JP2007031746A - Steel for high strength bolt having excellent delayed fracture resistance, and high strength bolt - Google Patents

Steel for high strength bolt having excellent delayed fracture resistance, and high strength bolt Download PDF

Info

Publication number
JP2007031746A
JP2007031746A JP2005213380A JP2005213380A JP2007031746A JP 2007031746 A JP2007031746 A JP 2007031746A JP 2005213380 A JP2005213380 A JP 2005213380A JP 2005213380 A JP2005213380 A JP 2005213380A JP 2007031746 A JP2007031746 A JP 2007031746A
Authority
JP
Japan
Prior art keywords
steel
strength
less
delayed fracture
strength bolt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005213380A
Other languages
Japanese (ja)
Inventor
Manabu Fujita
学 藤田
Yuichi Namimura
裕一 並村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005213380A priority Critical patent/JP2007031746A/en
Publication of JP2007031746A publication Critical patent/JP2007031746A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel for a high strength bolt exhibiting sufficient temper softening resistance even without incorporating large quantities of Mo and V into its composition. <P>SOLUTION: The steel for a high strength bolt having excellent delayed fracture resistance has a composition comprising 0.30 to 0.45% C, ≤0.2% Si, 0.30 to 0.80% Mn, ≤0.015% P, ≤0.015% S, 0.40 to 1.2% Cr, 0.15 to 0.45% Mo, 0.05 to 0.35% V, 0.02 to 0.15% Ti, 0.005 to 0.10% Zr, 0.02 to 0.10% Al and ≤0.010% N, and the balance Fe with inevitable impurities, and in which Zr, Al and N satisfy the inequality (1): [Zr]+0.3[Al]>6.5[N]; wherein, [Zr], [Al] and [N] denote each content (mass%) of Zr, Al and N. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、耐遅れ破壊性に優れた高強度ボルト用鋼および高強度ボルトに関するものである。   The present invention relates to steel for high-strength bolts and high-strength bolts having excellent delayed fracture resistance.

一般のボルト用鋼としては、SCM435やSCM440等のJIS規定鋼が汎用されているが、これらの鋼では、引張強さが約1200N/mm2を超えると一定期間後に突然脆性破壊する、いわゆる遅れ破壊が生じ易くなる。そこで耐遅れ破壊性の改善を目的に、焼戻し軟化抵抗の向上を図った高強度ボルト用鋼が提案されている。例えば特許文献1では、Moを増量することにより、また特許文献2および3では、MoおよびVを複合添加することにより、鋼材の焼戻し軟化抵抗を向上させ、この鋼材を高温焼戻しすることによって耐遅れ破壊性に優れた高強度ボルトを製造することが提案されている。
特開平5−148576号公報 特開平5−148580号公報 特許第2739713号公報
As general bolt steel, JIS standard steels such as SCM435 and SCM440 are widely used. However, when these steels have a tensile strength exceeding about 1200 N / mm 2, they are so-called delayed that suddenly brittle fracture after a certain period. Breaking easily occurs. Accordingly, steels for high-strength bolts with improved temper softening resistance have been proposed for the purpose of improving delayed fracture resistance. For example, in Patent Document 1, by increasing the amount of Mo, and in Patent Documents 2 and 3, by adding Mo and V in combination, the temper softening resistance of the steel material is improved and the steel material is tempered at a high temperature, thereby delaying resistance. It has been proposed to produce high-strength bolts with excellent destructibility.
JP-A-5-148576 Japanese Patent Laid-Open No. 5-148580 Japanese Patent No. 2739713

上記のように、MoやVを含有させることによって高強度ボルト用鋼の焼戻し軟化抵抗を向上させれば、高強度ボルトの耐遅れ破壊性を向上させることはできるが、MoおよびVは非常に高価な元素であり、添加による製品のコストアップは免れない。このコストアップが、高強度ボルト用鋼を実用化する際における障壁の1つになっている。   As described above, if the temper softening resistance of the steel for high-strength bolts is improved by containing Mo or V, the delayed fracture resistance of the high-strength bolts can be improved, but Mo and V are very It is an expensive element, and it is inevitable to increase the cost of the product by adding it. This increase in cost is one of the barriers when putting high-strength bolt steel into practical use.

そこで本発明の目的は、MoやVを多量に含有せずとも、充分な焼戻し軟化抵抗を示す高強度ボルト用鋼を提供することにある。さらに本発明は、該鋼を焼入れ・焼戻しすることにより得られる耐遅れ破壊性に優れた高強度ボルト、特に1300N/mm2以上の引張強さを有するにもかかわらず、耐遅れ破壊性に優れた高強度ボルトを提供することも目的とする。 Therefore, an object of the present invention is to provide a steel for high-strength bolts that exhibits sufficient temper softening resistance without containing a large amount of Mo or V. Furthermore, the present invention is a high strength bolt excellent in delayed fracture resistance obtained by quenching and tempering the steel, particularly excellent in delayed fracture resistance despite having a tensile strength of 1300 N / mm 2 or more. Another object is to provide a high strength bolt.

上記課題を解決することができた本発明とは、
C:0.30〜0.45%(質量%の意味、以下同じ)、
Si:0.2%以下(0%を含まない)、
Mn:0.30〜0.80%、
P:0.015%以下(0%を含まない)、
S:0.015%以下(0%を含まない)、
Cr:0.40〜1.2%、
Mo:0.15〜0.45%、
V:0.05〜0.35%、
Ti:0.02〜0.15%、
Zr:0.005〜0.10%、
Al:0.02〜0.10%、
N:0.010%以下(0%を含まない)
を含有し、
残部がFeおよび不可避的不純物であり、
Zr、Al、Nが下記式(1)を満たすことを特徴とする耐遅れ破壊性に優れた高強度ボルト用鋼である。
[Zr]+0.3[Al]>6.5[N] … (1)
〔式中、[Zr]、[Al]および[N]は、それぞれZr、AlおよびNの含有量(質量%)を示す。〕
The present invention that has solved the above problems
C: 0.30 to 0.45% (meaning mass%, the same shall apply hereinafter)
Si: 0.2% or less (excluding 0%),
Mn: 0.30 to 0.80%,
P: 0.015% or less (excluding 0%),
S: 0.015% or less (excluding 0%),
Cr: 0.40 to 1.2%,
Mo: 0.15-0.45%,
V: 0.05-0.35%,
Ti: 0.02 to 0.15%,
Zr: 0.005 to 0.10%,
Al: 0.02 to 0.10%,
N: 0.010% or less (excluding 0%)
Containing
The balance is Fe and inevitable impurities,
Zr, Al and N are steels for high-strength bolts excellent in delayed fracture resistance, characterized by satisfying the following formula (1).
[Zr] +0.3 [Al]> 6.5 [N] (1)
[Wherein, [Zr], [Al] and [N] represent the contents (mass%) of Zr, Al and N, respectively. ]

本発明の高強度ボルト用鋼は、さらにNiおよび/またはCuを合計で1%以下(0%を含まない)、或いは、さらにBを0.0050%以下(0%を含まない)含有していてもよい。   The steel for high-strength bolts of the present invention further contains Ni and / or Cu in total of 1% or less (excluding 0%), or further containing B in an amount of 0.0050% or less (excluding 0%). May be.

本発明は、上記高強度ボルト用鋼から製造される耐遅れ破壊性に優れた高強度ボルトも提供する。本発明の好ましい高強度ボルトは、ボルト形状の鋼を880〜940℃の温度で焼入れし、次いで550〜620℃の温度で焼戻しすることによって製造されたものである。特にこのような焼入れ・焼戻しによって、1300N/mm2以上の引張強さを有し、かつ、切削によって形成された環状Vノッチ(Vノッチ角度60°、深さ2mm、ノッチ底半径0.03mm)を有する丸棒試験片(直径10mm)が、蒸留水中で1800N/mm2より高い応力を100時間に亘って負荷しつづけても破断しない、耐遅れ破壊性に優れた高強度ボルトを製造することが望ましい。 The present invention also provides a high-strength bolt excellent in delayed fracture resistance manufactured from the steel for high-strength bolts. The preferred high strength bolts of the present invention are those produced by quenching bolt-shaped steel at a temperature of 880-940 ° C and then tempering at a temperature of 550-620 ° C. In particular, by such quenching and tempering, an annular V notch having a tensile strength of 1300 N / mm 2 or more and formed by cutting (V notch angle 60 °, depth 2 mm, notch bottom radius 0.03 mm) A high-strength bolt excellent in delayed fracture resistance is produced in which a round bar specimen (diameter 10 mm) having no fracture does not break even when stress higher than 1800 N / mm 2 is applied for 100 hours in distilled water. Is desirable.

本発明者らは、コストアップにつながるMoやVの多量添加の問題を解決するために、様々な試験を行った結果、これまで主に結晶粒の微細化に寄与することを主眼としていたTiを、従来とは異なった視点から有効活用することに着目し、本発明をなすに至った。   As a result of conducting various tests in order to solve the problem of adding a large amount of Mo or V that leads to cost increase, the present inventors have mainly focused on contributing to refinement of crystal grains so far. Focusing on the effective use from the viewpoint different from the prior art, the present invention has been made.

Tiは本来、焼戻し軟化抵抗を向上させる元素であり、その効果はMoやVと同等以上である。しかしTiはNとの親和力が非常に強く、Ti添加量にもよるが、鋼の溶製時にはそのほとんどがTiNとなっている。このTiNは結晶粒微細化には効果があるが、その融点(鋼材中への固溶温度)は非常に高く、ボルト成形後の焼入れ温度でも鋼材中に固溶させることが難しい。その結果、従来品では、Tiは結晶粒微細化の効果にのみ寄与し、焼戻し軟化抵抗の向上効果を充分に発揮するには至らなかった。   Ti is originally an element that improves the temper softening resistance, and its effect is equal to or greater than that of Mo and V. However, Ti has a very strong affinity with N, and depending on the amount of Ti added, most of it is TiN when steel is melted. Although this TiN is effective for refining crystal grains, its melting point (solution temperature in steel) is very high, and it is difficult to dissolve in steel even at the quenching temperature after bolt forming. As a result, in the conventional product, Ti contributed only to the effect of crystal grain refinement, and did not fully exhibit the effect of improving the temper softening resistance.

この点、溶製時に生成してくる結晶が、TiNではなく、TiCであれば、ボルトの焼入れ温度でもTiを鋼材中に固溶し易くすることができ、Mo等を多量添加せずとも、鋼材に良好な焼戻し軟化抵抗を確保できるのではないかと考えた。そこでNを、Zrで優先的に補足することによってTiNの生成を抑制し、その結果として、TiCの生成を促進することで、Tiによる焼戻し軟化抵抗の向上効果を充分に確保できることを見出した。   In this regard, if the crystal generated during melting is TiN, not TiN, Ti can be easily dissolved in the steel even at the quenching temperature of the bolt, without adding a large amount of Mo, etc. We thought that good tempering softening resistance could be secured for steel. Thus, it has been found that the effect of improving the temper softening resistance by Ti can be sufficiently ensured by suppressing the generation of TiN by preferentially supplementing N with Zr and, as a result, promoting the generation of TiC.

そもそもNの存在がTiN生成の原因であるから、TiNの生成を抑制するためにNは極力低減するほうがよい。しかしNは溶製時に不可避的に混入する不純物であり、現実的には、高強度ボルト用鋼でN量を零にすることはできない。また他の合金元素(例えばMn、Cr、Mo、Ti等)の添加前に、キルド鋼製造時に脱酸剤として添加されるAlは、脱窒素の作用も有すること、すなわちAlNを形成して鋼中の窒素濃度を低減することが知られている。しかしその効果は、上記のZr程ではなく、充分に大きいものではない。またAlの多量添加は、多量の介在物を発生させ、耐遅れ破壊性を劣化させるという問題を有する。   In the first place, the presence of N is the cause of TiN generation, so it is better to reduce N as much as possible in order to suppress the generation of TiN. However, N is an impurity inevitably mixed at the time of melting, and in reality, the amount of N cannot be made zero with high-strength bolt steel. In addition, Al added as a deoxidizer during the production of killed steel before the addition of other alloying elements (for example, Mn, Cr, Mo, Ti, etc.) also has a denitrifying action, that is, AlN is formed to form steel. It is known to reduce the nitrogen concentration in it. However, the effect is not as great as the above Zr. Further, the addition of a large amount of Al has a problem of generating a large amount of inclusions and deteriorating delayed fracture resistance.

そこで本発明者らは、Nとの親和力がTiよりも大きいZrに着目した。すなわちZrを添加することにより、NをZrNとして固着させて、鋼の溶製時のTiN生成を抑制することを考えたのである。この観点からは、Zr量が多いほど溶製時のTiN生成を抑制することができるはずであるが、Zr量が0.10%を超えると、Zr系の介在物が多量に析出し、ボルトの靭性、さらに耐遅れ破壊性をも劣化させるので、多量添加は好ましくない。   Therefore, the present inventors paid attention to Zr having an affinity for N that is larger than that of Ti. That is, by adding Zr, N was fixed as ZrN, and the formation of TiN during the melting of steel was suppressed. From this point of view, it should be possible to suppress the formation of TiN during melting as the amount of Zr increases. However, if the amount of Zr exceeds 0.10%, a large amount of Zr-based inclusions precipitate, The toughness and delayed fracture resistance are also deteriorated.

従って本発明の高強度ボルト用鋼および高強度ボルトは、鋼中において、ZrとAlとを併用すること、および過剰添加により介在物の問題が生じない限度のZrおよびAlの量を、式(1):
[Zr]+0.3[Al]>6.5[N] … (1)
〔式中、[Zr]、[Al]および[N]は、それぞれZr、AlおよびNの含有量(質量%)を示す。〕
の関係を満たすような適切な範囲に制御することによって、ZrおよびAlの弊害を抑制しつつ、TiNの生成を効果的に抑制し、その結果としてTiCの生成を促進することで、Tiの焼戻し軟化抵抗の向上効果を確保したことに特徴を有する。
Therefore, in the steel for high-strength bolts and high-strength bolts of the present invention, Zr and Al in steel are used in combination, and the amount of Zr and Al that does not cause inclusion problems due to excessive addition is expressed by the formula ( 1):
[Zr] +0.3 [Al]> 6.5 [N] (1)
[Wherein, [Zr], [Al] and [N] represent the contents (mass%) of Zr, Al and N, respectively. ]
By controlling to an appropriate range so as to satisfy the relationship, TiN generation is effectively suppressed while suppressing the harmful effects of Zr and Al, and as a result, TiC generation is promoted, thereby tempering Ti. It is characterized by ensuring the improvement effect of softening resistance.

さらにTiCは水素トラップサイトとしての機能を有するので、高強度ボルト中のTiC量の向上は、水素トラップサイト数の増加、すなわち水素トラップ力の増加につながり、これも耐遅れ破壊性の向上効果に寄与すると考えられる。   Furthermore, since TiC has a function as a hydrogen trap site, an increase in the amount of TiC in high-strength bolts leads to an increase in the number of hydrogen trap sites, that is, an increase in hydrogen trapping force, which also improves delayed fracture resistance. It is thought to contribute.

以上のように本発明では、Tiの焼戻し軟化抵抗を向上させる作用および水素トラップ作用を充分に活用するので、Mo等を多量添加せずとも、耐遅れ破壊性に優れた高強度ボルト用鋼および高強度ボルトを製造することができる。殊に本発明によれば、引張強さが1300N/mm2以上でありながら、以下の実施例で記載する遅れ破壊強さが1800N/mm2以上に達するほどの強度および耐遅れ破壊性に優れた高強度ボルトを製造することができる。この点、本発明者らの経験から、遅れ破壊強さが1800N/mm2以上の高強度ボルトは、実際の使用上、遅れ破壊が生じる確率は極めて小さいことが分かっており、耐遅れ破壊性に優れていると評価される。 As described above, in the present invention, the effect of improving the temper softening resistance of Ti and the hydrogen trapping action are fully utilized, so that high strength bolt steel excellent in delayed fracture resistance without adding a large amount of Mo and the like and High strength bolts can be manufactured. In particular, according to the present invention, while the tensile strength is 1300 N / mm 2 or more, the delayed fracture strength described in the following examples is excellent in strength and delayed fracture resistance to reach 1800 N / mm 2 or more. High strength bolts can be manufactured. In this regard, it has been found from the experience of the present inventors that a high-strength bolt having a delayed fracture strength of 1800 N / mm 2 or more has an extremely low probability of causing delayed fracture in actual use. It is evaluated as excellent.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

まず、本発明の高強度ボルト用鋼および高強度ボルト中の化学成分の割合を定めた理由を説明する。
[C:0.30〜0.45%(質量%の意味。以下同じ)]
Cは鋼材の焼入性と強度確保のために必要な元素である。よってCの下限を0.30%とする。好ましくは0.33%以上鋼中に含有させる。一方Cが過剰になると、鋼およびボルトの靭性が劣化し、耐遅れ破壊性も低下する。また焼割れ等の問題も生じ得る。そのためC量の上限を0.45%とする。好ましくは0.40%以下、より好ましくは0.38%以下である。
First, the reason for determining the ratio of the chemical component in the steel for high-strength bolts of the present invention and the high-strength bolts will be described.
[C: 0.30 to 0.45% (meaning mass%, the same applies hereinafter)]
C is an element necessary for ensuring the hardenability and strength of the steel material. Therefore, the lower limit of C is set to 0.30%. Preferably, 0.33% or more is contained in the steel. On the other hand, when C is excessive, the toughness of steel and bolts deteriorates, and the delayed fracture resistance also decreases. In addition, problems such as burning cracks may occur. Therefore, the upper limit of the C amount is set to 0.45%. Preferably it is 0.40% or less, More preferably, it is 0.38% or less.

[Si:0.2%以下(0%を含まない)]
Siは脱酸剤として添加される元素であるが、Siの残存量が過剰になると焼入れ等の熱処理時に粒界酸化が助長され、耐遅れ破壊性が低下し易くなる。よってSi量を0.2%以下に抑える。好ましくは0.10%以下、より好ましくは0.07%以下である。
[Si: 0.2% or less (excluding 0%)]
Si is an element added as a deoxidizing agent. However, if the remaining amount of Si is excessive, grain boundary oxidation is promoted during heat treatment such as quenching, and the delayed fracture resistance tends to decrease. Therefore, the amount of Si is suppressed to 0.2% or less. Preferably it is 0.10% or less, More preferably, it is 0.07% or less.

[Mn:0.30〜0.80%]
Mnは焼入性向上元素であり、高強度を達成するために有用である。このような効果を発現させるにはMnを0.30%以上含有させる必要がある。好ましくは0.40%以上であり、より好ましくは0.45%以上である。一方、Mnが過剰になると、粒界への偏析が助長され、粒界強度が低下するため、耐遅れ破壊性の劣化を招く。よってMn量は0.80%以下に抑える。好ましくは0.60%以下、より好ましくは0.55%以下である。
[Mn: 0.30 to 0.80%]
Mn is a hardenability improving element and is useful for achieving high strength. In order to exhibit such an effect, it is necessary to contain 0.30% or more of Mn. Preferably it is 0.40% or more, More preferably, it is 0.45% or more. On the other hand, when Mn is excessive, segregation to the grain boundary is promoted, and the grain boundary strength is lowered, so that the delayed fracture resistance is deteriorated. Therefore, the amount of Mn is suppressed to 0.80% or less. Preferably it is 0.60% or less, More preferably, it is 0.55% or less.

[P:0.015%以下(0%を含まない)]
Pは、粒界偏析による粒界破壊を助長して、耐遅れ破壊性を劣化させる元素である。そこでP含有量は低い方が望ましく、その上限を0.015%とする。好ましくは0.010%以下、より好ましくは0.009%以下、さらに好ましくは0.005%以下である。
[P: 0.015% or less (excluding 0%)]
P is an element that promotes grain boundary fracture due to grain boundary segregation and degrades delayed fracture resistance. Therefore, it is desirable that the P content is low, and the upper limit is made 0.015%. Preferably it is 0.010% or less, More preferably, it is 0.009% or less, More preferably, it is 0.005% or less.

[S:0.015%以下(0%を含まない)]
Sは鋼材中でMnS等の介在物を形成し、これらは応力が負荷されたときの応力集中箇所となる。従って応力集中を回避して耐破壊性を改善するには、S含有量を減少させる必要があり、その上限を0.015%と定めた。好ましくは0.010%以下、より好ましくは0.009%以下、さらに好ましくは0.005%以下である。
[S: 0.015% or less (excluding 0%)]
S forms inclusions such as MnS in the steel material, and these become stress concentration points when stress is applied. Therefore, in order to avoid stress concentration and improve fracture resistance, it is necessary to reduce the S content, and the upper limit is set to 0.015%. Preferably it is 0.010% or less, More preferably, it is 0.009% or less, More preferably, it is 0.005% or less.

[Cr:0.40〜1.2%]
Crは、加工性および焼入性を確保するために必要な元素であるので、その下限を0.40%とする。好ましくは0.80%以上、より好ましくは0.95%以上である。しかしCrの過剰添加は粒界酸化を助長させ、焼入れ温度の上昇、焼入性過剰に伴う焼ムラ、焼割れ等の問題を助長させるので、その上限を1.2%とする。好ましくは1.10%以下、より好ましくは1.05%以下である。
[Cr: 0.40 to 1.2%]
Since Cr is an element necessary for ensuring workability and hardenability, the lower limit is made 0.40%. Preferably it is 0.80% or more, More preferably, it is 0.95% or more. However, excessive addition of Cr promotes grain boundary oxidation and promotes problems such as an increase in quenching temperature, uneven burning due to excessive hardenability, and quench cracking, so the upper limit is set to 1.2%. Preferably it is 1.10% or less, More preferably, it is 1.05% or less.

[Mo:0.15〜0.45%]
Moは焼入性向上作用および粒界の酸化抑制作用を有する。さらにMoは析出硬化型元素であるため、焼戻し軟化抵抗を高めて、強度を確保するために有用である。そこで本発明では、Moの下限を0.15%とする。好ましくは0.20%以上、より好ましくは0.25%以上である。
しかしMoは非常に高価な元素であるため、その多量添加はコストアップを招く。従来、鋼材の焼戻し軟化抵抗を向上させ、高温焼戻しを可能にして耐遅れ破壊性に優れた高強度ボルトを製造するためには、Moの多量添加が必要であったが、本発明ではZrおよびAlを適量添加して、Tiによる焼戻し軟化抵抗の向上効果を活用するため、Moの多量添加は必要ではない。よってMoの上限を0.45%とする。好ましくは0.35%以下、より好ましくは0.30%以下である。
[Mo: 0.15 to 0.45%]
Mo has an effect of improving hardenability and an effect of suppressing grain boundary oxidation. Furthermore, since Mo is a precipitation hardening element, it is useful for increasing the resistance to temper softening and securing the strength. Therefore, in the present invention, the lower limit of Mo is set to 0.15%. Preferably it is 0.20% or more, more preferably 0.25% or more.
However, since Mo is a very expensive element, the addition of a large amount causes an increase in cost. Conventionally, in order to improve the temper softening resistance of a steel material, to enable high temperature tempering and to produce a high-strength bolt excellent in delayed fracture resistance, a large amount of Mo has been required. Since a proper amount of Al is added and the effect of improving the temper softening resistance by Ti is utilized, it is not necessary to add a large amount of Mo. Therefore, the upper limit of Mo is set to 0.45%. Preferably it is 0.35% or less, More preferably, it is 0.30% or less.

[V:0.05〜0.35%]
Vは、結晶粒を微細化すると共に、焼戻し軟化抵抗を向上させる。またV炭化物は水素トラップとしても作用するので、優れた耐遅れ破壊性を実現するためにも、Vをある程度添加する必要がある。そこで本発明ではVの下限を0.05%とする。好ましくは0.08%以上、より好ましくは0.10%以上である。
しかしVは非常に高価な元素であるため多量添加はコストアップを招く。また多量添加により、通常の焼入れ温度では充分に固溶しない巨大炭化物が生成して、鋼材の靭性を劣化させることがある。この点、本発明ではZrおよびAlの適量添加により、Moと同様に、Vの多量添加も必要ではない。よってVの上限を0.35%とする。好ましくは0.20%以下、より好ましくは0.15%以下である。
[V: 0.05 to 0.35%]
V refines the crystal grains and improves the temper softening resistance. Further, since V carbide acts also as a hydrogen trap, it is necessary to add V to some extent in order to realize excellent delayed fracture resistance. Therefore, in the present invention, the lower limit of V is set to 0.05%. Preferably it is 0.08% or more, More preferably, it is 0.10% or more.
However, since V is a very expensive element, adding a large amount causes an increase in cost. In addition, the addition of a large amount may produce giant carbides that do not sufficiently dissolve at normal quenching temperatures, thereby degrading the toughness of the steel material. In this regard, in the present invention, by adding appropriate amounts of Zr and Al, as in the case of Mo, it is not necessary to add a large amount of V. Therefore, the upper limit of V is set to 0.35%. Preferably it is 0.20% or less, More preferably, it is 0.15% or less.

[Ti:0.02〜0.15%]
Tiは、結晶粒を微細化するために有用な元素である。またZr、AlおよびN量の関係をバランスよく制御することにより、従来、充分に発揮されていなかったTiの焼戻し軟化抵抗を向上させる効果を、本発明において充分に活用することができる。またTi炭化物は強力な水素トラップサイトとなり、耐遅れ破壊性の向上に寄与する。これらの効果を充分に活用するために、Tiの下限を0.02%とする。好ましくは0.04%以上、より好ましくは0.05%以上である。しかしTi量が過剰になると、焼入れでは充分に固溶しない巨大な析出物が生成して、鋼材の靭性を劣化させることがある。よってTiの上限を0.15%とする。好ましくは0.10%以下、より好ましくは0.07%以下である。
[Ti: 0.02-0.15%]
Ti is an element useful for refining crystal grains. Further, by controlling the relationship among the amounts of Zr, Al and N in a well-balanced manner, the effect of improving the temper softening resistance of Ti, which has not been sufficiently exhibited in the past, can be fully utilized in the present invention. Moreover, Ti carbide becomes a strong hydrogen trap site and contributes to the improvement of delayed fracture resistance. In order to fully utilize these effects, the lower limit of Ti is set to 0.02%. Preferably it is 0.04% or more, more preferably 0.05% or more. However, when the amount of Ti is excessive, a huge precipitate that is not sufficiently dissolved by quenching is generated, and the toughness of the steel material may be deteriorated. Therefore, the upper limit of Ti is set to 0.15%. Preferably it is 0.10% or less, More preferably, it is 0.07% or less.

[Zr:0.005〜0.10%]
Zrは、上記のように鋼中のN量を低減し、TiN生成を抑制するために必要な元素である。また結晶粒の微細化にも有効である。これらの効果を充分に発揮させるため、Zrの下限を0.005%とする。好ましくは0.008%以上、より好ましくは0.015%以上、さらに好ましくは0.025%以上である。しかしZrの過剰添加は、多量の介在物を生成させ、靭性、さらに耐遅れ破壊性も劣化させ得る。よって本発明ではZrの上限を0.10%とする。好ましくは0.080%以下、より好ましくは0.050%以下、さらに好ましくは0.040%以下である。
[Zr: 0.005 to 0.10%]
Zr is an element necessary for reducing the amount of N in the steel and suppressing the formation of TiN as described above. It is also effective for making crystal grains finer. In order to fully exhibit these effects, the lower limit of Zr is made 0.005%. Preferably it is 0.008% or more, More preferably, it is 0.015% or more, More preferably, it is 0.025% or more. However, excessive addition of Zr can generate a large amount of inclusions, and can deteriorate toughness and resistance to delayed fracture. Therefore, in the present invention, the upper limit of Zr is set to 0.10%. Preferably it is 0.080% or less, More preferably, it is 0.050% or less, More preferably, it is 0.040% or less.

[Al:0.02〜0.10%]
Alは、脱酸剤として添加される元素であり、またZrと同様に、鋼中のN量を低減してTiN生成を抑制するために必要な元素である。脱酸およびTiN抑制の効果を発揮させるために、Alの下限を0.02%とする。好ましくは0.035%以上、より好ましくは0.04%以上である。一方、Alの残存量が増大するにつれて酸化物系介在物が増大し、耐遅れ破壊性が低下し得る。よってAlの上限を0.10%とする。好ましくは0.08%以下、より好ましくは0.06%以下である。
[Al: 0.02-0.10%]
Al is an element added as a deoxidizer, and is an element necessary for reducing the amount of N in steel and suppressing TiN generation, like Zr. In order to exert the effects of deoxidation and TiN suppression, the lower limit of Al is made 0.02%. Preferably it is 0.035% or more, More preferably, it is 0.04% or more. On the other hand, as the remaining amount of Al increases, the oxide inclusions increase, and the delayed fracture resistance can decrease. Therefore, the upper limit of Al is set to 0.10%. Preferably it is 0.08% or less, More preferably, it is 0.06% or less.

[N:0.010%以下(0%を含まない)]
Nは、TiN生成の原因であるため添加すべきではなく、極力低減することが好ましい。よってNの上限を0.010%とする。好ましくは0.008%以下、より好ましくは0.006%以下、特に0.005%以下である。しかしNは不純物として鋼材中に不可避的に含まれ、現実的にNが0%になることはない。
[N: 0.010% or less (excluding 0%)]
Since N is a cause of TiN generation, it should not be added and is preferably reduced as much as possible. Therefore, the upper limit of N is set to 0.010%. Preferably it is 0.008% or less, More preferably, it is 0.006% or less, Especially 0.005% or less. However, N is inevitably contained in the steel as an impurity, and N is not practically 0%.

本発明の高強度ボルト用鋼中で規定する含有元素は上記の通りであり、残部は実質的にFeである。但し原料、資材、製造設備等の状況によって持ち込まれる不可避的不純物、例えば0.003%以下のO等が、鋼中に含まれることは、当然に許容される。さらに本発明の作用に悪影響を与えない範囲で、下記のような、さらなる元素を積極的に鋼中に含有させることも可能である。   The contained elements defined in the steel for high-strength bolts of the present invention are as described above, and the balance is substantially Fe. However, it is naturally allowed that unavoidable impurities brought in depending on the situation of raw materials, materials, manufacturing equipment, etc., for example, 0.003% or less of O, etc. are contained in the steel. Furthermore, it is also possible to positively contain the following elements in the steel as long as the effects of the present invention are not adversely affected.

[Niおよび/またはCu:合計で1%以下(0%を含まない)]
Cuは、耐食性を高め、遅れ破壊に悪影響を及ぼす水素の侵入を抑制するために有効な元素である。またNiは、鋼材の靱性および焼入性を高める作用があると共に、耐食性を向上させて水素侵入を抑制するために有効な元素である。よってこのような効果を発揮させるため、これらの元素を積極的に用いる場合、Cuおよび/またはNiを合計で、好ましくは0.2%以上、より好ましくは0.3%以上、鋼中に含有させる。しかしCuを過剰に添加しても上記効果が飽和し、一方で鋼材の靭性が劣化する。Niを過剰に添加した場合も、効果が飽和し、またコストアップを招く。従ってこれらを積極的に添加する場合、Cuおよび/またはNiは合計で1%以下とすることが好ましい。これらの合計は、より好ましくは0.7%以下であり、さらに好ましくは0.5%以下である。
[Ni and / or Cu: 1% or less in total (excluding 0%)]
Cu is an element effective for enhancing corrosion resistance and suppressing invasion of hydrogen that adversely affects delayed fracture. Ni is an element effective for increasing the toughness and hardenability of the steel material and improving corrosion resistance and suppressing hydrogen intrusion. Therefore, in order to exert such an effect, when these elements are used positively, Cu and / or Ni are contained in the steel in total, preferably 0.2% or more, more preferably 0.3% or more. Let However, even if Cu is added excessively, the above effect is saturated, while the toughness of the steel material is deteriorated. When Ni is added excessively, the effect is saturated and the cost is increased. Therefore, when these are positively added, it is preferable that Cu and / or Ni be 1% or less in total. The total of these is more preferably 0.7% or less, and still more preferably 0.5% or less.

[B:0.0050%以下(0%を含まない)]
Bは、鋼の焼入れ性向上および結晶粒界の清浄化に有用な元素であり、これらの効果を発現させるには、好ましくは0.0003%以上、より好ましくは0.0010%以上、鋼中に含有させる。しかしB量が過剰になると却って靭性が低下するため、Bの上限を0.0050%とすることが好ましい。より好ましくは0.0030%以下、さらに好ましくは0.0020%以下である。
[B: 0.0050% or less (excluding 0%)]
B is an element useful for improving the hardenability of the steel and cleaning the grain boundaries. In order to exhibit these effects, it is preferably 0.0003% or more, more preferably 0.0010% or more. To contain. However, since the toughness is lowered when the amount of B is excessive, the upper limit of B is preferably set to 0.0050%. More preferably, it is 0.0030% or less, More preferably, it is 0.0020% or less.

上記化学成分を有する本発明の高強度ボルト用鋼から、例えば従来の焼入れ・焼戻し条件で熱処理をすることにより、耐遅れ破壊性に優れた高強度ボルトを製造することができる。但し、より優れた耐遅れ破壊性および強度を有するボルトを製造するために、後述の焼入れ・焼戻し条件を採用することが望ましい。   A high-strength bolt excellent in delayed fracture resistance can be produced from the steel for high-strength bolts of the present invention having the above chemical components, for example, by heat treatment under conventional quenching / tempering conditions. However, in order to produce a bolt having better delayed fracture resistance and strength, it is desirable to adopt the quenching and tempering conditions described later.

本発明のボルト用鋼は、ボルト形状に加工され、このボルト形状の鋼が焼入れ・焼戻しされる。本発明の高強度ボルト用鋼を、ボルト形状に加工する手段について特に限定は無く、従来使用されているあらゆる加工法を使用することができる。例えば、本発明の高強度ボルト用鋼を、熱間圧延した後、必要に応じて球状化焼鈍を行い、次いで伸線し、その後冷間圧造や冷間鍛造等の冷間加工を行ってボルト形状とすることができる。   The bolt steel of the present invention is processed into a bolt shape, and the bolt-shaped steel is quenched and tempered. There is no particular limitation on the means for processing the steel for high-strength bolts of the present invention into a bolt shape, and any conventionally used processing method can be used. For example, after hot-rolling the steel for high-strength bolts of the present invention, spheroidizing annealing is performed as necessary, then wire drawing is performed, and then cold working such as cold forging and cold forging is performed to perform bolting It can be a shape.

次に本発明において、ボルト形状にした鋼を、好ましくは880℃以上の加熱温度で焼入れすることが推奨される。なぜなら880℃以上の加熱温度での焼入れにより、本発明の高強度ボルト用鋼に含まれるTi等の析出硬化型合金元素を鋼材中に良好に固溶させることができるからである。殊に、焼入れ前の鋼材中において球状化炭化物が存在する場合には、これらを充分に固溶させて所望の引張強さを確保するために、焼入れを880℃以上で行うことが望ましい。より好ましい焼入れ温度の下限は900℃である。しかし940℃を超える焼入れ温度では、設備上の制約やコストアップ、さらに焼ムラの問題が生じ得るため、好ましい焼入れ温度の上限は940℃である。より好ましい上限は920℃である。   Next, in the present invention, it is recommended that the bolt-shaped steel is quenched at a heating temperature of preferably 880 ° C. or higher. This is because, by quenching at a heating temperature of 880 ° C. or higher, precipitation hardening type alloy elements such as Ti contained in the steel for high-strength bolts of the present invention can be satisfactorily dissolved in the steel material. In particular, when spheroidized carbides are present in the steel before quenching, it is desirable to quench at 880 ° C. or higher in order to sufficiently dissolve these to ensure a desired tensile strength. A more preferable lower limit of the quenching temperature is 900 ° C. However, when the quenching temperature exceeds 940 ° C., there are restrictions on equipment, an increase in cost, and a problem of uneven firing, so a preferable upper limit of the quenching temperature is 940 ° C. A more preferred upper limit is 920 ° C.

焼入れしたボルト形状の鋼を、次いで550℃以上の加熱温度で焼戻して、耐遅れ破壊性に優れた高強度ボルトを製造することが望ましい。なぜなら焼入れにより鋼材中に固溶させたTi等を、550℃以上の加熱温度で焼戻しすることによって、微細な炭化物を充分に析出させることができるからである。この微細炭化物の析出による二次硬化で、焼戻し軟化抵抗の効果が発揮され、本発明のボルトに、高強度、好ましくは1300N/mm2以上の引張強さを付与することができる。また550℃以上の高温焼戻しにより、耐遅れ破壊性も良好に向上させることができる。より好ましい焼戻し温度の下限は580℃である。一方、焼戻し温度が高すぎると、軟化抵抗の効果が薄れて所望の強度が得られなくなることがあるため、焼戻し加熱温度は620℃以下とすることが推奨される。より好ましい上限は600℃である。 It is desirable to produce a high-strength bolt excellent in delayed fracture resistance by tempering the quenched bolt-shaped steel at a heating temperature of 550 ° C. or higher. This is because fine carbides can be sufficiently precipitated by tempering Ti or the like dissolved in the steel material by quenching at a heating temperature of 550 ° C. or higher. The secondary hardening by the precipitation of fine carbides exhibits the effect of temper softening resistance, and the bolt of the present invention can be given high strength, preferably a tensile strength of 1300 N / mm 2 or more. In addition, delayed fracture resistance can be improved satisfactorily by high-temperature tempering at 550 ° C. or higher. A more preferable lower limit of the tempering temperature is 580 ° C. On the other hand, if the tempering temperature is too high, the effect of the softening resistance may be diminished and the desired strength may not be obtained. Therefore, the tempering heating temperature is recommended to be 620 ° C. or lower. A more preferred upper limit is 600 ° C.

また焼入れ・焼戻しにおける上記以外の条件は、上記加熱温度などを考慮して設定することができ、例えば下記の条件を採用することができる。
[焼入れ条件]
・加熱の保持時間:10分以上(好ましくは20分以上)
1時間以下(好ましくは40分以下)
・冷却条件:油冷または水冷
[焼戻し条件]
・加熱の保持時間:30分以上(好ましくは70分以上)
3時間以下(好ましくは2時間以下)
・冷却条件:油冷、水冷または空冷
Moreover, conditions other than the above in quenching and tempering can be set in consideration of the heating temperature and the like. For example, the following conditions can be adopted.
[Hardening conditions]
・ Holding time: 10 minutes or more (preferably 20 minutes or more)
1 hour or less (preferably 40 minutes or less)
・ Cooling conditions: Oil cooling or water cooling [tempering conditions]
・ Holding time: 30 minutes or more (preferably 70 minutes or more)
3 hours or less (preferably 2 hours or less)
・ Cooling conditions: oil cooling, water cooling or air cooling

本発明の高強度ボルトは、自動車分野、建築分野、産業機械分野等で用いられる高強度かつ耐遅れ破壊性に優れたボルトとして最適である。本発明の高強度ボルトの用途として、例えばハイテンションボルト、トルシア型ボルト、溶融亜鉛めっき高力ボルト、防錆処理高力ボルト、耐火鋼高力ボルト等を挙げることができる   The high-strength bolt of the present invention is optimal as a bolt having high strength and excellent delayed fracture resistance used in the automotive field, the architectural field, the industrial machine field, and the like. Examples of the use of the high-strength bolts of the present invention include high tension bolts, torcia-type bolts, hot-dip galvanized high-strength bolts, rust-proof high-strength bolts, and refractory steel high-strength bolts.

表1および2(比較例)に記載の成分組成からなる供試鋼を直径12mmまで熱間圧延した後、該鋼を表3に示す条件で焼入れ・焼戻しをした。焼入れは各温度で30分間保持した後に油冷し、焼戻しは各温度で90分間加熱した後に水冷して行った。このように得られた各試料の強度および耐遅れ破壊性を、下記のようにして評価した。   Sample steels having the composition described in Tables 1 and 2 (Comparative Examples) were hot-rolled to a diameter of 12 mm, and the steel was quenched and tempered under the conditions shown in Table 3. Quenching was oil-cooled after being held at each temperature for 30 minutes, and tempering was performed by heating at each temperature for 90 minutes and then water-cooling. The strength and delayed fracture resistance of each sample thus obtained were evaluated as follows.

[強度の評価]
上記のようにして得られた各試料を切削加工することにより、図1に示す引張試験片を作製して、引張強さを測定した。これらの結果を表3に示す。
1300N/mm2以上の引張強さを示す試験片を良好と評価した。
[Evaluation of strength]
By cutting each sample obtained as described above, a tensile test piece shown in FIG. 1 was produced, and the tensile strength was measured. These results are shown in Table 3.
A test piece showing a tensile strength of 1300 N / mm 2 or more was evaluated as good.

[耐遅れ破壊性の評価]
上記のようにして得られた各試料を切削加工することにより、図2に示す環状Vノッチ(Vノッチ角度60°、深さ2mm、ノッチ底半径0.03mm)を有する遅れ破壊試験片(丸棒状、直径10mm)を作製して、遅れ破壊強さを測定した。本発明における「遅れ破壊強さ」とは、上記の遅れ破壊試験片を蒸留水中で種々の応力を負荷したとき、100時間に亘って負荷しつづけても試験片が破断しない最高負荷応力を指す。これらの結果を表3に示す。
1800N/mm2の遅れ破壊強さを示す試験片を良好と評価した。この点、本発明者らの経験から、遅れ破壊強さが1800N/mm2以上の高強度ボルトでは、実際の使用上、遅れ破壊が生じる確率は極めて小さいことが分かっている。
[Evaluation of delayed fracture resistance]
By cutting each sample obtained as described above, a delayed fracture test piece (round) having an annular V notch (V notch angle 60 °, depth 2 mm, notch bottom radius 0.03 mm) shown in FIG. A rod-like shape having a diameter of 10 mm) was prepared, and the delayed fracture strength was measured. The “delayed fracture strength” in the present invention refers to the maximum load stress at which the test piece does not break even when the delayed fracture test piece is loaded with various stresses in distilled water for 100 hours. . These results are shown in Table 3.
A test piece showing delayed fracture strength of 1800 N / mm 2 was evaluated as good. In this regard, it has been found from the experience of the present inventors that the probability of delayed fracture occurring in actual use is extremely small with a high strength bolt having a delayed fracture strength of 1800 N / mm 2 or more.

Figure 2007031746
Figure 2007031746

Figure 2007031746
Figure 2007031746

Figure 2007031746
Figure 2007031746

表1〜3から、本発明の要件を満たすNo.1〜19は、1300N/mm2以上の引張強さおよび1800N/mm2以上の遅れ破壊強さを示し、本発明で規定する高強度ボルト用鋼から製造されるボルトは、強度および耐遅れ破壊性に優れることが示される。これに対し、本発明の要件を満たさないNo.20〜35は、それぞれ以下のような不具合を有する。 From Tables 1-3, No. 1 satisfying the requirements of the present invention. 1-19 shows a 1300 N / mm 2 or more tensile strength and 1800 N / mm 2 or more delayed fracture strength bolts made from high strength bolts steel defined in the present invention, Re strength and delayed fracture It is shown to be excellent in properties. On the other hand, No. which does not satisfy the requirements of the present invention. Each of 20 to 35 has the following problems.

No.20は、C量が少ないため鋼材の焼入性が低く、またCによる強度向上効果も少ないため、所望の引張強さ(1300N/mm2以上)を確保できなかった。
No.21は、C量が多いため靭性が低下し、所望の遅れ破壊強さ(1800N/mm2以上)を確保できなかった。
No.22は、Mn量が少ないため鋼材の焼入れ性が低く、所望の引張強さを確保できなかった。
No.23は、Mn量が多いため粒界偏析が助長され、所望の遅れ破壊強さを確保できなかった。
No. No. 20 had a low C content, and therefore the hardenability of the steel material was low, and since the effect of improving the strength by C was small, the desired tensile strength (1300 N / mm 2 or more) could not be ensured.
No. In No. 21, since the amount of C was large, the toughness was lowered and the desired delayed fracture strength (1800 N / mm 2 or more) could not be secured.
No. In No. 22, since the amount of Mn was small, the hardenability of the steel material was low, and the desired tensile strength could not be secured.
No. In No. 23, since the amount of Mn was large, segregation at the grain boundary was promoted, and the desired delayed fracture strength could not be ensured.

No.24は、PおよびSが多いため粒界が脆化し、所望の遅れ破壊強さを確保できなかった。
No.25は、Cr量を下げたため鋼材の焼入性が低く、所望の引張強さを確保できなかった。
No.26またはNo.27は、それぞれMo量またはV量を下げたため、焼戻し軟化抵抗が不充分となり、所望の引張強さを確保できなかった。
No. In No. 24, since P and S are large, the grain boundary became brittle, and the desired delayed fracture strength could not be secured.
No. In No. 25, the Cr content was lowered, so the hardenability of the steel material was low, and the desired tensile strength could not be secured.
No. 26 or No. In No. 27, since the amount of Mo or V was lowered, the temper softening resistance was insufficient, and the desired tensile strength could not be secured.

No.28は、Ti量を下げたため、焼戻し軟化抵抗が不充分となり、所望の引張強さを確保できなかった。
No.29は、Zrを含有しないためTiN生成を充分に抑制できず、その結果Tiによる焼戻し軟化抵抗の向上効果が充分に発揮されなかったと考えられる。その結果、所望の引張強さを確保できなかった。
No.30は、ZrおよびAl量の両方が不充分であるため、式(1)の要件を満たしていない。そのためTiN生成を充分に抑制できず、焼戻し後のTiC量が減少し、水素トラップ力が減少したと考えられる。その結果、所望の遅れ破壊強さを確保できなかった。
No.31は、Zr量が多いため介在物が増加した。その結果、靭性が劣化し、所望の遅れ破壊強さを確保できなかった。
No. In No. 28, since the Ti amount was lowered, the temper softening resistance was insufficient, and the desired tensile strength could not be secured.
No. No. 29 does not contain Zr, and thus TiN generation cannot be sufficiently suppressed. As a result, it is considered that the effect of improving the temper softening resistance by Ti was not sufficiently exhibited. As a result, the desired tensile strength could not be ensured.
No. No. 30 does not satisfy the requirement of formula (1) because both Zr and Al content are insufficient. Therefore, it is considered that TiN generation could not be sufficiently suppressed, the amount of TiC after tempering decreased, and the hydrogen trapping force decreased. As a result, the desired delayed fracture strength could not be ensured.
No. In 31, since the amount of Zr was large, inclusions increased. As a result, the toughness deteriorated and the desired delayed fracture strength could not be ensured.

No.32は、N量が多いため、TiNが多量に生成し、所望の引張強さを確保できなかった。
No.33は、Al量が多いため介在物が増加し、その結果、靭性が劣化し、所望の遅れ破壊強さを確保できなかった。
No.34は、ZrおよびAl量が多いため介在物が増加し、所望の遅れ破壊強さを確保できなかった。
No.35は、従来鋼のSCM435である。Ti、MoおよびV等を適量で含有していないため、焼戻し軟化抵抗が確保されず、所望の引張強さを確保できなかった。
No. No. 32 had a large amount of N, so a large amount of TiN was produced, and the desired tensile strength could not be secured.
No. In No. 33, since the amount of Al was large, inclusions increased. As a result, the toughness deteriorated and the desired delayed fracture strength could not be secured.
No. In 34, since the amount of Zr and Al was large, inclusions increased and the desired delayed fracture strength could not be secured.
No. 35 is SCM435 of conventional steel. Since Ti, Mo, V and the like are not contained in appropriate amounts, the temper softening resistance is not ensured, and the desired tensile strength cannot be ensured.

実施例で用いた引張試験片の概略側面図である。It is a schematic side view of the tensile test piece used in the Example. 実施例で用いた遅れ破壊試験片の概略側面図である。It is a schematic side view of the delayed fracture test piece used in the examples.

Claims (6)

C:0.30〜0.45%(質量%の意味、以下同じ)、
Si:0.2%以下(0%を含まない)、
Mn:0.30〜0.80%、
P:0.015%以下(0%を含まない)、
S:0.015%以下(0%を含まない)、
Cr:0.40〜1.2%、
Mo:0.15〜0.45%、
V:0.05〜0.35%、
Ti:0.02〜0.15%、
Zr:0.005〜0.10%、
Al:0.02〜0.10%、
N:0.010%以下(0%を含まない)
を含有し、
残部がFeおよび不可避的不純物であり、
Zr、Al、Nが下記式(1)を満たすことを特徴とする耐遅れ破壊性に優れた高強度ボルト用鋼。
[Zr]+0.3[Al]>6.5[N] … (1)
〔式中、[Zr]、[Al]および[N]は、それぞれZr、AlおよびNの含有量(質量%)を示す。〕
C: 0.30 to 0.45% (meaning mass%, the same shall apply hereinafter)
Si: 0.2% or less (excluding 0%),
Mn: 0.30 to 0.80%,
P: 0.015% or less (excluding 0%),
S: 0.015% or less (excluding 0%),
Cr: 0.40 to 1.2%,
Mo: 0.15-0.45%,
V: 0.05-0.35%,
Ti: 0.02 to 0.15%,
Zr: 0.005 to 0.10%,
Al: 0.02 to 0.10%,
N: 0.010% or less (excluding 0%)
Containing
The balance is Fe and inevitable impurities,
A steel for high-strength bolts excellent in delayed fracture resistance, characterized in that Zr, Al, and N satisfy the following formula (1).
[Zr] +0.3 [Al]> 6.5 [N] (1)
[Wherein, [Zr], [Al] and [N] represent the contents (mass%) of Zr, Al and N, respectively. ]
さらに、Niおよび/またはCuを合計で1%以下(0%を含まない)含有する請求項1に記載の高強度ボルト用鋼。   Furthermore, the steel for high-strength bolts of Claim 1 which contains Ni and / or Cu 1% or less in total (excluding 0%). さらに、Bを0.0050%以下(0%を含まない)含有する請求項1または2に記載の高強度ボルト用鋼。   Furthermore, the steel for high-strength bolts of Claim 1 or 2 which contains B 0.0050% or less (0% is not included). 請求項1〜3のいずれかに記載の高強度ボルト用鋼から製造されたことを特徴とする耐遅れ破壊性に優れた高強度ボルト。   A high-strength bolt excellent in delayed fracture resistance, which is manufactured from the steel for high-strength bolts according to any one of claims 1 to 3. 880〜940℃の温度で焼入れし、次いで550〜620℃の温度で焼戻しすることによって製造されたことを特徴とする請求項4に記載の高強度ボルト。   The high-strength bolt according to claim 4, which is manufactured by quenching at a temperature of 880 to 940 ° C and then tempering at a temperature of 550 to 620 ° C. 1300N/mm2以上の引張強さを有し、かつ
切削によって形成された環状Vノッチ(Vノッチ角度60°、深さ2mm、ノッチ底半径0.03mm)を有する丸棒試験片(直径10mm)が、蒸留水中で1800N/mm2より高い応力を100時間に亘って負荷しつづけても破断しない、請求項5に記載の高強度ボルト。
Round bar test piece (diameter 10 mm) having a tensile strength of 1300 N / mm 2 or more and having an annular V-notch (V notch angle 60 °, depth 2 mm, notch bottom radius 0.03 mm) formed by cutting The high-strength bolt according to claim 5, wherein the bolt does not break even when stress higher than 1800 N / mm 2 is applied for 100 hours in distilled water.
JP2005213380A 2005-07-22 2005-07-22 Steel for high strength bolt having excellent delayed fracture resistance, and high strength bolt Withdrawn JP2007031746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005213380A JP2007031746A (en) 2005-07-22 2005-07-22 Steel for high strength bolt having excellent delayed fracture resistance, and high strength bolt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005213380A JP2007031746A (en) 2005-07-22 2005-07-22 Steel for high strength bolt having excellent delayed fracture resistance, and high strength bolt

Publications (1)

Publication Number Publication Date
JP2007031746A true JP2007031746A (en) 2007-02-08

Family

ID=37791357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005213380A Withdrawn JP2007031746A (en) 2005-07-22 2005-07-22 Steel for high strength bolt having excellent delayed fracture resistance, and high strength bolt

Country Status (1)

Country Link
JP (1) JP2007031746A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103820712A (en) * 2014-03-13 2014-05-28 国家电网公司 High-strength bolting steel and preparation method thereof
CN107075631A (en) * 2014-09-30 2017-08-18 株式会社神户制钢所 Bolt steel and bolt
CN112458363A (en) * 2020-11-02 2021-03-09 邯郸钢铁集团有限责任公司 Boron-containing steel for friction type high-strength bolt and production method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103820712A (en) * 2014-03-13 2014-05-28 国家电网公司 High-strength bolting steel and preparation method thereof
CN107075631A (en) * 2014-09-30 2017-08-18 株式会社神户制钢所 Bolt steel and bolt
CN112458363A (en) * 2020-11-02 2021-03-09 邯郸钢铁集团有限责任公司 Boron-containing steel for friction type high-strength bolt and production method thereof

Similar Documents

Publication Publication Date Title
JP4427010B2 (en) High strength tempered steel with excellent delayed fracture resistance and method for producing the same
JP5167616B2 (en) Metal bolts with excellent delayed fracture resistance
JP5608145B2 (en) Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance
JP4311740B2 (en) Thick steel plate with high heat input welded joint toughness
JP6190298B2 (en) High strength bolt steel and high strength bolts with excellent delayed fracture resistance
JP5194572B2 (en) Method for producing high-tensile steel material with excellent weld crack resistance
JP6798557B2 (en) steel
JP2009256771A (en) High strength spring steel having excellent delayed fracture resistance, and method for producing the same
JP4621123B2 (en) Method for producing a high impact resistant steel pipe excellent in delayed fracture characteristics with a tensile strength of 1700 MPa or more
JP2007031735A (en) Hot-forged component having excellent delayed fracture resistance, and method for producing the same
JP6159209B2 (en) High strength steel for bolts with excellent delayed fracture resistance and bolt formability, and method for producing bolts
JP4867638B2 (en) High-strength bolts with excellent delayed fracture resistance and corrosion resistance
JP4652952B2 (en) High-tensile steel plate with excellent toughness of heat affected zone
JP4430559B2 (en) High strength bolt steel and high strength bolt with excellent delayed fracture resistance
JP2007031746A (en) Steel for high strength bolt having excellent delayed fracture resistance, and high strength bolt
JP2015134945A (en) Carburizing steel
JP2004307932A (en) Steel for bolt having excellent delayed fracture resistance, and method of producing bolt
JP3358679B2 (en) High tension bolt with excellent delayed fracture resistance
JPH06240406A (en) Steel plate with high strength and high toughness
JPH05171356A (en) High strength bolt steel
JP3861137B2 (en) High-strength mechanical structural steel and its manufacturing method
JP3905332B2 (en) Steel for high strength bolts
JPH0770695A (en) Steel for machine structure excellent in delayed fracture resistance
JP2006213976A (en) High tensile strength steel having excellent weldability and joint toughness
JP4156900B2 (en) High-strength hot-rolled steel sheet with excellent hole expansion and its manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007