JPH0563542B2 - - Google Patents

Info

Publication number
JPH0563542B2
JPH0563542B2 JP62037172A JP3717287A JPH0563542B2 JP H0563542 B2 JPH0563542 B2 JP H0563542B2 JP 62037172 A JP62037172 A JP 62037172A JP 3717287 A JP3717287 A JP 3717287A JP H0563542 B2 JPH0563542 B2 JP H0563542B2
Authority
JP
Japan
Prior art keywords
content
delayed fracture
low
less
cold heading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62037172A
Other languages
Japanese (ja)
Other versions
JPS63206449A (en
Inventor
Takehiko Kato
Yoshiaki Yamada
Tetsugo Shimizu
Sadayoshi Furusawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3717287A priority Critical patent/JPS63206449A/en
Publication of JPS63206449A publication Critical patent/JPS63206449A/en
Publication of JPH0563542B2 publication Critical patent/JPH0563542B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は耐遅れ破壊性に優れた冷間圧造用低炭
素鋼に関し、さらに詳しくは、冷間加工時の変形
抵抗が低く、かつ、浸炭焼入れ焼戻し後の靭性が
高く、耐遅れ破壊性に優れた冷間圧造用低炭素鋼
に関する。 〔従来技術〕 一般に、ボルト、ネジ等の冷間圧造製品は、熱
間圧延線材および棒鋼を脱スケール、潤滑皮膜処
理後所定の径および寸法まで冷間引抜き加工によ
り製造される。 しかし、冷間加工率が大きいと、鋼材の加工硬
化のために機械的性質、特に引張強さが上昇し、
伸びや絞りが著しく低下し、そのままでは変形抵
抗が大きいため冷間圧造或いは鍛造時の工具の寿
命の低下を来したり、圧造製品の割れ発生による
不良率増加等が生じるので、中間工程において軟
化焼鈍或いは球状化焼鈍を行うことが必要であ
る。 また、熱間圧延材、中間焼鈍材等の冷間圧造用
線材および棒鋼、低い変形抵抗、高い延性を有
し、割れ等の圧造欠陥のない良好な冷間圧造性が
要求される。 そのため、CよびSiのような鋼材の主要な化学
的分を低減することにより、加工時の変形抵抗を
低くし、特に、P、S、O等の不純物を低減する
ことにより、冷間加工時の加工割れを少なくした
冷間加工性に優れた材料が製されている。そし
て、タツピンネジやドライウオール等のような径
の細いネジの場合、C含有量が0.10〜0.30wt%程
度の低炭素鋼を冷間成形後、必要な表面硬度、内
部靭性を得るために浸炭、或いは、浸炭窒化焼入
れ後、焼戻し処理が行われている。 また、タツピンネジやドライウオール等のネジ
の必要特性として、使用時に突然ネジが破壊す
る、所謂、遅れ破壊に対し抵抗力を有することが
要求される。この遅れ破壊の原因は鋼中の水素で
あると言われており、この鋼中の水素は上記ネジ
の製造工程中、即ち、酸洗工程、電気メツキ工程
等の工程より侵入する場合と、ネジ製品として使
用中にその使用環境より、例えば、大気中の水蒸
気、雨水等より侵入る場合である。 鋼の冷間加工性の向上については、種々の研究
が行われており、特開昭59−126718号公報には、
半熱間鍛造後の冷間加工性の向上(割れ、破損等
の不具合の低減)を目的として、C、Si、P、
S、O等をある範囲に限定する技術が開示されて
いる。しかし、この技術は、Cの限定範囲は0.15
%以上、1.2%以下であり、本発明にかかる耐遅
れ破壊性に優れた冷間圧造用低炭素鋼におけるC
含有量0.12%以下とは明らかに異なつており、こ
のように高いC含有量では本発明にかかる耐遅れ
破壊性に優れた冷間圧造用低炭素鋼で得られるよ
うな、顕著な変形抵抗の低減効果、内部靭性の改
善効果、および、耐遅れ破壊性の向上効果は期待
することはできない。 また、P,Sについて、この公報には靭性、半
熱間鍛造後の冷間加工性の向上効果についてのみ
開示しているが、本発明者は数多くのタツピンネ
ジ等の遅れ破壊性試験結果より、P、Sを極微量
範囲に制限することにより、冷間加工性の向上効
果だけではなく、タツピンネジ等の耐遅れ破壊性
を顕著に改善することが可能であることを知見し
た。特に、P、Sの含有量を0.008%以下の極微
量に制限すれば、耐遅れ破壊性の改善効果が特に
顕著であることを知見した。そして、この公報に
はP、Sの含有量を低くすることによる耐遅れ破
壊性の改善効果については、全開示されておら
ず、本発に係る耐遅れ破壊性に優れた冷間圧造用
低炭素鋼とは根本的に相違しているものである。 〔発明が解決しようとする問題点〕 本発明は上記に説明した従来技術における低炭
素鋼の種々の問題点に鑑み、本発明が鋭意研究を
行い、検討を重ねた結果、線材、棒鋼の変形抵抗
の向上、即ち、冷間圧造性を改善するために、加
工硬化を増大させるC、Si含有量を低下し、ま
た、鋼中のP、S、O等の純物元素を低減して鋼
の清浄化を図り、特に、P、Sについては粒界の
脆化を低減し、耐遅れ破壊性を向上させるため含
有量を極めて低い含有量に制限し、また、C含有
量低下により変形抵抗の低減、および、耐遅れ破
壊性の改善を図ると共に浸炭焼入れにおける焼入
れ性の確保のためMn含有量を増加させて水、油
れの焼入れによつても充分焼入れを行えるよう焼
入れ性を安定させ、浸炭熱処理品の硬度のバラツ
キを減少させることができる耐遅れ破壊性に優れ
た冷間圧造用低炭素鋼を開発したのである。 〔問題点を解決するための手段〕 本発明に係る冷間圧造用低炭素鋼は、 (1) C0.05〜0.12wt%、Si0.10wt%以下、 Mn0.90〜1.80wt%、Al0.005〜0.05wt%、 P0.008wt%以下、S0.008wt%以下、 O50ppm以下 を含有し、残部Feおよび不可避不純物からなる
ことを特徴とする耐遅れ破壊性に優れた冷間圧造
用低炭素鋼を第1の発明とし、 (2) C0.05〜0.12wt%、Si0.10wt%以下、 Mn0.90〜1.80wt%、Al0.005〜0.05wt%、 P0.008wt%以下、S0.008wt%以下、 O50ppm以下、Ti0.01〜0.05wt%、 B0.0005〜0.005wt% を含有し、残部Feおよび不可避不純物からな
ることを特徴とする耐遅れ破壊性に優れた冷間
圧造用低炭素鋼を第2の発明とする2つの発明
よりなるものである。 本発明に係る耐遅れ破壊性に優れた冷間圧造用
低炭素鋼について以下詳細に説明する。 先ず、本発明に係る耐遅れ破壊性に優れた冷間
圧造用低炭素鋼の含有成分および含有割合につい
て説明する。 Cは芯部をも含め焼入れ性を向上させ、浸炭熱
処理後の強度を維持するのに必要な元素であり、
含有量が0.05wt%未満ではこのような効果は少な
く、また、0.12wt%を越えて含有されると冷間圧
造時の変形抵抗が過大になり工具寿命に悪影響を
与え、また、耐遅れ破壊性を劣化させる。よつ
て、C含有量は0.05〜0.12wt%とする。 Siは焼戻し軟化抵抗性、焼入れ性を向上させ、
強度を高くする元素であり、また、フエライト地
を硬化させ冷間加工性に悪影響を与える元素でも
あり、さらに、本発明に係る冷間圧造用低炭素鋼
においては変形抵抗の低いことが重要であるの
で、この点からもSi含有量の少ないことが望まし
く、また、Siは浸炭性にも負の要因となる。よつ
て、Si含有量は0.10wt%以下とする。 Mnは焼入れ性を向上させ靭性を保ちながら強
度上昇に必要な元素であり、かつ、C含有量を低
下させた分の焼入れ性を補うのに必要な元素でも
あり、含有量が0.90wt%未満では浸炭焼入れ後の
硬度を維持する効果が少なく、また、1.80wt%を
越えて含有されるとこのような効果は飽和し、偏
析が発生し易くなり、さらに、冷間圧造時の変形
抵抗が上昇が著しくなり、工具寿命に悪影響を及
ぼすようになる。よつて、Mn含有量は0.90〜
1.80wt%とする。 Alは脱酸および鋼中のNの固定と結晶粒度調
整のために有効な元素であり、含有量が0.005wt
%未満ではこのような効果は少なく、また、脱酸
時に生成するAl2O3系介在物は冷間圧造時の割れ
の原因ともなるもので、0.05wt%を越えるような
多量の含有は必要がなく、さらに、低いAl含有
量は本発明に係る冷間圧造用低炭素鋼においては
大切なことである。よつて、Al含有量は0.005〜
0.05wt%とする。 Pは含有量が少ない方が冷間圧造時の変形抵抗
が低くなり、また、強度および耐摩耗性を浸炭処
理によつて達成する場合、粒界の結合を弱くする
P析出物が少なくなり、耐遅れ破壊性が向上す
る。よつて、P含有量は少ない方が望ましく、
0.003wt%以下とするのがよいが、実用上は
0.008wt%以下とする。 Sは鋼中においてMnSを形成し、冷間圧造時
の割れ発生の起点となり、変形能を劣化させるの
で少ない方が好ましく、さらに、耐遅れ破壊性の
面からもMnSはマトリツクスと局部電池を形成
し易く、耐遅れ破壊性を劣化させるので0.003wt
%以下とするのが良いが、実用上は0.008wt%以
下とする。 OはAl、Siと結合して酸化物となり、また、
Ti酸化物は鋼中のOが多いと巨大化する傾向に
あるので少ない方が好ましく、OはAl、Siおよ
びTiによる複合脱酸によつて低水準に維持する。
よつて、O含有量は50ppm以下とする。 Ti、Bは鋼の焼入れ性を向上させるのに有効
な元素であり、Tiは鋼中のNを固定し、Bの焼
入れ性向上を補うと共にTiNとなつて結晶粒粗
大化防止に寄与し、耐遅れ破壊性を向上させる。
Al含有量との関係もあるが、Ti含有量はその下
限は0.01wt%程度の少量でよく、また、0.05wt%
を越えるように含有量が多くなり過ぎると炭窒化
物の生成量も増して粗大化し、鋼の冷間圧造性を
阻害する。よつて、Ti含有量は0.01〜0.05wt%と
する。 Bは低いSi含有量と低いC含有量による焼入れ
性を補助する元素であり、浸炭熱処理による芯部
の強度増加に極めて有効であり、含有量が
0.0005wt%未満ではこのような効果は少なく、ま
た、0.005wt%を越えて含有されるとこの効果は
飽和してしまう。このように、B含有量は少量で
あつてもこれらの効果は発揮され、従つて、B含
有量は0.0005〜0.005wt%とする。 なお、Bが含有されても鋼の冷間加工性には全
く関係がなく、焼入れ性を向上させる分だけC含
有量を低くすることが可能となり、さらに、冷間
加工性が改善されることになる。 〔実施例〕 次に、本発明に係る耐遅れ破壊性に少ない冷間
圧造用低炭素鋼の実施例を説明する。 実施例 第1表に示す含有成分および含有割合の低炭素
鋼を転炉溶製により製造した。 第1表において、A,B,Gは変形抵抗が低
く、また、耐遅れ破壊性に優れた本発明に係る冷
間圧造用低炭素鋼であり、C〜F,H,Iは比較
鋼である。 このようにして得られた鋼を、5.5mmφ線材に
熱間圧延後、機械加工によりH/D=1.5(Hは試
料高さ、Dは線径、この時は5.5mmφ)の圧縮試
験用試料を作成した。これらの試料片を用い拘束
治具を備えたプレスにより拘束圧縮試験を実施し
た。 第1図に結果を示す。 第1図中における変形抵抗について次式により
算出した。 変形抵抗(Kg/mm2)=P/(A0×f) P……圧縮荷重(Ton) A0……初期断面積(23.75mm) f……拘束係数 この第1図から明らかなように全歪域に亙つて
本発明に係る耐遅れ破壊性に優れた冷間圧造用低
炭素鋼A,B,Gは、比較鋼C〜F,H,Iに比
べて低い値を示す。 これは、変形抵抗への寄与率が最も大きいC含
有量の低いことが影響していると考えられる。 さらに、固溶強化元素のSi含有量の低いことも
付随的に寄与しているといえる。 即ち、本発明に係る耐遅れ破壊性に優れた冷間
圧造用低炭素鋼A,B,GではBが変形抵抗が一
番低いが、これはC、Mn含有量がA,Gに比べ
て低いためである。 また、本発明に係る耐遅れ破壊性に優れた冷間
圧造用低炭素鋼A,B,G共に変形抵抗が低いと
いうことは、冷間圧造時、例えば、ボルト成形時
やタツピングネジの成形時の成形荷重が低いとい
うことにつながり、その結果、成形工具寿命の改
善が期待できる。 比較鋼EはC含有量が低く、Si含有量も低い
が、変形低抗が高い。これはMn含有量が1.68wt
%と非常に高いためである。 比較鋼FはC、Mn含有量共に本発明に係る耐
遅れ破壊性に優れた冷間圧造用低炭素鋼Aに近い
が、Si含有量が高いので変形抵抗が高い。 第2図は5.5mmφ線材を機械加工により40mmの
長さに切断後、表面を片側0.25mmの厚さに機械施
削した試料片(5.0mmφ×40mm)を浸炭焼入れ焼
戻し(条件:900℃×20′→油焼入れ、320℃×
40′焼戻し)を行つたものの浸炭層より芯部に至
る横断面の硬度分布を示したものである。 本発明に係る耐遅れ破壊性に優れた冷間圧造用
低炭素鋼A,B,Gは、比較鋼C,D,H,Iに
比べ低い芯部硬度を示している。これはC含有量
が低いことが大きく寄与しているといえる。即
ち、比較鋼に比べ芯部硬度が低いことは内部の靭
性自体が高いことを意味している。一方、表面硬
度はHvで525〜550後を示し各鋼はそれほど差が
なく高い値を示している。 本発明に係る耐遅れ破壊性に優れた冷間圧造用
低炭素鋼は比較鋼に比べ、表面が充分に高く、か
つ、内部靭性が高いことにより、例えば、タツピ
ングネジまたはドライウオール等に成形、熱処理
後、締付け使用する際、比較鋼に比べ施行時の頭
飛びや使用中の遅れ破壊の危険が少なくなる。 第2表に常温、蒸留水中で実施した促進式遅れ
破壊試験の結果を示す。 この遅れ破壊試験には低荷重型テコ式遅れ破壊
試験機を使用し、試料片は第3図に示す形状のも
のを5.5mmφ線材より機械加工により作成後、浸
炭焼入れ焼戻し処理を実施した。 この結果より、本発明に係る耐遅れ破壊性に優
れた冷間圧造用低炭素鋼は比較鋼に比べ、切欠き
強さ、100時間遅れ破壊強さ共高い値を示し優れ
ていることがわかる。 これは本発明に係る耐遅れ破壊性に優れた冷間
圧造用低炭素鋼は、芯部硬度が低く、さらに、低
いP含有量、低いS含有量とすることにより、結
晶粒界の析出不純物が低減され、粒界強度が高め
られていることも寄与している。特に、本発明に
係る冷間圧造用低炭素鋼BはTiを含有している
ため組織が微細になり、より一層優れた値を示し
ている。 比較鋼C,Iは通常のP、S含有量のレベルの
結果であるが、非常に低い値を示している。 比較鋼D,E,H低いP含有量、低いS含有量
であるが、それほど優れた値を示しておらず、即
ち、比較鋼D,HはC含有量が高いので芯部硬度
が高くなり過ぎて靭性が不足し、100Hv遅れ破壊
強さも低くなつている。 比較鋼E,Hは低いC含有量であるMn含有量
が高いので、同様に芯部硬度が高くなり靭性が不
足し、これが遅れ破壊強度等にも影響していると
考えられる。
[Industrial Application Field] The present invention relates to a low carbon steel for cold heading that has excellent delayed fracture resistance, and more specifically, a low carbon steel for cold heading that has low deformation resistance during cold working and high toughness after carburizing, quenching and tempering. , relating to low carbon steel for cold heading with excellent delayed fracture resistance. [Prior Art] Generally, cold forged products such as bolts and screws are manufactured by descaling hot rolled wire rods and steel bars, treating them with a lubricating film, and then cold drawing them to predetermined diameters and dimensions. However, when the cold working rate is large, the mechanical properties, especially the tensile strength, increase due to work hardening of the steel.
The elongation and area of drawing will be significantly reduced, and if left as is, the deformation resistance will be large, resulting in a shortened tool life during cold heading or forging, and an increase in the defective rate due to cracks in the forged product. It is necessary to perform annealing or spheroidizing annealing. In addition, wire rods and steel bars for cold heading such as hot rolled materials and intermediate annealing materials are required to have low deformation resistance, high ductility, and good cold heading properties without heading defects such as cracks. Therefore, by reducing the main chemical components of steel such as C and Si, the deformation resistance during processing can be lowered, and in particular, by reducing impurities such as P, S, and O, it is possible to reduce the deformation resistance during cold working. Materials with excellent cold workability and less processing cracking have been manufactured. In the case of small-diameter screws such as tatsupin screws and drywall screws, low carbon steel with a C content of about 0.10 to 0.30 wt% is cold-formed and then carburized to obtain the necessary surface hardness and internal toughness. Alternatively, tempering treatment is performed after carbonitriding and quenching. Further, as a necessary characteristic of screws such as tuft pin screws and drywall screws, they are required to have resistance against so-called delayed failure, in which the screw suddenly breaks during use. It is said that the cause of this delayed fracture is hydrogen in the steel. Hydrogen in the steel enters during the manufacturing process of the above screws, such as pickling process, electroplating process, etc. This is the case when the product enters from the environment in which it is used, for example, from atmospheric water vapor, rainwater, etc. Various studies have been carried out on improving the cold workability of steel, and Japanese Patent Application Laid-open No. 126718/1983 describes
C, Si, P,
A technique for limiting S, O, etc. to a certain range has been disclosed. However, this technique has a limited range of C of 0.15
% or more and 1.2% or less in the low carbon steel for cold heading with excellent delayed fracture resistance according to the present invention.
This is clearly different from a C content of 0.12% or less, and with such a high C content, there is no significant deformation resistance, such as that obtained with the low carbon steel for cold heading with excellent delayed fracture resistance according to the present invention. A reduction effect, an effect of improving internal toughness, and an effect of improving delayed fracture resistance cannot be expected. Furthermore, regarding P and S, although this publication only discloses the effect of improving toughness and cold workability after semi-hot forging, the present inventors have determined based on the delayed fracture test results of numerous tatsupin screws, etc. It has been found that by limiting P and S to extremely small amounts, it is possible not only to improve cold workability but also to significantly improve delayed fracture resistance of tuft pin screws and the like. In particular, it has been found that if the contents of P and S are limited to extremely small amounts of 0.008% or less, the effect of improving delayed fracture resistance is particularly remarkable. Furthermore, this publication does not fully disclose the effect of improving delayed fracture resistance by lowering the content of P and S. It is fundamentally different from carbon steel. [Problems to be Solved by the Invention] In view of the various problems of low carbon steel in the prior art explained above, the present invention has conducted intensive research and as a result of repeated examinations, In order to improve the resistance, that is, the cold heading properties, the C and Si contents, which increase work hardening, are reduced, and the pure elements such as P, S, and O in the steel are reduced. In particular, the content of P and S is limited to an extremely low content in order to reduce grain boundary embrittlement and improve delayed fracture resistance, and by reducing the C content, deformation resistance is improved. In addition to improving delayed fracture resistance, the Mn content is increased to ensure hardenability during carburizing and quenching, and to stabilize the hardenability so that it can be hardened sufficiently even when quenching in water and oil. We have developed a low carbon steel for cold heading that has excellent delayed fracture resistance and can reduce the variation in hardness of carburized heat-treated products. [Means for Solving the Problems] The low carbon steel for cold heading according to the present invention includes: (1) C0.05-0.12wt%, Si0.10wt% or less, Mn0.90-1.80wt%, Al0. Low carbon steel for cold heading with excellent delayed fracture resistance, containing 005~0.05wt%, P0.008wt% or less, S0.008wt% or less, O50ppm or less, with the balance consisting of Fe and unavoidable impurities. is the first invention, (2) C0.05-0.12wt%, Si0.10wt% or less, Mn0.90-1.80wt%, Al0.005-0.05wt%, P0.008wt% or less, S0.008wt% Low carbon steel for cold heading with excellent delayed fracture resistance, containing 50ppm or less of O, 0.01~0.05wt% of Ti, 0.0005~0.005wt% of B, with the balance consisting of Fe and unavoidable impurities. This invention consists of two inventions, which is the second invention. The low carbon steel for cold heading with excellent delayed fracture resistance according to the present invention will be described in detail below. First, the components and content ratios of the low carbon steel for cold heading with excellent delayed fracture resistance according to the present invention will be explained. C is an element necessary to improve hardenability including the core and maintain strength after carburizing heat treatment.
If the content is less than 0.05wt%, this effect will be small, and if the content exceeds 0.12wt%, the deformation resistance during cold heading will be excessive, adversely affecting the tool life, and the delayed fracture resistance will be reduced. degrade sexuality. Therefore, the C content is set to 0.05 to 0.12 wt%. Si improves temper softening resistance and hardenability,
It is an element that increases strength, and is also an element that hardens the ferrite base and adversely affects cold workability. Furthermore, low deformation resistance is important for the low carbon steel for cold heading according to the present invention. Therefore, from this point of view as well, it is desirable to have a low Si content, and Si is also a negative factor in carburizability. Therefore, the Si content should be 0.10wt% or less. Mn is an element necessary to improve hardenability and increase strength while maintaining toughness. It is also an element necessary to compensate for the decrease in hardenability due to the decrease in C content, and the content is less than 0.90wt%. However, if the content exceeds 1.80wt%, this effect will be saturated and segregation will easily occur, and furthermore, the deformation resistance during cold heading will be reduced. The increase becomes significant and has a negative effect on tool life. Therefore, the Mn content is 0.90~
The content shall be 1.80wt%. Al is an effective element for deoxidizing, fixing N in steel, and adjusting grain size, and the content is 0.005wt.
If the content is less than 0.05wt%, this effect will be small, and the Al 2 O 3 inclusions generated during deoxidation may cause cracks during cold heading, so a large content exceeding 0.05wt% is necessary. Furthermore, low Al content is important in the low carbon steel for cold heading according to the present invention. Therefore, the Al content is 0.005~
The content shall be 0.05wt%. The lower the P content, the lower the deformation resistance during cold heading, and when achieving strength and wear resistance through carburizing, there will be less P precipitates that weaken the bonds at grain boundaries. Delayed fracture resistance is improved. Therefore, it is desirable that the P content is small;
It is better to keep it below 0.003wt%, but in practical terms
It should be 0.008wt% or less. S forms MnS in the steel, which becomes the starting point for cracking during cold heading and deteriorates deformability, so it is better to have less S. Furthermore, from the standpoint of delayed fracture resistance, MnS forms a matrix and local batteries. 0.003wt because it is easy to break and deteriorates delayed fracture resistance.
% or less, but in practice it should be 0.008wt% or less. O combines with Al and Si to form an oxide, and
Since Ti oxide tends to grow large if there is a large amount of O in the steel, it is preferable to have a small amount of Ti oxide, and O is maintained at a low level by composite deoxidation using Al, Si, and Ti.
Therefore, the O content should be 50 ppm or less. Ti and B are effective elements for improving the hardenability of steel. Ti fixes N in steel, supplements the hardenability improvement of B, and becomes TiN, which contributes to preventing grain coarsening. Improves delayed fracture resistance.
There is a relationship with the Al content, but the lower limit of the Ti content may be as small as 0.01wt%, and the lower limit is 0.05wt%.
If the content becomes too large, exceeding 1, the amount of carbonitrides produced increases and becomes coarse, which impairs the cold forging properties of the steel. Therefore, the Ti content is set to 0.01 to 0.05 wt%. B is an element that assists hardenability due to its low Si content and low C content, and is extremely effective in increasing the strength of the core by carburizing heat treatment.
If the content is less than 0.0005 wt%, this effect will be small, and if the content exceeds 0.005 wt%, this effect will be saturated. Thus, even if the B content is small, these effects are exhibited, and therefore the B content is set to 0.0005 to 0.005 wt%. Furthermore, even if B is contained, it has no relation to the cold workability of the steel, and it becomes possible to lower the C content by the amount that improves the hardenability, and furthermore, the cold workability is improved. become. [Example] Next, an example of a low carbon steel for cold heading with low delayed fracture resistance according to the present invention will be described. Example Low carbon steel having the components and content ratios shown in Table 1 was produced by melting in a converter furnace. In Table 1, A, B, and G are low carbon steels for cold heading according to the present invention that have low deformation resistance and excellent delayed fracture resistance, and C to F, H, and I are comparative steels. be. The steel thus obtained was hot rolled into a 5.5 mmφ wire rod, and then machined into a compression test sample of H/D=1.5 (H is the sample height, D is the wire diameter, in this case 5.5 mmφ). It was created. A restraint compression test was conducted using these sample pieces using a press equipped with a restraint jig. Figure 1 shows the results. The deformation resistance in FIG. 1 was calculated using the following formula. Deformation resistance (Kg/mm 2 ) = P/(A 0 ×f) P...Compressive load (Ton) A 0 ...Initial cross-sectional area (23.75mm) f...Restraint coefficient As is clear from this Figure 1 The low carbon steels A, B, and G for cold heading with excellent delayed fracture resistance according to the present invention exhibit lower values than the comparative steels C to F, H, and I over the entire strain range. This is considered to be due to the low C content, which has the largest contribution to deformation resistance. Furthermore, it can be said that the low Si content of the solid solution strengthening element also contributes incidentally. That is, among the low carbon steels A, B, and G for cold heading with excellent delayed fracture resistance according to the present invention, B has the lowest deformation resistance, but this is because the C and Mn contents are higher than A and G. This is because it is low. In addition, the fact that the low carbon steels A, B, and G for cold heading with excellent delayed fracture resistance according to the present invention have low deformation resistance means that during cold heading, for example, when forming bolts or tapping screws. This leads to lower forming loads, and as a result, improvement in forming tool life can be expected. Comparative steel E has a low C content and a low Si content, but has high deformation resistance. This has a Mn content of 1.68wt
This is because the percentage is extremely high. Comparative steel F has a C and Mn content close to that of the cold heading low carbon steel A which has excellent delayed fracture resistance according to the present invention, but has a high Si content and therefore has high deformation resistance. Figure 2 shows a sample piece (5.0mmφ x 40mm) in which a 5.5mmφ wire rod was machined to a length of 40mm, and the surface was machined to a thickness of 0.25mm on one side.The sample piece (5.0mmφ×40mm) was carburized, quenched and tempered (conditions: 900℃× 20′ → Oil quenching, 320℃×
This figure shows the hardness distribution in the cross section from the carburized layer to the core of a specimen that has been subjected to 40' tempering. The low carbon steels A, B, and G for cold heading with excellent delayed fracture resistance according to the present invention exhibit lower core hardness than comparative steels C, D, H, and I. This can be said to be largely due to the low C content. In other words, the fact that the core hardness is lower than that of the comparative steel means that the internal toughness itself is high. On the other hand, the surface hardness is 525 to 550 Hv, and each steel shows a high value without much difference. The low carbon steel for cold heading with excellent delayed fracture resistance according to the present invention has a sufficiently high surface and high internal toughness compared to comparative steels, so it can be formed into, for example, tapping screws or dry walls, and heat treated. When used after tightening, there is less risk of head flying during installation or delayed fracture during use compared to comparative steel. Table 2 shows the results of accelerated delayed fracture tests conducted in distilled water at room temperature. A low-load lever-type delayed fracture tester was used for this delayed fracture test, and the sample piece shown in Figure 3 was machined from a 5.5 mmφ wire rod, and then carburized, quenched, and tempered. From these results, it can be seen that the low carbon steel for cold heading with excellent delayed fracture resistance according to the present invention exhibits high values for both notch strength and 100 hour delayed fracture strength and is superior to the comparative steel. . This is because the low carbon steel for cold heading with excellent delayed fracture resistance according to the present invention has a low core hardness, and furthermore, by having a low P content and a low S content, precipitated impurities at grain boundaries are prevented. This also contributes to the reduction in grain boundary strength and the increase in grain boundary strength. In particular, the low carbon steel B for cold heading according to the present invention has a fine structure because it contains Ti, and exhibits even more excellent values. Comparative steels C and I are the result of normal P and S content levels, but exhibit very low values. Comparative steels D, E, and H have a low P content and a low S content, but do not show such excellent values.In other words, comparative steels D and H have a high C content, so their core hardness is high. The toughness is insufficient, and the fracture strength is also low due to a delay of 100Hv. Comparative steels E and H have a high Mn content with a low C content, so the core hardness is similarly high and toughness is insufficient, which is thought to have an effect on delayed fracture strength, etc.

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明に係る耐遅れ破壊
性に優れた冷間圧造用低炭素鋼は、上記の構成で
あるから、変形抵抗が低く、耐遅れ破壊性に優
れ、浸炭焼入れ焼戻しにより鋼材の表層部は硬度
が高く耐摩耗性を有し、芯部は良好な靭性を有
し、例えば、タツピングネジやドライウオール等
の冷間成形時の工具寿命を向上できるという優れ
た効果を有するものである。
As explained above, the low carbon steel for cold heading with excellent delayed fracture resistance according to the present invention has the above structure, so it has low deformation resistance and excellent delayed fracture resistance. The surface layer has high hardness and wear resistance, and the core has good toughness. For example, it has the excellent effect of improving the tool life during cold forming of tapping screws, drywall, etc. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は拘束圧縮試験における変形抵抗を示す
図、第2図は浸炭焼入れ焼戻し鋼材の硬度分布を
示す図、第3図は遅れ破壊試験に供する浸炭処理
の形状を示す図である。
FIG. 1 is a diagram showing the deformation resistance in a restrained compression test, FIG. 2 is a diagram showing the hardness distribution of carburized, quenched and tempered steel, and FIG. 3 is a diagram showing the shape of the carburized treatment subjected to the delayed fracture test.

Claims (1)

【特許請求の範囲】 1 C0.05〜0.12wt%、Si0.10wt%以下、 Mn0.90〜1.80wt%、Al0.005〜0.05wt%、 P0.008wt%以下、S0.008wt%以下、 O50ppm以下 を含有し、残部Feおよび不可避不純物からなる ことを特徴とする耐遅れ破壊性に優れた冷間圧造
用低炭素鋼。 2 C0.05〜0.12wt%、Si0.10wt%以下、 Mn0.90〜1.80wt%、Al0.005〜0.05wt%、 P0.008wt%以下、S0.008wt%以下、 O50ppm以下、Ti0.01〜0.05wt%、 B0.0005〜0.005wt% を含有し、残部Feおよび不可避不純物からなる ことを特徴とする耐遅れ破壊性に優れた冷間圧造
用低炭素鋼。
[Claims] 1 C0.05-0.12wt%, Si0.10wt% or less, Mn0.90-1.80wt%, Al0.005-0.05wt%, P0.008wt% or less, S0.008wt% or less, O50ppm A low carbon steel for cold heading with excellent delayed fracture resistance, containing the following, with the remainder consisting of Fe and unavoidable impurities. 2 C0.05~0.12wt%, Si0.10wt% or less, Mn0.90~1.80wt%, Al0.005~0.05wt%, P0.008wt% or less, S0.008wt% or less, O50ppm or less, Ti0.01~ 0.05wt%, B0.0005~0.005wt%, and the balance consists of Fe and unavoidable impurities. A low carbon steel for cold heading with excellent delayed fracture resistance.
JP3717287A 1987-02-20 1987-02-20 Low-carbon steel for cold forging Granted JPS63206449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3717287A JPS63206449A (en) 1987-02-20 1987-02-20 Low-carbon steel for cold forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3717287A JPS63206449A (en) 1987-02-20 1987-02-20 Low-carbon steel for cold forging

Publications (2)

Publication Number Publication Date
JPS63206449A JPS63206449A (en) 1988-08-25
JPH0563542B2 true JPH0563542B2 (en) 1993-09-10

Family

ID=12490176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3717287A Granted JPS63206449A (en) 1987-02-20 1987-02-20 Low-carbon steel for cold forging

Country Status (1)

Country Link
JP (1) JPS63206449A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0826432B2 (en) * 1993-03-19 1996-03-13 愛知製鋼株式会社 High quality case hardening steel
JP3932102B2 (en) * 2001-07-17 2007-06-20 大同特殊鋼株式会社 Case-hardened steel and carburized parts using the same
JP4773106B2 (en) * 2005-02-24 2011-09-14 株式会社神戸製鋼所 Steel parts with excellent balance between strength and torsional characteristics, manufacturing method thereof, and steel materials for steel parts
US8075420B2 (en) * 2009-06-24 2011-12-13 Acushnet Company Hardened golf club head

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126718A (en) * 1983-01-07 1984-07-21 Daido Steel Co Ltd Manufacture of stel material with superior cold workability

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126718A (en) * 1983-01-07 1984-07-21 Daido Steel Co Ltd Manufacture of stel material with superior cold workability

Also Published As

Publication number Publication date
JPS63206449A (en) 1988-08-25

Similar Documents

Publication Publication Date Title
WO2001048257A1 (en) Bar or wire product for use in cold forging and method for producing the same
US20230250522A1 (en) Austenite stainless steel material, method for producing same, and plate spring
JP4321974B2 (en) Steel for high strength screws and high strength screws
CN109790602B (en) Steel
KR100712581B1 (en) Bearing steel excellent in workability and corrosion resistance, method for production thereof, and bearing member and method for manufacture thereof
JP3606024B2 (en) Induction-hardened parts and manufacturing method thereof
JP2004238702A (en) Carburized component excellent in low-cycle impact fatigue resistance
JP2001026836A (en) Steel for induction hardening and parts for machine structure excellent in cold workability, rolling fatigue strength and twisting fatigue strength
JP3550886B2 (en) Manufacturing method of gear steel for induction hardening excellent in machinability and fatigue strength
JP2841468B2 (en) Bearing steel for cold working
JPH0563542B2 (en)
JP4422924B2 (en) Steel for high-strength tapping bolt, high-strength tapping bolt and method for producing high-strength tapping bolt
JP3644217B2 (en) Induction-hardened parts and manufacturing method thereof
JP3887461B2 (en) Steel for non-tempered bolts
JPH0254416B2 (en)
JPH09104945A (en) Steel for high strength bolt excellent in cold workability and delayed fracture resistance, production of high strength bolt, and high strength bolt
JP3428282B2 (en) Gear steel for induction hardening and method of manufacturing the same
JP3371490B2 (en) Method of manufacturing tough steel for machine structure with excellent cold forgeability
JPH0557350B2 (en)
JPH0967625A (en) Production of carburized high strength screw excellent in delayed fracture resistance
JPS61253347A (en) Low carbon steel having superior cold workability
JP3748696B2 (en) Manufacturing method of connecting rod for automobile
JP2954216B2 (en) Steel for high strength parts
JPH11100644A (en) Manufacture of spring steel with high strength and high toughness and spring
JPH07150292A (en) Steel for machine structural use excellent in cold forgeability

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees