JP4773106B2 - Steel parts with excellent balance between strength and torsional characteristics, manufacturing method thereof, and steel materials for steel parts - Google Patents

Steel parts with excellent balance between strength and torsional characteristics, manufacturing method thereof, and steel materials for steel parts Download PDF

Info

Publication number
JP4773106B2
JP4773106B2 JP2005048918A JP2005048918A JP4773106B2 JP 4773106 B2 JP4773106 B2 JP 4773106B2 JP 2005048918 A JP2005048918 A JP 2005048918A JP 2005048918 A JP2005048918 A JP 2005048918A JP 4773106 B2 JP4773106 B2 JP 4773106B2
Authority
JP
Japan
Prior art keywords
less
twist
excluding
steel
tempering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005048918A
Other languages
Japanese (ja)
Other versions
JP2006233269A (en
Inventor
寛 百▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005048918A priority Critical patent/JP4773106B2/en
Publication of JP2006233269A publication Critical patent/JP2006233269A/en
Application granted granted Critical
Publication of JP4773106B2 publication Critical patent/JP4773106B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、強度−捻れ特性バランスに優れた鋼部品およびその製造方法と該鋼部品用鋼材に関するものである。   The present invention relates to a steel part having an excellent balance between strength and torsional characteristics, a method for producing the steel part, and a steel material for the steel part.

自動車分野、機械分野、建設分野等における構造用鋼部品や、電気分野における電装用鋼部品の中には、高強度であると共に優れた捻れ特性を発揮することが特性として求められる場合がある。例えば自動車用鋼部品であるトーションバーは、小部品でありながら高強度(特に衝突時にも耐えられる強度)と、高速回転で捻られても捻じ切られないといった優れた捻れ特性を発揮することが要求される。   Among structural steel parts in the automotive field, mechanical field, construction field, and the like, and electrical steel parts in the electrical field, it may be required as a characteristic that it has high strength and exhibits excellent twist characteristics. For example, a torsion bar that is a steel part for automobiles is a small part that exhibits high strength (particularly strength that can be withstood in a collision) and excellent torsional characteristics such that it is not twisted even when twisted at high speed. Required.

強度の高い鋼部品を得る方法として、例えば鋼部品の製造段階で、冷間加工における加工硬化により高強度化を図ることが可能であるが、加工による高強度化は延性の低下をもたらすので優れた捻れ特性の確保は難しい。特許文献1では、強度を高めるべくC量を増加させると共に、フェライト組織にNb化合物を析出させて析出強化を図っているが、この様にC量を増加させると、パーライト組織が生成されて延性が低下し、強度と共に捻れ特性を高めることが難しくなる。また、冷間加工後に焼入れ焼戻しを行うことで高強度を確保する方法もあるが、これまで提案されてきた製造条件では、強度の確保は可能であっても優れた捻れ特性を発揮させることは難しかった。
以上のことから、強度と捻れ特性のバランスに優れた鋼部品の実現が望まれている。
特開2003−105495号公報
As a method for obtaining steel parts with high strength, for example, at the manufacturing stage of steel parts, it is possible to increase the strength by work hardening in cold work. It is difficult to ensure twisting characteristics. In Patent Document 1, while increasing the amount of C to increase the strength and precipitating strengthening by precipitating an Nb compound in the ferrite structure, when the amount of C is increased in this way, a pearlite structure is generated and ductility is increased. Decreases, and it becomes difficult to improve the twist characteristics as well as the strength. Also, there is a method to ensure high strength by quenching and tempering after cold working, but under the manufacturing conditions proposed so far, it is possible to demonstrate excellent torsional characteristics even if strength can be ensured. was difficult.
From the above, realization of a steel part excellent in balance between strength and torsional characteristics is desired.
JP 2003-105495 A

本発明は上記事情に鑑みてなされたものであって、その目的は、強度−捻れ特性バランスに優れた鋼部品およびその製造方法と、該鋼部品の製造に供される鋼材を提供することにある。   This invention is made | formed in view of the said situation, Comprising: The objective is to provide the steel material excellent in intensity | strength-twisting property balance, its manufacturing method, and the steel materials used for manufacture of this steel component. is there.

本発明に係る鋼材は、
C :0.03〜0.12%(化学成分の場合は質量%の意味、以下同じ)、
Si:0.5%以下(0%を含まない)、
Mn:0.25〜2%、
P :0.02%以下(0%を含まない)、
S :0.02%以下(0%を含まない)、
Ni:1.5%以下(0%を含まない)、
Cr:1%以下(0%を含まない)、
Mo:1%以下(0%を含まない)、
Al:0.01〜0.06%、
N :0.01%以下(0%を含まない)、
Ti:0.005〜0.08%、
B :0.0008〜0.003%
を満たし、残部鉄および不可避不純物からなり、
下記式(1)で表される臨界直径DI値が20〜40であり、
下記式(2)で表されるAc3点が825〜925℃であり、且つ
下記条件で焼入れ焼戻したときに、硬さ:Hv110〜350を示すと共に、下記捻れ特性を示すところに特徴を有している。本発明の鋼材は、更にNb:0.01〜0.04%、及び/又はV:0.04〜0.25%を含んでいてもよい。
DI値=15.07×exp (-0.08×γGS) ×(0.7Si+1)×(2.19Cr+1)×(3.5Mn+1)
×(2.9Mo+1)×(0.9Ni+1)×[1.5(0.9−C)+1]×√C …(1)
[式(1)中、C、Si、Cr、Mn、Mo、Niは、各成分の含有量(質量%)を示
し、γGS=9である]
Ac3点(℃)=908−2.237C×100+0.4385P×1000 +0.3049Si×100
−0.3443Mn×100−0.23Ni×100 …(2)
[式(2)中、C、P、Si、Mn、Niは、各成分の含有量(質量%)を示す]
The steel material according to the present invention is
C: 0.03 to 0.12% (in the case of chemical components, the meaning of mass%, the same shall apply hereinafter),
Si: 0.5% or less (excluding 0%),
Mn: 0.25 to 2%,
P: 0.02% or less (excluding 0%),
S: 0.02% or less (excluding 0%),
Ni: 1.5% or less (excluding 0%),
Cr: 1% or less (excluding 0%),
Mo: 1% or less (excluding 0%),
Al: 0.01 to 0.06%,
N: 0.01% or less (excluding 0%),
Ti: 0.005 to 0.08%,
B: 0.0008 to 0.003%
Consists of the balance iron and inevitable impurities,
The critical diameter DI value represented by the following formula (1) is 20 to 40,
Ac3 point represented by the following formula (2) is 825 to 925 ° C., and when quenched and tempered under the following conditions, it has a characteristic in that it exhibits hardness: Hv110-350 and the following twist characteristics. ing. The steel material of the present invention may further contain Nb: 0.01 to 0.04% and / or V: 0.04 to 0.25%.
DI value = 15.07 x exp (-0.08 x γGS) x (0.7Si + 1) x (2.19Cr + 1) x (3.5Mn + 1)
× (2.9Mo + 1) × (0.9Ni + 1) × [1.5 (0.9−C) +1] × √C (1)
[In the formula (1), C, Si, Cr, Mn, Mo, Ni indicate the content (mass%) of each component.
And γGS = 9]
Ac3 point (℃) = 908−2.237C × 100 + 0.4385P × 1000 + 0.3049Si × 100
−0.3443Mn × 100−0.23Ni × 100 (2)
[In formula (2), C, P, Si, Mn, and Ni indicate the content (% by mass) of each component]

<焼入れ焼戻し条件>
試験片形状:直径10.9mm×長さ150mm
焼入条件:875℃で15分間保持後に水冷
焼戻条件:600℃で120分間保持後に放冷
<捻れ特性>
捻り試験:標点間距離=50mm
捻り速度=1rpm
測定項目;捻れ回数(回)、破断トルク(N・m)
捻れ破断応力=(12×破断トルク)/[π×(直径)3]=360N/mm2以上
捻回値(100D換算)=捻れ回数×(直径/標点間距離)×100=130回以上
<Quenching and tempering conditions>
Specimen shape: Diameter 10.9mm x Length 150mm
Quenching condition: Water cooling after holding at 875 ° C. for 15 minutes Tempering condition: Cooling after holding at 600 ° C. for 120 minutes <Torsion characteristics>
Twist test: Distance between gauge points = 50 mm
Twist speed = 1rpm
Measurement items: number of twists (times), breaking torque (N · m)
Twist breaking stress = (12 x breaking torque) / [π x (diameter) 3 ] = 360 N / mm 2 or more Twist value (100D conversion) = number of twists x (diameter / distance between gauge points) x 100 = 130 times or more

本発明は、この様な鋼材を用いて得られる強度−捻れ特性バランスに優れた鋼部品も規定するものであって、該鋼部品は、C、Si、Mn、P、S、Ni、Cr、Mo、Al、N、Ti、B(必要に応じて更にNb及び/又はV)の各成分が上記範囲を満たし、残部鉄および不可避不純物からなり、上記式(1)で表される臨界直径DI値が20〜40で、上記式(2)で表されるAc3点が825〜925℃であり、且つ金属組織が焼戻マルテンサイト主体で、硬さがHv110〜350であるところに特徴を有している。   The present invention also defines a steel part having an excellent balance between strength and torsional characteristics obtained by using such a steel material, and the steel part includes C, Si, Mn, P, S, Ni, Cr, Each component of Mo, Al, N, Ti, and B (further Nb and / or V if necessary) satisfies the above range, consists of the remaining iron and inevitable impurities, and has a critical diameter DI represented by the above formula (1) It is characterized in that the value is 20 to 40, the Ac3 point represented by the above formula (2) is 825 to 925 ° C., the metal structure is mainly tempered martensite, and the hardness is Hv 110 to 350. is doing.

また本発明の鋼部品は、C、Si、Mn、P、S、Ni、Cr、Mo、Al、N、Ti、B(必要に応じて更にNb及び/又はV)の各成分が上記範囲を満たし、残部鉄および不可避不純物からなり、上記式(1)で表される臨界直径DI値が20〜40で、上記式(2)で表されるAc3点が825〜925℃であり、且つ硬さがHv110〜350であると共に、下記捻れ特性を示すところに特徴を有するものでもある。
<捻れ特性>
捻り試験:標点間距離=50mm
捻り速度=1rpm
測定項目;捻れ回数(回)、破断トルク(N・m)
捻れ破断応力=(12×破断トルク)/[π×(直径)3]=360N/mm2以上
捻回値(100D換算)=捻れ回数×(直径/標点間距離)×100=130回以上
In the steel part of the present invention, each component of C, Si, Mn, P, S, Ni, Cr, Mo, Al, N, Ti, and B (if necessary, Nb and / or V) is within the above range. The critical diameter DI value represented by the above formula (1) is 20 to 40, the Ac3 point represented by the above formula (2) is 825 to 925 ° C. Is Hv110-350, and also has the characteristic in the following torsional characteristics.
<Twisting characteristics>
Twist test: Distance between gauge points = 50 mm
Twist speed = 1rpm
Measurement items: number of twists (times), breaking torque (N · m)
Twist breaking stress = (12 x breaking torque) / [π x (diameter) 3 ] = 360 N / mm 2 or more Twist value (100D conversion) = number of twists x (diameter / distance between gauge points) x 100 = 130 times or more

本発明は、上記鋼部品を製造する方法も規定するものであって、該製造方法は、前記鋼材を伸線加工し、次いで冷間加工を施して部品形状とした後、下記条件で焼入れ(焼戻しなし)または焼入れ焼戻しを行うところに特徴を有している。
焼入温度:Ac3点〜950℃
焼戻条件:200〜690℃の温度で30〜120分間保持
The present invention also prescribes a method for manufacturing the steel part. The manufacturing method includes drawing the steel material and then cold-working it into a part shape, followed by quenching under the following conditions ( No tempering) or is characterized by performing quenching and tempering.
Quenching temperature: Ac3 point to 950 ° C
Tempering conditions: held at a temperature of 200 to 690 ° C. for 30 to 120 minutes

本発明によれば、強度−捻れ特性バランスに優れた鋼部品を実現でき、特に、衝撃を受けると共に著しく高い捻れ特性の要求されるトーションバー等の様に、過酷な状況で使用される鋼部品を提供することができる。   According to the present invention, a steel part having an excellent balance between strength and torsional characteristics can be realized, and particularly steel parts that are used in severe conditions such as torsion bars that are subjected to impact and require extremely high torsional characteristics. Can be provided.

本発明者らは、強度−捻れ特性バランスに優れた鋼部品を実現すべく、鋭意研究を行ったところ、
(a)鋼部品の製造に供する鋼材のC量を、
・捻れ特性に大きな影響を与える焼入れ焼戻し後の延性を確保するという観点、及び
・焼きが入る最低限のC量を確保する
という観点から規定する、
(b)鋼部品の製造に供する鋼材の上記C以外の化学成分量を、焼入れ焼戻しで十分に強度を確保でき且つ捻れ特性に悪影響を与えない範囲内に調整する、
(c)鋼部品の製造工程において、部品形状に成形加工後、焼入れ(焼戻しなし)または焼入れ焼戻しを行うことを必須とし、該焼入れの条件を制御(焼戻しを行う場合は焼戻し条件も制御)することで、焼入時にCを全て溶かし込み、焼戻しを行なう場合にはパーライトでなくセメンタイトを析出させることで延性の低下を抑える、
といった点に重点をおいて、成分設計および製造方法を規定すればよいことを見出した。
The inventors of the present invention conducted intensive research to realize a steel part having an excellent balance between strength and torsional characteristics.
(A) C amount of steel material used for manufacturing steel parts,
-From the viewpoint of ensuring ductility after quenching and tempering, which has a large effect on torsional characteristics, and-From the viewpoint of ensuring the minimum amount of C to be quenched,
(B) adjusting the amount of chemical components other than C in the steel material used for the production of steel parts within a range in which sufficient strength can be secured by quenching and tempering and no adverse effect on torsional properties;
(C) In the manufacturing process of steel parts, it is essential to perform quenching (no tempering) or quenching and tempering after forming the part shape, and control the quenching conditions (and control the tempering conditions when tempering is performed). By melting all C during quenching and suppressing tempering by precipitating cementite instead of pearlite when tempering,
With the emphasis on these points, it has been found that the component design and manufacturing method should be specified.

まず、上記鋼部品と該部品を得るための鋼材の成分組成を規定した理由について述べる。   First, the reasons for defining the steel component and the composition of the steel material for obtaining the component will be described.

<C:0.03〜0.12%>
Cは、焼入処理で十分に焼きを入れるために必須であり、少なくとも0.03%必要である。好ましくは0.04%以上、より好ましくは0.05%以上である。一方、C量が多すぎると、焼戻した場合にセメンタイトが過剰に析出して捻れ特性に悪影響を及ぼすので好ましくない。また鋼材の強度が必要以上に高まり、冷間加工性等が低下して良好に加工することが難しくなる。よってC量は0.12%以下に抑える。好ましくは0.08%以下、より好ましくは0.07%以下である。
<C: 0.03 to 0.12%>
C is essential for sufficient quenching in the quenching treatment and needs to be at least 0.03%. Preferably it is 0.04% or more, more preferably 0.05% or more. On the other hand, when the amount of C is too large, cementite is excessively precipitated when tempered, which adversely affects torsional characteristics. Further, the strength of the steel material is increased more than necessary, and cold workability and the like are deteriorated, making it difficult to perform good processing. Therefore, the C content is suppressed to 0.12% or less. Preferably it is 0.08% or less, More preferably, it is 0.07% or less.

<Si:0.5%以下(0%を含まない)>
Siを添加して脱酸を行う場合には、鋼中Si量が0.01%以上となる。Siは焼入性の向上に有効な元素であり、また、焼戻し軟化抵抗性の向上にも有効であるので、これらの観点から積極的に添加してもよいが、Si量が過剰になると、フェライトの硬度が高くなり、冷間加工に使用する金型の寿命が短くなる等の不具合が生じるため0.5%以下に抑える。好ましくは0.35%以下、より好ましくは0.20%以下である。
<Si: 0.5% or less (excluding 0%)>
When deoxidation is performed by adding Si, the amount of Si in the steel becomes 0.01% or more. Si is an element effective for improving hardenability, and also effective for improving temper softening resistance. Therefore, it may be added positively from these viewpoints, but when the amount of Si becomes excessive, Since the hardness of the ferrite is increased and defects such as the life of the mold used for cold working are shortened, the ferrite content is limited to 0.5% or less. Preferably it is 0.35% or less, More preferably, it is 0.20% or less.

