JP5608145B2 - Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance - Google Patents

Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance Download PDF

Info

Publication number
JP5608145B2
JP5608145B2 JP2011237844A JP2011237844A JP5608145B2 JP 5608145 B2 JP5608145 B2 JP 5608145B2 JP 2011237844 A JP2011237844 A JP 2011237844A JP 2011237844 A JP2011237844 A JP 2011237844A JP 5608145 B2 JP5608145 B2 JP 5608145B2
Authority
JP
Japan
Prior art keywords
delayed fracture
strength
content
steel
fracture resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011237844A
Other languages
Japanese (ja)
Other versions
JP2012162798A (en
Inventor
洋介 松本
淳 稲田
政道 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011237844A priority Critical patent/JP5608145B2/en
Publication of JP2012162798A publication Critical patent/JP2012162798A/en
Application granted granted Critical
Publication of JP5608145B2 publication Critical patent/JP5608145B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B31/00Screwed connections specially modified in view of tensile load; Break-bolts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B33/00Features common to bolt and nut
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、自動車や各種産業機械等に用いられるボルト用鋼、およびこのボルト用鋼を用いて得られる高強度ボルトに関し、特に引張強さが1100MPa以上であっても優れた耐遅れ破壊性を発揮するボロン添加高強度ボルト用鋼および高強度ボルトに関するものである。   The present invention relates to a steel for bolts used in automobiles, various industrial machines, and the like, and a high-strength bolt obtained by using this steel for bolts, and particularly has excellent delayed fracture resistance even when the tensile strength is 1100 MPa or more. The present invention relates to a boron-added high-strength bolt steel and a high-strength bolt.

現在、引張強さが1100MPaまでのボルトは、ボロン添加鋼への移行による低廉化が進められているが、それよりも高強度となるボルトでは、SCM等の規格鋼が依然として多用されている。SCM規格鋼には、CrやMo等の合金元素が多量に添加されているため、鋼材コスト低減の要請に伴い、CrやMoを低減したSCM代替鋼への要望が高まっている。しかしながら、合金元素を単純に低減するだけでは、強度の確保が困難となる。   Currently, bolts with a tensile strength of up to 1100 MPa are being made cheaper by shifting to boron-added steel, but standard steels such as SCM are still frequently used for bolts with higher strength. Since a large amount of alloy elements such as Cr and Mo are added to the SCM standard steel, the demand for SCM alternative steel with reduced Cr and Mo is increasing with the demand for reducing the steel material cost. However, it is difficult to ensure the strength simply by reducing the alloy elements.

そこで、ボロン添加による焼入れ性向上効果を利用したボロン添加鋼を高強度ボルトの素材として用いることが検討されている。しかしながら、強度上昇に伴って耐遅れ破壊性が大幅に悪化するため、使用環境の厳しい部位での適用は困難である。   Therefore, it has been studied to use boron-added steel using the effect of improving hardenability by adding boron as a material for high-strength bolts. However, since the delayed fracture resistance greatly deteriorates as the strength increases, it is difficult to apply in severe parts of the usage environment.

耐遅れ破壊性を改善するための技術が、これまでにも様々提案されている。例えば、特許文献1では、ボロン添加鋼に所定量のCuを含有させることによって、鋼中への水素の侵入を抑制する技術が提案されている。しかしながら、Cuを含有させるだけでは、耐食性の確保は難しい状況である。   Various techniques for improving delayed fracture resistance have been proposed so far. For example, Patent Document 1 proposes a technique for suppressing entry of hydrogen into steel by containing a predetermined amount of Cu in boron-added steel. However, it is difficult to ensure corrosion resistance only by containing Cu.

また特許文献2や特許文献3では、結晶粒微細化によって耐遅れ破壊性の向上を図っているが、結晶粒微細化の効果のみでは更なる過酷環境下への適用は困難である。   Further, Patent Document 2 and Patent Document 3 attempt to improve delayed fracture resistance by crystal grain refinement, but it is difficult to apply to a more severe environment only by the effect of crystal grain refinement.

特許文献4は、遅れ破壊の評価方法と耐遅れ破壊性に優れた鋼材に関するものであり、鋼材としては炭素当量とSの添加量を規定したものであるが、極低硫黄を図るだけでは遅れ破壊の発生を完全に抑制することは困難であり、また硫黄を極端に低減する必要があるため製造コストの増大を招く可能性もある。   Patent Document 4 relates to a method for evaluating delayed fracture and a steel material excellent in delayed fracture resistance. As a steel material, a carbon equivalent and an addition amount of S are specified, but it is delayed only by achieving extremely low sulfur. It is difficult to completely suppress the occurrence of destruction, and it is necessary to extremely reduce sulfur, which may increase the production cost.

一方、特許文献5は、靭性および耐遅れ破壊性に優れた耐摩耗鋼材に関する技術であるが、圧延後にそのまま焼入れを行い、また焼入れを特定の温度域で途中停止する必要があるため、工程が複雑化し、製造コストの増大を招く可能性がある。   On the other hand, Patent Document 5 is a technique related to a wear-resistant steel material excellent in toughness and delayed fracture resistance, but it is necessary to perform quenching as it is after rolling and to stop quenching in a specific temperature range. It may be complicated and increase the manufacturing cost.

また特許文献6は、靭性および耐遅れ破壊性に優れた耐摩耗鋼材ならびにその製造方法に関するものであるが、焼入れ焼戻し後に加工する必要があるため、ボルトに転用した場合はボルト成型が困難になる。更に、特許文献6で対象となる鋼材は板状であり、耐遅れ破壊性の評価も、切り欠きのない平板を用いて行っているが、本発明で対象とするボルトは切り欠き部を有するため、この特許文献6に示される耐遅れ破壊性よりもより厳しい基準で耐遅れ破壊性を評価する必要がある。   Patent Document 6 relates to a wear-resistant steel material excellent in toughness and delayed fracture resistance, and a method for producing the same. However, since it is necessary to process after quenching and tempering, it is difficult to form a bolt when diverted to a bolt. . Furthermore, the steel material which is the object in Patent Document 6 is plate-like, and the delayed fracture resistance is evaluated using a flat plate without a notch, but the bolt which is the object of the present invention has a notch. Therefore, it is necessary to evaluate the delayed fracture resistance based on a stricter standard than the delayed fracture resistance shown in Patent Document 6.

耐遅れ破壊性を改善するためにこれまで提案されている技術は、いずれも強度、過酷環境下での耐遅れ破壊性や製造面で問題を有している。   All of the technologies proposed so far for improving delayed fracture resistance have problems in strength, delayed fracture resistance in harsh environments, and manufacturing.

特開2006−118003号公報JP 2006-118003 A 特許第3535754号公報Japanese Patent No. 3535754 特許第3490293号公報Japanese Patent No. 3490293 特許第4370991号公報Japanese Patent No. 4370991 特開2002−80930号公報JP 2002-80930 A 特開2002−115024号公報Japanese Patent Application Laid-Open No. 2002-115024

本発明はこのような状況の下でなされたものであって、その目的は、CrやMo等の高価な合金元素を多量に添加することなく、引張強さが1100MPa以上の高強度であっても耐遅れ破壊性に優れたボロン添加高強度ボルト用鋼、およびこのようなボロン添加高強度ボルト用鋼からなる高強度ボルトを提供することにある。   The present invention has been made under such circumstances, and its purpose is to have a high strength of 1100 MPa or more without adding a large amount of expensive alloy elements such as Cr and Mo. Another object is to provide a boron-added high-strength bolt steel excellent in delayed fracture resistance, and a high-strength bolt made of such a boron-added high-strength bolt steel.

上記目的を達成することのできた本発明のボロン添加高強度ボルト用鋼とは、C:0.20〜0.40%未満(質量%の意味、以下同じ)、Si:0.20〜1.50%、Mn:0.30〜2.0%、P:0.03%以下(0%を含まない)、S:0.03%以下(0%を含まない)、Ni:0.05〜1.0%、Cr:0.01〜1.50%、Cu:1.0%以下(0%を含む)、Al:0.01〜0.10%、Ti:0.01〜0.1%、B:0.0003〜0.0050%およびN:0.002〜0.010%を夫々含有する他、Cu,NiおよびCrよりなる群から選ばれる1種以上を合計で0.10〜3.0%含有し、残部が鉄および不可避的不純物からなり、且つSiの含有量[Si]とCの含有量[C]の比([Si]/[C])が1.0以上であると共に、フェライト・パーライト組織である点に要旨を有するものである。   The boron-added high-strength bolt steel according to the present invention that has achieved the above object is C: 0.20 to less than 0.40% (meaning mass%, the same applies hereinafter), Si: 0.20 to 1. 50%, Mn: 0.30 to 2.0%, P: 0.03% or less (not including 0%), S: 0.03% or less (not including 0%), Ni: 0.05 to 1.0%, Cr: 0.01 to 1.50%, Cu: 1.0% or less (including 0%), Al: 0.01 to 0.10%, Ti: 0.01 to 0.1 %, B: 0.0003 to 0.0050% and N: 0.002 to 0.010%, respectively, and one or more selected from the group consisting of Cu, Ni and Cr in total 0.10 3.0% content, the balance being iron and inevitable impurities, and the ratio of Si content [Si] to C content [C] ([Si] / [C] Together but not less than 1.0, and has a gist in that a ferrite-pearlite structure.

本発明のボロン添加高強度ボルト用鋼においては、必要によって、更に、Nb:0.01〜0.1%および/またはV:0.01〜0.1%を含有させることも有効であり、これらを含有させることによってボロン添加高強度ボルト用鋼の特性が更に改善される。   In the steel for boron-added high-strength bolts of the present invention, it is effective to further contain Nb: 0.01 to 0.1% and / or V: 0.01 to 0.1%, if necessary. The inclusion of these further improves the properties of the boron-added high-strength bolt steel.

一方、上記目的を達成することのできた本発明の高強度ボルトとは、上記のような鋼材(ボロン添加高強度ボルト用鋼)を使用し、ボルト形状に成形加工した後、焼入れおよび焼戻し処理を行い、組織を焼戻しマルテンサイトとした際の引張強さが1100MPa以上である点に要旨を有するものである。   On the other hand, the high-strength bolt of the present invention that has achieved the above-mentioned object is a steel material as described above (steel for boron-added high-strength bolts), and after forming into a bolt shape, quenching and tempering are performed. It has a gist in that the tensile strength when the structure is tempered martensite is 1100 MPa or more.

本発明においては、化学成分組成を厳密に規定すると共に、SiとCの含有量の比([Si]/[C])の値を適正な範囲に制御することによって、過酷な環境下でも優れた耐遅れ破壊性を発揮するボロン添加高強度ボルト用鋼が実現でき、こうした鋼材を用いれば、耐遅れ破壊性に優れた高強度ボルトが実現できる。   In the present invention, the chemical composition is strictly defined, and the ratio of the Si and C content ([Si] / [C]) is controlled within an appropriate range, so that it is excellent even in harsh environments. Boron-added high-strength bolt steel that exhibits delayed fracture resistance can be realized. By using such a steel material, high-strength bolts with excellent delayed fracture resistance can be realized.

本発明で用いた試験片の外観形状を示す説明図である。It is explanatory drawing which shows the external appearance shape of the test piece used by this invention. 比([Si]/[C])の値と遅れ破壊強度比2との関係を示すグラフである。It is a graph which shows the relationship between the value of ratio ([Si] / [C]) and delayed fracture strength ratio 2. 実施例における本発明例と比較例の腐食減量と遅れ破壊強度比2をグラフ化したものである。The corrosion weight loss and delayed fracture strength ratio 2 of the examples of the present invention and comparative examples in Examples are graphed.

本発明者らは、MoやCr等の高価な合金元素を多量に添加することなく、引張強さが1100MPa以上の高強度でも優れた耐遅れ破壊性を示すボロン添加鋼について鋭意研究を重ねた。その結果、引張強さが1100MPa以上のボロン添加鋼では、合金元素を含有させるよりもC含有量を極力低減することが耐遅れ破壊性の確保に非常に有効であることを見出した。Cを低減することは強度が不足することにつながるが、Si含有量をC含有量と同等以上とすることで[即ち、SiとCの含有量の比([Si]/[C])が1.0以上]、C含有量を低減することによる強度低下を十分担保できることが判明した。   The present inventors have conducted extensive research on boron-added steel that exhibits excellent delayed fracture resistance even at a high strength of 1100 MPa or higher without adding a large amount of expensive alloy elements such as Mo and Cr. . As a result, it has been found that, in a boron-added steel having a tensile strength of 1100 MPa or more, reducing the C content as much as possible is very effective in securing delayed fracture resistance than containing alloy elements. Reducing C leads to insufficient strength, but by making the Si content equal to or higher than the C content [ie, the ratio of Si and C content ([Si] / [C]) 1.0 or more], it was found that the strength reduction by reducing the C content can be sufficiently secured.

またC含有量を低減することによって耐食性も向上するが、過酷環境下で十分な耐遅れ破壊性を確保するためには、Cu,Ni,Cr等の合計含有量を制御することが有効であり、更に他の各化学成分を調整することで、1100MPa以上の引張強さでも優れた耐遅れ破壊性を有するボロン添加鋼が実現できることを見出し、本発明を完成した。また、本発明の鋼材は、必要に応じてボルト成型前に球状化焼鈍処理を実施してもよい。   Although the corrosion resistance is improved by reducing the C content, it is effective to control the total content of Cu, Ni, Cr, etc. in order to ensure sufficient delayed fracture resistance in harsh environments. Furthermore, by adjusting other chemical components, it was found that a boron-added steel having excellent delayed fracture resistance could be realized even with a tensile strength of 1100 MPa or more, and the present invention was completed. Moreover, the steel material of this invention may implement a spheroidizing annealing process before bolt shaping | molding as needed.

Cは、鋼の強度を確保する上で有用な元素であるが、その含有量を増加させると鋼の靭性や耐食性が悪化し、遅れ破壊を引き起こしやすくなる。一方、Siも鋼の強度を確保する上で有用な元素であるが、遅れ破壊との関係は不明確であった。そこで本発明者らは、Siによる遅れ破壊への影響について調査した。その結果、Cの含有量よりもSiの添加量を多くすることで、1100MPa以上の引張強さと、過酷環境下での優れた耐遅れ破壊性が両立できたのである。   C is an element useful for ensuring the strength of the steel, but increasing its content deteriorates the toughness and corrosion resistance of the steel and tends to cause delayed fracture. On the other hand, Si is also an element useful for ensuring the strength of steel, but the relationship with delayed fracture was unclear. Therefore, the present inventors investigated the influence of Si on delayed fracture. As a result, by increasing the amount of Si added rather than the C content, it was possible to achieve both a tensile strength of 1100 MPa or more and excellent delayed fracture resistance under harsh environments.

即ち、Cの単独添加のみで1100MPa以上を確保しようとすると、鋼の耐食性が悪化し、鋼表面での水素発生量が増加して、結果的に鋼に侵入する水素量も増加し、遅れ破壊が発生しやすくなる。Cu,Ni,Cr等の耐食性向上元素を添加することによって耐食性の改善を図っても、マトリクスの耐食性が低いため、大きな改善効果は現れなかった。   That is, if it is attempted to secure 1100 MPa or more only by adding C alone, the corrosion resistance of the steel deteriorates, the amount of hydrogen generated on the steel surface increases, and as a result, the amount of hydrogen entering the steel also increases, resulting in delayed fracture. Is likely to occur. Even if the corrosion resistance is improved by adding an element for improving corrosion resistance such as Cu, Ni, Cr, etc., the corrosion resistance of the matrix is low.

これに対して、CとSiの複合添加では、Siで強度を上げることができるため、相対的にCの含有量を減少させることができる。即ち、マトリクスのC含有量を低下し、鋼の耐食性にあまり影響を与えないSiで強度を担保することによって、耐食性および耐遅れ破壊性に優れ、1100MPa以上の引張強さを確保することが可能となったのである。また、マトリクスの耐食性を上げることで、Cu,Ni,Cr等の耐食性向上元素の効果が顕著に現れることが判明した。   On the other hand, when C and Si are added in combination, the strength can be increased by Si, so that the C content can be relatively reduced. That is, by reducing the C content of the matrix and securing the strength with Si that does not significantly affect the corrosion resistance of steel, it is excellent in corrosion resistance and delayed fracture resistance, and it is possible to ensure a tensile strength of 1100 MPa or more. It became. Further, it has been found that the effect of the corrosion resistance improving element such as Cu, Ni, Cr, etc. appears remarkably by increasing the corrosion resistance of the matrix.

本発明のボロン添加ボルト用鋼においては、上記の趣旨からして、Siの含有量[Si](質量%)とCの含有量[C](質量%)の比([Si]/[C])が1.0以上であることが必要である。これによって、優れた耐遅れ破壊性を示すものとなる。上記比([Si]/[C])の値は、好ましくは2.0以上であり、より好ましくは3.0以上である。但し、上記比([Si]/[C])が1.0以上を満たしていても、化学成分組成が適正な範囲から外れる場合は、耐遅れ破壊性その他の特性が劣化するような不都合が生じる。   In the steel for boron-added bolts of the present invention, the ratio of the Si content [Si] (mass%) and the C content [C] (mass%) ([Si] / [C ]) Must be 1.0 or more. As a result, excellent delayed fracture resistance is exhibited. The value of the ratio ([Si] / [C]) is preferably 2.0 or more, and more preferably 3.0 or more. However, even if the ratio ([Si] / [C]) satisfies 1.0 or more, if the chemical component composition is out of the proper range, there is a disadvantage that the delayed fracture resistance and other characteristics deteriorate. Arise.

上記比([Si]/[C])の値は、Cの含有量に応じて、その適正な範囲を制御することも効果的である。具体的には、(a)C:0.20〜0.25%未満のときには、比([Si]/[C])の値を2.0以上とし、(b)C:0.25〜0.29%未満のときには、比([Si]/[C])の値を1.5以上とし、(c)C:0.29%以上のときには(即ち、0.29〜0.40%未満)、比([Si]/[C])の値を1.0以上とする構成が好ましい。   It is also effective to control the appropriate range of the ratio ([Si] / [C]) according to the C content. Specifically, when (a) C: 0.20 to less than 0.25%, the ratio ([Si] / [C]) is set to 2.0 or more, and (b) C: 0.25 to When the ratio is less than 0.29%, the ratio ([Si] / [C]) is set to 1.5 or more. (C) When C is 0.29% or more (that is, 0.29 to 0.40%). Less) and the ratio ([Si] / [C]) is preferably 1.0 or more.

本発明の鋼材では、その鋼材としての基本的特性を満足させるために、C,Si,Mn,P,S,Al,Ti,B,N,Cu,Ni,Cr等の成分を適切に調整する必要がある。これらの成分の範囲限定理由は、次の通りである。   In the steel material of the present invention, components such as C, Si, Mn, P, S, Al, Ti, B, N, Cu, Ni, and Cr are appropriately adjusted in order to satisfy the basic characteristics as the steel material. There is a need. The reasons for limiting the ranges of these components are as follows.

[C:0.20〜0.40%未満]
Cは、炭化物を形成すると共に、高強度鋼として必要な引張強さ確保する上で欠くことができない元素である。こうした効果を発揮させるためには、0.20%以上含有させる必要がある。しかし、Cを過剰に含有させると、靭性低下や延性低下を招いて耐遅れ破壊性が劣化する。このようなCの悪影響を避けるためには、C含有量は0.40%未満とする必要がある。尚、C含有量の好ましい下限は0.22%であり、より好ましくは0.25%以上とするのが良い。また、C含有量の好ましい上限は0.35%であり、より好ましくは0.30%以下とするのが良い。
[C: 0.20 to less than 0.40%]
C is an element indispensable for forming carbides and securing tensile strength necessary for high-strength steel. In order to exhibit such an effect, it is necessary to contain 0.20% or more. However, when C is contained excessively, the delayed fracture resistance is deteriorated due to a decrease in toughness and a decrease in ductility. In order to avoid such an adverse effect of C, the C content needs to be less than 0.40%. In addition, the minimum with preferable C content is 0.22%, It is good to set it as 0.25% or more more preferably. Moreover, the upper limit with preferable C content is 0.35%, It is good to set it as 0.30% or less more preferably.

[Si:0.20〜1.50%]
Siは、溶製時の脱酸剤として作用すると共に、マトリクスを強化する固溶元素として必要な元素であり、0.20%以上含有させることによって十分な強度を確保できる。しかしながら、1.50%を超えてSiを過剰に含有させると、球状化焼鈍を実施しても鋼材の冷間加工性が低下すると共に、焼入れ時の熱処理での粒界酸化を助長して耐遅れ破壊性を劣化させる。尚、Si含有量の好ましい下限は0.3%であり、より好ましくは0.4%以上とするのが良い。また、Si含有量の好ましい上限は1.0%であり、より好ましくは0.8%以下とするのが良い。
[Si: 0.20 to 1.50%]
Si acts as a deoxidizer during melting and is an element necessary as a solid solution element for strengthening the matrix. By containing 0.20% or more, sufficient strength can be ensured. However, if Si is contained excessively exceeding 1.50%, the cold workability of the steel material is deteriorated even when spheroidizing annealing is performed, and the grain boundary oxidation in the heat treatment at the time of quenching is promoted. Deteriorating delayed fracture. In addition, the minimum with preferable Si content is 0.3%, More preferably, it is good to set it as 0.4% or more. Moreover, the upper limit with preferable Si content is 1.0%, It is good to set it as 0.8% or less more preferably.

[Mn:0.30〜2.0%]
Mnは焼入れ性向上元素であり、高強度化を達成する上で重要な元素である。Mnは0.30%以上含有させることで、その効果を発揮させることができる。しかしながら、Mn含有量が過剰になると、粒界への偏析を助長して粒界強度が低下し、耐遅れ破壊性が却って低下するため、2.0%を上限とした。尚、Mn含有量の好ましい下限は0.4%であり、より好ましくは0.6%以上とするのが良い。また、Mn含有量の好ましい上限は1.5%であり、より好ましくは1.0%以下とするのが良い。
[Mn: 0.30 to 2.0%]
Mn is an element that improves hardenability, and is an important element for achieving high strength. The effect can be exhibited by containing 0.30% or more of Mn. However, if the Mn content is excessive, segregation to the grain boundary is promoted, the grain boundary strength is lowered, and the delayed fracture resistance is lowered, so 2.0% was made the upper limit. In addition, the minimum with preferable Mn content is 0.4%, It is good to set it as 0.6% or more more preferably. Moreover, the upper limit with preferable Mn content is 1.5%, It is good to set it as 1.0% or less more preferably.

[P:0.03%以下(0%を含まない)]
Pは不純物として含有するが、過剰に存在すると粒界偏析を起こして粒界強度を低下させて、遅れ破壊特性を悪化させる。そのため、P含有量の上限は0.03%とした。尚、P含有量の好ましい上限は0.01%であり、より好ましくは0.005%以下とするのが良い。
[P: 0.03% or less (excluding 0%)]
P is contained as an impurity, but if it is present in an excessive amount, it causes segregation at the grain boundary, lowers the grain boundary strength, and deteriorates delayed fracture characteristics. Therefore, the upper limit of the P content is 0.03%. In addition, the upper limit with preferable P content is 0.01%, It is good to set it as 0.005% or less more preferably.

[S:0.03%以下(0%を含まない)]
Sが過剰に存在すると、硫化物が結晶粒界に偏析し、粒界強度の低下を招いて耐遅れ破壊性が低下する。そのため、S含有量の上限を0.03%とした。尚、S含有量の好ましい上限は0.01%であり、より好ましくは0.006%以下とするのが良い。
[S: 0.03% or less (excluding 0%)]
If S is present in excess, sulfides segregate at the grain boundaries, leading to a decrease in grain boundary strength and delayed fracture resistance. Therefore, the upper limit of the S content is set to 0.03%. In addition, the upper limit with preferable S content is 0.01%, It is good to set it as 0.006% or less more preferably.

[Ni:0.05〜1.0%]
Niは耐食性向上元素であり、0.05%以上添加することで効果を発揮する。しかしながら、多量に添加すると鋼材コストの増大を招くため、上限は1.0%とする。尚、Ni含有量の好ましい下限は0.10%であり、より好ましくは0.15%以上である。また、Ni含有量の好ましい上限は0.80%であり、より好ましい上限は0.50%である。
[Ni: 0.05 to 1.0%]
Ni is an element that improves corrosion resistance, and exhibits an effect when added in an amount of 0.05% or more. However, if added in a large amount, the steel material cost increases, so the upper limit is made 1.0%. In addition, the minimum with preferable Ni content is 0.10%, More preferably, it is 0.15% or more. Moreover, the upper limit with preferable Ni content is 0.80%, and a more preferable upper limit is 0.50%.

[Cr:0.01〜1.50%]
Crは耐食性向上元素であり、0.01%以上添加することで効果を発揮する。しかしながら、多量に添加すると鋼材コストの増大を招くため、上限は1.50%とする。尚、Cr含有量の好ましい下限は0.05%であり、より好ましい下限は0.10%である。また、Cr含有量の好ましい上限は1.0%であり、より好ましい上限は0.80%である。
[Cr: 0.01 to 1.50%]
Cr is an element for improving corrosion resistance, and exhibits an effect by adding 0.01% or more. However, if added in a large amount, the steel material cost increases, so the upper limit is made 1.50%. In addition, the minimum with preferable Cr content is 0.05%, and a more preferable minimum is 0.10%. Moreover, the upper limit with preferable Cr content is 1.0%, and a more preferable upper limit is 0.80%.

[Cu:1.0%以下(0%を含む)]
Cuは耐食性向上元素であり、この効果を発揮させるには、0.05%以上含有させることが好ましい。しかし、多量に添加すると鋼材コストの増大を招くため、上限は1.0%とする。尚、Cu含有量の好ましい上限は0.80%であり、より好ましい上限は0.50%である。
[Cu: 1.0% or less (including 0%)]
Cu is an element for improving corrosion resistance, and in order to exert this effect, 0.05% or more is preferably contained. However, if added in a large amount, the steel material cost increases, so the upper limit is made 1.0%. In addition, the upper limit with preferable Cu content is 0.80%, and a more preferable upper limit is 0.50%.

[Al:0.01〜0.10%]
Alは、鋼の脱酸に有効な元素であり、且つAlNを形成することによって、オーステナイト粒の粗大化を防止することができる。こうした効果を発揮させるためには、Al含有量は0.01%以上とする必要がある。しかしながら、Al含有量が0.10%を超えて過剰になっても、その効果が飽和する。尚、Al含有量の好ましい下限は0.02%であり、より好ましくは0.03%以上とするのが良い。また、Al含有量の好ましい上限は0.08%であり、より好ましくは0.05%以下とするのが良い。
[Al: 0.01 to 0.10%]
Al is an element effective for deoxidation of steel, and by forming AlN, austenite grains can be prevented from becoming coarse. In order to exert such effects, the Al content needs to be 0.01% or more. However, even if the Al content exceeds 0.10% and becomes excessive, the effect is saturated. In addition, the minimum with preferable Al content is 0.02%, More preferably, it is good to set it as 0.03% or more. Moreover, the upper limit with preferable Al content is 0.08%, More preferably, it is good to set it as 0.05% or less.

[Ti:0.01〜0.1%]
Tiは、鋼中のNを固定するとともに、TiCを析出させて遅れ破壊性を向上させるのに有効である。また、上記で生成する窒化物および炭化物は、結晶粒の微細化に有用であり、これによって耐遅れ破壊性の更なる向上が図れることになる。これらの効果を有効に発揮させるためには、Tiは0.01%以上含有させる必要がある。しかしながら、Ti含有量が過剰になって0.1%を超えると、加工性の低下を招くことになる。尚、Ti含有量の好ましい下限は0.02%であり、より好ましくは0.03%以上とするのが良い。また、Ti含有量の好ましい上限は0.08%であり、より好ましくは0.05%以下とするのが良い。
[Ti: 0.01 to 0.1%]
Ti is effective for fixing N in steel and precipitating TiC to improve delayed fracture. In addition, the nitrides and carbides generated above are useful for refining crystal grains, and this can further improve delayed fracture resistance. In order to exhibit these effects effectively, it is necessary to contain Ti 0.01% or more. However, if the Ti content is excessive and exceeds 0.1%, the workability is reduced. In addition, the minimum with preferable Ti content is 0.02%, More preferably, it is good to set it as 0.03% or more. Moreover, the upper limit with preferable Ti content is 0.08%, More preferably, it is good to set it as 0.05% or less.

[B:0.0003〜0.0050%]
Bは、鋼の焼入れ性を向上させる上で有効な元素であり、その効果を発揮させるためには0.0003%以上含有させる必要がある。しかしながら、B含有量が過剰になって0.0050%を超えると靭性が却って低下する。尚、B含有量の好ましい下限は0.0005%であり、より好ましくは0.001%以上とするのが良い。また、B含有量の好ましい上限は0.004%であり、より好ましくは0.003%以下とするのが良い。
[B: 0.0003 to 0.0050%]
B is an element effective in improving the hardenability of steel, and in order to exhibit the effect, it is necessary to contain 0.0003% or more. However, if the B content becomes excessive and exceeds 0.0050%, the toughness is lowered instead. In addition, the minimum with preferable B content is 0.0005%, More preferably, it is good to set it as 0.001% or more. Moreover, the upper limit with preferable B content is 0.004%, More preferably, it is good to set it as 0.003% or less.

[N:0.002〜0.010%]
Nは、溶製後の凝固段階で、Tiと結合してTiNを形成し、結晶粒の微細化を図って耐遅れ破壊性を向上させる。こうした効果は、Nの含有量が0.002%以上で有効に発揮される。しかしながら、TiNが多量に形成されると、1300℃程度の加熱では溶解せず、Ti炭化物の形成を阻害する。また過剰のNは、遅れ破壊特性に対し却って有害となり、特に含有量が0.010%を超えて過剰になると、遅れ破壊特性を著しく低下させる。尚、N含有量の好ましい下限は0.003%であり、より好ましくは0.004%以上とするのが良い。また、N含有量の好ましい上限は0.008%であり、より好ましくは0.006%以下とするのが良い。
[N: 0.002 to 0.010%]
N is combined with Ti to form TiN in the solidification stage after melting, and refines crystal grains to improve delayed fracture resistance. Such an effect is effectively exhibited when the N content is 0.002% or more. However, when a large amount of TiN is formed, it is not dissolved by heating at about 1300 ° C. and inhibits the formation of Ti carbide. Further, excessive N becomes harmful to the delayed fracture characteristics, and particularly when the content exceeds 0.010%, the delayed fracture characteristics are remarkably lowered. In addition, the minimum with preferable N content is 0.003%, It is good to set it as 0.004% or more more preferably. Moreover, the upper limit with preferable N content is 0.008%, More preferably, it is good to set it as 0.006% or less.

[Cu,NiおよびCrよりなる群から選ばれる1種以上:合計で0.10〜3.0%]
Cu,NiおよびCrは、いずれも耐食性向上元素であり、それらの合計の添加量を0.10%以上にすることで,鋼中への水素侵入を抑制し、耐遅れ破壊性を向上できる。しかしながら、これらの元素が過剰になると,鋼材コスト増大を招くため、合計で3.0%以下とする必要がある。尚、これらの元素の合計含有量の好ましい下限は0.15%であり、より好ましい下限は0.20%である。また、これらの元素の合計含有量の好ましい上限は2.0%であり、より好ましい上限は1.5%である。
[One or more selected from the group consisting of Cu, Ni and Cr: 0.10 to 3.0% in total]
Cu, Ni, and Cr are all elements that improve corrosion resistance, and by making the total addition amount thereof 0.10% or more, hydrogen penetration into the steel can be suppressed and delayed fracture resistance can be improved. However, if these elements are excessive, the steel material cost is increased, so the total amount needs to be 3.0% or less. In addition, the minimum with preferable total content of these elements is 0.15%, and a more preferable minimum is 0.20%. Moreover, the upper limit with preferable total content of these elements is 2.0%, and a more preferable upper limit is 1.5%.

本発明のボロン添加高強度ボルト用鋼における基本成分は上記の通りであり、残部は鉄および不可避的不純物からなるものである。   The basic components in the steel for boron-added high-strength bolts of the present invention are as described above, and the balance is composed of iron and inevitable impurities.

また、本発明のボロン添加高強度ボルト用鋼には、上記成分の他に必要によって、更に、NbやVを含有させることも有効である、これらの元素を含有させるときの適正な範囲および作用は下記の通りである。   In addition, the boron-added high-strength bolt steel according to the present invention is effective to contain Nb and V, if necessary, in addition to the above components. Is as follows.

[Nb:0.01〜0.1%および/またはV:0.01〜0.1%]
NbおよびVは、結晶粒の微細化や耐遅れ破壊性の向上に有効な元素であり、こうした効果を発揮させるためには、NbまたはVを0.01%以上含有させることが好ましい。しかしながら、これらの元素を過剰に含有させると、熱間圧延まま材の強度が必要以上に高くなり、しかも鋼材コストの増大も招くためその上限を夫々0.1%とした。尚、これらの元素の含有量の好ましい下限は、夫々0.02%であり、より好ましくは0.03%以上とするのが良い。また、含有量の好ましい上限は夫々0.08%であり、より好ましくは0.06%以下とするのが良い。
[Nb: 0.01 to 0.1% and / or V: 0.01 to 0.1%]
Nb and V are effective elements for refining crystal grains and improving delayed fracture resistance. In order to exert such effects, it is preferable to contain Nb or V in an amount of 0.01% or more. However, if these elements are contained excessively, the strength of the material as it is hot-rolled becomes higher than necessary, and the cost of the steel material increases, so the upper limit was made 0.1%. In addition, the minimum with preferable content of these elements is 0.02%, respectively, More preferably, it is good to set it as 0.03% or more. Moreover, the upper limit with preferable content is 0.08%, respectively, More preferably, it is good to set it as 0.06% or less.

上記化学成分組成を有するボロン添加高強度ボルト用鋼は、圧延後の組織が基本的にフェライトとパーライトの混合組織(「フェライト・パーライト」と表示)となるが、この鋼材は、必要により球状化処理を実施し或は実施せずに、ボルト形状に成形加工した後、焼入れおよび焼戻し処理を行い、組織を焼戻しマルテンサイトとすることによって、所定の引張強さを確保できると共に、優れた耐遅れ破壊性を有するものとなる。このときの焼入れおよび焼戻し処理の適正な条件は、下記の通りである。   The steel for boron-added high-strength bolts having the above chemical composition is basically a mixed structure of ferrite and pearlite (indicated as “ferrite / pearlite”) after rolling, but this steel can be spheroidized if necessary. With or without processing, after forming into a bolt shape, quenching and tempering are performed to make the structure tempered martensite, thereby ensuring a predetermined tensile strength and excellent delay resistance. It will be destructive. Appropriate conditions for quenching and tempering at this time are as follows.

焼入れ時の加熱では、安定的にオーステナイト化処理するために、850℃以上の加熱が必要である。しかしながら、960℃を超えるような高温に加熱すると、結晶粒が粗大化し、遅れ破壊特性を却って劣化させる原因となる。従って、結晶粒粗大化を防止するため、960℃以下で加熱して焼入れすることが有用である。   In the heating at the time of quenching, heating at 850 ° C. or higher is necessary in order to stably perform the austenitizing treatment. However, when heated to a high temperature exceeding 960 ° C., the crystal grains become coarse, which causes deterioration in delayed fracture characteristics. Therefore, in order to prevent crystal grain coarsening, it is useful to heat and quench at 960 ° C. or lower.

焼入れしたままのボルトは、靭性および延性が低く、そのままの状態ではボルト製品にならないので焼戻し処理を施す必要がある。そのためには、少なくとも200℃以上の温度で焼戻し処理することが有効である。この温度が600℃を超えると、上記化学成分組成の鋼材では1100MPa以上の引張強さを確保することができなくなる。また、旧オーステナイト結晶粒度は、微細化するほど耐遅れ破壊性が向上するので好ましい。こうした効果を発揮させるには、結晶粒度番号(JIS G 0551)で8以上にすることが好ましい。   The as-quenched bolt has low toughness and ductility, and does not become a bolt product as it is, so it needs to be tempered. For this purpose, it is effective to perform a tempering treatment at a temperature of at least 200 ° C. When this temperature exceeds 600 ° C., the steel material having the above chemical composition cannot secure a tensile strength of 1100 MPa or more. Further, the prior austenite grain size is preferable because the delayed fracture resistance is improved as the grain size is reduced. In order to exert such an effect, the grain size number (JIS G 0551) is preferably 8 or more.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含されるものである。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

下記表1に示す化学成分組成の鋼材(試験No.1〜24)を溶製した後、圧延を行って、直径:12mmφの線材とした。各線材の圧延後の組織を表1に併記する。その後、870℃から焼入れを行い、引張強さが1100MPa以上を確保できる範囲で焼戻しを行った後、引張試験を実施した。また、図1に示す切り欠き付き試験片を用いて耐食性と耐遅れ破壊性を評価した。更に、図1の試験片の切り欠きのないものを用いて耐遅れ破壊性を評価した。尚、引張試験では、軸部の切り欠きがないものを用い、遅れ破壊試験においては、ねじ部の応力集中を模擬できるように切り欠き付きの試験片を用いた。   Steel materials (test Nos. 1 to 24) having the chemical composition shown in Table 1 below were melted and then rolled to obtain a wire rod having a diameter of 12 mmφ. Table 1 shows the structure of each wire after rolling. Thereafter, quenching was performed from 870 ° C., and tempering was performed within a range in which a tensile strength of 1100 MPa or more could be secured, and then a tensile test was performed. Moreover, corrosion resistance and delayed fracture resistance were evaluated using the test piece with a notch shown in FIG. Furthermore, the delayed fracture resistance was evaluated using the test piece of FIG. In the tensile test, a test piece without a shaft notch was used, and in the delayed fracture test, a test piece with a notch was used so as to simulate the stress concentration of the screw part.

耐食性は、15%HClに試験片を30分浸漬した際の浸漬前後の腐食減量によって評価した。また、耐遅れ破壊性は、15%HClに試験片を30分浸漬し、水洗および乾燥した後、一定荷重を負荷し、100時間以上破断しない荷重を比較することで実施した。このとき、酸浸漬後に100時間以上破断しない荷重を、酸浸漬なしで引張試験した際の最大荷重で除した値を遅れ破壊強度比として定義し、この値(遅れ破壊強度比)が0.70以上のものを合格と判断した。それらの結果を、焼入れおよび焼戻し後の組織と共に、下記表2に示す。表2において、「遅れ破壊強度比1」は、切り欠きのない試験片を用いて耐遅れ破壊性を評価した結果を示しており、「遅れ破壊強度比2」は、切り欠き付き試験片を用いて耐遅れ破壊性を評価した結果を示している。尚、所定の引張強さ(1100MPa以上の引張強さ)が得られなかった例については、耐食性および耐遅れ破壊性の試験を実施していない。また、これらの結果に基づき、比([Si]/[C])の値と遅れ破壊強度比2との関係を図2に示す。   Corrosion resistance was evaluated by corrosion weight loss before and after immersion of a test piece in 15% HCl for 30 minutes. Delayed fracture resistance was implemented by immersing the test piece in 15% HCl for 30 minutes, washing with water and drying, then applying a constant load, and comparing the load that did not break for more than 100 hours. At this time, a value obtained by dividing the load that does not break for 100 hours or more after acid immersion by the maximum load when the tensile test is performed without acid immersion is defined as a delayed fracture strength ratio, and this value (delayed fracture strength ratio) is 0.70. The above was judged as acceptable. The results are shown in Table 2 below together with the structures after quenching and tempering. In Table 2, “Delayed Fracture Strength Ratio 1” indicates the result of evaluation of delayed fracture resistance using a test piece without a notch, and “Delayed Fracture Strength Ratio 2” indicates a test piece with a notch. It shows the results of evaluating delayed fracture resistance. In addition, about the example where predetermined | prescribed tensile strength (tensile strength of 1100 Mpa or more) was not acquired, the test of corrosion resistance and delayed fracture resistance was not implemented. Further, based on these results, the relationship between the value of the ratio ([Si] / [C]) and the delayed fracture strength ratio 2 is shown in FIG.

これらの結果から、次の様に考察できる。試験No.1〜14のものは、本発明で規定する要件[化学成分組成および比([Si]/[C])]を満足する例(本発明鋼)であり、高い強度と共に、優れた耐遅れ破壊性を発揮していることが分かる。   From these results, it can be considered as follows. Test No. Examples 1 to 14 are examples (the steel of the present invention) that satisfy the requirements [chemical component composition and ratio ([Si] / [C])] defined in the present invention, and have high strength and excellent delayed fracture resistance. It can be seen that it is exhibiting sex.

これに対し、試験No.15のものは、C含有量が少なくなっているので、通常の熱処理では1100MPa以上の引張強さを確保できない。   In contrast, test no. In the case of No. 15, the C content is low, so that a tensile strength of 1100 MPa or more cannot be secured by ordinary heat treatment.

試験No.16のものは、C含有量が多くなっているので、延性低下により遅れ破壊強度比が低下している(切り欠きのない試験片では、耐遅れ破壊性に優れているが、切り欠き付き試験片では耐遅れ破壊性に劣っている)。   Test No. No. 16 has a higher C content, so the ratio of delayed fracture strength is reduced due to a decrease in ductility (the test piece without notch is excellent in delayed fracture resistance, but the notched test The piece is inferior in delayed fracture resistance).

試験No.17のものは、Si含有量が少ないため、[Si]/[C]の比が1.0未満であり、通常の熱処理では1100MPa以上の引張強さを確保できていない。   Test No. In No. 17, since the Si content is small, the ratio of [Si] / [C] is less than 1.0, and a tensile strength of 1100 MPa or more cannot be secured by ordinary heat treatment.

試験No.18のものは、個々の元素の含有量は満足しているものの、[Si]/[C]の比が1.0未満のため、鋼材の耐食性が悪化して遅れ破壊強度比(特に遅れ破壊強度比2)が低下している。   Test No. In the case of No. 18, although the content of each element is satisfactory, the ratio of [Si] / [C] is less than 1.0, so the corrosion resistance of the steel material deteriorates and the delayed fracture strength ratio (particularly delayed fracture) The intensity ratio 2) is reduced.

試験No.19のものは、Mn含有量が少ないものであり、通常の熱処理条件では1100MPa以上の引張強さを確保できていない。   Test No. No. 19 has a low Mn content, and a tensile strength of 1100 MPa or more cannot be secured under normal heat treatment conditions.

試験No.20のものは、Mn含有量が過剰になっているので、偏析によって粒界強度が低下し、耐遅れ破壊性が悪くなっている(遅れ破壊強度比2が0.32)。   Test No. In No. 20, since the Mn content is excessive, the grain boundary strength is reduced due to segregation, and the delayed fracture resistance is deteriorated (delayed fracture strength ratio 2 is 0.32).

試験No.21のものは、Niが添加されていないものであり、耐食性が悪化し、耐遅れ破壊性が低くなっている(遅れ破壊強度比1が0.64で、遅れ破壊強度比2が0.33)。   Test No. No. 21 has no added Ni, and the corrosion resistance is deteriorated and the delayed fracture resistance is low (the delayed fracture strength ratio 1 is 0.64 and the delayed fracture strength ratio 2 is 0.33). ).

試験No.22のものは、必須であるNiとCrを含んでおらず、そのため耐食性が悪化し、耐遅れ破壊性が低くなっている(遅れ破壊強度比1が0.62で、遅れ破壊強度比2が0.39)。   Test No. No. 22 does not contain essential Ni and Cr, and therefore the corrosion resistance is deteriorated and the delayed fracture resistance is low (the delayed fracture strength ratio 1 is 0.62 and the delayed fracture strength ratio 2 is 0.39).

試験No.23のものは、必須であるCrを含んでいないため、耐食性が悪化し、耐遅れ破壊性が低くなっている(遅れ破壊強度比2が0.41)。   Test No. Since No. 23 does not contain essential Cr, corrosion resistance is deteriorated and delayed fracture resistance is low (delayed fracture strength ratio 2 is 0.41).

試験No.24のものは、Cu、NiおよびCrの合計含有量が0.10%未満であるため、耐食性が十分でなく、耐遅れ破壊性が低くなっている(遅れ破壊強度比2が0.62)。   Test No. In No. 24, since the total content of Cu, Ni and Cr is less than 0.10%, the corrosion resistance is not sufficient and the delayed fracture resistance is low (the delayed fracture strength ratio 2 is 0.62). .

また表2の試験No.15〜24のうち、耐遅れ破壊性を評価したものについて、遅れ破壊強度比1は0.70以上であるが、遅れ破壊強度比2は0.70に満たない例が多くみられる。このことから、特許文献6のように耐遅れ破壊性の評価に切り欠きのない試験片を用いた場合には、耐遅れ破壊性に優れていると評価される場合であっても、本発明でボルトを想定して切り欠きを有する試験片を用いた場合には、耐遅れ破壊性に劣る場合があるといえる。つまり、本発明のようなボルト用鋼の耐遅れ破壊性は、より厳しい評価であるといえる。   In addition, test No. Among those evaluated for delayed fracture resistance among 15 to 24, delayed fracture strength ratio 1 is 0.70 or more, but delayed fracture strength ratio 2 is often less than 0.70. From this, when a test piece without a notch is used for evaluation of delayed fracture resistance as in Patent Document 6, even if it is evaluated that the delayed fracture resistance is excellent, the present invention When a specimen having a notch is used assuming a bolt, it can be said that the delayed fracture resistance may be inferior. That is, it can be said that the delayed fracture resistance of the bolt steel as in the present invention is a stricter evaluation.

図3は、試験No.1〜14(本発明例)と試験No.15〜24のうち耐食性および耐遅れ破壊性の試験を実施した例(比較例)の、腐食減量と遅れ破壊強度比2の値をグラフ化したものである。この図3から、本発明例は比較例と比べて、腐食減量が小さく、切り欠き付き試験片を用いて測定した遅れ破壊強度比2が高い、即ち、耐遅れ破壊性に優れていることがわかる。   FIG. 1-14 (invention example) and test no. The value of corrosion weight loss and delayed fracture strength ratio 2 of the example (comparative example) which carried out the test of corrosion resistance and delayed fracture resistance among 15-24 is graphed. From FIG. 3, it can be seen that the inventive example has a smaller corrosion weight loss than the comparative example and has a high delayed fracture strength ratio 2 measured using a notched test piece, that is, excellent delayed fracture resistance. Recognize.

Claims (3)

C:0.20〜0.40%未満(質量%の意味、以下同じ)、Si:0.20〜1.50%、Mn:0.30〜2.0%、P:0.03%以下(0%を含まない)、S:0.03%以下(0%を含まない)、Ni:0.05〜1.0%、Cr:0.01〜1.50%、Cu:1.0%以下(0%を含む)、Al:0.01〜0.10%、Ti:0.01〜0.1%、B:0.0003〜0.0050%およびN:0.002〜0.010%を夫々含有する他、Cu,NiおよびCrよりなる群から選ばれる1種以上を合計で0.10〜3.0%含有し、残部が鉄および不可避的不純物からなり、且つSiの含有量[Si]とCの含有量[C]の比([Si]/[C])が1.0以上であると共に、フェライト・パーライト組織であることを特徴とする耐遅れ破壊性に優れたボロン添加高強度ボルト用鋼。   C: Less than 0.20 to 0.40% (meaning mass%, the same applies hereinafter), Si: 0.20 to 1.50%, Mn: 0.30 to 2.0%, P: 0.03% or less (Not including 0%), S: 0.03% or less (not including 0%), Ni: 0.05 to 1.0%, Cr: 0.01 to 1.50%, Cu: 1.0 % Or less (including 0%), Al: 0.01-0.10%, Ti: 0.01-0.1%, B: 0.0003-0.0050% and N: 0.002-0. In addition to each containing 010%, one or more selected from the group consisting of Cu, Ni and Cr is contained in total of 0.10 to 3.0%, the balance is made of iron and inevitable impurities, and Si is contained The ratio ([Si] / [C]) of the amount [Si] and the content [C] of C is 1.0 or more and is a ferrite pearlite structure Delayed fracture resistance excellent boron-added high-strength bolts for steel. 更に、Nb:0.01〜0.1%および/またはV:0.01〜0.1%を含有するものである請求項1に記載のボロン添加高強度ボルト用鋼。   Furthermore, the steel for boron addition high strength bolts of Claim 1 which contains Nb: 0.01-0.1% and / or V: 0.01-0.1%. 請求項1または2に記載のボロン添加高強度ボルト用鋼を使用し、ボルト形状に成形加工した後、焼入れおよび焼戻し処理を行い、組織を焼戻しマルテンサイトとした際の引張強さが1100MPa以上であることを特徴とする耐遅れ破壊性に優れた高強度ボルト。   Using the boron-added high-strength bolt steel according to claim 1 or 2, after forming into a bolt shape, quenching and tempering treatment are performed, and the tensile strength when the structure is tempered martensite is 1100 MPa or more. A high-strength bolt excellent in delayed fracture resistance, characterized by being.
JP2011237844A 2011-01-18 2011-10-28 Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance Expired - Fee Related JP5608145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011237844A JP5608145B2 (en) 2011-01-18 2011-10-28 Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011008234 2011-01-18
JP2011008234 2011-01-18
JP2011237844A JP5608145B2 (en) 2011-01-18 2011-10-28 Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance

Publications (2)

Publication Number Publication Date
JP2012162798A JP2012162798A (en) 2012-08-30
JP5608145B2 true JP5608145B2 (en) 2014-10-15

Family

ID=46515569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011237844A Expired - Fee Related JP5608145B2 (en) 2011-01-18 2011-10-28 Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance

Country Status (2)

Country Link
JP (1) JP5608145B2 (en)
WO (1) WO2012098938A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017113801A (en) * 2015-12-25 2017-06-29 新日鐵住金株式会社 Manufacturing method of steel pipe

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104040004A (en) * 2012-01-11 2014-09-10 株式会社神户制钢所 Steel for bolts, bolt, and method for producing bolt
CN106219468B (en) * 2012-11-16 2019-02-15 大日本印刷株式会社 Beverage filling device
CN103131954A (en) * 2013-02-04 2013-06-05 繁昌县琪鑫铸造有限公司 Preparation method of fracture-resistant steel rope bolt
JP6031022B2 (en) * 2013-12-02 2016-11-24 株式会社神戸製鋼所 Steel wire for bolt excellent in delayed fracture resistance, high-strength bolt, and method for producing them
JP6190298B2 (en) * 2014-03-25 2017-08-30 株式会社神戸製鋼所 High strength bolt steel and high strength bolts with excellent delayed fracture resistance
JP6267618B2 (en) * 2014-09-30 2018-01-24 株式会社神戸製鋼所 Bolt steel and bolts
KR102062733B1 (en) 2015-06-29 2020-01-06 닛폰세이테츠 가부시키가이샤 volt
CN108291284A (en) 2015-12-04 2018-07-17 新日铁住金株式会社 High-strength bolt
CN108368575B (en) 2015-12-04 2020-07-28 日本制铁株式会社 Rolling wire rod for cold forging tempered product
CN107058868B (en) * 2017-03-29 2018-08-03 苏州浩焱精密模具有限公司 A kind of high rigidity precision engraving knife die
CN112695241A (en) * 2020-11-25 2021-04-23 南京钢铁股份有限公司 12.9-grade anti-delayed fracture weather-resistant bolt steel and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811492B2 (en) * 1978-12-28 1983-03-03 新日本製鐵株式会社 Manufacturing method of high-tensile and high-ductility wire and steel bars for high-strength bolts
JPS596358A (en) * 1982-06-30 1984-01-13 Daido Steel Co Ltd High strength bolt
JPH0770695A (en) * 1993-08-31 1995-03-14 Sumitomo Metal Ind Ltd Steel for machine structure excellent in delayed fracture resistance
JP3677972B2 (en) * 1997-10-21 2005-08-03 住友金属工業株式会社 Method for producing steel material for cold forging containing boron
JP3696011B2 (en) * 1998-11-19 2005-09-14 株式会社神戸製鋼所 Bolt Steel and Bolt Manufacturing Method
JP4113453B2 (en) * 2003-04-07 2008-07-09 大同特殊鋼株式会社 Bolt Steel Formed from Bonded Film with Excellent Delayed Fracture Resistance and Bolt Manufacturing Method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017113801A (en) * 2015-12-25 2017-06-29 新日鐵住金株式会社 Manufacturing method of steel pipe

Also Published As

Publication number Publication date
WO2012098938A1 (en) 2012-07-26
JP2012162798A (en) 2012-08-30

Similar Documents

Publication Publication Date Title
JP5608145B2 (en) Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance
JP6034632B2 (en) Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance
JP4381355B2 (en) Steel having excellent delayed fracture resistance and tensile strength of 1600 MPa class or more and method for producing the molded product thereof
JP5973903B2 (en) High strength spring steel wire excellent in hydrogen embrittlement resistance, method for producing the same, and high strength spring
JP2015096657A (en) Case hardened steel and carburized material
JP6190298B2 (en) High strength bolt steel and high strength bolts with excellent delayed fracture resistance
JP6034605B2 (en) Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance
KR101817451B1 (en) Steel for high-strength bolts which has excellent delayed fracture resistance and bolt moldability, and bolt
JP4773106B2 (en) Steel parts with excellent balance between strength and torsional characteristics, manufacturing method thereof, and steel materials for steel parts
JP5146063B2 (en) High strength steel with excellent internal fatigue damage resistance and method for producing the same
JP4430559B2 (en) High strength bolt steel and high strength bolt with excellent delayed fracture resistance
KR101446135B1 (en) Steel for suspension spring with high strength and excellent fatigue and method producing the same
JP2012140675A (en) Case-hardening steel excellent in cold-workability, and high fatigue-resistant strength carburized material
JP6390685B2 (en) Non-tempered steel and method for producing the same
KR101713677B1 (en) Steel for high nitrogen air hardened bearing with high performance on rolling contact fatigue and method producing the same
JP2007031746A (en) Steel for high strength bolt having excellent delayed fracture resistance, and high strength bolt
JP4975261B2 (en) Manufacturing method of high strength steel with excellent delayed fracture resistance
JP7499691B2 (en) Bolt steel and bolts
JPH0570890A (en) Steel for high strength bolt excellent in delayed fracture resistance
JP3861137B2 (en) High-strength mechanical structural steel and its manufacturing method
JP5526689B2 (en) Carburizing steel
JP2011179048A (en) Steel for carburizing having excellent cold workability
JP2017125246A (en) High strength steel
JPH0559431A (en) Production of spring with high stress excellent in delayed fracture resistance
JPH11236617A (en) Steel for high strength bolt excellent in cold workability and delayed fracture resistance and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140829

R150 Certificate of patent or registration of utility model

Ref document number: 5608145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees