JP5167616B2 - Metal bolts with excellent delayed fracture resistance - Google Patents

Metal bolts with excellent delayed fracture resistance Download PDF

Info

Publication number
JP5167616B2
JP5167616B2 JP2006249355A JP2006249355A JP5167616B2 JP 5167616 B2 JP5167616 B2 JP 5167616B2 JP 2006249355 A JP2006249355 A JP 2006249355A JP 2006249355 A JP2006249355 A JP 2006249355A JP 5167616 B2 JP5167616 B2 JP 5167616B2
Authority
JP
Japan
Prior art keywords
less
steel
delayed fracture
strength
fracture resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006249355A
Other languages
Japanese (ja)
Other versions
JP2007146284A (en
Inventor
慶一 丸田
透 林
伸隆 黒澤
和邦 長谷
秀途 木村
高明 豊岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006249355A priority Critical patent/JP5167616B2/en
Publication of JP2007146284A publication Critical patent/JP2007146284A/en
Application granted granted Critical
Publication of JP5167616B2 publication Critical patent/JP5167616B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

本発明は,主に建築関係や自動車、産業機械用部品用の高強度鋼に関するものであり、特に、現状高価な合金元素が用いられている耐遅れ破壊特性に優れた鋼として好適に利用できる、強度と耐遅れ破壊特性とを兼ね備えた、耐遅れ破壊特性に優れた高強度鋼に関する。   The present invention mainly relates to high-strength steel for parts for construction, automobiles, and industrial machines, and can be suitably used as steel having excellent delayed fracture resistance, in which currently expensive alloy elements are used. Further, the present invention relates to a high-strength steel excellent in delayed fracture resistance, which has both strength and delayed fracture resistance.

近年、自動車や建築分野においても鋼材の高強度化が一段と進み、あらゆる部材における高強度化が指向されてきている。一例としてボルト分野においては、引っ張り強度1000MPaを越える領域においても1200MPa級、1500MPa級と、より高強度の鋼が要求されている。ところで、このように高強度化が進む場合に最も懸念されるのが、遅れ破壊である。   In recent years, the strength of steel materials has further increased in the automobile and construction fields, and the strength of all members has been increasing. As an example, in the bolt field, even higher strength steels of 1200 MPa class and 1500 MPa class are required even in a region where the tensile strength exceeds 1000 MPa. By the way, when the strength is increased in this way, the most feared is the delayed fracture.

遅れ破壊は引っ張り強度が1200MPa以上の鋼材で生じやすく、特にボルトではこの点を勘案して、JISB1186、JISB1051において、上限強度をF10T、F12Tに規定している。これらの鋼にはSCM等が主に用いられている。   Delayed fracture is likely to occur in steel materials having a tensile strength of 1200 MPa or more. In particular, for bolts, the upper limit strengths are defined as F10T and F12T in JISB1186 and JISB1051, considering this point. For these steels, SCM or the like is mainly used.

更に高強度で遅れ破壊にも優れる材料としては、マルエージング鋼がまず知られている。ただしNi含有量が15〜20質量%と高く、低合金鋼と比較して圧倒的に高価であることから、一般的な部材製造用の素材鋼として用いることは不可能である。   Further, maraging steel is first known as a material having high strength and excellent delayed fracture. However, since the Ni content is as high as 15 to 20% by mass and is overwhelmingly expensive as compared with the low alloy steel, it cannot be used as a material steel for general member production.

そこで、マルエージング鋼よりも少ないNi量で低合金鋼以上の耐遅れ破壊特性を有することを目的とした鋼の開発が行なわれている(例えば、特許文献1、特許文献2、特許文献3参照。)。
特公昭60−14096号公報 特開平11−80903号公報 特開2000−144245号公報
Therefore, steels have been developed for the purpose of having delayed fracture resistance higher than that of low alloy steels with a smaller amount of Ni than maraging steel (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3). .)
Japanese Patent Publication No. 60-14096 Japanese Patent Laid-Open No. 11-80903 JP 2000-144245 A

しかし、特許文献1、特許文献2、特許文献3等に記載されている鋼も、少ないとはいえNiが数質量%含有されるものであり、通常の高強度鋼として大量に使用するには、やはりコスト高となる欠点がある。   However, the steels described in Patent Document 1, Patent Document 2, Patent Document 3 and the like also contain a few mass% of Ni even though it is small, and can be used in large quantities as ordinary high-strength steel. However, there is a drawback that the cost is high.

したがって本発明の目的は、このような従来技術の課題を解決し、NiやCo、V等の高価な合金元素を多量に添加することによる製造コストの増加を抑制して、高強度で耐遅れ破壊特性に優れる金属ボルトを安価に提供することにある。 Accordingly, the object of the present invention is to solve such problems of the prior art and suppress an increase in manufacturing cost due to the addition of a large amount of expensive alloy elements such as Ni, Co, V, etc., and has high strength and delay resistance. The object is to provide a metal bolt excellent in fracture characteristics at low cost.

発明者らは、上記課題を解決すべく鋭意検討をかさねた結果、マルエージング鋼のように多量のNiやCoを含有しない成分系の場合であっても、Mo、B、Tiを適正範囲で添加し、焼入れ後の旧オーステナイト粒径を適正に微細化させて、その後、通常ボルト等の製造ではあまり使用されない100℃〜400℃の温度域で焼き戻しすることで、マルエージング鋼を凌駕する優れた引張強度および高い耐遅れ破壊特性を両立する鋼を得ることができるという知見を得て、本発明を完成させた。   As a result of intensive studies to solve the above problems, the inventors have determined that Mo, B, and Ti are within an appropriate range even in the case of a component system that does not contain a large amount of Ni or Co, such as maraging steel. Add and refine the prior austenite grain size after quenching, and then surpass the maraging steel by tempering in the temperature range of 100 ° C to 400 ° C, which is not usually used in the manufacture of bolts etc. The present invention has been completed by obtaining the knowledge that a steel having both excellent tensile strength and high delayed fracture resistance can be obtained.

本発明はこのような知見に基づきなされたもので、その特徴は以下の通りである。
(1)質量%で、C:0.30%超、0.50%以下、Si:1.0%以下、Mn:1.5%以下、Ti:0.1%以下、Mo:0.3%以上、0.5%以下、B:0.0005%以上、0.01%以下を含有し、残部がFeおよび不可避的不純物からなる鋼を用いてボルトを製造し、該ボルトを焼入れ後に、100℃〜400℃で焼き戻し処理を施し、マルテンサイトの分率が90%以上、かつ、旧オーステナイト粒径が10μm以下の鋼組織とすること特徴とする耐遅れ破壊特性に優れた金属ボルト
(2)鋼が、さらに、質量%で、Al:1.0%以下、Cr:2.5%以下、Cu:1.0%以下、Ni:2.0%以下、V:0.5%以下の中から選んだ1種または2種以上を含有することを特徴とする(1)に記載の耐遅れ破壊特性に優れた金属ボルト
(3)鋼が、さらに、質量%で、W:1.0%以下、Nb:0.1%以下の中から選んだ1種または2種を含有することを特徴とする(1)または(2)に記載の耐遅れ破壊特性に優れた金属ボルト
(4)焼入れを、高周波加熱を用いて行うことを特徴とする(1)ないし(3)のいずれかに記載の耐遅れ破壊特性に優れた金属ボルト
The present invention has been made based on such findings, and the features thereof are as follows.
(1) By mass%, C: more than 0.30%, 0.50% or less, Si: 1.0% or less, Mn: 1.5% or less, Ti: 0.1% or less, Mo: 0.3 % Or more, 0.5% or less, B: 0.0005% or more, 0.01% or less, the bolt is manufactured using steel consisting of Fe and inevitable impurities , and after quenching the bolt , A metal bolt excellent in delayed fracture resistance, characterized by performing a tempering treatment at 100 ° C. to 400 ° C., and having a steel structure with a martensite fraction of 90% or more and a prior austenite grain size of 10 μm or less.
(2) Steel is further mass%, Al: 1.0% or less, Cr: 2.5% or less, Cu: 1.0% or less, Ni: 2.0% or less, V: 0.5% The metal bolt excellent in delayed fracture resistance according to (1), comprising one or more selected from the following.
(3) The steel further contains one or two kinds selected from the group consisting of W: 1.0% or less and Nb: 0.1% or less by mass% (1) or ( A metal bolt excellent in delayed fracture resistance as described in 2).
(4) The metal bolt excellent in delayed fracture resistance according to any one of (1) to (3), wherein quenching is performed using high-frequency heating.

本発明によれば、高強度で耐遅れ破壊特性に優れた鋼を、高価な合金元素を多量に添加することなく、安価に製造することができる。したがって、耐遅れ破壊特性に優れた高強度を有する金属ボルト等を安価に提供できる。   According to the present invention, steel having high strength and excellent delayed fracture resistance can be produced at low cost without adding a large amount of expensive alloy elements. Accordingly, it is possible to provide a metal bolt or the like having high strength and excellent delayed fracture resistance at low cost.

以下に,本発明の詳細を説明する。   The details of the present invention will be described below.

本発明の高強度鋼に必要な特性は、引張り強度1500MPa以上、かつ降伏比0.9以上とする。例えば高強度ボルトとして、F15T以上を達成するためには引っ張り強度が1500MPa以上であることはもちろん、降伏比が高いことも重要である。締め付けたトルクが抜けないようにするためには、降伏比(降伏強度/引っ張り強度)が0.9以上であることが必要である。また、マルエージング鋼と同等以上の耐遅れ破壊特性と、冷間鍛造性とを有することが望ましい。このような引張り強度が1500MPa以上で耐遅れ破壊特性に優れた高強度鋼は、以下に示す成分組成の鋼を用い、以下に示す組織を有する鋼として、以下に示す製造方法により製造することができる。   The properties required for the high strength steel of the present invention are a tensile strength of 1500 MPa or more and a yield ratio of 0.9 or more. For example, as a high-strength bolt, in order to achieve F15T or higher, it is important that the tensile strength is 1500 MPa or higher and that the yield ratio is high. In order to prevent the tightened torque from being removed, the yield ratio (yield strength / tensile strength) needs to be 0.9 or more. Moreover, it is desirable to have delayed fracture resistance equivalent to or better than maraging steel and cold forgeability. Such a high-strength steel having a tensile strength of 1500 MPa or more and excellent delayed fracture resistance can be manufactured by the following manufacturing method using a steel having the following component composition and having the following structure. it can.

まず、本発明における、鋼組成の限定理由について説明する。なお、以下の説明において、成分元素の含有量%は全て質量%を意味するものである。   First, the reason for limiting the steel composition in the present invention will be described. In the following description, the content% of component elements means mass%.

C:0.30%超、0.50%以下とする。
Cは必要な強度を確保するために必須の元素であり、0.30%以下では所定の強度確保が難しい。一方で、0.50%を超えると鋼組織中に巨大な炭化物が生成し、遅れ破壊特性を低下させるため0.5%を上限とした。
C: Over 0.30% and 0.50% or less.
C is an essential element for securing the necessary strength, and it is difficult to secure a predetermined strength at 0.30% or less. On the other hand, if it exceeds 0.50%, huge carbides are formed in the steel structure, and the delayed fracture property is lowered, so 0.5% was made the upper limit.

Si:1.0%以下とする。
Siは脱酸剤として鋼の溶製時に作用するために、含有させることができる。但し、1.0%を超えると鋼の冷間鍛造性を著しく低下させるので、上限を1.0%とした。
Si: 1.0% or less.
Since Si acts as a deoxidizer during the melting of steel, it can be contained. However, if it exceeds 1.0%, the cold forgeability of the steel is significantly reduced, so the upper limit was made 1.0%.

Mn:1.5%以下とする。
Mnは、鋼の溶製時の脱酸剤としての作用を有しているので、含有させることができる。但し、1.5%を超えると鋼の冷間鍛造性を著しく低下させるので、上限を1.5%とした。
Mn: 1.5% or less.
Since Mn has an action as a deoxidizing agent when melting steel, it can be contained. However, if it exceeds 1.5%, the cold forgeability of the steel is significantly reduced, so the upper limit was made 1.5%.

Mo:0.3%以上、0.5%以下とする。
Moは本発明において、特に重要な元素である。Moは延性を大きく損なうことなく強度を向上させる。その効果を発現するには0.3%以上の添加が必須である。一方で、0.5%を超えて添加しても強度のそれ以上の向上にならず、コスト高となってしまう。また過剰に添加すると冷間鍛造性も低下する傾向にあるので、上限を0.5%とした。
Mo: 0.3% or more and 0.5% or less.
Mo is a particularly important element in the present invention. Mo improves the strength without greatly impairing the ductility. Addition of 0.3% or more is essential to achieve the effect. On the other hand, even if added over 0.5%, the strength is not further improved and the cost is increased. Moreover, since the cold forgeability tends to decrease when added in excess, the upper limit was made 0.5%.

B:0.0005%以上、0.01%以下とする。
Bは、粒界部に濃化して粒界強度向上に寄与する最も重要な元素である。遅れ破壊は主にオーステナイト粒界で発生するものであり、この粒界を強化することは耐遅れ破壊特性の向上に大きく寄与する。そのためには0.0005%以上の含有が必要である。しかし0.01%を超えて含有してもその効果は飽和するので、上記範囲に限定した。
B: 0.0005% or more and 0.01% or less.
B is the most important element that concentrates at the grain boundary portion and contributes to the improvement of the grain boundary strength. Delayed fracture occurs mainly at austenite grain boundaries, and strengthening the grain boundaries greatly contributes to the improvement of delayed fracture resistance. For that purpose, the content of 0.0005% or more is necessary. However, even if contained over 0.01%, the effect is saturated, so it was limited to the above range.

Ti:0.1%以下とする。
Tiは、不可避的不純物として混入するNと結合することで、BがBNを形成してBの効果が消失することを防止する。この効果を得るためには0.005%以上含有することが好ましいが、0.1%を超えて添加してもTiNが大量に形成されて、強度や疲労強度の低下を招くため、上限を0.1%とする。
Ti: 0.1% or less.
Ti binds to N mixed as an inevitable impurity, thereby preventing B from forming BN and losing the effect of B. In order to obtain this effect, it is preferable to contain 0.005% or more, but even if added over 0.1%, a large amount of TiN is formed, leading to a decrease in strength and fatigue strength, so the upper limit is made 0.1% .

以上が、本発明における基本成分であるが、次に本発明の高強度鋼の組織について説明する。本発明では以下の条件がそれぞれ必要になる。   The above is the basic component in the present invention. Next, the structure of the high-strength steel of the present invention will be described. In the present invention, the following conditions are required.

鋼組織を分率90%以上のマルテンサイト組織とする。
マルテンサイトは強度を得るために必須の組織である。本発明の場合には分率を90%以上としたマルテンサイト組織とすることで優れた強度特性を発揮するため、鋼組織のマルテンサイト組織の分率の下限を90%に限定した。マルテンサイトの分率が90%未満である場合には、強度の上昇に寄与しない残留オーステナイト相等の未変態相や炭化物等の析出物の量が多くなりすぎて、高強度化の達成が困難となる。
The steel structure is a martensite structure having a fraction of 90% or more.
Martensite is an essential structure for obtaining strength. In the case of the present invention, a martensite structure having a fraction of 90% or more exhibits excellent strength characteristics, so the lower limit of the martensite structure fraction of the steel structure is limited to 90%. If the martensite fraction is less than 90%, the amount of precipitates such as untransformed phases such as retained austenite phase and carbides that do not contribute to the increase in strength is excessive, and it is difficult to achieve high strength. Become.

鋼組織の旧オーステナイト粒径を10μm以下とする。
本発明では旧オーステナイト粒径の調整も重要である。旧オーステナイト粒径を微細化することで、粒界に析出し遅れ破壊特性を低下させる膜状炭化物の析出を抑制し、粒界強度を向上させる。そのためには粒径は10μm以下であることが必要である。なおより好ましくは、粒径を7μm以下とする。粒径が7μm以下であれば、一層耐遅れ破壊特性を向上させる効果がある。
The prior austenite grain size of the steel structure is 10 μm or less.
In the present invention, the adjustment of the prior austenite particle size is also important. By refining the prior austenite grain size, precipitation of film-like carbides that precipitate at the grain boundaries and lower the delayed fracture characteristics is suppressed, and the grain boundary strength is improved. For this purpose, the particle size needs to be 10 μm or less. More preferably, the particle diameter is 7 μm or less. If the particle size is 7 μm or less, there is an effect of further improving the delayed fracture resistance.

本発明では、以下に示すAl、Cr、Cu、Ni、Vの中から選んだ1種又は2種以上を含有してもよい。   In this invention, you may contain 1 type, or 2 or more types selected from Al, Cr, Cu, Ni, and V shown below.

Al:1.0%以下とする。
Alは脱酸に有効な元素である。また焼入れ時のオーステナイト粒成長を抑制することによって、強度の維持に有効な元素である。しかしながら含有量が1.0%を超えて含有させてもその効果は飽和し、コスト上昇を招く不利が生じるだけでなく、冷間鍛造性も低下する。よってAlを添加する場合は、1.0%以下とする。
Al: 1.0% or less.
Al is an element effective for deoxidation. In addition, it is an element effective in maintaining strength by suppressing austenite grain growth during quenching. However, even if the content exceeds 1.0%, the effect is saturated, not only causing disadvantages that increase costs, but also cold forgeability is reduced. Therefore, when adding Al, it is 1.0% or less.

Cr:2.5%以下とする。
Crは焼入れ性の向上に有効であり、硬化深さを確保する上で有用である。しかし過度に含有すると、炭化物安定効果によって残留炭化物の生成を助長し、強度の低下をまねく。従ってCr含有はできる限り低減することが望ましいが、2.5%までは許容できる。なお、焼入れ性を向上させる作用を発現させるためには、0.2%以上含有させることが好ましい。
Cr: 2.5% or less.
Cr is effective for improving the hardenability and is useful for securing the hardening depth. However, if contained excessively, the formation of residual carbides is promoted by the carbide stabilizing effect, resulting in a decrease in strength. Therefore, it is desirable to reduce the Cr content as much as possible, but up to 2.5% is acceptable. In addition, in order to express the effect | action which improves hardenability, it is preferable to make it contain 0.2% or more.

Cu:1.0%以下とする。
Cuは焼入れ性の向上に有効であり、またフェライト中に固溶して強度を向上させる。しかし1.0%を超えて含有すると熱延時に割れが発生する。そこでCuを添加する場合は、1.0%以下とする。なお、焼入れ性や強度を向上させる作用を発現させるためには、0.2%以上含有させることが好ましい。
Cu: 1.0% or less.
Cu is effective in improving the hardenability, and improves the strength by solid solution in ferrite. However, if it exceeds 1.0%, cracking occurs during hot rolling. Therefore, when adding Cu, the content is made 1.0% or less. In order to develop the effect of improving hardenability and strength, it is preferable to contain 0.2% or more.

Ni:2.0%以下とする。
Niは焼入れ性を向上させるのに有効であり、また炭化物の生成を抑制するため、膜状炭化物の粒界への生成を抑制し粒界強度を上げることで強度、遅れ破壊特性の向上に寄与する。ただしNiは非常に高価な元素であり、2.0%を超えて添加すると鋼材コストが著しく上昇する。そこでNiを添加する場合は、2.0%以下とする。なお、焼入れ性や強度、遅れ破壊特性を向上させる作用を発現させるためには、0.5%以上含有させることが好ましい。
Ni: 2.0% or less.
Ni is effective in improving hardenability, and in order to suppress the formation of carbides, it contributes to the improvement of strength and delayed fracture characteristics by suppressing the formation of film-like carbides at the grain boundaries and increasing the grain boundary strength. To do. However, Ni is a very expensive element, and if it exceeds 2.0%, the cost of the steel material is significantly increased. Therefore, when adding Ni, the content is made 2.0% or less. In order to exhibit the effect of improving hardenability, strength, and delayed fracture characteristics, it is preferable to contain 0.5% or more.

V:0.5%以下とする。
Vは、鋼中でCと結合し強化元素としての作用が期待される。また焼き戻し軟化抵抗性を向上させる効果もあり、強度向上に寄与する。しかし0.5%を超えて含有してもその効果は飽和するため、Vを添加する場合は、0.5%以下とする。なお、強度を向上させる作用を発現させるためには、0.1%以上含有させることが好ましい。
V: 0.5% or less.
V binds to C in steel and is expected to act as a strengthening element. It also has the effect of improving resistance to temper softening and contributes to strength improvement. However, since the effect is saturated even if it contains exceeding 0.5%, when adding V, it is made 0.5% or less. In addition, in order to express the effect | action which improves an intensity | strength, it is preferable to make it contain 0.1% or more.

さらに、本発明では以下に示すW、Nbのうちから選んだ1種または2種を含有することができる。   Furthermore, in this invention, 1 type or 2 types selected from W and Nb shown below can be contained.

Nb:0.1%以下とする。
Nbは焼入れ性向上効果のほかに、析出強化元素として強度や靭性の向上に寄与する。この効果を発現させるためには0.005%以上含有させることが好ましい。しかし0.1%を超えて含有しても、その効果は飽和するので、Nbを添加する場合は0.1%以下とする。
Nb: 0.1% or less.
Nb contributes to the improvement of strength and toughness as a precipitation strengthening element in addition to the effect of improving hardenability. In order to exhibit this effect, it is preferable to contain 0.005% or more. However, even if the content exceeds 0.1%, the effect is saturated, so when Nb is added, the content is made 0.1% or less.

W:1.0%以下とする。
Wは安定した炭化物を形成し、強化元素として有効である。一方で、1.0%を超えて添加すると冷間鍛造性を低下させるので、Wを添加する場合は1.0%以下とする。
W: 1.0% or less.
W forms a stable carbide and is effective as a strengthening element. On the other hand, when adding over 1.0%, the cold forgeability is lowered, so when adding W, the content is made 1.0% or less.

以上説明した元素以外の残部はFeおよび不可避的不純物である。主な不可避的不純物としては、S、P、N、Oが挙げられる。これら元素は、S:0.05%以下、P:0.05%以下、N:0.01%以下、O:0.01%以下であれば許容できる。   The balance other than the elements described above is Fe and inevitable impurities. The main inevitable impurities include S, P, N, and O. These elements are acceptable if S: 0.05% or less, P: 0.05% or less, N: 0.01% or less, and O: 0.01% or less.

次に、本発明の耐遅れ破壊特性に優れた高強度鋼の製造方法を説明する。本発明の高強度鋼は、上記の成分組成を有する鋼を用い、所定の形状とした素材を、焼入れ焼き戻しを行なって製造する。   Next, the manufacturing method of the high strength steel excellent in the delayed fracture resistance of the present invention will be described. The high-strength steel of the present invention is manufactured by quenching and tempering a material having a predetermined shape using steel having the above component composition.

上述の成分を含む鋼は、転炉による溶製で製造されたものでも、真空溶製により製造されたものでも使用できる。鋼塊または連鋳スラブは加熱されて熱間圧延され、酸洗してスケール除去された後に冷間圧延で所定の厚さに整えられる。そして、鍛造、転造等により所定の部品形状に成形された後、マルテンサイト組織とするためには焼入れ焼き戻しが行われ、例えばボルトの製造が行われる。   The steel containing the above-mentioned components can be either manufactured by melting in a converter or manufactured by vacuum melting. The ingot or continuous cast slab is heated and hot-rolled, pickled and scaled, and then cold-rolled to a predetermined thickness. Then, after being formed into a predetermined part shape by forging, rolling or the like, quenching and tempering is performed in order to obtain a martensite structure, for example, bolts are manufactured.

焼入れ処理:高周波焼入れを行なうことが好ましい。
焼入れ処理においては、高周波加熱を用いることで、必要な温度域に到達後に、直ちに焼き入れることが可能であり、不必要な結晶粒の粗大化を避け微細な結晶粒組織を得ることができる。このためには高周波焼入れにおいて、昇温速度100℃/s以上で最高温度800℃〜1100℃に加熱し、到達後即焼き入れる方法が有効である。
Quenching treatment: It is preferable to perform induction hardening.
In the quenching process, by using high-frequency heating, it is possible to quench immediately after reaching a necessary temperature range, and a fine crystal grain structure can be obtained while avoiding unnecessary coarsening of crystal grains. For this purpose, in induction hardening, a method of heating to a maximum temperature of 800 ° C. to 1100 ° C. at a temperature rising rate of 100 ° C./s or more and quenching immediately after reaching is effective.

焼き戻し温度:100℃〜400℃とする。
この条件が本発明では最も鍵となる部分である。焼き戻し温度100℃〜400℃は一般的に使用されない温度域である。しかし本発明の場合には、この温度域とすることで、含有しているBが拡散したり不必要な析出をしたりすることなく、粒界に濃化して粒界の強化にうまく寄与する。そして微細粒効果との重畳によって、一定以上の強度レベルおよび耐遅れ破壊特性を維持する。ただし、焼き戻し温度が100℃未満では焼き戻しの効果がなく、特に冷間鍛造性が低下する。また、400℃超とすると、大きな強度低下が生じてしまう。そこで、上記の範囲に限定した。焼き戻し温度は150〜400℃とすることが好ましい。
Tempering temperature: 100 to 400 ° C.
This condition is the most important part in the present invention. A tempering temperature of 100 ° C. to 400 ° C. is a temperature range that is not generally used. However, in the case of the present invention, by setting to this temperature range, the contained B does not diffuse or cause unnecessary precipitation, but concentrates on the grain boundary and contributes to the strengthening of the grain boundary. . And by superimposing with the fine grain effect, a certain level of strength level and delayed fracture resistance are maintained. However, if the tempering temperature is less than 100 ° C., there is no tempering effect, and particularly the cold forgeability is lowered. Moreover, when it exceeds 400 degreeC, a big strength fall will arise. Therefore, it is limited to the above range. The tempering temperature is preferably 150 to 400 ° C.

このように、粒界を強化する組成範囲、微細粒組織、焼き戻し温度の3条件を、適正に組み合わせることで、高強度および耐遅れ破壊特性という相反する特性の両立する鋼の製造が可能となるのである。   In this way, by properly combining the three conditions of the composition range that strengthens the grain boundary, the fine grain structure, and the tempering temperature, it is possible to produce steel that has both conflicting properties such as high strength and delayed fracture resistance. It becomes.

かくして得られた鋼材は、安価に製造できるにもかかわらず、マルエージング鋼に匹敵する強度および耐遅れ破壊特性を有し、高強度を必要とする自動車用高強度ボルトや建築用ボルトへの使用、PC棒鋼、自動車の変速機である無断変速機(CVT)用の動力伝達用金属ベルト等に用いることが可能である。   The steel material thus obtained has strength and delayed fracture resistance comparable to maraging steel, although it can be manufactured at low cost, and is used for high-strength bolts for automobiles and buildings that require high strength. It can be used for a power transmission metal belt for a PC bar, a continuously variable transmission (CVT) which is a transmission of an automobile, and the like.

ボルトを製造する際には、上記の成分組成を有する鋼を用い、例えば冷間鍛造および転造にてボルトに成形加工した後に、ボルトを焼入れして、100℃〜400℃で焼き戻し処理を施し、マルテンサイトの分率が90%以上、かつ、旧オーステナイト粒径が10μm以下の鋼組織を有する金属ボルトを製造する。   When manufacturing a bolt, the steel having the above composition is used. For example, after forming into a bolt by cold forging and rolling, the bolt is quenched and tempered at 100 to 400 ° C. To produce a metal bolt having a steel structure with a martensite fraction of 90% or more and a prior austenite grain size of 10 μm or less.

表1に示す記号1〜18の鋼を真空溶製にて製造した。これらの鋼を1100℃に加熱して熱間鍛造し、直径60mm(φ60mm)の丸棒とした。その後850℃で1時間ノルマ処理を行い素材とし、これに以下の熱処理を行い、引張試験および遅れ破壊の評価、組織観察、冷間鍛造性の評価を行なった。   Steels of symbols 1 to 18 shown in Table 1 were manufactured by vacuum melting. These steels were heated to 1100 ° C. and hot forged to obtain round bars having a diameter of 60 mm (φ60 mm). Thereafter, a normal treatment was performed at 850 ° C. for 1 hour to obtain a raw material, which was subjected to the following heat treatment, and subjected to a tensile test, delayed fracture evaluation, structure observation, and cold forgeability evaluation.

Figure 0005167616
Figure 0005167616

素材丸棒の1/4dの位置より、引張試験片(JIS5号)の形状を切り出した。この試験片を高周波加熱によって昇温速度400℃/sで1050℃に加熱した後即焼入れし、引き続いて同じく昇温速度400℃/sの高周波加熱で950℃に加熱した後に即焼入れを行なう2段高周波焼入れを行なった。その後180℃で30分間の焼き戻しを行ない、引張試験に供した。   The shape of the tensile test piece (JIS No. 5) was cut out from the position 1 / 4d of the material round bar. The test piece is heated to 1050 ° C. at a heating rate of 400 ° C./s by high-frequency heating and then immediately quenched, and then immediately heated to 950 ° C. by high-frequency heating at a heating rate of 400 ° C./s. Step induction hardening was performed. Thereafter, tempering was performed at 180 ° C. for 30 minutes, and a tensile test was performed.

遅れ破壊の評価は以下の手順で実施した。図1に示すような試験片を丸棒素材の1/4d位置より切り出した。焼入れ焼き戻し条件は引っ張り試験片と同様にして行なった。この試験片を用いて、定荷重型試験を行なうことで遅れ破壊特性を評価した。定荷重型試験は、酢酸を用いてpH1.5に調整した5%NaCl溶液に試験片を浸漬し、試験片にある一定の荷重をかけて、試験片が破断するまでの時間を測定して行なった。試験時間が200時間を超えた段階で試験片に破断のない場合は、試験を中断して破断なしと評価した。荷重を変えて試験をすることで、破段時間と荷重の関係を示す曲線が得られるので、破断の起きなくなる荷重から下限界応力を求めて、この値の大小にて遅れ破壊を評価した。下限界応力が、マルエージング鋼の下限界応力である550Mpa以上のものを耐遅れ破壊特性が良好であると評価した。   Delayed fracture was evaluated according to the following procedure. A test piece as shown in FIG. 1 was cut out from the 1 / 4d position of the round bar material. The quenching and tempering conditions were the same as for the tensile specimen. Using this test piece, the delayed fracture property was evaluated by conducting a constant load type test. In the constant load type test, a test piece is immersed in a 5% NaCl solution adjusted to pH 1.5 using acetic acid, a certain load is applied to the test piece, and the time until the test piece breaks is measured. I did it. When the test time exceeded 200 hours and the specimen did not break, the test was interrupted and evaluated as not broken. By performing the test while changing the load, a curve indicating the relationship between the breakage time and the load can be obtained. Therefore, the lower limit stress was obtained from the load at which the fracture does not occur, and the delayed fracture was evaluated based on the magnitude of this value. Those having a lower limit stress of 550 Mpa or more, which is the lower limit stress of maraging steel, were evaluated as having good delayed fracture resistance.

マルテンサイト組織の分率は、3%硝酸アルコールで腐食後、一定面積を光学顕微鏡により観察し、視野中のマルテンサイトの面積率から測定した。   The fraction of the martensite structure was measured from the area ratio of the martensite in the visual field by observing a certain area with an optical microscope after corrosion with 3% nitrate alcohol.

旧オーステナイト粒径は、水:500gに対しピクリン酸:50gを溶解させたピクリン酸水溶液に、ドデシルベンゼンスルホン酸ナトリウム:11g、塩化第1鉄:1gおよびシュウ酸:1.5gを添加したものを腐食液として作用させ、腐食によって旧オーステナイト粒界を現出させた後、倍率1000倍にて観察撮影し、得られた画像から切断法にて求めた。   The prior austenite particle size is obtained by adding 11 g of sodium dodecylbenzenesulfonate: 1 g of ferrous chloride: 1 g and oxalic acid: 1.5 g to a picric acid aqueous solution in which 50 g of picric acid is dissolved in 500 g of water. After acting as a corrosive solution and revealing prior austenite grain boundaries by corrosion, the film was observed and photographed at a magnification of 1000 times, and determined from the obtained image by a cutting method.

また冷間鍛造性の評価については、図2(a)に示すようなφ15mm、高さ22.5mmのタブレットの試験片1を棒材の1/4d位置より、圧延方向に一致するように切り出した。鍛造試験は種々の圧縮率で試験片10個(n=10)について圧縮を行い、割れの有無にて判断した。図2に示す矢印は、圧縮方向である。割れ2は、図2(b)に示すように発生した。各圧縮率での割れ発生率と圧縮率の関係をグラフにプロットし、試験片の50%(5個)が割れる圧縮率をもって、鍛造性評価値とした。この値が大きいほど鍛造性が良いことになり、鍛造性評価値80%以上をマルエージング鋼と同等以上の良好な冷間鍛造性を有するものとして評価した。   For the evaluation of the cold forgeability, a tablet test piece 1 having a diameter of 15 mm and a height of 22.5 mm as shown in FIG. 2A is cut out from the 1 / 4d position of the bar so as to coincide with the rolling direction. It was. In the forging test, 10 test pieces (n = 10) were compressed at various compression ratios, and judged by the presence or absence of cracks. The arrow shown in FIG. 2 is the compression direction. Crack 2 occurred as shown in FIG. The relationship between the crack occurrence rate and the compression rate at each compression rate was plotted on a graph, and the compression rate at which 50% (5 pieces) of the test piece was broken was used as the forgeability evaluation value. The larger this value, the better the forgeability, and the forgeability evaluation value of 80% or more was evaluated as having good cold forgeability equivalent to or better than maraging steel.

表1に示す記号1の鋼は、比較のためのマルエージング鋼(Fe-18%Ni-5%Mo-10%Co)である。上記と同じ形状の試験片を切り出した後、820℃加熱後、空冷によって焼入れし、520℃加熱によってエージング処理を行ない、各種評価に供した。   The steel of symbol 1 shown in Table 1 is a comparative maraging steel (Fe-18% Ni-5% Mo-10% Co). After cutting out the test piece having the same shape as described above, after heating at 820 ° C., quenching was performed by air cooling, aging treatment was performed by heating at 520 ° C., and the samples were subjected to various evaluations.

マルテンサイト組織の分率、旧オーステナイト粒径、引張強度、降伏比、遅れ破壊(下限界応力)、冷間鍛造性の測定結果を表1中に併せて示す。表1より、化学成分と組織が本発明の範囲内にある鋼は、強度特性、耐遅れ破壊特性がマルエージング鋼を上回ることが分かった。   Table 1 also shows the measurement results of the martensite structure fraction, prior austenite grain size, tensile strength, yield ratio, delayed fracture (lower limit stress), and cold forgeability. From Table 1, it was found that the steel having the chemical composition and the structure within the range of the present invention has higher strength characteristics and delayed fracture resistance than the maraging steel.

本実施例においては、表1に示す記号4の成分を有する鋼について、組織の影響を調べる実験を行なった。実験方法は全て実施例1と同じである。ただし旧オーステナイト粒径の影響を調べるために、2段目の焼入れ温度である高周波加熱の温度を850〜1050℃で変化させて、記号19〜21の鋼素材を製造した。測定結果を表2に示す。   In this example, an experiment for examining the influence of the structure was performed on the steel having the component 4 shown in Table 1. All experimental methods are the same as in Example 1. However, in order to investigate the influence of the prior austenite grain size, the steel material of symbols 19 to 21 was manufactured by changing the high-frequency heating temperature, which is the second stage quenching temperature, at 850 to 1050 ° C. The measurement results are shown in Table 2.

Figure 0005167616
Figure 0005167616

オーステナイト粒径が10μmより大きくなると、耐遅れ破壊特性が顕著に低下することが分かった。   It has been found that when the austenite grain size is larger than 10 μm, the delayed fracture resistance is remarkably lowered.

本実施例においては、基本成分以外の、他の成分の効果を調べる実験を行なった。表3に示す成分組成を有する鋼(記号22〜35)を真空溶製にて製造し、実施例1と同様にして引張試験および遅れ破壊の評価、組織観察、冷間鍛造性の評価を行なった。結果を表3に併せて示す。   In this example, an experiment was conducted to examine the effects of other components other than the basic component. Steel having the composition shown in Table 3 (symbols 22 to 35) was manufactured by vacuum melting, and in the same manner as in Example 1, a tensile test and delayed fracture evaluation, structure observation, and cold forgeability evaluation were performed. It was. The results are also shown in Table 3.

Figure 0005167616
Figure 0005167616

Cr、Alが過度に含有されると冷間鍛造性の低下を招き、またNi、Cu、V、W、Nbについてはその効果が飽和することが分かった。   It has been found that when Cr and Al are contained excessively, the cold forgeability is lowered, and the effects of Ni, Cu, V, W, and Nb are saturated.

本実施例においては、表1に示す記号4の成分を有する鋼について、焼き戻し温度の影響を調べる実験を行なった。実施例1と同様にして焼入れまでおこない、焼き戻し温度を180℃としていたものを、70〜450℃で変化させて、記号36〜40の鋼素材を製造した。測定結果を表4に示す。   In this example, an experiment for examining the influence of the tempering temperature was performed on the steel having the component 4 shown in Table 1. In the same manner as in Example 1, quenching was performed and the tempering temperature of 180 ° C. was changed at 70 to 450 ° C. to produce steel materials of symbols 36 to 40. Table 4 shows the measurement results.

Figure 0005167616
Figure 0005167616

焼き戻し温度を100〜400℃の範囲とした場合に、高強度と、優れた耐遅れ破壊特性、冷間鍛造性とが両立することが分かった。   It was found that when the tempering temperature is in the range of 100 to 400 ° C., high strength, excellent delayed fracture resistance, and cold forgeability are compatible.

本実施例においては、実際にボルトを製造した際の耐遅れ破壊について評価した。表1に示す記号1(マルエージング鋼)、4、11の鋼について、実施例1と同じ要領で鍛造丸棒を製造し、鍛造丸棒の1/4d位置より所定の大きさの供試材を切断して、冷間鍛造および転造にてM22のボルトに成形加工し、高周波焼入れおよび180℃での焼き戻しを施した。各供試材よりボルトは30本作成し、鋼板(SS400)に最大荷重まで締め付け、3.5質量%食塩水の吹き付けと乾燥とを繰り返す、繰り返し試験を5ヶ月間実施した。その後に30本中の破断したボルト数で評価をおこなった。   In this example, delayed fracture resistance when actually producing bolts was evaluated. For the steels of symbol 1 (maraging steel), 4 and 11 shown in Table 1, a forged round bar is produced in the same manner as in Example 1, and a specimen having a predetermined size from the 1 / 4d position of the forged round bar. Was cut into a M22 bolt by cold forging and rolling, induction hardening and tempering at 180 ° C. Thirty bolts were prepared from each test material, tightened to the maximum load on the steel plate (SS400), and 3.5 mass% saline solution spraying and drying were repeated for 5 months. Thereafter, evaluation was performed with the number of broken bolts in 30 pieces.

結果を表5に示す。   The results are shown in Table 5.

Figure 0005167616
Figure 0005167616

本発明鋼である記号4の鋼は、記号1のマルエージング鋼を凌駕する特性を示しているが、比較鋼である記号11の鋼を用いたボルトは、80%が破断した。   The steel of symbol 4 which is the steel of the present invention shows characteristics superior to that of the maraging steel of symbol 1, but 80% of the bolts using the steel of symbol 11 which is a comparative steel broke.

遅れ破壊特性評価試験の試験片の説明図Explanatory drawing of specimen for delayed fracture property evaluation test 冷間鍛造性の評価試験の説明図。(a)試験開始前の試験片形状、(b)圧縮割れの発生した状態Explanatory drawing of the evaluation test of cold forgeability. (A) Specimen shape before starting test, (b) State where compression cracking occurred

符号の説明Explanation of symbols

1 試験片
2 割れ
1 Test piece 2 Crack

Claims (4)

質量%で、C:0.30%超、0.50%以下、Si:1.0%以下、Mn:1.5%以下、Ti:0.1%以下、Mo:0.3%以上、0.5%以下、B:0.0005%以上、0.01%以下を含有し、残部がFeおよび不可避的不純物からなる鋼を用いてボルトを製造し、該ボルトを焼入れ後に、100℃〜400℃で焼き戻し処理を施し、マルテンサイトの分率が90%以上、かつ、旧オーステナイト粒径が10μm以下の鋼組織とすること特徴とする耐遅れ破壊特性に優れた金属ボルトIn mass%, C: more than 0.30%, 0.50% or less, Si: 1.0% or less, Mn: 1.5% or less, Ti: 0.1% or less, Mo: 0.3% or more, 0.5% or less, B: 0.0005% or more, 0.01% or less is contained, the bolt is manufactured using steel consisting of Fe and inevitable impurities , and after quenching the bolt, A metal bolt excellent in delayed fracture resistance, which is tempered at 400 ° C. and has a martensite fraction of 90% or more and a prior austenite grain size of 10 μm or less. 鋼が、さらに、質量%で、Al:1.0%以下、Cr:2.5%以下、Cu:1.0%以下、Ni:2.0%以下、V:0.5%以下の中から選んだ1種または2種以上を含有することを特徴とする請求項1に記載の耐遅れ破壊特性に優れた金属ボルトSteel is further in mass%, Al: 1.0% or less, Cr: 2.5% or less, Cu: 1.0% or less, Ni: 2.0% or less, V: 0.5% or less The metal bolt excellent in delayed fracture resistance according to claim 1, comprising one or more selected from the group consisting of: 鋼が、さらに、質量%で、W:1.0%以下、Nb:0.1%以下の中から選んだ1種または2種を含有することを特徴とする請求項1または請求項2に記載の耐遅れ破壊特性に優れた金属ボルトThe steel according to claim 1 or 2, further comprising one or two kinds selected from W: 1.0% or less and Nb: 0.1% or less in mass%. Metal bolts with excellent delayed fracture resistance as described. 焼入れを、高周波加熱を用いて行うことを特徴とする請求項1ないし請求項3のいずれかに記載の耐遅れ破壊特性に優れた金属ボルトThe metal bolt excellent in delayed fracture resistance according to any one of claims 1 to 3, wherein quenching is performed using high-frequency heating.
JP2006249355A 2005-10-31 2006-09-14 Metal bolts with excellent delayed fracture resistance Active JP5167616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006249355A JP5167616B2 (en) 2005-10-31 2006-09-14 Metal bolts with excellent delayed fracture resistance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005315708 2005-10-31
JP2005315708 2005-10-31
JP2006249355A JP5167616B2 (en) 2005-10-31 2006-09-14 Metal bolts with excellent delayed fracture resistance

Publications (2)

Publication Number Publication Date
JP2007146284A JP2007146284A (en) 2007-06-14
JP5167616B2 true JP5167616B2 (en) 2013-03-21

Family

ID=38208039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006249355A Active JP5167616B2 (en) 2005-10-31 2006-09-14 Metal bolts with excellent delayed fracture resistance

Country Status (1)

Country Link
JP (1) JP5167616B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8694869B2 (en) 2003-08-21 2014-04-08 QUALCIMM Incorporated Methods for forward error correction coding above a radio link control layer and related apparatus

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100723186B1 (en) * 2005-12-26 2007-05-29 주식회사 포스코 High-strength steel bolt having excellent resistance for delayed fracture and method for producing the same
JP4867638B2 (en) * 2006-12-21 2012-02-01 Jfeスチール株式会社 High-strength bolts with excellent delayed fracture resistance and corrosion resistance
JP5233307B2 (en) * 2008-02-15 2013-07-10 Jfeスチール株式会社 High-strength steel and metal bolts with excellent corrosion resistance and cold forgeability that prevent hydrogen from entering the environment
JP5353161B2 (en) * 2008-03-27 2013-11-27 Jfeスチール株式会社 High strength spring steel with excellent delayed fracture resistance and method for producing the same
WO2011048971A1 (en) * 2009-10-22 2011-04-28 日産自動車株式会社 Steel for high-strength bolts and process for production of high-strength bolts
JP5582855B2 (en) * 2010-04-14 2014-09-03 高周波熱錬株式会社 Manufacturing method of machine structural parts
JP6034632B2 (en) * 2012-03-26 2016-11-30 株式会社神戸製鋼所 Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance
JP5846080B2 (en) * 2012-08-27 2016-01-20 新日鐵住金株式会社 High-strength steel with excellent delayed fracture resistance
CN103088268B (en) * 2012-12-04 2016-05-11 合肥中澜新材料科技有限公司 The preparation method of fastening bolt used for automobile wheels
CN103088266B (en) * 2012-12-04 2016-05-11 合肥宏杰新材料科技有限公司 The forging method of foundation bolt
CN103088267B (en) * 2012-12-04 2016-05-11 合肥宏杰新材料科技有限公司 The preparation method of Lengthened bolt
JP6313928B2 (en) * 2013-02-01 2018-04-18 高周波熱錬株式会社 Heat treatment method for steel
CN115198190B (en) * 2022-07-22 2023-07-14 上海大学 Ultra-high strength alloy steel, 17.8-grade threaded fastener and preparation method thereof
CN115261724B (en) * 2022-08-01 2023-05-09 马鞍山钢铁股份有限公司 Steel for ultrahigh-strength and high-toughness fastener, production method thereof and heat treatment process
CN115747660A (en) * 2022-11-28 2023-03-07 温州东铭紧固件制造有限公司 High-strength weather-resistant bolt and preparation process thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421810B2 (en) * 1973-11-15 1979-08-02
JPS61174326A (en) * 1985-01-29 1986-08-06 Sumitomo Metal Ind Ltd Production of machine structural steel having superior delayed fracture resistance
JPH05171356A (en) * 1991-12-24 1993-07-09 Kawasaki Steel Corp High strength bolt steel
JPH06336648A (en) * 1993-05-28 1994-12-06 Nippon Steel Corp High strength pc bar wire excellent in delayed fracture resistance and its production
JPH07278672A (en) * 1994-04-12 1995-10-24 Nippon Steel Corp Manufacture of high strength bolt excellent in delayed crack resistance
JPH11100644A (en) * 1997-09-26 1999-04-13 Daido Steel Co Ltd Manufacture of spring steel with high strength and high toughness and spring
JP3966493B2 (en) * 1999-05-26 2007-08-29 新日本製鐵株式会社 Cold forging wire and method for producing the same
JP4043754B2 (en) * 2001-10-25 2008-02-06 新日本製鐵株式会社 High strength PC steel bar with excellent delayed fracture characteristics
JP4099120B2 (en) * 2003-08-08 2008-06-11 花王株式会社 Hair cosmetics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8694869B2 (en) 2003-08-21 2014-04-08 QUALCIMM Incorporated Methods for forward error correction coding above a radio link control layer and related apparatus

Also Published As

Publication number Publication date
JP2007146284A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP5167616B2 (en) Metal bolts with excellent delayed fracture resistance
US20080264524A1 (en) High-Strength Steel and Metal Bolt Excellent In Character of Delayed Fracture
JP5685198B2 (en) Ferritic-austenitic stainless steel
JP4427010B2 (en) High strength tempered steel with excellent delayed fracture resistance and method for producing the same
JP6479527B2 (en) Bolt wire with excellent pickling property and delayed fracture resistance after quenching and tempering, and bolt
KR101632516B1 (en) Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
JP6212473B2 (en) Rolled material for high-strength spring and high-strength spring wire using the same
JP5913214B2 (en) Bolt steel and bolts, and methods for producing the same
JP6461672B2 (en) Bolt steel wire and bolt with excellent cold forgeability and delayed fracture resistance after quenching and tempering
JP4773106B2 (en) Steel parts with excellent balance between strength and torsional characteristics, manufacturing method thereof, and steel materials for steel parts
JP6798557B2 (en) steel
JP4867638B2 (en) High-strength bolts with excellent delayed fracture resistance and corrosion resistance
JP6159209B2 (en) High strength steel for bolts with excellent delayed fracture resistance and bolt formability, and method for producing bolts
JP5233307B2 (en) High-strength steel and metal bolts with excellent corrosion resistance and cold forgeability that prevent hydrogen from entering the environment
JP2016138320A (en) NiCrMo STEEL AND MANUFACTURING METHOD OF NiCrMo STEEL
JP2007254765A (en) High strength structural steel excellent in hydrogen embrittlement resistance, toughness and ductility and method for producing the same
JP4430559B2 (en) High strength bolt steel and high strength bolt with excellent delayed fracture resistance
JP5030695B2 (en) High carbon steel excellent in break separation and production method thereof
JP2007031746A (en) Steel for high strength bolt having excellent delayed fracture resistance, and high strength bolt
JP7499691B2 (en) Bolt steel and bolts
JP2009249731A (en) Steel for high strength bolt excellent in weatherability and delayed fracture resistance characteristic
JP2008274344A (en) High-strength steel pipe having excellent delayed fracture resistance and fatigue characteristics
JP2022101237A (en) Ferrite-martensite double-phase stainless steel having excellent bendability, and method for producing the same
JP2024060594A (en) Steel material and its manufacturing method
JPH0741851A (en) Production of structural steel for machine excellent in machinability, cold forgeability and fatigue strength property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

R150 Certificate of patent or registration of utility model

Ref document number: 5167616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250