。本発明鋼の引張強さ
はいずれも130kgf/mm2以上となっており、軽
量化自転車用スポーク材として満足すべき強度を有して
いる。それに対し、 「比較鋼」はいずれも120kg
f/mm2は超えるものの、要求強度には達していない
。 「従来鋼J 5US430は更に低強度である。ま
た、延性の目安となる絞り値を見ると、本発明鋼は、従
来鋼5US430と比較するとやや小さい値を示すもの
の、高強度である「比較鋼」とほぼ変わりない値を示し
ており、十分実用に耐えるものであると判定される。
For each sample steel, the drawing process was performed (
A tensile test was conducted with a diameter of 1.97 mm. Table 2 shows the tensile strength and reduction of area values at that time. All of the steels of the present invention have a tensile strength of 130 kgf/mm2 or more, which is sufficient as a lightweight bicycle spoke material. In contrast, the "comparative steel" weighs 120 kg.
Although it exceeds f/mm2, it does not reach the required strength. ``Conventional steel J 5US430 has even lower strength.Also, when looking at the reduction of area, which is a measure of ductility, the steel of the present invention has a slightly smaller value compared to conventional steel 5US430, but compared to the comparative steel ``comparative steel'', which has high strength. '', which shows almost the same value, and it is judged that the value is sufficiently durable for practical use.

耐食性を評価するために、各供試鋼より製造した引き抜
き加工後のスポーク材について、JISZ2371に準
拠した塩水噴霧試験を行った。48時間後の表面状態を
、目視により、◎二発銹なし、○=わずかの発銹(発銹
率3%以下)、△=やや発銹あり(発銹率3%以上)、
の3段階で評価した。その結果を第2表に示すが、本発
明鋼はいずれも発銹率が低く、風雨にさらされる自転−
車のスポーク材として十分な耐食性を有することが確認
された。
In order to evaluate the corrosion resistance, a salt spray test in accordance with JIS Z2371 was conducted on the spoke materials manufactured from each sample steel after being drawn. After 48 hours, the surface condition was visually inspected: ◎No second-shot rusting, ○=slight rusting (rusting rate 3% or less), △=slightly rusting (rusting rate 3% or more),
It was evaluated in three stages. The results are shown in Table 2. All of the steels of the present invention have a low rusting rate, and when exposed to wind and rain,
It was confirmed that it has sufficient corrosion resistance as a car spoke material.

特に、Cu又はNiを含有する第2、第4発明鋼はほと
んど発銹が認められず、さらに耐食性に優れていること
が明がとなった。
In particular, it has been revealed that the second and fourth invention steels containing Cu or Ni exhibit almost no rusting and are further excellent in corrosion resistance.

(以下余白) 第 表 寧4X(Mn+Cu)+55X(C+N)+18×Si
第 2 表 林◎=発銹なし、O=発銹率3%以下、Δ=発銹率3%
以上且旦Jと1敦 以上説明した通り、本発明では、フェライト系ステンレ
ス鋼に固溶して強化する元素としてC15L、Mn、C
u、Cr、及びNを選択し、強度向上を主眼とし、なお
かつ、加工後の延性及び耐食性等の特性を損なうことが
ないことを条件として、それら各元素の含有量範囲を規
定すると共に、そのうちのMn、Cu、C,N、S i
の含有量については各元素のフェライト強化に対する寄
与度を考慮した式の値が所定値以上となるように規定し
た。このため、90%引き抜き加工後の強度は所期の通
り130kgf/mm2以上という要求値を満足するも
のとなシバ 延性もほとんど低下することがない。なお
、第3及び第4発明鋼のごとく、圧延後の結晶粒度が所
定値以上になるように調整することにより、延性が更に
改善される。また、ステンレス鋼として最も重要な特性
である耐食性に関しても、第1発明鋼でも従来のフェラ
イト系ステンレス鋼と同等の性能を得ることができる。
(Left below) Table 4X (Mn+Cu)+55X(C+N)+18×Si
2nd table ◎ = No rusting, O = Rusting rate 3% or less, Δ = Rusting rate 3%
As explained above and more than one hour with J, in the present invention, C15L, Mn, C
U, Cr, and N are selected, and the content range of each of these elements is specified, with the main focus on improving strength, and on the condition that properties such as ductility and corrosion resistance after processing are not impaired. Mn, Cu, C, N, Si
The content of is specified so that the value of the formula that takes into account the contribution of each element to ferrite strengthening is a predetermined value or more. Therefore, the strength after 90% drawing satisfies the required value of 130 kgf/mm2 or more as expected, and the ductility hardly decreases. Note that, as in the third and fourth invention steels, the ductility is further improved by adjusting the grain size after rolling to be equal to or greater than a predetermined value. Furthermore, regarding corrosion resistance, which is the most important characteristic of stainless steel, even the first invention steel can achieve performance equivalent to that of conventional ferritic stainless steel.

Ni及びMoを添加した第2発明鋼では、長期間使用し
た場合の耐食性において更に優れたものとなる。
The second invention steel to which Ni and Mo are added has even better corrosion resistance when used for a long period of time.

Claims (4)

【特許請求の範囲】[Claims] (1)重量比にして、C0.01〜0.20%、Si2
.0%以下、Mn3.0%以下、Cu0.15〜2.0
%、Cr15〜25%、N0.05〜0.20%を含有
し、残部Fe及び不純物元素から成り、かつ、Mn、C
u、C、N及びSiの各含有量が 4×(Mn+Cu)+55×(C+N)+18×Si≧
20の関係式を満足する高強度フェライト系ステンレス
鋼。
(1) Weight ratio: C0.01-0.20%, Si2
.. 0% or less, Mn 3.0% or less, Cu 0.15-2.0
%, Cr15-25%, N0.05-0.20%, the balance consists of Fe and impurity elements, and Mn, C
Each content of u, C, N and Si is 4×(Mn+Cu)+55×(C+N)+18×Si≧
High-strength ferritic stainless steel that satisfies the relational expression 20.
(2)上記元素に加え、更に、Ni1.0〜3.0%及
びMo0.5〜2.0%のうちの1種又は2種を含有す
ることを特徴とする請求項1記載の高強度フェライト系
ステンレス鋼。
(2) The high strength according to claim 1, further containing one or two of 1.0 to 3.0% Ni and 0.5 to 2.0% Mo in addition to the above elements. Ferritic stainless steel.
(3)圧延後の状態で結晶粒度番号9以上の微粒に調整
したことを特徴とする請求項1記載の高強度フェライト
系ステンレス鋼。
(3) The high-strength ferritic stainless steel according to claim 1, which is adjusted to have fine grains with a grain size number of 9 or more in the state after rolling.
(4)圧延後の状態で結晶粒度番号9以上の微粒に調整
したことを特徴とする請求項2記載の高強度フェライト
系ステンレス鋼。
(4) The high-strength ferritic stainless steel according to claim 2, wherein the high-strength ferritic stainless steel is adjusted to have fine grains with a grain size number of 9 or more in the state after rolling.
JP28401389A 1989-10-31 1989-10-31 High strength ferritic stainless steel Pending JPH03146642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28401389A JPH03146642A (en) 1989-10-31 1989-10-31 High strength ferritic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28401389A JPH03146642A (en) 1989-10-31 1989-10-31 High strength ferritic stainless steel

Publications (1)

Publication Number Publication Date
JPH03146642A true JPH03146642A (en) 1991-06-21

Family

ID=17673167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28401389A Pending JPH03146642A (en) 1989-10-31 1989-10-31 High strength ferritic stainless steel

Country Status (1)

Country Link
JP (1) JPH03146642A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2700174A1 (en) * 1993-01-07 1994-07-08 Gerard Jacques Wheeled appts. and their components and accessories
EP1403394A1 (en) * 2002-09-27 2004-03-31 Nisshin Steel Co., Ltd. Deflection-resistant stainless steel-made structural members of a two-wheeled vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2700174A1 (en) * 1993-01-07 1994-07-08 Gerard Jacques Wheeled appts. and their components and accessories
EP1403394A1 (en) * 2002-09-27 2004-03-31 Nisshin Steel Co., Ltd. Deflection-resistant stainless steel-made structural members of a two-wheeled vehicle

Similar Documents

Publication Publication Date Title
JP3491030B2 (en) Stainless steel for disk shakers
JP5864619B2 (en) Hot rolled flat steel product manufactured from composite phase steel and method for manufacturing the same
WO2007067014A8 (en) High strength cold rolled steel sheet having excellent formability and coating property, zinc-based metal plated steel sheet made of it and the method for manufacturing thereof
WO2012008597A1 (en) High yield ratio high-strength hot-dip galvanized steel sheet with excellent ductility and hole expansion properties, and manufacturing method thereof
JP2020509162A (en) High strength cold rolled steel sheet for automobiles
JP3498504B2 (en) High ductility type high tensile cold rolled steel sheet and galvanized steel sheet
JP3550308B2 (en) Rolling bearing
JP2660644B2 (en) High strength steel sheet with good press formability
JP2003105496A (en) Spring steel having low decarburization and excellent delayed fracture resistance
EP3040427B1 (en) High-strength hot-rolled plated steel sheet and method for manufacturing same
JPH03264652A (en) Ferritic stainless steel sheet and production thereof
JPH04157135A (en) Steel for high strength spring
RU2681074C1 (en) Method of manufacturing corrosion rolled product from low-alloy steel
JPH03146642A (en) High strength ferritic stainless steel
JPH10306345A (en) Wire rod and bar steel for cold forging, excellent in strain aging characteristic, and their manufacture
JP2001192799A (en) High strength hot-dip metal coated steel sheet excellent in workability, and its manufacturing method
JP4937499B2 (en) High strength spring steel excellent in corrosion resistance and fatigue characteristics and method for producing the same
JP3286050B2 (en) High strength hot rolled steel sheet for processing with excellent fatigue properties
JPS63216951A (en) Steel for high strength spring
JP3064672B2 (en) High strength spring steel
JPS6130653A (en) High strength spring steel
JPS60114551A (en) High strength bolt steel
JPH0551646A (en) Manufacture of high strength hot rolled steel sheet for wheel disk excellent in fatigue characteristic and workability
JPS589962A (en) High-strength stainless steel with superior intergranular corrosion cracking resistance and workability
JPS596358A (en) High strength bolt