<Mn:0.25〜2%>
Mnは、焼入性の向上に有効な元素であり、特に靭性を保ちながら強度を向上させるのに有効な元素である。上記の通りC量を比較的低量に抑えると、オーステナイト化温度(Ac3点)が上がるが、焼入れ時にCを全て溶かし込むべく900℃以上に高めた場合、焼戻したときに結晶粒の粗大化が生じ易く捻れ特性が低下する。Mnは、この様なC量の抑えられた鋼材のAc3点を下げて、比較的低温での焼入れを可能にする有効な元素である。更にMnは、S(硫黄)をMnSとして捕捉し無害化する役割も有しており、本発明では、これらの効果を十分に発揮させるべく0.25%以上含有させる。好ましくは0.35%以上であり、より好ましくは0.45%以上である。
<Mn: 0.25 to 2%>
Mn is an element effective for improving hardenability, and is particularly an element effective for improving strength while maintaining toughness. As described above, when the amount of C is suppressed to a relatively low amount, the austenitizing temperature (Ac3 point) increases. However, when the temperature is raised to 900 ° C. or higher so as to dissolve all C during quenching, the crystal grains become coarse when tempered. Is likely to occur and the twisting characteristics are reduced. Mn is an effective element that lowers the Ac3 point of such a steel material with a reduced amount of C and enables quenching at a relatively low temperature. Furthermore, Mn also has a role of capturing S (sulfur) as MnS and rendering it harmless. In the present invention, Mn is contained in an amount of 0.25% or more in order to sufficiently exhibit these effects. Preferably it is 0.35% or more, more preferably 0.45% or more.

一方、Mn量が過剰になると、Mnが粒界酸化物の生成とP(りん)の偏析を助長し、遅れ破壊が生じやすくなるので2%以下に抑える。好ましくは1.85%以下、より好ましくは1.7%以下である。   On the other hand, if the amount of Mn becomes excessive, Mn promotes the formation of grain boundary oxides and segregation of P (phosphorus), and delayed fracture tends to occur, so it is suppressed to 2% or less. Preferably it is 1.85% or less, More preferably, it is 1.7% or less.

<Ni:1.5%以下(0%を含まない)
Cr:1%以下(0%を含まない)
Mo:1%以下(0%を含まない)>
これらの元素も焼入性を向上させるのに有用な元素であり、上記Mnとこれらの元素を組み合わせて焼入性を調整すればよい。焼入性を発現させるには、Niの場合0.01%以上、Crの場合0.01%以上、Moの場合0.01%以上を含有させるのがよい。
<Ni: 1.5% or less (excluding 0%)
Cr: 1% or less (excluding 0%)
Mo: 1% or less (excluding 0%)>
These elements are also useful elements for improving the hardenability, and the hardenability may be adjusted by combining the above Mn and these elements. In order to develop hardenability, it is preferable to contain 0.01% or more in the case of Ni, 0.01% or more in the case of Cr, and 0.01% or more in the case of Mo.

一方、これらの元素が過剰に含まれていると冷間加工性が損なわれるので、Niは1.5%以下(好ましくは1.25%以下、より好ましくは1%以下)、Crは1%以下(好ましくは0.6%以下、より好ましくは0.3%以下)、Moは1%以下(好ましくは0.8%以下、より好ましくは0.6%以下)に抑える。   On the other hand, if these elements are contained excessively, cold workability is impaired, so Ni is 1.5% or less (preferably 1.25% or less, more preferably 1% or less), and Cr is 1%. Or less (preferably 0.6% or less, more preferably 0.3% or less), and Mo is suppressed to 1% or less (preferably 0.8% or less, more preferably 0.6% or less).

<P:0.02%以下(0%を含まない)>
Pが過剰に含まれていると、粒界偏析が生じて靭性を劣化させる。よってP量は0.02%以下に抑える。好ましくは0.012%以下である。
<P: 0.02% or less (excluding 0%)>
When P is excessively contained, grain boundary segregation occurs and the toughness is deteriorated. Therefore, the P content is suppressed to 0.02% or less. Preferably it is 0.012% or less.

<S:0.02%以下(0%を含まない)>
Sは、MnSを形成して冷間加工時の変形能を劣化させる原因となるので0.02%以下に抑える。好ましくは0.012%以下である。
<S: 0.02% or less (excluding 0%)>
Since S causes MnS to be formed and deteriorates the deformability during cold working, it is suppressed to 0.02% or less. Preferably it is 0.012% or less.

<Al:0.01〜0.06%>
Alは脱酸を行うのに有効な元素であり、またN(窒素)とAlNを形成して結晶粒の微細化に寄与し、靭性を向上させるのに効果的である。この様な効果を得るには、Alを0.01%以上(好ましくは0.02%以上)含有させる必要がある。一方、Alが過剰に含まれていると、AlNが粗大となり靭性に悪影響を及ぼす。よってAl量は0.06%以下(好ましくは0.05%以下)に抑える。
<Al: 0.01 to 0.06%>
Al is an element effective for deoxidation, and contributes to refinement of crystal grains by forming N (nitrogen) and AlN, and is effective in improving toughness. In order to obtain such an effect, it is necessary to contain Al 0.01% or more (preferably 0.02% or more). On the other hand, if Al is contained excessively, AlN becomes coarse and adversely affects toughness. Therefore, the Al content is limited to 0.06% or less (preferably 0.05% or less).

<N:0.01%以下(0%を含まない)>
Nは不可避的に含まれる元素であり、過剰に含まれていると、Bとの窒化物形成が促進され固溶Bによる焼入性向上効果を十分に図ることができない。よってN量は0.01%以下に抑える。好ましくは0.005%以下である。
<N: 0.01% or less (excluding 0%)>
N is an element that is inevitably included. If excessively contained, nitride formation with B is promoted, and the effect of improving hardenability by solid solution B cannot be sufficiently achieved. Therefore, the N content is suppressed to 0.01% or less. Preferably it is 0.005% or less.

<Ti:0.005〜0.08%>
Tiは、NとTiNを形成させて、NとBとの窒化物形成を抑制し、Bによる焼入性の向上効果を高めるのに有効な元素である。また前記TiNによる結晶粒の粗大化抑制効果も有する。この様な効果を十分に発揮させるには、Ti量を0.005%以上(好ましくは0.01%以上、より好ましくは0.015%以上)とする。一方、Ti量が過剰になると、TiCによる析出強化作用が大きくなり冷間加工性が劣化するので好ましくない。よってTi量は0.08%以下(好ましくは0.07%以下、より好ましくは0.06%以下)に抑える。
<Ti: 0.005-0.08%>
Ti is an element effective for forming N and TiN, suppressing the formation of nitrides of N and B, and enhancing the effect of improving the hardenability by B. Moreover, it has the effect of suppressing the coarsening of crystal grains by the TiN. In order to sufficiently exhibit such an effect, the Ti amount is set to 0.005% or more (preferably 0.01% or more, more preferably 0.015% or more). On the other hand, when the amount of Ti is excessive, the precipitation strengthening action by TiC is increased and the cold workability is deteriorated, which is not preferable. Therefore, the Ti content is suppressed to 0.08% or less (preferably 0.07% or less, more preferably 0.06% or less).

<B:0.0008〜0.003%>
Bは、焼入れ性を確保するのに極めて有効な元素であり、本発明では0.0008%以上含有させる。好ましくは0.0010%以上、より好ましくは0.0015%以上である。一方、B量が過剰になると靭性が劣化するため0.003%以下に抑える。好ましくは0.0025%以下、より好ましくは0.0020%以下である。
<B: 0.0008 to 0.003%>
B is an extremely effective element for ensuring hardenability, and in the present invention, B is contained in an amount of 0.0008% or more. Preferably it is 0.0010% or more, More preferably, it is 0.0015% or more. On the other hand, if the amount of B becomes excessive, the toughness deteriorates, so the content is suppressed to 0.003% or less. Preferably it is 0.0025% or less, More preferably, it is 0.0020% or less.

本発明で規定する含有元素は上記の通りであり、残部成分は実質的にFeであるが、鋼中に、原料、資材、製造設備等の状況によって持ち込まれる不可避不純物として、Cu、Sn、O(酸素)等の混入が許容されるのは勿論のこと、前記本発明の作用に悪影響を与えない範囲で、下記の如く、更に他の元素を積極的に含有させることも可能である。   The contained elements defined in the present invention are as described above, and the remaining component is substantially Fe, but Cu, Sn, O as inevitable impurities brought into the steel depending on the situation of raw materials, materials, manufacturing equipment, etc. Needless to say, mixing of (oxygen) or the like is allowed, and other elements can be positively contained as described below within a range not adversely affecting the operation of the present invention.

<Nb:0.01〜0.04%>
Nbは、炭化物や窒化物を形成し結晶粒を微細化して、靭性を向上させるのに有効である。この様な効果を十分に発揮させるには、Nbを0.01%以上含有させることが好ましい。より好ましくは0.015%以上である。一方、Nbが過剰に含まれていると、析出強化作用が大きくなり冷間加工性が劣化するので、0.04%以下(より好ましくは0.035%以下)に抑えることが好ましい。
<Nb: 0.01 to 0.04%>
Nb is effective in improving the toughness by forming carbides and nitrides to refine crystal grains. In order to sufficiently exhibit such an effect, it is preferable to contain 0.01% or more of Nb. More preferably, it is 0.015% or more. On the other hand, when Nb is contained excessively, the precipitation strengthening action is increased and the cold workability is deteriorated.

<V:0.04〜0.25%>
Vも、Nbと同様に炭化物や窒化物を形成し、結晶粒を微細化して靭性を向上させるのに有効である。また遅れ破壊の抑制にも寄与する元素である。この様な効果を十分に発揮させるには、Vを0.04%以上含有させることが好ましい。より好ましくは0.08%以上である。一方、V量が過剰であると、析出強化作用が大きくなり優れた冷間加工性を確保できなくなるので、0.25%以下(より好ましくは0.2%以下)に抑えることが好ましい。
<V: 0.04 to 0.25%>
V is also effective in forming carbides and nitrides as in Nb, making the crystal grains finer, and improving toughness. It is also an element that contributes to the suppression of delayed fracture. In order to sufficiently exhibit such an effect, it is preferable to contain V by 0.04% or more. More preferably, it is 0.08% or more. On the other hand, if the amount of V is excessive, the precipitation strengthening effect becomes large and it becomes impossible to ensure excellent cold workability, so it is preferable to suppress it to 0.25% or less (more preferably 0.2% or less).

本発明では更に、鋼材の焼入性を確保すべく、下記式(1)で表される臨界直径DI値が20〜40となるように成分組成(C、Si、Mn、Cr、Mo、Ni)を調節する。このDI値が20以上であれば、本発明の様に比較的炭素量の少ない鋼材であっても十分に焼きを入れることが可能である。好ましくは24以上である。一方、DI値が高くなりすぎると、鋼材の強度が必要以上に高くなり冷間加工性に悪影響を及ぼすので40以下に抑える。好ましくは36以下である。
DI値=15.07×exp (-0.08×γGS) ×(0.7Si+1)×(2.19Cr+1)×(3.5Mn+1)
×(2.9Mo+1)×(0.9Ni+1)×[1.5(0.9−C)+1]×√C …(1)
[式(1)中、C、Si、Cr、Mn、Mo、Niは、各成分の含有量(質量%)を示
し、γGS=9である]
Further, in the present invention, in order to ensure the hardenability of the steel material, the component composition (C, Si, Mn, Cr, Mo, Ni, so that the critical diameter DI value represented by the following formula (1) is 20-40. ). If this DI value is 20 or more, even a steel material having a relatively small amount of carbon as in the present invention can be sufficiently quenched. Preferably it is 24 or more. On the other hand, if the DI value becomes too high, the strength of the steel material becomes higher than necessary and adversely affects cold workability, so it is suppressed to 40 or less. Preferably it is 36 or less.
DI value = 15.07 x exp (-0.08 x γGS) x (0.7Si + 1) x (2.19Cr + 1) x (3.5Mn + 1)
× (2.9Mo + 1) × (0.9Ni + 1) × [1.5 (0.9−C) +1] × √C (1)
[In the formula (1), C, Si, Cr, Mn, Mo, Ni indicate the content (mass%) of each component.
And γGS = 9]

また本発明では、下記式(2)より求められるAc3点が825〜925℃となるように、成分組成(C、P、Si、Mn、Ni)を調整する。Ac3点が高すぎると、焼入時の加熱温度を高める必要があり、結晶粒の粗大化を招く結果となる。よってAc3点が925℃以下、好ましくは900℃以下となるようにする。一方、Ac3点が低すぎると、未固溶炭化物が残存するため、Ac3点が825℃以上(好ましくは850℃以上)となるように成分組成を調整する。
Ac3点(℃)=908−2.237C×100+0.4385P×1000 +0.3049Si×100
−0.3443Mn×100−0.23Ni×100 …(2)
[式(2)中、C、P、Si、Mn、Niは、各成分の含有量(質量%)を示す]
Moreover, in this invention, component composition (C, P, Si, Mn, Ni) is adjusted so that Ac3 point calculated | required from following formula (2) may be 825-925 degreeC. If the Ac3 point is too high, it is necessary to increase the heating temperature during quenching, resulting in coarsening of crystal grains. Therefore, the Ac3 point is set to 925 ° C. or lower, preferably 900 ° C. or lower. On the other hand, if the Ac3 point is too low, undissolved carbides remain, so the component composition is adjusted so that the Ac3 point is 825 ° C. or higher (preferably 850 ° C. or higher).
Ac3 point (℃) = 908−2.237C × 100 + 0.4385P × 1000 + 0.3049Si × 100
−0.3443Mn × 100−0.23Ni × 100 (2)
[In formula (2), C, P, Si, Mn, and Ni indicate the content (% by mass) of each component]

上記要件を満たす鋼材は、下記条件で焼入れ焼戻したときに、硬さ:Hv110〜350を示すと共に、下記捻れ特性を示す。
<焼入れ焼戻し条件>
試験片形状:直径10.9mm×長さ150mm
焼入条件:875℃で15分間保持後に水冷
焼戻条件:600℃で120分間保持後に放冷
<捻れ特性>
捻り試験:標点間距離=50mm
捻り速度=1rpm
測定項目;捻れ回数(回)、破断トルク(N・m)
捻れ破断応力=(12×破断トルク)/[π×(直径)3]=360N/mm2以上
捻回値(100D換算)=捻れ回数×(直径/標点間距離)×100=130回以上
A steel material that satisfies the above requirements exhibits hardness: Hv110-350 and the following torsional characteristics when quenched and tempered under the following conditions.
<Quenching and tempering conditions>
Specimen shape: Diameter 10.9mm x Length 150mm
Quenching condition: Water cooling after holding at 875 ° C. for 15 minutes Tempering condition: Cooling after holding at 600 ° C. for 120 minutes <Torsion characteristics>
Twist test: Distance between gauge points = 50 mm
Twist speed = 1rpm
Measurement items: number of twists (times), breaking torque (N · m)
Twist breaking stress = (12 x breaking torque) / [π x (diameter) 3 ] = 360 N / mm 2 or more Twist value (100D conversion) = number of twists x (diameter / distance between gauge points) x 100 = 130 times or more

従来の鋼部品の製造では、線材を伸線加工した後、例えば冷間圧造して部品を形成していたが、該方法では高強度のものを得ることができなかった。しかし本発明では、上記の通り成分組成を調整した鋼材を用いて、伸線加工し、次いで冷間加工を施して部品形状とした後、下記条件で焼入れ(焼戻しなし)または焼入れ焼戻しを行うことによって、優れた捻れ特性を維持したまま高強度を達成することができる。   In the manufacture of conventional steel parts, after wire was drawn, the parts were formed by, for example, cold forging, but this method could not obtain a high-strength part. However, in the present invention, the steel material whose component composition is adjusted as described above is drawn, then cold worked to form a part shape, and then quenched (no tempering) or quenched and tempered under the following conditions. Thus, high strength can be achieved while maintaining excellent twist characteristics.

<焼入温度:Ac3点〜950℃>
焼入処理では、まずオーステナイト化温度まで高める。該温度が低すぎると、冷却時に十分に焼きが入らないからである。十分に焼き入れるには870℃以上にまで高めることが好ましい。一方、該温度が高すぎると、結晶粒の粗大化が起こり易くなるので950℃以下に抑える。好ましくは930℃以下である。
<Quenching temperature: Ac3 point to 950 ° C.>
In the quenching process, the temperature is first increased to the austenitizing temperature. This is because if the temperature is too low, sufficient baking will not occur during cooling. In order to fully quench, it is preferable to raise it to 870 degreeC or more. On the other hand, if the temperature is too high, the crystal grains are likely to be coarsened, so the temperature is suppressed to 950 ° C. or lower. Preferably it is 930 degrees C or less.

<焼戻条件:200〜690℃の温度で30〜120分間保持>
焼戻しは所望の強度レベルに応じて行えばよいが、焼戻しを行う場合には、少なくとも200℃まで加熱して延性を高めるのがよい。該温度を高めるほど延性が高まり優れた捻れ特性を達成させることができるが、焼戻温度は、変態が生じる限界温度:690℃を上回らないようにする。また焼戻温度を高めると、捻れ特性の向上に反比例して強度が低下するので、下記の通り、所望の強度に応じて焼戻温度を決定することが好ましい。尚、焼戻し時間は30〜120分間の間で強度を調整すればよい。また、加熱保持後は放冷等の方法で冷却すればよい。
引張強度:800〜1000N/mm2の鋼部品を得る場合
焼戻しなし、または200〜250℃で焼戻し
引張強度:550〜800N/mm2の鋼部品を得る場合
焼戻しなし、または400〜620℃で焼戻し
引張強度:360〜550N/mm2の鋼部品を得る場合
焼戻しなし、または620〜690℃で焼戻し
<Tempering conditions: held at a temperature of 200 to 690 ° C. for 30 to 120 minutes>
Tempering may be performed according to a desired strength level, but when tempering is performed, it is preferable to heat to at least 200 ° C. to increase ductility. The higher the temperature, the higher the ductility and the better torsional properties can be achieved, but the tempering temperature should not exceed the limit temperature at which transformation occurs: 690 ° C. Further, when the tempering temperature is increased, the strength decreases in inverse proportion to the improvement of the twist property, and therefore it is preferable to determine the tempering temperature according to the desired strength as described below. In addition, what is necessary is just to adjust intensity | strength between tempering time for 30 to 120 minutes. Moreover, what is necessary is just to cool by methods, such as standing to cool, after heating holding.
When obtaining steel parts with a tensile strength of 800 to 1000 N / mm 2 No tempering or tempering at 200 to 250 ° C. When obtaining steel parts with a tensile strength of 550 to 800 N / mm 2 No tempering or tempering at 400 to 620 ° C. When obtaining steel parts with a tensile strength of 360 to 550 N / mm 2 No tempering or tempering at 620 to 690 ° C.

本発明は、上記以外の製造条件について、特に規定するものでなく一般的な製造条件を採用することができ、鋼材の溶製方法や、鋼材を所定の形状(板状、線状、棒状等)とするための熱間圧延や冷間圧延、伸線加工についても、一般的に採用されている条件で行えばよい。   The present invention is not particularly specified for manufacturing conditions other than those described above, and general manufacturing conditions can be adopted. A method for melting steel, a predetermined shape (plate, wire, rod, etc.) The hot rolling, the cold rolling, and the wire drawing for the above may be performed under conditions generally employed.

部品形状とすべく冷間加工を施すが、該冷間加工として、冷間鍛造、冷間圧造、冷間転造等が挙げられる。成形加工において、前記冷間加工を施した後、焼入れ焼戻し前に切削加工を行ってもよい。尚、加工を容易に行う観点から、前記冷間加工を施してから焼入れ焼戻しを行う。本発明の鋼部品を製造するための工程(一部)として、例えば下記工程例1や工程例2が挙げられる。   Cold working is performed to obtain a part shape, and examples of the cold working include cold forging, cold forging, and cold rolling. In the forming process, after the cold working, cutting may be performed before quenching and tempering. From the viewpoint of easy processing, quenching and tempering are performed after the cold processing. Examples of the process (part) for producing the steel part of the present invention include the following process example 1 and process example 2.

<工程例1>
上記成分組成を満たす鋼線材または棒鋼を用いて、脱スケール(酸洗またはメカニカルデスケーリング)→潤滑処理(石灰またはりん酸酸亜鉛皮膜等)→伸線加工→冷間加工(冷間鍛造、冷間圧造)→上記条件で焼入れ(焼戻しなし)または焼入れ焼戻し
<工程例2>
上記成分組成を満たす鋼線材または棒鋼を用いて、脱スケール(酸洗またはメカニカルデスケーリング)→軟化熱処理→脱スケール(酸洗またはメカニカルデスケーリング)→潤滑処理(石灰またはりん酸酸亜鉛皮膜等)→伸線加工→冷間加工(冷間鍛造、冷間圧造)→上記条件で焼入れ(焼戻しなし)または焼入れ焼戻し
<Process example 1>
Descaling (pickling or mechanical descaling) → Lubrication (lime or zinc phosphate coating, etc.) → Wire drawing → Cold working (cold forging, Tempering) → quenching (no tempering) or quenching and tempering under the above conditions <Example 2>
Descaling (pickling or mechanical descaling) → Softening heat treatment → Descaling (pickling or mechanical descaling) → Lubrication treatment (lime or zinc phosphate coating, etc.) → Wire drawing → Cold working (cold forging, cold forging) → Quenching (no tempering) or quenching and tempering under the above conditions

本発明では、上記成分組成を満たす鋼材を用いて伸線加工し、次いで冷間加工を施して部品形状とした後、上記条件で焼入れ(焼戻しなし)または焼入れ焼戻しを行って得られる鋼部品として、硬さ:Hv110〜350を示すと共に下記捻れ特性を示すものが得られる。
<捻れ特性>
捻り試験:標点間距離=50mm
捻り速度=1rpm
測定項目;捻れ回数(回)、破断トルク(N・m)
捻れ破断応力=(12×破断トルク)/[π×(直径)3]=360N/mm2以上
捻回値(100D換算)=捻れ回数×(直径/標点間距離)×100=130回以上
In the present invention, as a steel part obtained by wire drawing using a steel material satisfying the above component composition, then cold-working into a part shape, and then quenching (no tempering) or quenching and tempering under the above conditions , Hardness: Hv110-350 and the following twist characteristics are obtained.
<Twisting characteristics>
Twist test: Distance between gauge points = 50 mm
Twist speed = 1rpm
Measurement items: number of twists (times), breaking torque (N · m)
Twist breaking stress = (12 x breaking torque) / [π x (diameter) 3 ] = 360 N / mm 2 or more Twist value (100D conversion) = number of twists x (diameter / distance between gauge points) x 100 = 130 times or more

特に、上記工程例1または工程例2の方法で製造した場合には、下記特性を満たす鋼部品が得られる。
・オーステナイト結晶粒度番号:7〜12番
・部品形状が軸状であれば、
引張強度(TS):360〜1000N/mm2
絞り(RA):70〜95%
捻回値:130回以上(100D換算)
捻れ破断応力:360〜660N/mm2
In particular, when manufactured by the method of Process Example 1 or Process Example 2, a steel part that satisfies the following characteristics is obtained.
-Austenite grain size number: 7-12-If the part shape is axial,
Tensile strength (TS): 360 to 1000 N / mm 2
Aperture (RA): 70-95%
Twist value: 130 times or more (100D conversion)
Twisted rupture stress: 360-660 N / mm 2

焼入れ焼戻された後の鋼部品の金属組織は、焼戻しマルテンサイト主体であり、フェライトやベイナイト、パーライト、セメンタイトは、製造過程で不可避的に形成される場合を除き積極的に含まれない。尚、本発明でいう焼戻しマルテンサイト主体とは、
・焼戻しマルテンサイト単相であり、残部として製造工程で不可避的に形成されるフェライト等が3体積%以下(0体積%含む)である場合、または
・焼戻しマルテンサイトと第2相である5体積%以下の残留オーステナイトを含み、残部として製造工程で不可避的に形成されるフェライト等が3体積%以下(0体積%含む)である場合をいう。
The metal structure of the steel part after quenching and tempering is mainly tempered martensite, and ferrite, bainite, pearlite, and cementite are not actively included unless they are inevitably formed in the manufacturing process. The main tempered martensite referred to in the present invention is
-When tempered martensite is a single phase and ferrite or the like unavoidably formed in the manufacturing process as the balance is 3% by volume or less (including 0% by volume), or-Tempered martensite and the second phase are 5 volumes % Or less of retained austenite and the ferrite or the like inevitably formed in the manufacturing process as the balance is 3% by volume or less (including 0% by volume).

本発明は、鋼部品の形状、用途等について限定するものでなく、例えば機械構造用鋼部品として、ねじ、ボルト、ナット、ソケット、ボールジョイント、インナーチューブ、トーションバー、クラッチケース、ケージ、ハウジング、ハブ、カバー、ケース、受座金、タペット、サドル、バルグ、インナーケース、クラッチ、スリーブ、アウターレース、スプロケット、コアー、ステータ、アンビル、スパイダー、ロッカーアーム、ボディー、フランジ、ドラム、継手、コネクター、プーリー、金具、ヨーク、口金、バルブリフター、スパークプラグの他、機械部品、電装部品等に適用することができる。   The present invention is not limited to the shape, use, etc. of the steel parts. For example, as steel parts for machine structures, screws, bolts, nuts, sockets, ball joints, inner tubes, torsion bars, clutch cases, cages, housings, Hub, cover, case, washer, tappet, saddle, bulg, inner case, clutch, sleeve, outer race, sprocket, core, stator, anvil, spider, rocker arm, body, flange, drum, fitting, connector, pulley, In addition to metal fittings, yokes, caps, valve lifters, and spark plugs, it can be applied to machine parts, electrical parts, and the like.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

表1に示す成分組成の供試鋼を溶製して得た。尚、表1に示す鋼種番号Gは既存鋼のJIS G 3507 SWRCH45Kであり、鋼種番号HはJIS G 3508 SWRCHB220である。   Test steels having the composition shown in Table 1 were obtained by melting. The steel type number G shown in Table 1 is JIS G 3507 SWRCH45K of the existing steel, and the steel type number H is JIS G 3508 SWRCHB220.

Figure 0004773106
Figure 0004773106

上記供試鋼を用いて直径約14.0mmにまで熱間圧延して圧延材を得た。該圧延材を下記条件(A)で焼入れ焼戻した試料を用いて、硬さの測定を行った。また下記の捻り試験(B)を行ない、下記捻れ破断応力及び捻回値(100D換算)を求めた。
<焼入れ焼戻し条件(A)>
試験片形状:直径10.9mm×長さ150mm
焼入条件:875℃で15分間保持後に水冷
焼戻条件:600℃で120分間保持後に放冷
<捻れ特性>
捻り試験(B):標点間距離=50mm
捻り速度=1rpm
測定項目;捻れ回数(回)、破断トルク(N・m)
捻れ破断応力=(12×破断トルク)/[π×(直径)3
捻回値(100D換算)=捻れ回数×(直径/標点間距離)×100
それから、上記圧延材を直径約13.0mmにまで伸線加工して得られた伸線材に、図1および表2の条件で焼入れ焼戻しを施した。
A rolled material was obtained by hot rolling to a diameter of about 14.0 mm using the test steel. Hardness was measured using a sample obtained by quenching and tempering the rolled material under the following condition (A). Further, the following twist test (B) was performed, and the following twist fracture stress and twist value (100D conversion) were obtained.
<Quenching and tempering conditions (A)>
Specimen shape: Diameter 10.9mm x Length 150mm
Quenching condition: Water cooling after holding at 875 ° C. for 15 minutes Tempering condition: Cooling after holding at 600 ° C. for 120 minutes <Torsion characteristics>
Torsion test (B): Distance between gauge points = 50 mm
Twist speed = 1rpm
Measurement items: number of twists (times), breaking torque (N · m)
Twist breaking stress = (12 x breaking torque) / [π x (diameter) 3 ]
Twist value (100D conversion) = Twist times x (Diameter / Distance between gauge points) x 100
Then, the drawn material obtained by drawing the rolled material to a diameter of about 13.0 mm was subjected to quenching and tempering under the conditions of FIG. 1 and Table 2.

尚、表2に示す変形能は、上記圧延材から切り出した直径12mm×長さ18mmの円柱状試料を用いて、図2に示す通り圧縮試験を行って求めた、割れない限界の圧縮率:(1−H/H0)×100(%)であり、冷間鍛造性を評価する指標である。尚、変形能については圧延材と伸線材でほぼ同じ数値を示すため、本実施例では、圧延材を用いて変形能を測定した。 In addition, the deformability shown in Table 2 was determined by performing a compression test as shown in FIG. 2 using a cylindrical sample having a diameter of 12 mm and a length of 18 mm cut out from the rolled material. (1-H / H 0 ) × 100 (%), which is an index for evaluating the cold forgeability. In addition, about the deformability, since the rolling material and the wire drawing material show substantially the same numerical value, in this example, the deformability was measured using the rolled material.

上記焼入れ焼戻したものを用いて、硬度(Hv)測定、引張試験および捻り試験を行い、焼入れ焼戻し後の特性を評価した。硬度(Hv)測定は、(試料断面の直径/4)〜中心部位において5箇所のビッカース硬度を測定しその平均値を求めた。引張試験では、JIS9号試験片を用いて引張強度(TS)および絞り(RA)を測定した。また捻り試験は、JIS9号試験片を採取して、標点間距離:50mm、捻り速度:1rpmの条件で試験を行い、破断するまでの捻れ回数(回)と破断トルク(N・m)を測定し、標点間距離が[直径(D)×100]の場合の捻れ回数(100D換算の捻回値)を下記式に基づいて算出した。また捻り破断応力を下記式から求めた。これらの結果を表2に示す。
捻回値(100D換算)=捻れ回数×(直径/標点間距離)×100
捻れ破断応力=(12×破断トルク)/[π×(直径)3
Using the above tempered and tempered materials, hardness (Hv) measurement, tensile test and twist test were performed, and the properties after quenching and tempering were evaluated. In the hardness (Hv) measurement, five Vickers hardnesses were measured from (sample cross-section diameter / 4) to the central portion, and the average value was obtained. In the tensile test, tensile strength (TS) and drawing (RA) were measured using a JIS No. 9 test piece. In the twist test, a JIS No. 9 test piece was sampled and tested under the conditions of a distance between gauge points: 50 mm and a twist speed: 1 rpm, and the number of twists (times) and breaking torque (N · m) until breaking. Measurement was performed, and the number of twists (twist value in terms of 100D) when the distance between the gauge points was [diameter (D) × 100] was calculated based on the following formula. Further, the twist rupture stress was obtained from the following formula. These results are shown in Table 2.
Twist value (100D conversion) = Twist times x (Diameter / Distance between gauge points) x 100
Twist breaking stress = (12 x breaking torque) / [π x (diameter) 3 ]

Figure 0004773106
Figure 0004773106

上記結果から次の様に考察することができる。まず表2のNo.1〜13(表2の実験No.を示す。以下同じ)は、いずれも本発明で規定する成分組成を満たす鋼材を用い、規定の条件で焼入れ焼戻しを行っているので、得られた鋼部品は、強度−捻れ特性バランスに優れている。また変形能も優れており加工性も確保できていることがわかる。   From the above results, it can be considered as follows. First, No. 2 in Table 2. Nos. 1 to 13 (shown in Experiment No. 2 in Table 2. The same applies hereinafter) are steel materials that satisfy the component composition defined in the present invention and are tempered under specified conditions. Is excellent in strength-twist characteristic balance. Further, it can be seen that the deformability is excellent and the workability can be secured.

これに対し、従来の鋼材(鋼材G,H)を用いたNo.14,15は、強度はどちらも高いが捻回値が小さく、強度−捻れ特性バランスに劣っている。   On the other hand, No. using conventional steel materials (steel materials G and H). Nos. 14 and 15 are both high in strength but small in twist value and inferior in strength-twist characteristic balance.

参考までに、実験No.7(本発明例)で得られた鋼部品の断面を光学顕微鏡で観察した顕微鏡組織写真(倍率:400倍)を図3に示す。この図3から、本発明の鋼材は、焼戻マルテンサイト主体の組織であり、旧オーステナイトの結晶粒径が小さいことがわかる。   For reference, experiment no. FIG. 3 shows a microstructure photograph (magnification: 400 times) of the cross section of the steel part obtained in 7 (Example of the present invention) observed with an optical microscope. FIG. 3 shows that the steel material of the present invention has a structure mainly composed of tempered martensite and has a small crystal grain size of prior austenite.

実施例で採用した焼入れ焼戻しパタンを示す図である。It is a figure which shows the quenching and tempering pattern employ | adopted in the Example. 実施例における圧縮試験の様子を示した模式図である。It is the schematic diagram which showed the mode of the compression test in an Example. 実験No.7(本発明例)で得られた鋼部品の顕微鏡組織写真である。Experiment No. It is a microscope picture of the steel part obtained by 7 (invention example).

Claims (6)

C :0.03〜0.12%(化学成分の場合は質量%の意味、以下同じ)、
Si:0.5%以下(0%を含まない)、
Mn:0.25〜2%、
P :0.02%以下(0%を含まない)、
S :0.02%以下(0%を含まない)、
Ni:0.01〜1.5%、
Cr:0.01〜1%、
Mo:0.01〜1%、
Al:0.01〜0.06%、
N :0.01%以下(0%を含まない)、
Ti:0.005〜0.08%、
B :0.0008〜0.003%
を満たし、残部鉄および不可避不純物からなり、
下記式(1)で表される臨界直径DI値が20〜40であり、
下記式(2)で表されるAc3点が825〜925℃であり、且つ
下記条件で焼入れ焼戻したときに、硬さ:Hv110〜350を示すと共に、下記捻れ特性を示すことを特徴とする鋼材。
DI値=15.07×exp (-0.08×γGS) ×(0.7Si+1)×(2.19Cr+1)×(3.5Mn+1)
×(2.9Mo+1)×(0.9Ni+1)×[1.5(0.9−C)+1]×√C …(1)
[式(1)中、C、Si、Cr、Mn、Mo、Niは、各成分の含有量(質量%)を示
し、γGS=9である]
Ac3点(℃)=908−2.237C×100+0.4385P×1000 +0.3049Si×100
−0.3443Mn×100−0.23Ni×100 …(2)
[式(2)中、C、P、Si、Mn、Niは、各成分の含有量(質量%)を示す]
<焼入れ焼戻し条件>
試験片形状:直径10.9mm×長さ150mm
焼入条件:875℃で15分間保持後に水冷
焼戻条件:600℃で120分間保持後に放冷
<捻れ特性>
捻り試験:標点間距離=50mm
捻り速度=1rpm
測定項目;捻れ回数(回)、破断トルク(N・m)
捻れ破断応力=(12×破断トルク)/[π×(直径)3]=360N/mm2以上
捻回値(100D換算)=捻れ回数×(直径/標点間距離)×100=130回以上
C: 0.03 to 0.12% (in the case of chemical components, the meaning of mass%, the same shall apply hereinafter),
Si: 0.5% or less (excluding 0%),
Mn: 0.25 to 2%,
P: 0.02% or less (excluding 0%),
S: 0.02% or less (excluding 0%),
Ni: 0.01 to 1.5%,
Cr: 0.01-1%,
Mo: 0.01 to 1%,
Al: 0.01 to 0.06%,
N: 0.01% or less (excluding 0%),
Ti: 0.005 to 0.08%,
B: 0.0008 to 0.003%
Consists of the balance iron and inevitable impurities,
The critical diameter DI value represented by the following formula (1) is 20 to 40,
Ac3 point represented by following formula (2) is 825-925 degreeC, and when hardened and tempered on the following conditions, while showing hardness: Hv110-350, the steel material characterized by showing the following twist property .
DI value = 15.07 x exp (-0.08 x γGS) x (0.7Si + 1) x (2.19Cr + 1) x (3.5Mn + 1)
× (2.9Mo + 1) × (0.9Ni + 1) × [1.5 (0.9−C) +1] × √C (1)
[In the formula (1), C, Si, Cr, Mn, Mo, Ni indicate the content (mass%) of each component.
And γGS = 9]
Ac3 point (℃) = 908−2.237C × 100 + 0.4385P × 1000 + 0.3049Si × 100
−0.3443Mn × 100−0.23Ni × 100 (2)
[In formula (2), C, P, Si, Mn, and Ni indicate the content (% by mass) of each component]
<Quenching and tempering conditions>
Specimen shape: Diameter 10.9mm x Length 150mm
Quenching condition: Water cooling after holding at 875 ° C. for 15 minutes Tempering condition: Cooling after holding at 600 ° C. for 120 minutes <Torsion characteristics>
Twist test: Distance between gauge points = 50 mm
Twist speed = 1rpm
Measurement items: number of twists (times), breaking torque (N · m)
Twist breaking stress = (12 x breaking torque) / [π x (diameter) 3 ] = 360 N / mm 2 or more Twist value (100D conversion) = number of twists x (diameter / distance between gauge points) x 100 = 130 times or more
更に、
Nb:0.01〜0.04%、及び/又は
V :0.04〜0.25%
を含む請求項1に記載の鋼材。
Furthermore,
Nb: 0.01-0.04% and / or V: 0.04-0.25%
The steel material of Claim 1 containing.
C :0.03〜0.12%、
Si:0.5%以下(0%を含まない)、
Mn:0.25〜2%、
P :0.02%以下(0%を含まない)、
S :0.02%以下(0%を含まない)、
Ni:0.01〜1.5%、
Cr:0.01〜%、
Mo:0.01〜%、
Al:0.01〜0.06%、
N :0.01%以下(0%を含まない)、
Ti:0.005〜0.08%、
B :0.0008〜0.003%
を満たし、残部鉄および不可避不純物からなり、
下記式(1)で表される臨界直径DI値が20〜40であり、
下記式(2)で表されるAc3点が825〜925℃であり、且つ
金属組織がマルテンサイト又は焼戻マルテンサイトであり、しかもフェライト、ベイナイト、パーライト、セメンタイトが合計で3体積%以下(0体積%含む)であり、硬さがHv110〜350であることを特徴とする強度−捻れ特性バランスに優れた鋼部品。
DI値=15.07×exp (-0.08×γGS) ×(0.7Si+1)×(2.19Cr+1)×(3.5Mn+1)
×(2.9Mo+1)×(0.9Ni+1)×[1.5(0.9−C)+1]×√C …(1)
[式(1)中、C、Si、Cr、Mn、Mo、Niは、各成分の含有量(質量%)を示
し、γGS=9である]
Ac3点(℃)=908−2.237C×100+0.4385P×1000 +0.3049Si×100
−0.3443Mn×100−0.23Ni×100 …(2)
[式(2)中、C、P、Si、Mn、Niは、各成分の含有量(質量%)を示す]
C: 0.03-0.12%,
Si: 0.5% or less (excluding 0%),
Mn: 0.25 to 2%,
P: 0.02% or less (excluding 0%),
S: 0.02% or less (excluding 0%),
Ni: 0.01 to 1.5 %,
Cr: 0.01 to 1 %,
Mo: 0.01 to 1 %,
Al: 0.01 to 0.06%,
N: 0.01% or less (excluding 0%),
Ti: 0.005 to 0.08%,
B: 0.0008 to 0.003%
Consists of the balance iron and inevitable impurities,
The critical diameter DI value represented by the following formula (1) is 20 to 40,
The Ac3 point represented by the following formula (2) is 825 to 925 ° C., the metal structure is martensite or tempered martensite, and ferrite, bainite, pearlite, and cementite are 3% by volume or less in total (0 Steel parts having an excellent balance between strength and torsional characteristics, characterized in that the hardness is Hv110 to 350.
DI value = 15.07 x exp (-0.08 x γGS) x (0.7Si + 1) x (2.19Cr + 1) x (3.5Mn + 1)
× (2.9Mo + 1) × (0.9Ni + 1) × [1.5 (0.9−C) +1] × √C (1)
[In the formula (1), C, Si, Cr, Mn, Mo, Ni indicate the content (mass%) of each component.
And γGS = 9]
Ac3 point (℃) = 908−2.237C × 100 + 0.4385P × 1000 + 0.3049Si × 100
−0.3443Mn × 100−0.23Ni × 100 (2)
[In formula (2), C, P, Si, Mn, and Ni indicate the content (% by mass) of each component]
C :0.03〜0.12%、
Si:0.5%以下(0%を含まない)、
Mn:0.25〜2%、
P :0.02%以下(0%を含まない)、
S :0.02%以下(0%を含まない)、
Ni:0.01〜1.5%、
Cr:0.01〜%、
Mo:0.01〜%、
Al:0.01〜0.06%、
N :0.01%以下(0%を含まない)、
Ti:0.005〜0.08%、
B :0.0008〜0.003%
を満たし、残部鉄および不可避不純物からなり、
下記式(1)で表される臨界直径DI値が20〜40であり、
下記式(2)で表されるAc3点が825〜925℃であり、且つ
金属組織がマルテンサイト又は焼戻マルテンサイトであり、しかもフェライト、ベイナイト、パーライト、セメンタイトが合計で3体積%以下(0体積%含む)であり、硬さがHv110〜350であると共に、下記捻れ特性を示すことを特徴とする強度−捻れ特性バランスに優れた鋼部品。
DI値=15.07×exp (-0.08×γGS) ×(0.7Si+1)×(2.19Cr+1)×(3.5Mn+1)
×(2.9Mo+1)×(0.9Ni+1)×[1.5(0.9−C)+1]×√C …(1)
[式(1)中、C、Si、Cr、Mn、Mo、Niは、各成分の含有量(質量%)を示
し、γGS=9である]
Ac3点(℃)=908−2.237C×100+0.4385P×1000 +0.3049Si×100
−0.3443Mn×100−0.23Ni×100 …(2)
[式(2)中、C、P、Si、Mn、Niは、各成分の含有量(質量%)を示す]
<捻れ特性>
捻り試験:標点間距離=50mm
捻り速度=1rpm
測定項目;捻れ回数(回)、破断トルク(N・m)
捻れ破断応力=(12×破断トルク)/[π×(直径)3]=360N/mm2以上
捻回値(100D換算)=捻れ回数×(直径/標点間距離)×100=130回以上
C: 0.03-0.12%,
Si: 0.5% or less (excluding 0%),
Mn: 0.25 to 2%,
P: 0.02% or less (excluding 0%),
S: 0.02% or less (excluding 0%),
Ni: 0.01 to 1.5 %,
Cr: 0.01 to 1 %,
Mo: 0.01 to 1 %,
Al: 0.01 to 0.06%,
N: 0.01% or less (excluding 0%),
Ti: 0.005 to 0.08%,
B: 0.0008 to 0.003%
Consists of the balance iron and inevitable impurities,
The critical diameter DI value represented by the following formula (1) is 20 to 40,
The Ac3 point represented by the following formula (2) is 825 to 925 ° C., the metal structure is martensite or tempered martensite, and ferrite, bainite, pearlite, and cementite are 3% by volume or less in total (0 A steel part having an excellent strength-twist characteristic balance, characterized in that the hardness is Hv110-350 and the following twist characteristics are exhibited.
DI value = 15.07 x exp (-0.08 x γGS) x (0.7Si + 1) x (2.19Cr + 1) x (3.5Mn + 1)
× (2.9Mo + 1) × (0.9Ni + 1) × [1.5 (0.9−C) +1] × √C (1)
[In the formula (1), C, Si, Cr, Mn, Mo, Ni indicate the content (mass%) of each component.
And γGS = 9]
Ac3 point (℃) = 908−2.237C × 100 + 0.4385P × 1000 + 0.3049Si × 100
−0.3443Mn × 100−0.23Ni × 100 (2)
[In formula (2), C, P, Si, Mn, and Ni indicate the content (% by mass) of each component]
<Twisting characteristics>
Twist test: Distance between gauge points = 50 mm
Twist speed = 1rpm
Measurement items: number of twists (times), breaking torque (N · m)
Twist breaking stress = (12 x breaking torque) / [π x (diameter) 3 ] = 360 N / mm 2 or more Twist value (100D conversion) = number of twists x (diameter / distance between gauge points) x 100 = 130 times or more
更に、
Nb:0.01〜0.04%、及び/又は
V :0.04〜0.25%
を含む請求項3または4に記載の鋼部品。
Furthermore,
Nb: 0.01-0.04% and / or V: 0.04-0.25%
The steel part according to claim 3 or 4 containing.
前記請求項3〜5のいずれかに記載の鋼部品を製造する方法であって、前記請求項1又は2に記載の鋼材を用いて伸線加工し、次いで冷間加工を施して部品形状とした後、下記条件で焼入れ(焼戻しなし)または焼入れ焼戻しを行うことを特徴とする鋼部品の製造方法。
焼入温度:Ac3点〜950℃
焼戻条件:200〜690℃の温度で30〜120分間保持
A method of manufacturing a steel part according to any one of claims 3 to 5, wherein the steel material according to claim 1 or 2 is drawn and then cold worked to obtain a part shape. And then quenching (no tempering) or quenching and tempering under the following conditions.
Quenching temperature: Ac3 point to 950 ° C
Tempering conditions: held at a temperature of 200 to 690 ° C. for 30 to 120 minutes
JP2005048918A 2005-02-24 2005-02-24 Steel parts with excellent balance between strength and torsional characteristics, manufacturing method thereof, and steel materials for steel parts Expired - Fee Related JP4773106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005048918A JP4773106B2 (en) 2005-02-24 2005-02-24 Steel parts with excellent balance between strength and torsional characteristics, manufacturing method thereof, and steel materials for steel parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005048918A JP4773106B2 (en) 2005-02-24 2005-02-24 Steel parts with excellent balance between strength and torsional characteristics, manufacturing method thereof, and steel materials for steel parts

Publications (2)

Publication Number Publication Date
JP2006233269A JP2006233269A (en) 2006-09-07
JP4773106B2 true JP4773106B2 (en) 2011-09-14

Family

ID=37041256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005048918A Expired - Fee Related JP4773106B2 (en) 2005-02-24 2005-02-24 Steel parts with excellent balance between strength and torsional characteristics, manufacturing method thereof, and steel materials for steel parts

Country Status (1)

Country Link
JP (1) JP4773106B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7772751B2 (en) 2006-03-13 2010-08-10 Ngk Spark Plug Co., Ltd. Spark plug having a rear-end portion of a threaded portion that has a higher hardness than a crimp portion and method of manufacturing the same
CN102134632B (en) * 2011-01-18 2012-05-30 浙江大学 Inflating device for blowing off water droplet
JP2014201776A (en) * 2013-04-02 2014-10-27 株式会社東海理化電機製作所 Torsion bar and webbing winder
CN105441801B (en) * 2015-11-27 2017-07-28 宝山钢铁股份有限公司 A kind of superhigh intensity superhigh tenacity petroleum casing pipe and its TMCP manufacture methods
CN113661620B (en) * 2019-04-11 2023-06-02 联邦-富豪燃气有限责任公司 Spark plug housing and method for manufacturing same
CN115058656B (en) * 2022-06-30 2023-08-11 马鞍山钢铁股份有限公司 Tyre for elastic wheel serving in cold environment and heat treatment process thereof
CN115491601A (en) * 2022-09-20 2022-12-20 武汉钢铁有限公司 Economical magnet yoke steel with yield strength of 350MPa grade produced by CSP production line and production method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63206449A (en) * 1987-02-20 1988-08-25 Kobe Steel Ltd Low-carbon steel for cold forging

Also Published As

Publication number Publication date
JP2006233269A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP5167616B2 (en) Metal bolts with excellent delayed fracture resistance
EP1746176B1 (en) Shaped steel article with excellent delayed fracture resistance and tensile strength of 1600 MPa class or more and methods of production of the same
JP5608145B2 (en) Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance
JP4773106B2 (en) Steel parts with excellent balance between strength and torsional characteristics, manufacturing method thereof, and steel materials for steel parts
WO2015146141A1 (en) Stabilizer steel having high strength and excellent corrosion resistance, vehicle stabilizer employing same, and method for manufacturing same
JP7422854B2 (en) Steel parts manufacturing method and steel parts
JP2020125538A (en) Steel for cold working machine structures, and method for producing same
WO2011048971A1 (en) Steel for high-strength bolts and process for production of high-strength bolts
JP4867638B2 (en) High-strength bolts with excellent delayed fracture resistance and corrosion resistance
JP5111014B2 (en) Steel for induction-hardened shaft parts and shaft parts
KR102437796B1 (en) Electric resistance welded steel pipe for manufacturing hollow stabilizer, hollow stabilizer, and manufacturing method thereof
JP4752800B2 (en) Non-tempered steel
JP2018024909A (en) Steel for machine structural use for cold working and production method thereof
JP5233307B2 (en) High-strength steel and metal bolts with excellent corrosion resistance and cold forgeability that prevent hydrogen from entering the environment
JP4801485B2 (en) Cold forged parts, manufacturing method for obtaining the same, and steel materials
JP5672740B2 (en) Manufacturing method of high fatigue strength case hardening steel
JP6265048B2 (en) Case-hardened steel
JP2017186652A (en) Non-heat-treated wire rod for bolt, non-heat-treated steel wire for bolt and methods for manufacturing them, and non-heat-treated bolt
JP2012201984A (en) Steel for induction hardening excellent in cold forgeability and torsional strength, and method of manufacturing the same
JP5233848B2 (en) Non-tempered steel bar for direct cutting
JPH09202921A (en) Production of wire for cold forging
JP4515347B2 (en) Method for determining fatigue resistance of spring steel wires and spring steel wires
JP6282078B2 (en) Manufacturing method of steel parts made of mechanical structural steel with excellent grain size characteristics and impact characteristics
WO2023248556A1 (en) Steel for high-frequency hardening
WO2017170756A1 (en) Non-heat-treated wire rod for bolt, non-heat-treated steel wire for bolt, and method for manufacturing same, and non-heat-treated bolt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4773106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees