JP2016138320A - NiCrMo STEEL AND MANUFACTURING METHOD OF NiCrMo STEEL - Google Patents

NiCrMo STEEL AND MANUFACTURING METHOD OF NiCrMo STEEL Download PDF

Info

Publication number
JP2016138320A
JP2016138320A JP2015014761A JP2015014761A JP2016138320A JP 2016138320 A JP2016138320 A JP 2016138320A JP 2015014761 A JP2015014761 A JP 2015014761A JP 2015014761 A JP2015014761 A JP 2015014761A JP 2016138320 A JP2016138320 A JP 2016138320A
Authority
JP
Japan
Prior art keywords
steel
less
nicrmo
temperature
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015014761A
Other languages
Japanese (ja)
Other versions
JP6506978B2 (en
Inventor
雅勝 本間
Masakatsu Homma
雅勝 本間
貴広 加藤
Takahiro Kato
貴広 加藤
邦彦 橋
Kunihiko Hashi
邦彦 橋
大輔 菊地
Daisuke Kikuchi
大輔 菊地
剛 佐川
Takeshi Sagawa
剛 佐川
剛志 加藤
Tsuyoshi Kato
剛志 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKAMURA JIKO CO Ltd
Japan Steel Works Ltd
Original Assignee
NAKAMURA JIKO CO Ltd
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKAMURA JIKO CO Ltd, Japan Steel Works Ltd filed Critical NAKAMURA JIKO CO Ltd
Priority to JP2015014761A priority Critical patent/JP6506978B2/en
Priority to KR1020160093336A priority patent/KR102554100B1/en
Publication of JP2016138320A publication Critical patent/JP2016138320A/en
Application granted granted Critical
Publication of JP6506978B2 publication Critical patent/JP6506978B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable efficient fine structuring of a NiCrMo steel.SOLUTION: It has a composition containing, by mass percentage, C:0.10 to less than 0.30%, Si:0.05 to less than 0.30%, Mn:0.20 to 1.00%, P:0.015% or less, S:0.015% or less, Cr:1.50 to 2.00%, Mo:0.10 to 0.50%, Ni:2.50 to 4.00%, Al:0.01 to 0.03%, N:0.005 to 0.015% and the balance Fe with inevitable impurities, consists of a martensite structure or a bainite structure or a combination structure thereof and makes refining for fine structuring efficient.SELECTED DRAWING: None

Description

この発明は、焼入れ性の高いNiCrMo鋼の結晶粒微細化に関するものである。   The present invention relates to grain refinement of NiCrMo steel having high hardenability.

NiCrMoV鋼は古くから大型タービンのローターシャフトに適用され、現在においても軸心まで均一な強度と低温靱性に優れた実用性の高い低合金鋼と位置づけられている。このため、同鋼は強度と靱性が要求される他の大型部材の候補素材としてしばしば検討される。
結晶粒微細化による強化は、一般的な強化方法の中で唯一強度を向上させつつ、延靱性の向上が可能な方法であることはよく知られており、NiCrMoV鋼においてもその効果が期待される。しかしながら、NiCrMoV鋼はγ化処理(α/γ逆変態)による細粒化が難しい鋼種であること、NiCrMoV鋼を厚肉部材に適用した場合、急速昇温や加工再結晶による結晶粒微細化が一層困難となることから、NiCrMoV鋼製の厚肉部材の結晶粒微細化は、γ化加熱と冷却(冷却は一般的に室温まで)を繰り返すことによって行われることが多く、必然的に熱処理工数が増えてしまう問題がある。
NiCrMoV steel has long been applied to rotor shafts of large turbines, and even today, it is positioned as a highly practical low-alloy steel excellent in uniform strength and low-temperature toughness up to the shaft center. For this reason, the steel is often considered as a candidate material for other large members that require strength and toughness.
It is well known that strengthening by grain refinement is a method that can improve the toughness while improving the strength among the general strengthening methods, and the effect is also expected in NiCrMoV steel. The However, NiCrMoV steel is a steel type that is difficult to refine by gamma treatment (α / γ reverse transformation), and when NiCrMoV steel is applied to a thick member, crystal grain refinement due to rapid temperature rise or processing recrystallization is not possible. Since it becomes even more difficult, grain refinement of NiCrMoV steel thick members is often performed by repeating γ-heating and cooling (cooling generally to room temperature), and inevitably man-hours for heat treatment There is a problem that increases.

結晶粒微細化方法としては、NbやTiなどの炭窒化物やAlNなどの結晶粒界ピン止め効果を示す化合物を析出させることが一般的に知られている。特許文献1では、Nb、Al及びNを適量添加し、マトリクス中にAlN及びNb(C,N)を析出させることによって、結晶粒微細化のみならず990℃以上の高温浸炭処理中の結晶粒粗大化の抑制を可能にする技術が示されている。特許文献1で開示された技術は、Nb(C,N)等が高温においてもマトリクス中に溶解せずに安定に存在するためにもたらされるものと考えられる。   As a method for refining crystal grains, it is generally known to precipitate a carbon nitride such as Nb or Ti, or a compound having a crystal grain boundary pinning effect such as AlN. In Patent Document 1, by adding appropriate amounts of Nb, Al and N and precipitating AlN and Nb (C, N) in the matrix, crystal grains are not only refined but also subjected to high-temperature carburizing treatment at 990 ° C. or higher. A technique that enables suppression of coarsening is shown. The technique disclosed in Patent Document 1 is considered to be brought about because Nb (C, N) and the like exist stably without being dissolved in the matrix even at a high temperature.

特開2000−54069号公報JP 2000-54069 A

Nb(C,N)の高温安定性は、Nbの炭窒化物形成傾向が強いことに起因するが、熱間鍛錬工程などで、ゆっくりと部材温度が低下する場合には、この安定性が高いゆえに、冷却中にNb(C,N)が析出、粗大化する。結晶粒界ピン止め粒子が粗大化してしまうと、その後の熱処理工程での結晶粒界ピン止め効果が低下或いは無くなるほか、延靱性の低下の原因にもなり得る。また、大型の鋼塊を溶製する場合には、NbやTiなどの炭化物形成傾向の強い元素は、凝固偏析を助長し、内部性状の悪化の原因にもなり得る。したがって、NbやTiのような高温安定性の高い炭化物や窒化物を形成する元素を添加する方法は、厚肉部材における結晶粒微細化方法として適用しにくい。   The high-temperature stability of Nb (C, N) is due to the strong tendency of Nb to form carbonitrides, but this stability is high when the member temperature is slowly lowered in a hot forging process or the like. Therefore, Nb (C, N) precipitates and becomes coarse during cooling. If the grain boundary pinning particles are coarsened, the grain boundary pinning effect in the subsequent heat treatment step may be reduced or eliminated, and the ductility may be reduced. When a large steel ingot is melted, elements having a strong tendency to form carbides such as Nb and Ti promote solidification segregation and can cause deterioration of internal properties. Therefore, the method of adding an element that forms a carbide or nitride with high temperature stability such as Nb or Ti is difficult to apply as a method for refining crystal grains in a thick member.

本発明は、上記事情を背景になされたものであり、NbやTiなどと比較して高温安定性が低いAlNに着目し、そのピン止め作用を最大限に引き出すための化学組成を定め、前述の方法で結晶粒微細化が難しいNiCrMoV鋼製の厚肉部材において、γ化処理を繰り返さずに、結晶粒微細化できるNiCrMo鋼およびNiCrMo鋼材の製造方法を提案するものである。   The present invention has been made in the context of the above circumstances, focusing on AlN, which has low high-temperature stability compared to Nb, Ti, etc., and has determined the chemical composition for maximizing its pinning action. In the thick member made of NiCrMoV steel, which is difficult to refine crystal grains by this method, a method for producing NiCrMo steel and NiCrMo steel material that can refine crystal grains without repeating the γ-treatment is proposed.

本発明者らは、物理的に加熱、及び冷却速度を大きくすることが困難で、また中心部が狙いの温度になるまでに長時間を要する厚肉部材において、従来のNiCrMoV鋼より少ないγ化回数で微細な結晶粒を得るために必要な化学組成の検討を行い、以下の点を明らかにした。なお、本願発明としては上記厚肉部材に限定されるものではない。   The present inventors have difficulty in physically increasing the heating and cooling rates, and in the thick member that requires a long time until the center reaches the target temperature, the γ-ization is less than that of the conventional NiCrMoV steel. The chemical composition necessary for obtaining fine crystal grains was examined by the number of times, and the following points were clarified. The present invention is not limited to the thick member.

特定量のAl及びN含有させ、かつVを未含有または特定量以下の含有量に制限すると、所定温度の熱処理において結晶粒が微細化する。これは、V含有量を0または従来の一般的なNiCrMoV鋼よりも減少させると、V(C,N)の析出量も減少するため、必然的に結晶粒界ピン止め作用のあるAlNの析出量が増加することによる。   When a specific amount of Al and N is contained and V is limited to a content not contained or less than a specific amount, crystal grains are refined in a heat treatment at a predetermined temperature. This is because when the V content is reduced to 0 or less than that of a conventional general NiCrMoV steel, the precipitation amount of V (C, N) also decreases. By increasing the amount.

上記、結晶粒微細化効果を示す特定量のAl、N及びVを含有した状態で、さらにNbを添加しても、上記同様の熱処理条件下ではNb添加による追加の結晶粒微細化の効果は現れない。   Even if Nb is added in a state containing a specific amount of Al, N, and V showing the grain refinement effect, the additional grain refinement effect due to the addition of Nb under the same heat treatment conditions as described above is It does not appear.

結晶粒微細化効果を示す特定量のAl、Nを含有し、または所望によってさらにVを含有した状態で、Cr含有量を特定の組成範囲内で増加した場合、わずかであるがさらに結晶粒が微細化する。   When the Cr content is increased within a specific composition range with a specific amount of Al, N showing a crystal grain refining effect, or further containing V if desired, the crystal grains are slightly increased. Refine.

結晶粒微細化効果を示す特定量のAl、Nを含有し、または所望によってさらにVを含有した状態で、Ni、Si、Mn及びMoは特定の組成範囲内において、狙いの機械的特性に合わせて含有量を変動させることができる。   Ni, Si, Mn, and Mo in a specific composition range in accordance with target mechanical characteristics in a specific composition range containing a specific amount of Al, N that shows a grain refinement effect, or further containing V if desired. The content can be varied.

本発明は上記の知見に基づいてなされたものであり、その内容を以下に示す。   The present invention has been made on the basis of the above findings, and the contents thereof are shown below.

すなわち、本発明のNiCrMo鋼のうち、第1の本発明は、質量百分率で、C:0.10〜0.30%未満、Si:0.05〜0.30%未満、Mn:0.20〜1.00%、P:0.015%以下、S:0.015%以下、Cr:1.50〜2.00%、Mo:0.10〜0.50%、Ni:2.50〜4.00%、Al:0.01〜0.03%、N:0.005〜0.015%を有し、残部がFe及び不可避的不純物からなる組成を有することを特徴とする。   That is, among the NiCrMo steels of the present invention, the first present invention is in mass percentage, C: 0.10 to less than 0.30%, Si: 0.05 to less than 0.30%, Mn: 0.20 To 1.00%, P: 0.015% or less, S: 0.015% or less, Cr: 1.50 to 2.00%, Mo: 0.10 to 0.50%, Ni: 2.50 It is characterized by having 4.00%, Al: 0.01-0.03%, N: 0.005-0.015%, with the balance being composed of Fe and inevitable impurities.

第2の本発明のNiCrMo鋼は、前記本発明において、前記組成に、さらに質量百分率で、V:0.10%未満を含有することを特徴とする。   The NiCrMo steel according to the second aspect of the present invention is characterized in that, in the present invention, the composition further contains V: less than 0.10% by mass percentage.

第3の本発明のNiCrMo鋼は、前記本発明において、前記組成に、さらに質量百分率で、Nb:0.10%未満を含有することを特徴とする。   The NiCrMo steel of the third aspect of the present invention is characterized in that, in the present invention, the composition further contains Nb: less than 0.10% by mass percentage.

第4の本発明のNiCrMo鋼は、前記本発明において、マルテンサイト組織またはベイナイト組織、もしくはこれらの混合組織からなることを特徴とする。   The NiCrMo steel of the fourth aspect of the present invention is characterized in that, in the present invention, it comprises a martensitic structure, a bainite structure, or a mixed structure thereof.

第5の本発明のNiCrMo鋼材の製造方法は、第1〜第3の本発明のいずれかに記載の組成を有する鋼を用意し、該鋼に対し、熱間鍛造、焼準し、焼戻し後、800〜930℃でγ化処理を少なくとも1回行うことにより、JIS G0551に準拠した結晶粒度が、5.5以上である鋼材を得ることを特徴とする。   The manufacturing method of the NiCrMo steel material of the 5th this invention prepares the steel which has the composition in any one of the 1st-3rd this invention, and performs hot forging, normalizing, and tempering with respect to this steel The steel material whose crystal grain size based on JIS G0551 is 5.5 or more is obtained by performing the γ-treatment at 800-930 ° C. at least once.

以下に、本発明で規定する内容について説明する。なお、下記で示す成分は、いずれも質量百分率で示されている。   The contents defined in the present invention will be described below. In addition, all the components shown below are shown by mass percentage.

C:0.10〜0.30%未満
Cはマトリクス中に固溶し、固溶強度を与えるとともに、他の合金元素と合金炭化物を形成し、マトリクス中に析出することで目的となる強度の増加をもたらすため、0.1%以上添加する。しかし、多すぎると加工性や靱性の低下を招く。よってその範囲を0.10〜0.30%未満に限定する。
C: Less than 0.10 to 0.30% C dissolves in the matrix, gives solid solution strength, forms alloy carbide with other alloy elements, and precipitates in the matrix. In order to bring about an increase, 0.1% or more is added. However, if the amount is too large, workability and toughness are reduced. Therefore, the range is limited to 0.10 to less than 0.30%.

Si:0.05〜0.30%未満
Siはフェライトの固溶強化元素であるが、凝固偏析を助長する元素であるため、多すぎると鋼中が不均一な組織となり、靱性の低下を招く。よってその範囲を0.05〜0.30%未満に限定する。なお、好適な態様としては、上限を0.20%とするのが望ましい。
Si: 0.05 to less than 0.30% Si is a solid solution strengthening element of ferrite. However, since it is an element that promotes solidification segregation, if it is too much, the structure in the steel becomes uneven and the toughness is reduced. . Therefore, the range is limited to less than 0.05 to 0.30%. As a preferred embodiment, the upper limit is desirably 0.20%.

Mn:0.20〜1.00%
Mnは、オーステナイト安定化元素であるため、焼入れ性を向上させ、強度を高める効果がある。ただし、0.20%未満であると焼入れ性が不十分となり、一方、1.00%を超えると、材料が硬くなって加工性が低下する。よってその範囲を0.20〜1.00%とする。なお、同様の理由で、好適な態様としては、下限を0.30%、上限を0.90%とするのが望ましい。
Mn: 0.20 to 1.00%
Since Mn is an austenite stabilizing element, it has the effects of improving hardenability and increasing strength. However, if it is less than 0.20%, the hardenability becomes insufficient. On the other hand, if it exceeds 1.00%, the material becomes hard and workability deteriorates. Therefore, the range is 0.20 to 1.00%. For the same reason, as a preferred embodiment, it is desirable that the lower limit is 0.30% and the upper limit is 0.90%.

P:0.015%以下
Pは旧オーステナイト粒界に偏析し、粒界の脆化を招く元素であるため、不純物としてその範囲を0.015%以下に限定する。
P: 0.015% or less P is an element that segregates at the prior austenite grain boundaries and causes embrittlement of the grain boundaries, so the range is limited to 0.015% or less as impurities.

S:0.015%以下
Sは、Mnと化合して硫化物系介在物を形成するが、多すぎると粗大な硫化物系介在物が増え、靱性の低下を招く。よって、不純物として、その範囲を0.015%以下に限定する。
S: 0.015% or less S combines with Mn to form sulfide-based inclusions, but if it is too much, coarse sulfide-based inclusions increase, leading to a decrease in toughness. Therefore, the range of impurities is limited to 0.015% or less.

Cr:1.50〜2.00%
Crは、Mnと同様に焼入れ性及び焼戻し軟化抵抗の向上をもたらす元素である。一方で、過度の含有は、材料が硬くなって加工性が低下する。よって、その範囲を1.50〜2.00%に限定する。
Cr: 1.50 to 2.00%
Cr, like Mn, is an element that provides improved hardenability and temper softening resistance. On the other hand, if the content is excessive, the material becomes hard and the workability decreases. Therefore, the range is limited to 1.50 to 2.00%.

Mo:0.10〜0.50%
Moは焼戻しの強度低下を低減する役割を果たすが、過剰な添加は靱性の低下を招く。よってその範囲を0.10〜0.50%に限定する。なお、好適な態様としては、上限を0.30%とするのが望ましい。
Mo: 0.10 to 0.50%
Mo plays a role in reducing a reduction in the strength of tempering, but excessive addition causes a reduction in toughness. Therefore, the range is limited to 0.10 to 0.50%. As a preferred embodiment, the upper limit is desirably 0.30%.

Ni:2.50〜4.00%
Niは母相に固溶し焼入れ性を高め、高強度化及び高靱性化に寄与する元素である。ただし、2.50%未満であると焼入れ性が不足し、強度の低下を招く。一方、過度の含有は、材料が硬くなりすぎて加工性の低下を招く。よって、その範囲を2.50〜4.00%に限定する。なお、好適な態様としては、下限を3.00%、上限を3.80%とするのが望ましい。
Ni: 2.50 to 4.00%
Ni is an element that dissolves in the matrix and enhances hardenability and contributes to high strength and toughness. However, if it is less than 2.50%, the hardenability is insufficient and the strength is reduced. On the other hand, when the content is excessive, the material becomes too hard and the workability is lowered. Therefore, the range is limited to 2.50 to 4.00%. As a preferred embodiment, it is desirable that the lower limit is 3.00% and the upper limit is 3.80%.

V:0.10%未満
Vは、CやNと化合しV(C,N)を形成するため、AlNの形成に大きく影響を及ぼす。多量に含有すると多量のV(C,N)が形成され、AlNの析出量、析出温度が変化し、AlNのピン止め作用が低下する。したがって、Vは、無添加または含有する場合は、その含有量を0.10%未満に限定する。なお、好適な態様としては、上限を0.07%とするのが望ましい。また、Vを強化元素とするために、含有量の下限は、0.03%とするのが望ましい。Vを無添加とする場合、不可避不純物として0.03%未満で含有してもよく、0.01%以下が望ましい。
V: Less than 0.10% V combines with C and N to form V (C, N), and thus greatly affects the formation of AlN. If it is contained in a large amount, a large amount of V (C, N) is formed, the amount of precipitation of AlN and the precipitation temperature are changed, and the pinning action of AlN is lowered. Therefore, when V is not added or contained, its content is limited to less than 0.10%. As a preferred embodiment, it is desirable that the upper limit is 0.07%. Moreover, in order to make V into a strengthening element, the lower limit of the content is preferably 0.03%. When V is not added, it may be contained as an inevitable impurity at less than 0.03%, and preferably 0.01% or less.

Al:0.01〜0.03%
AlはAlNとして析出し、結晶粒界をピン止めする。少なすぎるとピン止めに効果があるAlN粒子数が不足し、結晶粒が微細化せず、多すぎるとAlNが粗大化し、延靱性の低下を招く。よってその範囲を0.01〜0.03%とする。なお、好適な態様としては、上限を0.025%とするのが望ましい。
Al: 0.01-0.03%
Al precipitates as AlN and pins the grain boundaries. If the amount is too small, the number of AlN particles effective for pinning will be insufficient, and the crystal grains will not be refined. If the amount is too large, the AlN will become coarse and the ductility will be reduced. Therefore, the range is 0.01 to 0.03%. As a preferred embodiment, it is desirable that the upper limit is 0.025%.

N:0.005〜0.015%
Nは、AlやVと化合し、AlNやV(C,N)として析出する。少なすぎると、ピン止めに効果があるAlNの析出物粒子数が不足し、結晶粒微細化せず、多すぎると析出物の粗大化、それによる延靱性の低下を招く。よってその範囲を0.005〜0.015%とする。なお、好適な態様としては、上限を0.010%とするのが望ましい。
N: 0.005 to 0.015%
N combines with Al and V and precipitates as AlN and V (C, N). If the amount is too small, the number of AlN precipitate particles effective for pinning will be insufficient, and the crystal grains will not be refined. If the amount is too large, the precipitates will become coarse, resulting in a reduction in ductility. Therefore, the range is made 0.005 to 0.015%. As a preferred embodiment, it is desirable that the upper limit is 0.010%.

Nb:0.10%未満
Nbは、熱間鍛造時などの高温域、例えば1000℃〜1150℃での粒界ピン止め効果を持たせることができ、所望により含有させることができる。その場合、下限量を0.01%とするのが望ましい。さらに、0.03%以上とするのが一層望ましい。また、Nbは、不可避不純物として0.01%未満含有するものであってもよい。
Nb: less than 0.10% Nb can have a grain boundary pinning effect in a high temperature range such as during hot forging, for example, 1000 ° C. to 1150 ° C., and can be contained as desired. In that case, it is desirable that the lower limit amount be 0.01%. Furthermore, 0.03% or more is more desirable. Further, Nb may be contained in an amount of less than 0.01% as an inevitable impurity.

組織
本発明のNiCrMo鋼は、調質後において、マルテンサイト組織またはベイナイト組織もしくは、これらの混合組織を有する。
調質(焼入れ)の際に、加熱後、800〜200℃までの平均冷却速度が50℃/分以下でも、上記組織を形成することができる。
Structure The NiCrMo steel of the present invention has a martensite structure, a bainite structure, or a mixed structure thereof after tempering.
In the case of tempering (quenching), the structure can be formed even after the heating even if the average cooling rate from 800 to 200 ° C. is 50 ° C./min or less.

昇温速度
本発明は、肉厚部材ゆえに熱処理中の中心部の昇温速度が200℃/時間以下となってしまうNiCrMo鋼製の肉厚部材に好適に適用される。例えば、肉厚が100mm以上の部材が挙げられる。
Temperature rising rate The present invention is suitably applied to a thick member made of NiCrMo steel, which has a thick member and the temperature rising rate at the center during heat treatment is 200 ° C./hour or less. For example, a member having a wall thickness of 100 mm or more can be given.

最終γ化温度
最終γ化処理は、800℃?930℃で行うことができる。例えば100時間を超えて保持しても、結晶粒はほとんど粗大化しないため、調質温度は狙いの機械的特性や部材の肉厚などに応じて、この温度範囲内で自由に選択できる。
Final γ-ization temperature The final γ-ization treatment can be performed at 800 ° C. to 930 ° C. For example, even if it is maintained for more than 100 hours, the crystal grains are hardly coarsened, so that the tempering temperature can be freely selected within this temperature range according to the target mechanical characteristics and the thickness of the member.

本発明のNiCrMo(V)鋼は、結晶粒径において、鍛鋼部材の一般的な熱間鍛造、熱処理(焼準し、焼戻し)工程後、1回のγ化処理でJIS G0551に準拠した結晶粒度が、5.5以上となる。細粒化された組織によって、強度が向上し、優れた靱性、疲労特性をもたらす。   The NiCrMo (V) steel of the present invention has a crystal grain size in accordance with JIS G0551 in one γ-treatment after the general hot forging and heat treatment (normalizing and tempering) steps of forged steel members. Becomes 5.5 or more. The refined structure improves strength and provides excellent toughness and fatigue properties.

以上に述べたように、本発明によれば急速昇温できない厚肉部材においても繰り返しγ化処理をしなくても、AlNの結晶粒界ピン止め効果を利用して結晶粒微細化が可能となる。結晶粒微細化は強度や靱性等の機械的性質の観点からも有利であり、結晶粒微細化によって材料特性が向上したNiCrMo鋼製部材を提供することができる。   As described above, according to the present invention, it is possible to refine crystal grains by utilizing the pinning effect of the grain boundary of AlN without repeated γ treatment even in a thick member that cannot be rapidly heated. Become. Crystal grain refinement is advantageous from the viewpoint of mechanical properties such as strength and toughness, and a NiCrMo steel member having improved material properties by crystal grain refinement can be provided.

以下に、本発明の一実施形態を説明する。
本発明のNiCrMo鋼は常法により溶製することができる。溶製により得られる鋼塊は、必要に応じて鍛造等の加工や焼準し等の予備熱処理を実施し、さらに調質を行う。それらの鍛造等や熱処理は常法により行うことができ、本発明としては特定の条件に限定されるものではない。
Hereinafter, an embodiment of the present invention will be described.
The NiCrMo steel of the present invention can be melted by a conventional method. The steel ingot obtained by melting is subjected to preliminary heat treatment such as forging and normalization as necessary, and further tempering. Such forging and heat treatment can be carried out by conventional methods, and the present invention is not limited to specific conditions.

ただし、結晶粒微細化にはγ化加熱温度を適正に定めるのが望ましく、好適な態様としては、800℃から930℃の温度範囲内とするのが望ましい。さらに、上限は870℃とするのが一層望ましい。800℃よりも低温となると未再結晶粒が残存し整粒が得られなくなり、930℃よりも高温では、温度増加とともに徐々に結晶粒が粗大化する。加熱時間は特に限定されるものではないが、例えば1〜100時間で行うことができる。800〜930℃から常法による冷却を施すとマルテンサイト組織又はベイナイト組織、又はそれらの混合組織が得られる。
焼入れ時の冷却は、要求される機械的特性や部材の肉厚に応じて、水冷、油冷、空冷、炉冷などを用いることができる。
However, it is desirable to appropriately set the γ-heating temperature for crystal grain refinement, and as a preferred mode, it is desirable that the temperature be in the temperature range of 800 ° C. to 930 ° C. Furthermore, the upper limit is more preferably 870 ° C. When the temperature is lower than 800 ° C., non-recrystallized grains remain and grain size cannot be obtained, and when the temperature is higher than 930 ° C., the crystal grains gradually become coarser as the temperature increases. Although heating time is not specifically limited, For example, it can carry out in 1 to 100 hours. When cooling by a conventional method from 800 to 930 ° C., a martensite structure, a bainite structure, or a mixed structure thereof is obtained.
For cooling during quenching, water cooling, oil cooling, air cooling, furnace cooling, or the like can be used depending on the required mechanical properties and the thickness of the member.

また、調質工程の焼戻しは、強靭性や割れ感受性に大きな影響を及ぼすものの、結晶粒度に関してすべての熱処理は無関係と言ってよい熱処理工程である。よって、適用する部材にあった焼戻し条件を常法により行えば良い。例えば、強度や硬さが必要な場合は150?200℃、延靱性が必要な場合は550〜600℃の条件を示すことができる。但し、焼戻し脆化が起こるような温度、例えば500℃で長時間保持する条件で実施することは避けた方が良い。
結晶粒度番号および整粒であるか否かの判定は、日本工業規格G0551“鋼のオーステナイト結晶粒度試験方法”によって判定することができ、光学顕微鏡などの装置を用いて判定が可能である。組織についても光学顕微鏡を用いて判定が可能である。
本願発明の調質を経た鋼材は、一般的な熱処理条件、すなわち熱間鍛造、焼準し、焼戻し、焼入れ後、上記基準における結晶粒度で、5.5以上の整粒を示している。
In addition, tempering in the tempering process has a great influence on toughness and cracking susceptibility, but it can be said that all heat treatments are irrelevant with respect to crystal grain size. Therefore, the tempering conditions suitable for the member to be applied may be performed by a conventional method. For example, the conditions of 150 to 200 ° C. can be shown when strength and hardness are required, and 550 to 600 ° C. can be shown when ductility is required. However, it is better to avoid carrying out at a temperature at which temper embrittlement occurs, for example, at 500 ° C. for a long time.
The grain size number and whether or not the grain size is sized can be judged by Japanese Industrial Standard G0551 “Austenite grain size test method for steel”, and can be judged using an apparatus such as an optical microscope. Tissues can also be determined using an optical microscope.
The steel material that has undergone the tempering of the present invention shows a grain size of 5.5 or more in terms of the crystal grain size according to the above criteria after general heat treatment conditions, that is, hot forging, normalizing, tempering, and quenching.

以下に、本発明の実施例を説明する。表1に示す組成の鋼種を50kg真空誘導溶解炉で溶製し、得られた鋼塊を90×90mmの断面の角柱形状に鍛造した。その後、900℃×6時間で焼準、670℃×12時間で焼戻し、900℃×20時間保持後、水焼入れを実施した。その後、γ化処理の繰り返し効果を確認するため、840℃×5時間保持後、水焼入れを1〜2回実施した。なお、急速昇温による結晶粒微細化効果が出現すると、AlNによる結晶粒微細化効果の程度を確認できないため、すべての熱処理の昇温速度は肉厚部材を想定して40℃/時間とした。   Examples of the present invention will be described below. Steel types having the composition shown in Table 1 were melted in a 50 kg vacuum induction melting furnace, and the obtained steel ingot was forged into a prismatic shape having a 90 × 90 mm cross section. Then, normalization was performed at 900 ° C. × 6 hours, tempering was performed at 670 ° C. × 12 hours, and after holding at 900 ° C. × 20 hours, water quenching was performed. Then, in order to confirm the repetitive effect of the gamma treatment, water quenching was performed once or twice after holding at 840 ° C. for 5 hours. When the effect of grain refinement due to rapid temperature rise appears, the degree of grain refinement effect due to AlN cannot be confirmed. Therefore, the rate of temperature rise for all heat treatments was set to 40 ° C./hour assuming thick members. .

Figure 2016138320
Figure 2016138320

表2に各鋼種の(1)熱間鍛造−焼準し(N)−焼戻し(T)−焼入れ(Q)後、(2)熱間鍛造−N−T−Q−Q後、(3)熱間鍛造−N−T−Q−Q−Q後の結晶粒度測定結果を示す。結晶粒度は、JIS G0551に準拠して測定した。   Table 2 shows (1) Hot forging-Normalizing (N)-Tempering (T)-Quenching (Q), (2) Hot forging-NTQQ, (3) The crystal grain size measurement result after hot forging-NTQQQ is shown. The crystal grain size was measured according to JIS G0551.

本実施例では、試料1の(1)の熱処理後の結晶粒度番号4.5と比較して、結晶粒微細化効果の有無を判定する。試料1と試料2の比較から、単にAl及びNを添加しただけでは結晶粒度番号はほとんど変わらず、結晶粒微細化効果が現れなかった。しかし、試料3、4及び5のように、Al及びNを添加しつつ、V量を低減した場合には、結晶粒度番号は6以上となり、結晶粒微細化効果が確認された。試料6及び7は、Al及びNを添加せずに、V量のみを変動させた鋼であるが、結晶粒度番号は4程度であり、結晶粒微細化効果は認められなかった。以上の結果から、Al及びNを添加しつつ、V量を0.1%未満に低減させなければ結晶粒細粒化効果が無いことがわかった。   In this example, the presence or absence of a crystal grain refining effect is determined in comparison with the grain size number 4.5 after heat treatment of Sample 1 (1). From the comparison of Sample 1 and Sample 2, the crystal grain size number hardly changed when only Al and N were added, and the effect of refining crystal grains did not appear. However, when the amount of V was reduced while adding Al and N as in Samples 3, 4 and 5, the crystal grain size number was 6 or more, and the effect of crystal grain refinement was confirmed. Samples 6 and 7 were steels in which only the amount of V was varied without adding Al and N, but the grain size number was about 4, and the grain refinement effect was not recognized. From the above results, it was found that there is no crystal grain refining effect unless the V content is reduced to less than 0.1% while adding Al and N.

試料8〜11のように、Al、N及びV量を結晶粒微細化効果を示す量に制御しつつ、NiやMn量を増加させても、結晶粒度番号は6以上を示し、Vとは異なりNi及びMnの増量はAlNの結晶粒微細化効果を低下させるものではないことがわかった。   As in Samples 8 to 11, even when the amount of Ni or Mn is increased while controlling the amounts of Al, N, and V to the amount showing the effect of refining crystal grains, the crystal grain size number shows 6 or more. In contrast, it has been found that an increase in Ni and Mn does not reduce the crystal grain refining effect of AlN.

試料9の組成に対しNbを添加した試料12は、結晶粒度番号が6.9であり、試料9のそれと同程度であったことから、Al、N及びV量を結晶粒微細化効果を示す量に制御した状態では、Nb添加の結晶粒微細化効果はほとんどないと推察される。   Sample 12 to which Nb was added with respect to the composition of sample 9 had a crystal grain size number of 6.9, which was almost the same as that of sample 9, so that the amount of Al, N, and V showed a grain refinement effect. It is presumed that there is almost no crystal grain refinement effect of Nb addition in a state where the amount is controlled.

試料13及び14はCrを増量した鋼であるが、結晶粒度番号がわずかに大きいことから、Cr増量は結晶粒微細化に有効であると言える。
熱処理(1)にQを追加した熱処理(2)及び(3)後は、いずれも結晶粒が微細になったが、試料1は結晶粒度6以上となるのは、熱処理(1)にQを2回追加した条件であり、試料1は発明鋼と比べてQを2回追加しなければならないことがわかった。
Samples 13 and 14 are steels with increased Cr, but since the grain size number is slightly larger, it can be said that the increased Cr is effective for crystal grain refinement.
After the heat treatments (2) and (3) in which Q was added to the heat treatment (1), the crystal grains became fine, but the sample 1 had a crystal grain size of 6 or more. Under the condition of adding twice, it was found that Sample 1 had to add Q twice compared to the inventive steel.

Figure 2016138320
Figure 2016138320

表3に同条件で調質した試料1及び試料5の室温の引張強度、伸び、シャルピー衝撃値を表す。結晶粒が微細な試料5は、比較材の試料1と比べ、引張特性こそほとんど変わらないものの、衝撃値が1.5倍以上高い値を示した。 Table 3 shows the tensile strength, elongation, and Charpy impact value at room temperature of Sample 1 and Sample 5 conditioned under the same conditions. Sample 5 with fine crystal grains showed an impact value 1.5 times higher than that of sample 1 of the comparative material, although the tensile properties were hardly changed.

Figure 2016138320
Figure 2016138320

以上、本発明について上記実施形態に基づいて説明を行ったが、本発明の範囲を逸脱しない限りは適宜の変更が可能である。   As described above, the present invention has been described based on the above embodiment, but appropriate modifications can be made without departing from the scope of the present invention.

最終γ化温度
最終γ化処理は、800℃930℃で行うことができる。例えば100時間を超えて保持しても、結晶粒はほとんど粗大化しないため、調質温度は狙いの機械的特性や部材の肉厚などに応じて、この温度範囲内で自由に選択できる。
Final γ conversion temperature The final γ conversion treatment can be performed at 800 ° C to 930 ° C. For example, even if it is maintained for more than 100 hours, the crystal grains are hardly coarsened, so that the tempering temperature can be freely selected within this temperature range according to the target mechanical characteristics and the thickness of the member.

また、調質工程の焼戻しは、強靭性や割れ感受性に大きな影響を及ぼすものの、結晶粒度に関してすべての熱処理は無関係と言ってよい熱処理工程である。よって、適用する部材にあった焼戻し条件を常法により行えば良い。例えば、強度や硬さが必要な場合は150200℃、延靱性が必要な場合は550〜600℃の条件を示すことができる。但し、焼戻し脆化が起こるような温度、例えば500℃で長時間保持する条件で実施することは避けた方が良い。
結晶粒度番号および整粒であるか否かの判定は、日本工業規格G0551“鋼のオーステナイト結晶粒度試験方法”によって判定することができ、光学顕微鏡などの装置を用いて判定が可能である。組織についても光学顕微鏡を用いて判定が可能である。
本願発明の調質を経た鋼材は、一般的な熱処理条件、すなわち熱間鍛造、焼準し、焼戻し、焼入れ後、上記基準における結晶粒度で、5.5以上の整粒を示している。
In addition, tempering in the tempering process has a great influence on toughness and cracking susceptibility, but it can be said that all heat treatments are irrelevant with respect to crystal grain size. Therefore, the tempering conditions suitable for the member to be applied may be performed by a conventional method. For example, the conditions of 150 to 200 ° C. can be shown when strength and hardness are required, and 550 to 600 ° C. can be shown when ductility is required. However, it is better to avoid carrying out at a temperature at which temper embrittlement occurs, for example, at 500 ° C. for a long time.
The grain size number and whether or not the grain size is sized can be judged by Japanese Industrial Standard G0551 “Austenite grain size test method for steel”, and can be judged using an apparatus such as an optical microscope. Tissues can also be determined using an optical microscope.
The steel material that has undergone the tempering of the present invention shows a grain size of 5.5 or more in terms of the crystal grain size according to the above criteria after general heat treatment conditions, that is, hot forging, normalizing, tempering, and quenching.

Figure 2016138320
Figure 2016138320

Claims (5)

質量百分率で、C:0.10〜0.30%未満、Si:0.05〜0.30%未満、Mn:0.20〜1.00%、P:0.015%以下、S:0.015%以下、Cr:1.50〜2.00%、Mo:0.10〜0.50%、Ni:2.50〜4.00%、Al:0.01〜0.03%、N:0.005〜0.015%を含有し、残部がFe及び不可避的不純物からなる組成を有することを特徴とするNiCrMo鋼。   By mass percentage, C: 0.10 to less than 0.30%, Si: 0.05 to less than 0.30%, Mn: 0.20 to 1.00%, P: 0.015% or less, S: 0 0.015% or less, Cr: 1.50 to 2.00%, Mo: 0.10 to 0.50%, Ni: 2.50 to 4.00%, Al: 0.01 to 0.03%, N : NiCrMo steel containing 0.005 to 0.015%, with the balance being composed of Fe and inevitable impurities. 前記組成に、さらに質量百分率で、V:0.10%未満を含有することを特徴とする請求項1記載のNiCrMo鋼。   The NiCrMo steel according to claim 1, wherein the composition further contains V: less than 0.10% by mass percentage. 前記組成に、さらに質量百分率で、Nb:0.10%未満を含有することを特徴とする請求項1または2に記載のNiCrMo鋼。   The NiCrMo steel according to claim 1 or 2, wherein the composition further contains Nb: less than 0.10% by mass percentage. マルテンサイト組織またはベイナイト組織、もしくはこれらの混合組織からなることを特徴とする請求項1〜3のいずれか1項に記載のNiCrMo鋼。   The NiCrMo steel according to any one of claims 1 to 3, comprising a martensitic structure, a bainite structure, or a mixed structure thereof. 請求項1〜3のいずれか1項に記載の組成を有する鋼を用意し、該鋼に対し、熱間鍛造、焼準し、焼戻し後、800〜930℃×1〜100時間のγ化加熱処理を少なくとも1回行うことにより、JIS G0551に準拠した旧オーステナイト結晶粒度が、5.5以上である鋼材を得ることを特徴とするNiCrMo鋼材の製造方法。


A steel having the composition according to any one of claims 1 to 3 is prepared, and hot forging, normalizing and tempering the steel, followed by γ-heating at 800 to 930 ° C x 1 to 100 hours A method for producing a NiCrMo steel material, characterized by obtaining a steel material having a prior austenite grain size of 5.5 or more in accordance with JIS G0551 by performing the treatment at least once.


JP2015014761A 2015-01-28 2015-01-28 Method of manufacturing NiCrMo steel and NiCrMo steel material Active JP6506978B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015014761A JP6506978B2 (en) 2015-01-28 2015-01-28 Method of manufacturing NiCrMo steel and NiCrMo steel material
KR1020160093336A KR102554100B1 (en) 2015-01-28 2016-07-22 NiCrMo STEEL AND METHOD FOR MANUFACTURING NiCrMo STEEL MATERIAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015014761A JP6506978B2 (en) 2015-01-28 2015-01-28 Method of manufacturing NiCrMo steel and NiCrMo steel material

Publications (2)

Publication Number Publication Date
JP2016138320A true JP2016138320A (en) 2016-08-04
JP6506978B2 JP6506978B2 (en) 2019-04-24

Family

ID=56558955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015014761A Active JP6506978B2 (en) 2015-01-28 2015-01-28 Method of manufacturing NiCrMo steel and NiCrMo steel material

Country Status (2)

Country Link
JP (1) JP6506978B2 (en)
KR (1) KR102554100B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018053332A (en) * 2016-09-30 2018-04-05 日立金属株式会社 Method for manufacturing turbine material
CN111101064A (en) * 2020-01-10 2020-05-05 泰尔重工股份有限公司 High-performance bolt of bearing seat type joint and manufacturing method thereof
CN111705269A (en) * 2020-07-09 2020-09-25 河南中原特钢装备制造有限公司 Low-silicon steel 27NiCrMoV15-6 and smelting continuous casting production process thereof
WO2023282256A1 (en) * 2021-07-06 2023-01-12 日本製鋼所M&E株式会社 Production method for universal joint component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227555A (en) * 1985-07-29 1987-02-05 Kawasaki Steel Corp Low-alloy tempered forged steel excellent in falling weight characteristics
JPS6240313A (en) * 1985-08-15 1987-02-21 Kawasaki Steel Corp Production of extra-thick tempered steel material
JP2005154784A (en) * 2002-11-12 2005-06-16 Daido Steel Co Ltd Bearing steel excellent in corrosion resistance

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4050829B2 (en) 1998-07-30 2008-02-20 新日本製鐵株式会社 Carburized material with excellent rolling fatigue characteristics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227555A (en) * 1985-07-29 1987-02-05 Kawasaki Steel Corp Low-alloy tempered forged steel excellent in falling weight characteristics
JPS6240313A (en) * 1985-08-15 1987-02-21 Kawasaki Steel Corp Production of extra-thick tempered steel material
JP2005154784A (en) * 2002-11-12 2005-06-16 Daido Steel Co Ltd Bearing steel excellent in corrosion resistance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018053332A (en) * 2016-09-30 2018-04-05 日立金属株式会社 Method for manufacturing turbine material
CN111101064A (en) * 2020-01-10 2020-05-05 泰尔重工股份有限公司 High-performance bolt of bearing seat type joint and manufacturing method thereof
CN111705269A (en) * 2020-07-09 2020-09-25 河南中原特钢装备制造有限公司 Low-silicon steel 27NiCrMoV15-6 and smelting continuous casting production process thereof
WO2023282256A1 (en) * 2021-07-06 2023-01-12 日本製鋼所M&E株式会社 Production method for universal joint component

Also Published As

Publication number Publication date
JP6506978B2 (en) 2019-04-24
KR20160121785A (en) 2016-10-20
KR102554100B1 (en) 2023-07-12

Similar Documents

Publication Publication Date Title
JP6461360B2 (en) Spring steel wire and spring
JP5423806B2 (en) High toughness wear resistant steel and method for producing the same
JP5167616B2 (en) Metal bolts with excellent delayed fracture resistance
JP6479527B2 (en) Bolt wire with excellent pickling property and delayed fracture resistance after quenching and tempering, and bolt
JP6432932B2 (en) High strength and high toughness steel parts for machine structures excellent in pitting resistance and wear resistance and method for manufacturing the same
WO2011078165A1 (en) High-strength spring steel
JP2007031733A (en) STEEL HAVING EXCELLENT DELAYED FRACTURE RESISTANCE AND TENSILE STRENGTH IN CLASS OF >=1,600 MPa, AND METHOD FOR PRODUCING FORMING THEREOF
JP2003129190A (en) Martensitic stainless steel and manufacturing method therefor
JP5288259B2 (en) Pre-quenching method and quenching method for martensitic tool steel
JP5974623B2 (en) Age-hardening bainite non-tempered steel
JP6506978B2 (en) Method of manufacturing NiCrMo steel and NiCrMo steel material
JP2010007120A (en) Method for manufacturing high-strength carburized component
JP6620490B2 (en) Age-hardening steel
JP5304507B2 (en) Non-tempered steel for induction hardening
WO2015163226A1 (en) Turbine rotor material for geothermal power generation and method for manufacturing same
JPH11131176A (en) Induction hardened parts and production thereof
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP2009191322A (en) Case-hardened steel superior in grain-coarsening resistance for use in carburized parts
JP2016065265A (en) Heat resistant steel for steam turbine rotor blade and steam turbine rotor blade
JP2008057007A (en) Low alloy steel material and manufacturing method therefor
JP2019026874A (en) Raw material for high frequency induction hardening component
JP6265048B2 (en) Case-hardened steel
JP2004124190A (en) Induction-tempered steel having excellent twisting property
JPH11131135A (en) Induction-hardened parts and production thereof
JPH1017935A (en) Production of induction hardened parts

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190401

R150 Certificate of patent or registration of utility model

Ref document number: 6506978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250