JP3064672B2 - High strength spring steel - Google Patents

High strength spring steel

Info

Publication number
JP3064672B2
JP3064672B2 JP4154360A JP15436092A JP3064672B2 JP 3064672 B2 JP3064672 B2 JP 3064672B2 JP 4154360 A JP4154360 A JP 4154360A JP 15436092 A JP15436092 A JP 15436092A JP 3064672 B2 JP3064672 B2 JP 3064672B2
Authority
JP
Japan
Prior art keywords
strength
quenching
spring
spring steel
tempering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4154360A
Other languages
Japanese (ja)
Other versions
JPH05320826A (en
Inventor
雅雄 外山
新一 大西
正貴 下津佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4154360A priority Critical patent/JP3064672B2/en
Publication of JPH05320826A publication Critical patent/JPH05320826A/en
Application granted granted Critical
Publication of JP3064672B2 publication Critical patent/JP3064672B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高強度ばね用鋼に関し、
詳しくは、自動車等の懸架ばね用などとして好適に用い
ることができる高強度ばね用鋼に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to high-strength spring steel.
More specifically, the present invention relates to a high-strength spring steel that can be suitably used for a suspension spring of an automobile or the like.

【0002】[0002]

【従来技術】ばね用鋼の化学成分はJIS G 356
5〜3567やG4801に規定されており、それらの
鋼材からなる圧延材に対して、所定の線径まで伸線加工
を施し、その後OT処理してからばね加工(冷間巻ば
ね)したり、圧延材に伸線加工を施した後、加熱してば
ね成形−焼入焼戻し(熱間巻ばね)を行うことにより製
造されている。しかしながら従来のばね用鋼はいずれも
焼入焼戻し後の材料強度が160〜190kgf/mm2 (HR
C:53 未満) であり、高強度ばね用鋼としての要求を満
たすものとは言えない。
2. Description of the Related Art The chemical composition of spring steel is JIS G356.
5-3567 and G4801. The rolled material made of such a steel material is subjected to wire drawing to a predetermined wire diameter, and then subjected to OT processing and then to spring working (cold winding spring), It is manufactured by subjecting a rolled material to wire drawing and then heating to perform spring forming-quenching and tempering (hot wound spring). However, all of the conventional spring steels have a material strength after quenching and tempering of 160 to 190 kgf / mm 2 (HR
C: less than 53), which cannot be said to satisfy the requirements for high strength spring steel.

【0003】即ち一般に高強度ばね用鋼として要求され
ている鋼材の材料強度は200kgf/mm2 (HRC:53)以上で
あるので、従来のばね用鋼の化学成分を調整することに
より要求強度を得ようとすることも試みられているが、
従来鋼では強度を高めるにつれて疲労寿命やへたり特性
等は悪くなる傾向があり、強度を200kgf/mm2 以上に
するとばね特性とし極めて重要な疲労寿命やへたり特性
を満足できなくなる。
That is, since the material strength of steel materials generally required as high-strength spring steel is 200 kgf / mm 2 (HRC: 53) or more, the required strength is adjusted by adjusting the chemical composition of conventional spring steel. Attempts have been made to get
In conventional steels, the fatigue life and set properties tend to deteriorate as the strength is increased. If the strength is set to 200 kgf / mm 2 or more, it becomes impossible to satisfy the extremely important fatigue life and set properties as a spring property.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記の様な事
情に着目してなされたものであって、その目的は200
kgf/mm2 以上の強度を有しており、且つ靭性、遅れ破壊
特性、疲労特性等においても優れた性能を備えた高強度
ばね用鋼を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and its object is to solve the problem.
An object of the present invention is to provide a high-strength spring steel having a strength of not less than kgf / mm 2 and excellent performance in toughness, delayed fracture characteristics, fatigue characteristics, and the like.

【0005】[0005]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る高強度ばね用鋼の構成は、重量%
でC:0.50〜0.70%、Si:1.5〜2.0
%、Mn:0.2〜0.60%、Ni:0.5%未満、
Cr:0.5〜1.2%、Cu:0.1〜0.5%、
V:0.05〜0.5%を含有し、且つ1.5×Mn+
Cr+Ni≦1.8の条件を満足し残部鉄および不可避
不純物よりなり、焼入焼戻し後の硬さがHRC53以上
ところに要旨を有するものである。
The structure of the high-strength spring steel according to the present invention, which can solve the above-mentioned problems, is expressed by weight%.
C: 0.50 to 0.70%, Si: 1.5 to 2.0
%, Mn: 0.2 to 0.60%, Ni: less than 0.5%,
Cr: 0.5 to 1.2%, Cu: 0.1 to 0.5%,
V: containing 0.05 to 0.5%, and 1.5 × Mn +
It satisfies the condition of Cr + Ni ≦ 1.8, is composed of the balance of iron and inevitable impurities, and has a gist where the hardness after quenching and tempering is HRC 53 or more.

【0006】[0006]

【作用】本発明は、鋼材の化学成分を特定することによ
って靭性、耐遅れ破壊性、耐へたり特性、耐脱炭性、疲
労特性等を損なうことなく焼入焼戻し後の硬さをHRC
で53以上(引張強度で200kgf/mm2 以上)を確保す
ることに成功したものであり、各成分の含有率を定めた
理由は次の通りである。
According to the present invention, the hardness after quenching and tempering is determined by specifying the chemical composition of the steel material without impairing the toughness, delayed fracture resistance, sag resistance, decarburization resistance, fatigue characteristics, etc.
And attained 53 or more (200 kgf / mm 2 or more in tensile strength). The reason for determining the content of each component is as follows.

【0007】C:0.5〜0.7% Cは焼入焼戻し後の強度向上を確保するために欠くこと
のできない元素であり、0.5%未満では焼入後に生じ
るマルテンサイトの硬さが低くなり、焼入焼戻し後の強
度を十分に高めることができなくなる。しかし0.7%
を超えると焼入焼戻し後の靭性が劣化し、ばね用として
疲労特性を満足できなくなる。
C: 0.5 to 0.7% C is an indispensable element for ensuring an improvement in strength after quenching and tempering, and if less than 0.5%, the hardness of martensite generated after quenching. And the strength after quenching and tempering cannot be sufficiently increased. But 0.7%
If it exceeds 300, the toughness after quenching and tempering deteriorates, and the fatigue properties for springs cannot be satisfied.

【0008】Si:1.5〜2.0% Siは固溶強化元素としての機能を果たし、1.5%未
満ではマトリックス強度が不十分になって高強度化の目
的が果たせなくなり、一方2.0%を超えると、製造工
程中の加熱通程で耐脱炭性が急速に劣化し、脱炭深さの
増大により耐疲労特性が劣化する。
Si: 1.5 to 2.0% Si functions as a solid solution strengthening element. If it is less than 1.5%, the matrix strength becomes insufficient and the purpose of increasing the strength cannot be fulfilled. If it exceeds 0.0%, the decarburization resistance rapidly deteriorates during the heating process during the production process, and the fatigue resistance characteristics deteriorate due to an increase in the decarburization depth.

【0009】Mn:0.2〜0.6% Mnは焼入性向上元素として不可欠の成分であり少なく
とも0.2%含有させなければならない。しかし多過ぎ
ると、焼入焼戻し後の素材の水素透過性を高め、その結
果として腐食環境下で水素脆化を起こし易くなる。従っ
てMn含有量の上限は0.6%とした。
Mn: 0.2-0.6% Mn is an indispensable component as a hardenability improving element and must be contained at least 0.2%. However, if it is too much, the hydrogen permeability of the material after quenching and tempering is increased, and as a result, hydrogen embrittlement is likely to occur in a corrosive environment. Therefore, the upper limit of the Mn content is set to 0.6%.

【0010】Ni:0.5%未満 Niは焼入焼戻し後の素材の靭性を向上させる作用を有
するほか、Cu含有鋼材の熱間脆化を抑える効果もある
が、多量に含有させると熱間圧延時に表面欠陥を生じ易
くなるので、上限を0.5%と定めた。
Ni: less than 0.5% Ni not only has the effect of improving the toughness of the material after quenching and tempering, but also has the effect of suppressing hot embrittlement of the Cu-containing steel material. The upper limit was set to 0.5% because surface defects easily occur during rolling.

【0011】Cr:0.5〜1.2% CrはMnと同様に焼入性を向上させる。またCrは耐
熱性を高める作用を有するばかりでなく、種々研究の結
果、ばね特性として重要な耐へたり特性を大幅に改善す
ることが明らかになった。そしてこうした効果を有効に
発揮させるには0.5%以上含有させなければならない
が、多過ぎると焼入焼戻し後の靭性が悪くなるので1.
0%を上限とした。
Cr: 0.5 to 1.2% Cr improves hardenability similarly to Mn. In addition, Cr not only has an effect of increasing heat resistance, but also, as a result of various studies, has been found to significantly improve sag resistance, which is an important spring characteristic. In order to effectively exhibit these effects, the content must be 0.5% or more. However, if the content is too large, the toughness after quenching and tempering deteriorates.
0% was made the upper limit.

【0012】V:0.05〜0.5% Vは結晶粒度を微細化し耐力比を高めて耐へたり特性を
改善する作用があり、こうした効果を有効に発揮させる
には0.05%以上含有させなければならない。しかし
0.5%を超えて含有させると焼入加熱時にオーステナ
イト中に固溶されない合金炭化物量が増加し、大きな塊
状物となって残存して疲労寿命を低下させる。
V: 0.05 to 0.5% V has the effect of reducing the crystal grain size, increasing the proof stress ratio and improving the sag resistance characteristics, and 0.05% or more is required to effectively exhibit such effects. Must be included. However, when the content exceeds 0.5%, the amount of alloy carbide not solid-dissolved in austenite at the time of quenching heating increases, and large carbides remain to reduce the fatigue life.

【0013】Cu:0.1〜0.5% Cuは電気化学的に鉄より貴な元素であって、腐食環境
中での耐孔食性を高めて腐食疲労特性を高める作用があ
り、0.1%未満ではその効果が有効に発揮されない。
しかし多過ぎると熱間圧延時に素材の脆化を引き起こす
原因になるので、0.5%以下に抑えなければならな
い。
Cu: 0.1-0.5% Cu is an element that is electrochemically nobler than iron and has the effect of enhancing pitting corrosion resistance in a corrosive environment and enhancing corrosion fatigue characteristics. If it is less than 1%, the effect cannot be exhibited effectively.
However, if it is too large, it causes embrittlement of the material at the time of hot rolling, so it must be suppressed to 0.5% or less.

【0014】本発明に係る高強度ばね用鋼の必須元素は
以上の通りであり、残部は鉄および不可避不純物からな
るものであるが、必要によっては上記必須元素に加えて
Nb及び/またはMoを適量含有させることによって、
ばね特性を更に高めることができる。
The essential elements of the high-strength spring steel according to the present invention are as described above, and the balance consists of iron and unavoidable impurities. If necessary, Nb and / or Mo may be added in addition to the above essential elements. By containing an appropriate amount,
Spring characteristics can be further enhanced.

【0015】Mo:0.05〜0.5%および/または
Nb:0.05〜0.5% Moは炭化物生成元素であり、焼戻し時に微細な合金炭
化物を析出して二次硬化効果を促進させ、耐へたり特性
および耐疲労特性の向上に寄与する。0.05%未満で
はその効果が不十分であり、またその効果は0.5%で
飽和する。
Mo: 0.05-0.5% and / or Nb: 0.05-0.5% Mo is a carbide-forming element and precipitates a fine alloy carbide during tempering to promote the secondary hardening effect. It contributes to improvement of sag resistance and fatigue resistance. If it is less than 0.05%, the effect is insufficient, and the effect is saturated at 0.5%.

【0016】またNbは結晶粒度を微細化して耐力比を
高め耐へたり特性を改善する効果がある。こうした効果
を有効に得るためには0.05%以上の添加が必要であ
るが、0.5%を超えて過剰に添加してもそれ以上の効
果は得られず、むしろ焼入加熱時における粗大炭窒化物
の生成を助長して耐疲労寿命を劣化させる。
Nb has the effect of reducing the crystal grain size, increasing the proof stress ratio and improving the sag resistance characteristics. In order to effectively obtain such effects, 0.05% or more of addition is necessary. However, even if added in excess of 0.5%, no further effect can be obtained. It promotes the formation of coarse carbonitrides and deteriorates fatigue life.

【0017】また本発明においては上記必須元素含有率
の要件を満たしつつ、更にこれらのうちMn,Crおよ
びNiの含有量が1.5×Mn+Cr+Ni≦1.8の
要件を満たす様に3元素の含有量を調整しなければなら
ず、こうした要件を規定することによって、ばね用鋼と
しての強度靭性バランスの優れたものが得られることが
明らかになった。そしてこの値が1.8を超えると、焼
入後の残留オーステナイト量が増加して靭性が逆に悪く
なるばかりでなく、圧延後の冷却過程で過冷組織が発生
し易くなって高強度ばね用鋼としての適性が損なわれ
る。
Further, in the present invention, while satisfying the requirement of the above-mentioned essential element content, among these elements, the content of Mn, Cr and Ni satisfies the requirement of 1.5 × Mn + Cr + Ni ≦ 1.8. It has been clarified that the content must be adjusted, and by defining such requirements, a steel with excellent balance of strength and toughness as a spring steel can be obtained. If this value exceeds 1.8, the amount of retained austenite after quenching increases and not only the toughness deteriorates, but also a supercooled structure is easily generated in the cooling process after rolling, so that a high strength spring is formed. The suitability as steel for use is impaired.

【0018】尚不可避不純物の中にはOやNが含まれる
が、特に高強度懸架ばねの疲労では従来材以上に介在物
感受性が大きく表われるので、OやNの含有量は極力少
なくすることが望ましい。
Although unavoidable impurities include O and N, especially in the fatigue of a high-strength suspension spring, the inclusion sensitivity is greater than that of the conventional material, so the content of O and N should be minimized. Is desirable.

【0019】従来のJIS SUP7等の成分鋼では、
焼戻温度を低温側にすることによって焼入焼戻し後の引
張強さを高めることが可能であるが、この方法で引張強
さを200kgf/mm2 以上にすると素材の靭性が大幅に劣
化し、ばね用素材としては適さなくなる。そのため従来
は190kgf/mm2 以下の強度レベルを許容せざるを得な
いのが実情であった。しかし、自動車の軽量化等を推進
するには懸架ばね等の高強度化が不可欠の要件であり、
200kgf/mm2 以上の引張強度が要求されつつある。
In conventional component steels such as JIS SUP7,
By lowering the tempering temperature to a lower temperature side, it is possible to increase the tensile strength after quenching and tempering.However, if the tensile strength is increased to 200 kgf / mm 2 or more by this method, the toughness of the material is significantly deteriorated, It is no longer suitable as a spring material. For this reason, in the past, a strength level of 190 kgf / mm 2 or less had to be allowed. However, in order to reduce the weight of automobiles, it is essential to increase the strength of suspension springs, etc.
A tensile strength of 200 kgf / mm 2 or more is being demanded.

【0020】しかも引張強さが200kgf/mm2 以上の高
強度鋼になると、特に水素脆化による粒界破壊が発生し
やすくなる。他の高強度ボルト鋼などに見られるように
強度が120kgf/mm2 以上になると遅れ破壊など水素脆
化が発生しやすくなることは以前から報告されており、
ばねの疲労においても高強度になるにつれて水分などの
環境下で水素脆化による粒界破壊が起こり疲労寿命を大
幅に低下させる。
In addition, when a high-strength steel having a tensile strength of 200 kgf / mm 2 or more is used, in particular, grain boundary fracture due to hydrogen embrittlement tends to occur. The strength as seen in such other high strength bolts steel embrittlement and destruction delay to become 120 kgf / mm 2 or more is likely to occur have been reported previously,
As the strength of the spring becomes higher, grain boundary fracture due to hydrogen embrittlement occurs in an environment such as moisture as the strength becomes higher, thereby greatly reducing the fatigue life.

【0021】本発明の高強度ばね用鋼は、含有元素の種
類およびそれらの含有率を上記の様に特定することによ
って、焼入焼戻し後の硬さがHRC53以上を示し20
0kgf/mm2 レベル以上の引張強度を発揮する。しかも本
発明鋼はこのような高強度を有しているにもかかわらず
優れた靭性を示し、また特にMn,Cr,Niの含有量
を特定することによって水素脆化等による遅れ破壊が抑
制されると共に疲労寿命等も著しく改善することができ
る。
According to the high-strength spring steel of the present invention, the hardness after quenching and tempering is HRC 53 or more by specifying the types of the contained elements and their contents as described above.
To exert 0kgf / mm 2 level or higher tensile strength. Moreover, the steel of the present invention exhibits excellent toughness despite having such high strength, and in particular, by specifying the contents of Mn, Cr, and Ni, delayed fracture due to hydrogen embrittlement or the like is suppressed. In addition, the fatigue life can be remarkably improved.

【0022】また従来、架橋ばね等の製造工程中の焼入
処理は、焼割れ等の発生を回避するために油焼入が行な
われており、通常のばね用成分鋼に合金元素を多量に添
加したものについてこの様な焼入処理を施すと一部残留
オーステナイトが残留して高強度化の障害となる。従っ
て高強度化に主眼をおく場合には合金元素の多量添加は
極力避けるべきであるが、本発明のばね用鋼は前述の如
く合金元素をいずれも少なめに抑えているので、焼入処
理後の残留オーステナイト量も少なく、高強度化を達成
することができるのである。
Conventionally, in the quenching process during the manufacturing process of a cross-linked spring or the like, oil quenching is performed to avoid the occurrence of quenching cracks and the like. When such a quenching treatment is performed on the added material, a part of retained austenite remains, which hinders an increase in strength. Therefore, when focusing on high strength, the addition of a large amount of alloying elements should be avoided as much as possible.However, since the spring steel of the present invention suppresses the alloying elements in a small amount as described above, The amount of retained austenite is small, and high strength can be achieved.

【0023】この様に本発明ではC,Si,Mn,N
i,Cr,Cu,V等の含有率を規定すると共に、特に
「1.5×Mn+Cr+Ni」の量を特定することによ
って、200kgf/mm2 以上の高強度を示し、且つばね用
鋼として重要な耐遅れ破壊性、耐へたり性、耐疲労特性
等に優れた高強度ばね用鋼を得ることができる。
As described above, according to the present invention, C, Si, Mn, N
By specifying the content of i, Cr, Cu, V, etc., and particularly by specifying the amount of “1.5 × Mn + Cr + Ni”, it exhibits high strength of 200 kgf / mm 2 or more and is important as spring steel. A high-strength spring steel excellent in delayed fracture resistance, sag resistance, fatigue resistance and the like can be obtained.

【0024】[0024]

【実施例】次に実施例を挙げて本発明を具体的に説明す
るが、本発明はもとより下記実施例によって制限を受け
るものではない。表1に示すNo.1〜No.16の鋼
材を溶製した後、鍛造によって115mm角のビレットを
製作し、線材圧延により12.5mmφの線径まで圧延し
た後、12mmφまで伸線加工した。この伸線材を長さ3
00mmに切断してから焼入焼戻し処理を行った。焼入れ
は加熱温度で950℃で油焼入れし、焼戻温度は420
℃とした。焼入焼戻し後の引張試験結果を表2に示す。
また高強度懸架ばねでは腐食環境下での機械的性質が問
題になるので、水素脆化性を評価する目的で5%食塩中
での遅れ破壊試験を行った。尚この試験では環状切欠き
付き試験片を使用し、荷重引張方式で試験を行った。更
に供試材を10mmに圧延後引抜き加工を施して9mmφに
した後、通常の方法でばねを製作し、さらにショットピ
ーニング加工およびセッチング加工を施したばねサンプ
ルについて疲労試験を行ない、結果を表2に併記した。
EXAMPLES Next, the present invention will be described specifically with reference to examples, but the present invention is not limited by the following examples. No. shown in Table 1. 1 to No. After melting 16 steel materials, a billet of 115 mm square was manufactured by forging, rolled to a wire diameter of 12.5 mmφ by wire rod rolling, and then drawn to 12 mmφ. This drawn wire has a length of 3
After cutting to 00 mm, quenching and tempering were performed. The quenching is oil quenching at a heating temperature of 950 ° C., and the tempering temperature is 420
° C. Table 2 shows the results of the tensile test after quenching and tempering.
In the case of a high-strength suspension spring, mechanical properties in a corrosive environment become a problem. Therefore, a delayed fracture test was performed in 5% sodium chloride to evaluate hydrogen embrittlement. In this test, a test piece with an annular notch was used, and the test was performed by a load tension method. Furthermore, after rolling the test material to 10 mm and drawing it to 9 mmφ, a spring was manufactured by a normal method, and a fatigue test was performed on a spring sample that had been subjected to shot peening and setting, and the results are shown in Table 2. Also described.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】表1,2においてNo.1〜6は本発明の
規定要件を満たす実施例であり、疲労特性、引張強さ、
遅れ割れ破壊特性のいずれにおいても良好な結果が得ら
れている。これに対しNo.7〜16はいずれかの規定
要件を欠如する比較例であり、以下に示す如く引張強
さ、疲労特性、遅れ破壊特性のいずれかが不良である。
In Tables 1 and 2, No. 1 to 6 are examples satisfying the requirements of the present invention, and include fatigue characteristics, tensile strength,
Good results have been obtained in any of the delayed crack fracture characteristics. On the other hand, No. Nos. 7 to 16 are comparative examples lacking any of the prescribed requirements, and as shown below, are poor in any of the tensile strength, fatigue properties and delayed fracture properties.

【0028】No.7:X値(=1.5×Mn%+Ni
%+Cr%)が規定範囲を外れるため、引張強さは良好
であるが疲労特性が悪い。 No.8:C量が不足するため引張強さが200kgf/mm
2 に達しておらず、また疲労特性も悪い。 No.9:C量が多過ぎるため絞り値が極端に低く、疲
労特性及び遅れ破壊強度も乏しい。 No.10:Si量が不足するため十分な引張強さが得
られない。 No.11, 12:X値が規定範囲を超えるほか、Mn
量も規定範囲を外れているため絞り値が低く、満足な疲
労特性が得られない。しかも遅れ破壊特性も不十分であ
る。 No.13:X値が小さ過ぎると共にCr量も不足する
ため引張強度が不足する。 No.14:X値およびCr量が多過ぎるため特に絞り
値が低く、疲労特性に欠ける。 No.15:V量が多過ぎるため絞り値が低く疲労特性
が悪い。また遅れ破壊強度も劣悪である。 No.16:Mo量が多過ぎるため、絞り値および疲労
特性が不十分である。
No. 7: X value (= 1.5 × Mn% + Ni
% + Cr%) is out of the specified range, the tensile strength is good, but the fatigue properties are poor. No. 8: The tensile strength is 200 kgf / mm due to insufficient C content
It has not reached 2, and its fatigue properties are poor. No. 9: Since the amount of C is too large, the aperture value is extremely low, and the fatigue characteristics and delayed fracture strength are poor. No. 10: Sufficient tensile strength cannot be obtained due to insufficient Si content. No. 11, 12: In addition to the X value exceeding the specified range, Mn
Since the amount is out of the specified range, the aperture value is low and satisfactory fatigue characteristics cannot be obtained. Moreover, the delayed fracture characteristics are insufficient. No. 13: The tensile strength is insufficient because the X value is too small and the Cr amount is also insufficient. No. 14: Since the X value and the amount of Cr are too large, the aperture value is particularly low and lacks fatigue characteristics. No. 15: Since the amount of V is too large, the aperture value is low and the fatigue characteristics are poor. Also, the delayed fracture strength is poor. No. 16: Since the Mo amount is too large, the aperture value and the fatigue characteristics are insufficient.

【0029】[0029]

【発明の効果】本発明は以上の様に構成されており、鋼
材の成分組成を特定することによって靭性、遅れ破壊
性、耐へたり性、疲労特性等を損なうことなく焼入焼戻
し後の硬さを高めることができ、200kgf/mm2 レベル
以上の引張強さを備えた高性能のばね用鋼を提供し得る
ことになった。
The present invention is constituted as described above. By specifying the component composition of the steel material, the hardness after quenching and tempering can be achieved without impairing the toughness, delayed fracture, sag resistance and fatigue characteristics. Thus, it is possible to provide a high-performance spring steel having a tensile strength of 200 kgf / mm 2 level or more.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−216951(JP,A) 特開 昭62−274058(JP,A) 特公 昭64−4578(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 301 C22C 38/46 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-63-216951 (JP, A) JP-A-62-274058 (JP, A) JP-B 64-4578 (JP, B2) (58) Field (Int. Cl. 7 , DB name) C22C 38/00 301 C22C 38/46

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%でC:0.50〜0.70%、S
i:1.5〜2.0%、Mn:0.2〜0.60%、N
i:0.5%未満、Cr:0.5〜1.2%、Cu:
0.1〜0.5%、V:0.05〜0.5%を含有し、
且つ1.5×Mn+Cr+Ni≦1.8の条件を満足し
残部鉄および不可避不純物よりなり、焼入焼戻し後の硬
さがHRC53以上であることを特徴とする高強度ばね
用鋼。
1. C: 0.50 to 0.70% by weight, S
i: 1.5 to 2.0%, Mn: 0.2 to 0.60%, N
i: less than 0.5%, Cr: 0.5 to 1.2%, Cu:
0.1-0.5%, V: 0.05-0.5%,
A high-strength spring steel which satisfies the condition of 1.5 × Mn + Cr + Ni ≦ 1.8, is composed of the balance of iron and inevitable impurities, and has a hardness after quenching and tempering of HRC53 or more.
【請求項2】 更に他の成分としてNb:0.05〜
0.5%及び/もしくはMo:0.05〜0.5%を含
有する請求項1記載の高強度ばね用鋼。
2. Nb: 0.05 or more as another component
The high-strength spring steel according to claim 1, which contains 0.5% and / or Mo: 0.05 to 0.5%.
JP4154360A 1992-05-20 1992-05-20 High strength spring steel Expired - Lifetime JP3064672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4154360A JP3064672B2 (en) 1992-05-20 1992-05-20 High strength spring steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4154360A JP3064672B2 (en) 1992-05-20 1992-05-20 High strength spring steel

Publications (2)

Publication Number Publication Date
JPH05320826A JPH05320826A (en) 1993-12-07
JP3064672B2 true JP3064672B2 (en) 2000-07-12

Family

ID=15582457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4154360A Expired - Lifetime JP3064672B2 (en) 1992-05-20 1992-05-20 High strength spring steel

Country Status (1)

Country Link
JP (1) JP3064672B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08158013A (en) 1994-10-03 1996-06-18 Daido Steel Co Ltd Corrosion resisting spring steel
KR100764253B1 (en) 2005-01-28 2007-10-05 가부시키가이샤 고베 세이코쇼 High-strength steel used for spring having excellent hydrogen embrittlement resistance
MX359834B (en) 2013-10-01 2018-10-12 Hendrickson Usa Llc Leaf spring and method of manufacture thereof having sections with different levels of through hardness.
CN109252103A (en) * 2018-11-02 2019-01-22 太仓卡兰平汽车零部件有限公司 A kind of spring highly resistance steel wire and its processing method

Also Published As

Publication number Publication date
JPH05320826A (en) 1993-12-07

Similar Documents

Publication Publication Date Title
JP2842579B2 (en) High strength spring steel with excellent fatigue strength
JPH05117804A (en) Bearing steel having excellent workability and rolling fatigue property
JPH0545660B2 (en)
JP6798557B2 (en) steel
JP3409277B2 (en) Rolled steel or bar steel for non-heat treated springs
JP2003105496A (en) Spring steel having low decarburization and excellent delayed fracture resistance
JP2783145B2 (en) Steel for nitrided spring and nitrided spring with excellent fatigue strength
JPH09324219A (en) Production of high strength spring excellent in hydrogen embrittlement resistance
JP3064672B2 (en) High strength spring steel
JPH0555585B2 (en)
JP2001026836A (en) Steel for induction hardening and parts for machine structure excellent in cold workability, rolling fatigue strength and twisting fatigue strength
JPH09256102A (en) Carburized parts excellent in bending strength and impact characteristic
WO1998054372A1 (en) Non-tempered steel for mechanical structure
JPH05148581A (en) Steel for high strength spring and production thereof
JPH10245656A (en) Martensitic stainless steel excellent in cold forgeability
JPH07157846A (en) Steel for high strength spring
JP4515347B2 (en) Method for determining fatigue resistance of spring steel wires and spring steel wires
JP3236756B2 (en) B-containing steel excellent in workability and strength and method for producing forged part made of the B-containing steel
JP3343505B2 (en) High strength bolt steel with excellent cold workability and delayed fracture resistance and its manufacturing method
JP4332446B2 (en) High strength steel with excellent cold workability and delayed fracture resistance, and high strength steel parts with excellent delayed fracture resistance
JP3223543B2 (en) High corrosion resistance and high strength steel for bolts
JPH06299296A (en) Steel for high strength spring excellent in decarburizing resistance
JPH0559431A (en) Production of spring with high stress excellent in delayed fracture resistance
JP3319303B2 (en) Steel for high-strength bolts without annealing and excellent in fire resistance and method of manufacturing the same
JPH0563542B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000411

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080512

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 13