JP5974623B2 - Age-hardening bainite non-tempered steel - Google Patents

Age-hardening bainite non-tempered steel Download PDF

Info

Publication number
JP5974623B2
JP5974623B2 JP2012111883A JP2012111883A JP5974623B2 JP 5974623 B2 JP5974623 B2 JP 5974623B2 JP 2012111883 A JP2012111883 A JP 2012111883A JP 2012111883 A JP2012111883 A JP 2012111883A JP 5974623 B2 JP5974623 B2 JP 5974623B2
Authority
JP
Japan
Prior art keywords
hardness
steel
age
cementite
bainite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012111883A
Other languages
Japanese (ja)
Other versions
JP2013253265A (en
Inventor
亮介 大橋
亮介 大橋
木村 和良
和良 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2012111883A priority Critical patent/JP5974623B2/en
Priority to FR1354044A priority patent/FR2990218B1/en
Publication of JP2013253265A publication Critical patent/JP2013253265A/en
Application granted granted Critical
Publication of JP5974623B2 publication Critical patent/JP5974623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Description

この発明は熱間加工後においてベイナイト組織を有し、その後の時効硬化処理によって析出硬化し高硬度化する時効硬化型ベイナイト非調質鋼に関し、詳しくは従来のものに比べて高い靭性を有する時効硬化型ベイナイト非調質鋼に関する。   The present invention relates to an age-hardened bainite non-heat treated steel having a bainite structure after hot working and precipitation hardening by the subsequent age hardening treatment, and more specifically, an aging having higher toughness than conventional ones. The present invention relates to hardened bainite non-heat treated steel.

従来において、強度,靭性を必要とする自動車用部品,機械構造部品等には、熱間鍛造等の熱間加工後に焼入れ焼戻し処理(調質処理)されて使用される調質鋼が用いられてきた。   Conventionally, tempered steel that has been used after being tempered (tempered) after hot working such as hot forging has been used for automotive parts and machine structural parts that require strength and toughness. It was.

ところが調質鋼は強度,靭性に優れているものの、部品製造に際して熱間加工後の焼入れ焼戻し処理(調質処理)のための熱処理コストが高いといった問題の他、マルテンサイト変態に伴う熱処理歪みが大で、熱処理後の形状修正,寸法修正のための機械加工量が多くなって歩留りの悪化を招き、しかもその加工を硬いマルテンサイト状態の下で行うことから被削性(加工性)が悪く、部品製造のための所要時間が長くまた高コストとなる問題がある。   However, although tempered steel is excellent in strength and toughness, heat treatment strain due to martensitic transformation is high in addition to the problem of high heat treatment costs for quenching and tempering treatment (tempering treatment) after hot working when manufacturing parts. Large, the amount of machining for shape correction and dimension correction after heat treatment increases, resulting in poor yield, and the machinability (workability) is poor because the processing is performed in a hard martensite state. There is a problem that the time required for manufacturing the parts is long and the cost is high.

熱間加工まま(詳しくはその後の主として空冷による冷却まま)で所要硬さを発現し、熱間加工後の焼入れ焼戻し処理を省略しても目的とする強度を得ることのできる非調質鋼は、コスト低減に応え得るものとして調質鋼代替材料として機械構造部品等に広く適用されている。   Non-tempered steel that develops the required hardness as it is hot-worked (specifically as it is cooled by air cooling afterwards) and that can achieve the desired strength even if the quenching and tempering treatment after hot-working is omitted. As a substitute for tempered steel, it can be widely applied to machine structural parts, etc., as a solution to cost reduction.

このような非調質鋼として、中炭素鋼に微量のVを添加したフェライト・パーライト型の非調質鋼があるが、フェライト・パーライト非調質鋼においては、強度を一定以上に高めるためにはほぼパーライト単相になるまでパーライトの面積率を高める必要がある。
ところがこの場合、鋼組織がフェライトに比べ脆いパーライト主体の組織となるため靭性が著しく低下してしまう。従って靭性を確保しながら強度を一定以上に高くすることは難しい。
As such non-tempered steel, there is ferritic / pearlite type non-tempered steel with a small amount of V added to medium carbon steel, but in ferritic / pearlite non-tempered steel, It is necessary to increase the area ratio of pearlite until it becomes almost pearlite single phase.
However, in this case, since the steel structure is a pearlite-based structure that is brittle compared to ferrite, the toughness is significantly reduced. Therefore, it is difficult to increase the strength beyond a certain level while ensuring toughness.

非調質鋼として、熱間加工ままでベイナイト組織を呈するベイナイト非調質鋼があり、このものはフェライト・パーライト非調質鋼に比べれば靭性が優れているが、一方で耐力が低いといった問題がある。
また耐力を向上させるために単純に硬さを高めれば被削性が劣化し、切削加工の際の負荷を増大させ加工性を悪化させてしまう。
1つの解決手段として、時効硬化型のベイナイト非調質鋼が研究されている。
Non-tempered steel includes bainite non-tempered steel that exhibits a bainite structure as it is hot-worked. This has better toughness than ferritic and pearlite non-tempered steel, but has a problem of low yield strength. There is.
Further, if the hardness is simply increased in order to improve the proof stress, the machinability is deteriorated, and the load at the time of cutting is increased to deteriorate the workability.
As one solution, age hardened bainite non-tempered steel has been studied.

時効硬化型のベイナイト非調質鋼は、熱間加工ままの組織をベイナイトとした上で、その後の時効硬化処理により硬さを高めるもので、この時効硬化型のベイナイト非調質鋼では、熱間加工後の軟らかい状態で機械加工を行うことができ、その後の時効硬化処理で硬さを所要硬さまで高めることができる。
例えば下記特許文献1,特許文献2に、この種の時効硬化型ベイナイト非調質鋼が開示されている。
Age-hardened bainite non-tempered steel uses bainite as a hot-worked structure and then increases the hardness by age-hardening treatment. Machining can be performed in a soft state after inter-working, and the hardness can be increased to the required hardness by subsequent age hardening treatment.
For example, Patent Document 1 and Patent Document 2 listed below disclose this type of age-hardened bainite non-tempered steel.

しかしながら従来の時効硬化型ベイナイト非調質鋼は、フェライト・パーライト非調質鋼に比べれば靭性が良好であるものの、従来の調質鋼に比べればなお靭性が不十分である。
ところが従来の時効硬化型ベイナイト非調質鋼においては、研究の主眼が主として高硬度,高強度化に向けられており、靭性を十分に高めたものは未だ提供されていない。
例えば特許文献1,特許文献2に記載のものにあっても、高強度化を指向して、時効硬化処理時に析出物を多くだすためCを多く含有させている。また特に靭性を向上させることを指向していないため、実施例中靭性値も示されていない。
このような中にあって、現在提供され或いは提案されている時効硬化型ベイナイト非調質鋼は耐衝撃特性を特に必要とする部品への適用が困難であった。
However, the conventional age-hardened bainite non-tempered steel has better toughness than the ferrite-pearlite non-tempered steel, but still has insufficient toughness compared to the conventional tempered steel.
However, in the conventional age-hardened bainite non-tempered steel, the main focus of research is mainly directed to increasing the hardness and strength, and no steel with sufficiently enhanced toughness has yet been provided.
For example, even those described in Patent Document 1 and Patent Document 2 are intended to increase strength and contain a large amount of C in order to produce a large amount of precipitates during age hardening. Moreover, since it is not aimed at improving toughness in particular, the toughness value in Examples is not shown.
Under such circumstances, the age hardening type bainite non-tempered steel currently provided or proposed has been difficult to apply to parts that particularly require impact resistance.

尚本発明に対する他の先行技術として、下記特許文献3には「高靭性高張力非調質厚鋼板」についての発明が示され、そこにおいてベイナイト組織分率が90%以上のベイナイト非調質鋼が開示されているが、このものは時効硬化型でない点で、また合金成分としてのVが少ない点で、更にセメンタイトの生成、形態を制御するための後述の本発明の特徴的構成を備えない点で本発明と異なる。   As another prior art to the present invention, the following Patent Document 3 discloses an invention relating to a “high toughness high tensile non-heat treated thick steel plate”, in which a bainite non-heat treated steel having a bainite structure fraction of 90% or more. However, this is not an age-hardening type and has a small amount of V as an alloy component, and further does not have the characteristic configuration of the present invention described later for controlling the formation and form of cementite. This is different from the present invention.

更に他の先行技術として、下記特許文献4には「非調質鉄筋用鋼材およびその製造方法」についての発明が示され、そこにおいて金属組織が実質的にベイナイトであるベイナイト非調質鋼が開示されているが、このものも時効硬化型でない点で、またセメンタイトの生成・形態を制御するための本発明の特徴的構成を備えない点で本発明と異なる。   As another prior art, the following Patent Document 4 discloses an invention relating to “a steel material for non-tempered reinforcing steel and a method for producing the same”, in which a bainite non-tempered steel having a metal structure substantially bainite is disclosed. However, this is also different from the present invention in that it is not age-hardened and does not have the characteristic configuration of the present invention for controlling the formation and form of cementite.

更に他の先行技術として下記特許文献5には「析出硬化型窒化鋼」についての発明が示され、そこにおいて窒化による時効硬化型のベイナイト非調質鋼が開示されているが、このものはCuを添加していない点で、またセメンタイトの生成・形態を制御するための後述の本発明の特徴的構成を備えない点で本発明と異なる。   As another prior art, the following Patent Document 5 discloses an invention relating to “precipitation hardening type nitrided steel”, in which age hardening type bainite non-tempered steel by nitriding is disclosed. Is different from the present invention in that it is not added and does not have the characteristic configuration of the present invention to be described later for controlling the formation and form of cementite.

更に他の先行技術として、下記特許文献6には「高強度−高靭性ベイナイト型非調質鋼及びその製造方法」についての発明が示されているが、そこには実施例として化学成分のみが示されたものが開示されているが、そのような化学成分とした結果としての特性については開示されておらず、また実施例中Cu,Niを添加したものが存在していない等の点で本発明とは別異のものである。   Furthermore, as another prior art, the following Patent Document 6 discloses an invention about “high strength-high toughness bainite-type non-heat treated steel and its production method”, but only chemical components are included as examples. Although what is shown is disclosed, the characteristics as a result of such chemical components are not disclosed, and there is no addition of Cu or Ni in the examples. This is different from the present invention.

特開2011−236452号公報JP 2011-236451 A 特開2006−37177号公報JP 2006-37177 A 特開2005−350691号公報JP-A-2005-350691 特開2006−137990号公報JP 2006-137990 A 特開平4−154936号公報JP-A-4-154936 特開平9−170047号公報Japanese Patent Laid-Open No. 9-170047

本発明は以上のような事情を背景とし、従来に増して靭性に優れた時効硬化型ベイナイト非調質鋼を提供することを目的としてなされたものである。   The present invention has been made for the purpose of providing an age-hardened bainite non-tempered steel having excellent toughness as compared with the background as described above.

而して請求項1のものは、質量%でC:0.06〜0.18%,Si:0.01〜0.60%,Mn:0.10〜3.00%,S:0.001〜0.030%,Cu:0.001〜0.40%,Ni:0.001〜0.40%,Cr:0.10〜2.00%,Mo:0.15〜1.00%,V:0.20〜0.40%,残部Fe及び不可避的不純物から成り、且つ下記式(1)の値が1.4以下,式(2)の値が16.5以下,式(3)の値が20.0〜35.0を満たす組成を有し、ベイナイト組織の面積率が85%以上で且つ硬さが36HRC以下であることを特徴とする。
15×[C]−[Mo]−2×[V]・・式(1)
4×[C]+[Si]+4×[Mn]+[Cu]+[Ni]+5×[Cr]+4×[Mo]+5×[V]・・式(2)
3×[C]+10×[Mn]+2×[Cu]+2×[Ni]+12×[Cr]+9×[Mo]+2×[V]・・式(3)
(但し式(1)〜式(3)中の元素記号は対応する元素の含有質量%を表す)
Thus, the content of claim 1 is C: 0.06 to 0.18%, Si: 0.01 to 0.60%, Mn: 0.10 to 3.00%, S: 0.001 to 0.030%, Cu: 0.001 to 0.40%, Ni: 0.001 to 0.40 %, Cr: 0.10 to 2.00%, Mo: 0.15 to 1.00%, V: 0.20 to 0.40 %, balance Fe and inevitable impurities, and the value of the following formula (1) is 1.4 or less, formula (2 value of) 16.5 or less, the value of the expression (3) have a composition satisfying the 20.0 to 35.0, the area ratio of bainite structure and hardness at 85% or more is equal to or less than 36HRC.
15 × [C] − [Mo] −2 × [V] ・ ・ Formula (1)
4 x [C] + [Si] + 4 x [Mn] + [Cu] + [Ni] + 5 x [Cr] + 4 x [Mo] + 5 x [V] · Equation (2)
3 x [C] + 10 x [Mn] + 2 x [Cu] + 2 x [Ni] + 12 x [Cr] + 9 x [Mo] + 2 x [V]-Formula (3)
(However, the element symbols in the formulas (1) to (3) represent the mass% of the corresponding elements)

請求項のものは、請求項1において、100μmを一辺とする正方形の領域を観察領域とし、該観察領域10視野における短手方向寸法5μm以上の大きなサイズのセメンタイトが平均で5個以下であり、且つサイズに拘らず合計のセメンタイトの割合が面積率で平均10%以下であることを特徴とする。 Of those claims 2, Oite to claim 1, 100 [mu] m and a square region an observation area to one side, the short dimension 5μm or more large size of cementite in the observation region 10 field of view than 5 in the average In addition, the ratio of the total cementite regardless of size is an average area ratio of 10% or less.

以上のような本発明は、時効硬化型ベイナイト非調質鋼における靭性に対して組織中のセメンタイトが大きく関与していること、具体的にはセメンタイトの生成量が多くなると、そこにはサイズの大きなセメンタイトが多く生成し、また形状的にもアスペクト比が大で細長い形態の大きなセメンタイトが多く存在するようになること、そしてそれらセメンタイトが起点となってクラックが発生し易くなること、特に細長い形のセメンタイトにて組織が分断されるとともに、そのセメンタイトの末端に応力集中してクラックが発生し、更に発生したクラックが細長いセメンタイトに沿って伝播進行し易く、このことが靭性を大きく劣化させるとの知見に基づいてなされたものである。   In the present invention as described above, the cementite in the structure is greatly involved in the toughness of the age-hardened bainite non-tempered steel. Specifically, when the amount of cementite generated increases, A large amount of large cementite is generated, and there are many large cementites in the form of long and long aspect ratios in terms of shape, and cracks are likely to occur starting from these cementites, especially elongated shapes. The structure is divided by the cementite and cracks occur due to stress concentration at the end of the cementite, and the generated crack easily propagates along the elongated cementite, which greatly deteriorates toughness. It was made based on knowledge.

かかる本発明は、この知見に基づいて、時効硬化処理の際に炭化物形成して硬さを高める重要な成分であるところのCの含有量を低量としてセメンタイトの生成を抑制し、そしてCの低量化による硬さの低下を他の合金元素で補うようにしたものである。   Based on this finding, the present invention suppresses the formation of cementite by reducing the content of C, which is an important component for increasing the hardness by forming carbide during the age hardening treatment, and The decrease in hardness due to the reduction in quantity is compensated by other alloy elements.

また本発明では、単に鋼中のCの含有量を低量化するだけでなく、Cの含有量と、炭化物形成元素であるMo,Vの含有量との関係を適正にバランスさせることにより、鋼に含有されるCのうちFeと結合してセメンタイトを生成するCの量を少なくし、また併せて熱間加工後の硬さを支配する元素の含有量を適正に制御するとともに、ベイナイト単相化に必要な、ベイナイト形成元素の含有量を適正に制御し、鋼の特性を高め得た点を骨子としたものである。   Further, in the present invention, not only the C content in the steel is simply reduced, but also the steel content is appropriately balanced by the relationship between the C content and the contents of Mo and V which are carbide forming elements. The amount of C that forms cementite by combining with Fe in the C contained in the steel is reduced, and the content of elements that control the hardness after hot working is controlled appropriately, and the bainite single phase The essential point is that the content of the bainite-forming element necessary for crystallization is appropriately controlled to enhance the properties of the steel.

かかる本発明によれば、従来課題であった靭性の不十分さの問題を解決し得、靭性に優れた時効硬化型ベイナイト非調質鋼を得ることができる。   According to the present invention, the problem of insufficient toughness, which has been a problem in the past, can be solved, and an age-hardened bainite non-tempered steel excellent in toughness can be obtained.

本発明の時効硬化型ベイナイト非調質鋼は、時効硬化処理前の組織が実質的にベイナイト単相組織であること、詳しくはベイナイト組織の面積率が85%以上であるより好ましくは90%以上である。 In the age-hardened bainite non-tempered steel of the present invention, the structure before the age-hardening treatment is substantially a bainite single-phase structure. Specifically, the area ratio of the bainite structure is 85% or more . More preferably, it is 90% or more.

時効硬化処理前の組織中にフェライト組織が混在していると、時効硬化特性が低下するばかりでなく、耐力比,耐久比も低下し、疲労強度の低下が懸念される。従って時効硬化処理前の組織はベイナイト単相組織であることが望ましい。   When a ferrite structure is mixed in the structure before the age hardening treatment, not only the age hardening characteristics are deteriorated, but also the yield strength ratio and the durability ratio are lowered, and there is a concern that the fatigue strength is lowered. Therefore, it is desirable that the structure before age hardening is a bainite single phase structure.

更に時効硬化処理前の硬さは36HRC以下である。
時効硬化処理前の硬さが36HRC以下であることによって、時効硬化処理に先立って加工を行う際の被削性等の加工性が良好となる。
尚、時効硬化処理前の硬さは33HRC以下であることがより望ましい。
一方で、時効硬化処理前の硬さは25HRC以上であることが望ましく、より好ましくは27HRC以上であることが望ましい。
時効硬化処理前の硬さが低ければ、それだけ被削性等の加工性は良くなるものの、その後時効硬化処理(析出硬化)により硬さを高めたとしても十分にその硬さを硬くすることが難しくなる。
Additionally the hardness of the pre-age hardening treatment Ru der below 36HRC.
When the hardness before the age hardening treatment is 36 HRC or less, the workability such as machinability at the time of working prior to the age hardening treatment is improved.
The hardness before age hardening is more preferably 33 HRC or less.
On the other hand, the hardness before age hardening is desirably 25 HRC or more, and more desirably 27 HRC or more.
If the hardness before the age hardening treatment is low, the machinability such as machinability is improved, but even if the hardness is increased by the age hardening treatment (precipitation hardening), the hardness can be sufficiently increased. It becomes difficult.

本発明の時効硬化型ベイナイト非調質鋼は、500〜700℃の温度での時効硬化処理により、硬さが時効硬化処理前の硬さよりも4HRC以上高くなるものとしておくことが望ましい。より望ましくは5HRC以上高くなるものとしておくのが良い。 Age hardening type bainite non-thermal refined steel of the present invention, the aging treatment at a temperature of 500 to 700 ° C., have to desirable to keep as the hardness is higher than 4HRC than the hardness of the pre-aging treatment. More preferably, it should be higher than 5 HRC.

時効硬化処理前の硬さと時効硬化処理後の硬さの差が大きくなることによって、時効硬化処理前での良好な被削性を確保する一方、その後の時効硬化処理によって所要の硬さを得られやすくなる。   The difference between the hardness before age-hardening treatment and the hardness after age-hardening treatment ensures a good machinability before age-hardening treatment, while the required hardness is obtained by subsequent age-hardening treatment. It becomes easy to be done.

本発明では、鋼組織中におけるセメンタイトの大きさ,量を以下の大きさ,量としておくこと、詳しくは、100μmを一辺とする正方形の領域を観察領域とし、観察領域10視野における短手方向寸法5μm以上の大きなサイズのセメンタイトが平均で5個以下であり、且つサイズに拘らず合計のセメンタイトの割合が面積率で平均10%以下としておくことが望ましい。   In the present invention, the size and amount of cementite in the steel structure are set to the following sizes and amounts. Specifically, a square region having one side of 100 μm is set as an observation region, and a short dimension in a 10 field of observation region. It is preferable that the average size of cementite having a large size of 5 μm or more is 5 or less, and the ratio of the total cementite regardless of size is 10% or less on the average.

セメンタイトの大きさ,量をこのように制御しておくことで、後に明らかにされるように時効硬化型ベイナイト非調質鋼における靭性を効果的に高め得ることを確認した。   By controlling the size and amount of cementite in this way, it was confirmed that the toughness of the age-hardened bainite non-tempered steel can be effectively enhanced as will be clarified later.

尚本発明の時効硬化型ベイナイト非調質鋼は、例えば以下のようにして製造することができる。
即ち圧延,鍛造等の熱間加工後又は固溶化熱処理後に温度800℃〜300℃の間を0.05〜10℃/秒の平均冷却速度で、通常は空冷により冷却することで製造することができる。
The age-hardened bainite non-tempered steel of the present invention can be produced, for example, as follows.
That is, it can be manufactured by hot cooling such as rolling, forging, etc. or after solution heat treatment at a temperature between 800 ° C. and 300 ° C. at an average cooling rate of 0.05 to 10 ° C./second, usually by air cooling. it can.

その後に必要に応じて切削加工や塑性加工等の加工を施し、しかる後に500〜700℃の温度にて1.5〜4時間かけて時効処理を施すことにより、靭性に優れた、目的とする硬さの部品を得ることができる。   Then, if necessary, it is subjected to processing such as cutting and plastic working, and then subjected to aging treatment at a temperature of 500 to 700 ° C. for 1.5 to 4 hours, thereby achieving an object having excellent toughness. Hard parts can be obtained.

次に本発明における各化学成分の限定理由等につき、以下に詳述する。
C:0.06〜0.18%
Cは強度を確保するために必要な元素であるとともに、時効硬化処理によりMo,Vの炭化物を析出させて鋼を高硬度化する。その働きのために0.06%以上が必要であり、0.06%未満では所要の硬さ,強度が確保できない。
一方、0.18%を超えて多量に含有させるとセメンタイト量が増加し、同時にアスペクト比が大で細長い形の大きなセメンタイトが増加して、それらがクラックの発生起点及び伝播経路となり、疲労強度特性を劣化させるため、Cの含有量を0.18%以下とする。Cの望ましい含有量の範囲は0.08〜0.14%未満である。
Next, the reasons for limiting each chemical component in the present invention will be described in detail below.
C: 0.06-0.18%
C is an element necessary for ensuring the strength, and Mo and V carbides are precipitated by age hardening to increase the hardness of the steel. For its function, 0.06% or more is necessary, and if it is less than 0.06%, the required hardness and strength cannot be secured.
On the other hand, when the content exceeds 0.18%, the amount of cementite increases, and at the same time, large cementite with a large aspect ratio and elongated shape increases, and these become crack initiation points and propagation paths, which deteriorates fatigue strength characteristics. Therefore, the C content is 0.18% or less. A desirable content range of C is 0.08 to less than 0.14%.

Si:0.01〜0.60%
Siは鋼の溶製時の脱酸剤として加えられる。また鋼の疲労強度を高める働きがある。その働きのために0.01%以上含有させる必要がある。
一方、0.60%を超えて多量に含有させると熱間鍛造等の熱間加工性を損ね、製造性を低下させる。また熱間加工後の切削加工等の加工時の素材の硬さが過剰となり、加工性を劣化させるため上限を0.60%とする。望ましい範囲は0.05〜0.55%の範囲内である。
Si: 0.01-0.60%
Si is added as a deoxidizer during steel melting. It also works to increase the fatigue strength of steel. It is necessary to make it contain 0.01% or more for the function.
On the other hand, when it is contained in a large amount exceeding 0.60%, hot workability such as hot forging is impaired and productivity is lowered. In addition, the upper limit is set to 0.60% because the hardness of the material during processing such as cutting after hot processing becomes excessive and deteriorates workability. A desirable range is in the range of 0.05 to 0.55%.

Mn:0.10〜3.00%
Mnは本発明において重要な役割を果たす元素であり、熱間加工後の組織をベイナイト組織とするために不可欠な元素である。またMnは被削性向上に寄与するMn系硫化物を形成するためにも必須の元素である。その働きのため本発明では0.10%以上含有させる。
一方、3.00%を超えて多量に含有させるとマルテンサイト組織を現出させやすく、熱間加工後の硬さを高め、被削性の低下を招くだけでなく熱間加工性も損ねるため、上限を3.00%とする。好ましくは0.50〜2.20%の範囲内とする。
Mn: 0.10 to 3.00%
Mn is an element that plays an important role in the present invention, and is an indispensable element for making the structure after hot working a bainite structure. Further, Mn is an essential element for forming Mn-based sulfides that contribute to improvement of machinability. Due to its function, the present invention contains 0.10% or more.
On the other hand, if it is contained in a large amount exceeding 3.00%, a martensite structure is likely to appear, the hardness after hot working is increased, and not only the machinability is deteriorated but also hot workability is deteriorated. Is set to 3.00%. Preferably, it is within the range of 0.50 to 2.20%.

S:0.001〜0.030%
SはMnとともに被削性向上に寄与するMn系硫化物の必須生成元素である。その含有量が0.001%未満では硫化物の生成量が不足し被削性が不十分となるため、本発明では0.001%以上含有させる。
一方、0.030%を超えて過剰に含有させると、鋼の靭性と延性が損なわれ、またその介在物が疲労破壊の起点となり、疲労強度特性を劣化させるため上限を0.030%とする。望ましい範囲は0.015〜0.030%の範囲内である。
S: 0.001 to 0.030%
S is an essential element of Mn sulfide that contributes to improvement of machinability together with Mn. If the content is less than 0.001%, the amount of sulfide produced is insufficient and the machinability becomes insufficient. Therefore, in the present invention, 0.001% or more is contained.
On the other hand, if over 0.030% is contained, the toughness and ductility of the steel are impaired, and the inclusions become the starting point of fatigue fracture, and the fatigue strength characteristics are deteriorated, so the upper limit is made 0.030%. A desirable range is in the range of 0.015 to 0.030%.

Cu:0.001〜0.40%
Ni:0.001〜0.40%
Cu,Niはフェライト・パーライト変態開始曲線を長時間側に移動させ、相対的にベイナイトを生成させ易くする働きを有し、また固溶強化によりベイナイト素地の硬さの向上に寄与する元素で、本発明ではその働きのためCu,Niそれぞれを0.001%以上含有させる。
但し0.40%を超えて過剰に添加すると硬くなり過ぎるため、含有量を0.40%以下とする。
望ましい範囲は0.10〜0.30%の範囲内である。
Cu: 0.001 to 0.40%
Ni: 0.001 to 0.40%
Cu and Ni are elements that move the ferrite-pearlite transformation start curve to the long time side and make it relatively easy to generate bainite, and contribute to improving the hardness of the bainite substrate by solid solution strengthening. In the present invention, 0.001% or more of Cu and Ni are contained for the function.
However, if it is added excessively over 0.40%, it becomes too hard, so the content is made 0.40% or less.
A desirable range is in the range of 0.10 to 0.30%.

Cr:0.10〜2.00%
Crはベイナイト組織を生成させるために不可欠な元素であり、ベイナイト組織を安定に生成させるために0.10%以上含有させる。
一方、2.00%を超えて多量に含有させると、熱間加工後の硬さが高くなって被削性の低下を招き、また熱間加工性も損ねるため上限を2.00%とする。
望ましい範囲は0.20〜1.80%の範囲内である。
Cr: 0.10 to 2.00%
Cr is an indispensable element for generating a bainite structure, and is contained in an amount of 0.10% or more in order to stably generate a bainite structure.
On the other hand, if it is contained in a large amount exceeding 2.00%, the hardness after hot working increases, leading to a decrease in machinability, and the hot workability is also impaired, so the upper limit is made 2.00%.
A desirable range is in the range of 0.20 to 1.80%.

Mo:0.15〜1.00%
Moは本発明において重要な役割を果たす元素であり、時効硬化処理によって鋼の硬さを増加させる。またMoはベイナイト組織を生成させるためにも不可欠な元素である。更にMoはMo炭窒化物を時効硬化処理により析出させると耐力比を向上させ、且つ耐久比を高めるため、高強度化において重要な元素である。それらの働きのために本発明では0.15%以上含有させる。
一方、1.00%を超えて多量に含有させると、熱間加工後の硬さを高め、鋼の加工性を損ね、かつコストアップに繋がるため、上限を1.00%とする。
望ましい範囲は0.15〜0.30%の範囲内である。
Mo: 0.15 ~1.00%
Mo is an element that plays an important role in the present invention, and increases the hardness of steel by age hardening. Mo is also an indispensable element for forming a bainite structure. Furthermore, Mo is an important element in increasing the strength because Mo carbonitride is precipitated by age hardening to improve the yield ratio and increase the durability ratio. For these functions, the present invention contains 0.15 % or more.
On the other hand, if the content exceeds 1.00%, the hardness after hot working is increased, the workability of the steel is impaired, and the cost is increased, so the upper limit is made 1.00%.
A desirable range is in the range of 0.15 to 0.30%.

V:0.20〜0.40
Vは本発明において重要な役割を果たす元素であり、時効硬化処理によって硬さを増加させる。
Vはまた、Moとともにベイナイト組織を生成させるために不可欠な元素であり、更にVは炭窒化物を時効硬化処理により析出させると耐力比を向上させ、かつ耐久比を高めるため高強度化において重要な元素である。その働きのため本発明では0.20%以上含有させる。
一方、過剰に含有させると、熱間加工後の硬さを高め、被削性等の加工性を低下させるだけでなく、熱間鍛造等の熱間加工性も損ね、かつコストアップに繋がるため上限を0.40%とする。望ましい範囲は0.20〜0.35%であり、より望ましくは0.20〜0.30%の範囲内である。
V: 0.20 to 0.40 %
V is an element that plays an important role in the present invention, and increases hardness by age hardening.
V is an indispensable element for forming a bainite structure together with Mo. Further, V is important in increasing strength in order to improve the yield strength ratio and increase the durability ratio when carbonitride is precipitated by age hardening. Element. Due to its function, the present invention contains 0.20% or more.
On the other hand, the inclusion in the over-over - increases the hardness after hot working, not only to reduce the processability of the machinability and the like, also impair hot workability such as hot forging, and increase in cost Therefore, the upper limit is set to 0.40 %. A desirable range is 0.20 to 0.35%, and more desirably within a range of 0.20 to 0.30%.

本発明では合金の上記効果(特性)に影響を与えない範囲で以下のP,N,Al等の成分が含まれていても良い。
P:製鋼工程上の不可避不純物として混入しうる元素であるが、Pは鋼の靭性を低下させるので、その含有率は0.04質量%以下とするのがよい。
In the present invention, the following components such as P, N, and Al may be included within a range that does not affect the effect (characteristic) of the alloy.
P: An element that can be mixed as an inevitable impurity in the steelmaking process, but P lowers the toughness of the steel, so its content is preferably 0.04% by mass or less.

N:Alと結合して窒化物を形成し,この窒化物が微細に析出して熱間鍛造時の結晶粒成長を抑制して強度向上に寄与する。このような効果を得るためには0.005%以上含有されていることが必要である。多量に含有されていてもその効果は飽和し、却って粗大な炭窒化物が核となりフェライトを生成させやすくなり時効硬化特性を低下させ強度低下を招いてしまう。さらには鋳造時にブローホールなどが発生して鋼塊の健全性が損なわれるため0.025%以下であるのがよい。   N: Combines with Al to form nitrides, and the nitrides are finely precipitated to suppress crystal grain growth during hot forging and contribute to strength improvement. In order to acquire such an effect, it is necessary to contain 0.005% or more. Even if it is contained in a large amount, the effect is saturated. On the contrary, coarse carbonitrides become nuclei, and it is easy to generate ferrite, which deteriorates the age hardening characteristics and causes a decrease in strength. Furthermore, since blowholes are generated during casting and the soundness of the steel ingot is impaired, the content is preferably 0.025% or less.

Al:溶製時の脱酸剤として含有されるが、その場合には0.001%以上が必要。多量に含有されると粗大な酸化物や炭窒化物が生成し、これが起点となって疲労強度が低下するため、0.10%以下であるのがよい。   Al: contained as a deoxidizer during melting, but in that case, 0.001% or more is required. If it is contained in a large amount, coarse oxides and carbonitrides are produced, and this serves as a starting point to reduce the fatigue strength. Therefore, the content is preferably 0.10% or less.

式(1)の値:≦1.4 (式(1)・・15×[C]−[Mo]−2×[V])
式(1)はセメンタイト生成量を表す指数となるもので、式(1)の値が大きい程セメンタイトが生成し易く、逆に小さいほどセメンタイト生成が抑制される。詳しくはMo,Vの量が多くなればそれらがCと結合して炭化物形成し、Feと結合してセメンタイト生成するC量を少なくする。
従ってセメンタイトの生成を少なくするためには、Cを低量とするとともに、式(1)の値を小さくすることが必要であり、そしてセメンタイトの生成を少なくすることにより、粗大なまたアスペクト比が大で細長い形の大きなセメンタイトの生成を抑制でき、それらセメンタイトがクラックの発生起点及び伝播経路となることになる靭性の低下を効果的に抑制することができる。
Value of Formula (1): ≤1.4 (Formula (1) .. 15 x [C]-[Mo]-2 x [V])
Formula (1) is an index representing the amount of cementite produced. The larger the value of formula (1), the easier it is to produce cementite, and the smaller the value, the more the cementite production is suppressed. Specifically, if the amount of Mo and V increases, they combine with C to form carbides, and combine with Fe to reduce the amount of C that forms cementite.
Therefore, in order to reduce the production of cementite, it is necessary to reduce the amount of C and to reduce the value of the formula (1), and by reducing the production of cementite, the coarse and aspect ratio can be reduced. Generation of large and long large cementite can be suppressed, and it is possible to effectively suppress a decrease in toughness that the cementite serves as a crack starting point and propagation path.

特にCを上記のように低量とした上で、式(1)の値を1.4以下とすることで、鋼中に生成するセメンタイトの量やサイズを以下のように規制することができる。
即ち、100μmを一辺とする正方形の領域を観察領域とし、その観察領域10視野における短手方向寸法5μm以上の大きなサイズのセメンタイトが平均で5個以下であり、且つサイズに拘らず合計のセメンタイトの割合が面積率で平均10%以下となるように規制し易い。
In particular, the amount and size of cementite produced in the steel can be regulated as follows by setting the value of the formula (1) to 1.4 or less after making C low as described above.
That is, the observation area is a square area having one side of 100 μm, the average size of cementite in the short direction direction of 5 μm or more in the 10 viewing fields is 5 or less, and the total cementite regardless of the size. It is easy to regulate the ratio so that the average is 10% or less in terms of area ratio.

式(2)の値:≦16.5 (式(2)・・4×[C]+[Si]+4×[Mn]+[Cu]+[Ni]+5×[Cr]+4×[Mo]+5×[V])
この式(2)の値は熱間鍛造等の熱間加工後(以下単に熱間鍛造後とする)、より詳しくは時効硬化処理前の硬さを表わす指数となるものであり、その値が大きい程熱間鍛造後硬さは硬く、また小さい程熱間鍛造後硬さは低くなる。
Value of Formula (2): ≦ 16.5 (Formula (2) .. 4 × [C] + [Si] + 4 × [Mn] + [Cu] + [Ni] + 5 × [Cr] + 4 × [Mo] + 5 × [V])
The value of this formula (2) is an index that represents the hardness after hot working such as hot forging (hereinafter simply referred to as hot forging), and more specifically, the hardness before age hardening treatment. The larger the value is, the harder the hardness after hot forging is, and the smaller the value is, the lower the hardness is after hot forging.

本発明においては、この式(2)の値を16.5以下とすることで、熱間鍛造後硬さを目標とする36HRC以下とすることができる。そしてこれにより時効硬化処理に先立つ被削性等の加工性を高めることができる。
尚、時効硬化処理前の硬さは低ければ低い方が加工性は良好となるが、一方でその後に時効硬化処理を行って硬さを高くしたときに、十分にその硬さを硬くすることが難しくなる。従ってこの意味において時効硬化処理前の熱間鍛造後硬さは一定以上に高くしておくことが望ましい。具体的にはその硬さを25HRC以上、好ましくは27HRC以上としておくことが望ましい。またこれを達成する上で、式(2)の値を11以上としておくことが望ましい。
In the present invention, by setting the value of the formula (2) to 16.5 or less, the target post-hot forging hardness can be 36 HRC or less. Thereby, workability such as machinability prior to age hardening can be enhanced.
In addition, the lower the hardness before age hardening treatment, the better the workability, but on the other hand, when the age hardening treatment is performed to increase the hardness, the hardness should be sufficiently hardened. Becomes difficult. Therefore, in this sense, it is desirable that the hardness after hot forging before age hardening is higher than a certain level. Specifically, it is desirable that the hardness is 25 HRC or more, preferably 27 HRC or more. In order to achieve this, it is desirable to set the value of equation (2) to 11 or more.

式(3)の値:20.0〜35.0 (式(3)・・3×[C]+10×[Mn]+2×[Cu]+2×[Ni]+12×[Cr]+9×[Mo]+2×[V])
式(3)はベイナイトを安定して形成するための指数となるもので、本発明では、時効硬化処理前の鋼組織を実質的にベイナイト単相組織とする上で、詳しくはベイナイト組織の面積率を85%以上とする上で、この式(3)の値を20.0〜35.0の範囲内とすることが必要である。
Value of Formula (3): 20.0 to 35.0 (Formula (3) ... 3 x [C] + 10 x [Mn] + 2 x [Cu] + 2 x [Ni] + 12 x [Cr] + 9 x [Mo] + 2 x [ V])
Formula (3) is an index for stably forming bainite. In the present invention, the steel structure before age hardening treatment is substantially made into a bainite single-phase structure. In order to make the rate 85% or more, it is necessary to set the value of the formula (3) within the range of 20.0 to 35.0.

例えば鋼組織中にフェライト組織が15%以上混在すると時効硬化特性が低下するばかりでなく、耐力比,耐久比も低下し、そのことが疲労強度の低下に繋がる問題が懸念される。従って熱間鍛造後組織をベイナイト単相とすることが望ましい。   For example, when 15% or more of the ferrite structure is mixed in the steel structure, not only the age hardening characteristic is lowered, but also the yield strength ratio and the durability ratio are lowered, and there is a concern that this leads to a decrease in fatigue strength. Therefore, it is desirable that the structure after hot forging is a bainite single phase.

このベイナイト単相化のための式(3)は次のような意味を有している。
本発明では、時効硬化処理によってMo,Vの炭化物を析出させ、その析出強化によって鋼を高硬度化,高強度化するものであるが、このようにMo,V等の炭化物を2次析出させる技術自体は、焼入れ焼戻し処理では一般に用いられている技術である。しかしながら焼入れ焼戻し処理のように素材状態をマルテンサイト組織とした場合には、炭化物の析出によって焼入れ硬さよりも高い硬さを得るといったことはできない。
Formula (3) for the bainite single phase has the following meaning.
In the present invention, Mo and V carbides are precipitated by age hardening treatment, and the steel is hardened and strengthened by precipitation strengthening. In this way, carbides such as Mo and V are secondarily precipitated. The technique itself is a technique that is generally used in quenching and tempering. However, when the material state is a martensite structure as in the quenching and tempering treatment, it is impossible to obtain a hardness higher than the quenching hardness by precipitation of carbides.

しかるに式(3)によって鋼組織をベイナイト組織とした場合には、時効硬化処理前の素材状態の下で、その硬さを低硬度とすることができ、また一方その後の625℃程度の温度での加熱保持による時効硬化処理によって、鋼の硬さを、炭化物の2次析出前の当初のベイナイト組織状態での硬さよりも硬くすることができ、そのことによって強度―被削性バランスに優れた材料を提供することが可能となる。   However, when the steel structure is a bainite structure according to the formula (3), the hardness can be lowered under the material state before the age hardening treatment, and at the subsequent temperature of about 625 ° C. By the age-hardening treatment by heating and heating, the hardness of the steel can be made harder than the hardness in the initial bainite structure state before the secondary precipitation of carbides, thereby providing an excellent balance between strength and machinability. It becomes possible to provide the material.

実施例における発明鋼6と比較鋼12の走査型電子顕微鏡(SEM)写真を比較して示した図である。It is the figure which compared and showed the scanning electron microscope (SEM) photograph of the invention steel 6 and the comparative steel 12 in an Example.

表1に示す化学組成の鋼150kgを真空誘導溶解炉にて溶製し、1250℃でφ45mmの丸棒に鍛伸した。その後φ45mm丸棒材を1250℃加熱、1100℃鍛造の条件の下でφ30mmの丸棒に鍛造した後、室温まで空冷処理した。
その後、625℃で2時間の条件で時効硬化処理を行い、引張試験,シャルピー衝撃試験,硬さ試験,ミクロ組織観察に供した。
またそれ以外に鍛造後空冷ままで、時効硬化処理しない状態でもドリル試験,硬さ試験を実施した。
ここで引張試験,シャルピー衝撃試験,硬さ試験,ミクロ組織観察はそれぞれ以下のようにして行った。
150 kg of steel having the chemical composition shown in Table 1 was melted in a vacuum induction melting furnace and forged into a round bar having a diameter of 45 mm at 1250 ° C. Thereafter, the φ45 mm round bar was forged into a φ30 mm round bar under the conditions of 1250 ° C. heating and 1100 ° C. forging, and then air-cooled to room temperature.
Thereafter, an age hardening treatment was performed at 625 ° C. for 2 hours, and subjected to a tensile test, a Charpy impact test, a hardness test, and a microstructure observation.
In addition, drill tests and hardness tests were performed even in a state in which air-cooled after forging and without age hardening.
Here, a tensile test, a Charpy impact test, a hardness test, and a microstructure observation were performed as follows.

<引張試験>
引張試験については、JIS Z 2201の14A号試験片を作製して引張速度1mm/secの条件で行い、0.2%耐力比(0.2%耐力/引張強度)を求めた。目標値0.80以上を○、未満を×として表2に評価を示した。表2には、これら○,×の評価と併せて耐力比の数値も示した。
<Tensile test>
For the tensile test, a JIS Z 2201 No. 14A test piece was prepared, and the tensile rate was 1 mm / sec, and a 0.2% yield strength ratio (0.2% yield strength / tensile strength) was obtained. The evaluation is shown in Table 2 with a target value of 0.80 or more as ◯ and a lower value as ×. Table 2 shows the numerical values of the proof stress ratios together with the evaluations of ◯ and ×.

<シャルピー衝撃試験>
シャルピー衝撃試験はJIS Z 2202 3号2mmUノッチ試験片を作製して、試験を室温で実施し、衝撃値を測定した。衝撃値が目標値の20J/cmを満たしている場合を○,満たしていない場合を×として評価を行った。
尚、表2では○,×の評価と併せて括弧書きで実際の衝撃値の測定値も示した。
<Charpy impact test>
In the Charpy impact test, a JIS Z 2202 No. 2 mmU notch test piece was prepared, the test was performed at room temperature, and the impact value was measured. The evaluation was made with ◯ when the impact value satisfied the target value of 20 J / cm 2 , and x when the impact value did not satisfy the target value.
In Table 2, the actual impact measurement values are also shown in parentheses together with the evaluations of ○ and ×.

<硬さ試験>
硬さ試験はJIS Z 2245に準拠し、ロックウェル硬度計にて荷重150kgfダイヤモンド円錐圧子で実施した。
硬さは試験片の半径の1/2の個所で測定を行った。
<Hardness test>
The hardness test was carried out in accordance with JIS Z 2245, using a Rockwell hardness tester with a 150 kgf diamond conical indenter.
The hardness was measured at a half of the radius of the test piece.

<ミクロ組織観察>
ミクロ組織観察については、ナイタール腐食後、光学顕微鏡(倍率400倍)にて観察し、ベイナイト率を測定した。またセメンタイトの生成量(比率)及び粗大なセメンタイトの生成個数を走査型電子顕微鏡(SEM)(倍率5000倍)にて観察し測定した。
ここでセメンタイトについては、100μmを一辺とする正方形の領域を観察領域とし、観察領域10視野における短手方向寸法5μm以上の大きなサイズのセメンタイトの平均生成個数と、サイズに拘らず合計のセメンタイトの割合(面積率)を測定した。
またベイナイト率については、ベイナイト組織の面積率が85%以上であった場合を○,ベイナイト組織とフェライト組織の混合(フェライト組織の面積率15%以上)であった場合を×Fとし、ベイナイト組織とマルテンサイト組織の混合組織(マルテンサイト組織の面積率15%以上)であった場合を×Mとして評価を行った。
尚、表2中ではこれら○,×の評価と併せて、括弧書きで実際に測定されたベイナイトの面積率も併せて示してある。
<Microstructure observation>
About the microstructure observation, after nitrite corrosion, it observed with the optical microscope (400-times multiplication factor), and measured the bainite rate. The amount (ratio) of cementite produced and the number of coarse cementite produced were observed and measured with a scanning electron microscope (SEM) (5000 times magnification).
Here, regarding cementite, a square region having one side of 100 μm is used as an observation region, and the average number of large-sized cementites having a short-side dimension of 5 μm or more in the observation region 10 field of view and the ratio of the total cementite regardless of size. (Area ratio) was measured.
As for the bainite ratio, a case where the area ratio of the bainite structure was 85% or more was evaluated as ◯, and a case where the bainite structure and the ferrite structure were mixed (area ratio of the ferrite structure was 15% or more) was × F. And a martensitic structure (a martensite structure area ratio of 15% or more) was evaluated as xM.
In Table 2, together with these evaluations of ○ and ×, the area ratio of bainite actually measured in parentheses is also shown.

<ドリル試験>
ドリル試験は、φ5mmのストレートシャンク,ドリル材質がJIS SKH51のドリルを用い、送り0.10mm/rev,潤滑油なしの条件で加工を実施し、加工距離5000mmに致達する速度にて評価を行った。
目標加工速度20m/minを満たす場合は○、下回る場合は×として表2に示した。表2にはこれら○,×の評価と併せて括弧書きで加工速度の具体的な数値(m/min)も示した。
<Drill test>
The drill test was performed using a straight shank with a diameter of 5 mm and a drill with a drill material of JIS SKH51, with a feed of 0.10 mm / rev and no lubricating oil, and evaluated at a speed that reached a machining distance of 5000 mm. .
When satisfying the target machining speed of 20 m / min, the results are shown in Table 2. Table 2 also shows specific numerical values (m / min) of the processing speed in parentheses together with the evaluations of ○ and ×.

表1の結果において、比較鋼12はC量が本発明の上限値よりも多量であり、また式(1)の値が本発明の上限値よりも高く、結果として短手方向寸法が5μm以上の大きなサイズのセメンタイトの個数が多いとともに、セメンタイトの面積率も高く、衝撃値(吸収エネルギー)が目標値に対して低い。   In the results of Table 1, the comparative steel 12 has a C amount larger than the upper limit value of the present invention, and the value of the formula (1) is higher than the upper limit value of the present invention. As a result, the lateral dimension is 5 μm or more. The number of cementite with a large size is large, the area ratio of cementite is high, and the impact value (absorbed energy) is lower than the target value.

比較鋼13は、V量が本発明の上限値を超えて多量であり、鍛造後硬さの指数である式(2)の値が本発明の上限値よりも高い。またベイナイト単相化の指数である式(3)の値が本発明の上限値を超えて高い。
結果として鋼組織がマルテンサイトとの混合組織となっており、被削性が悪い。また衝撃値も低い。
The comparative steel 13 has a large amount of V exceeding the upper limit of the present invention, and the value of the formula (2), which is an index of hardness after forging, is higher than the upper limit of the present invention. Further, the value of the formula (3) which is an index of bainite single phase formation is higher than the upper limit value of the present invention.
As a result, the steel structure is a mixed structure with martensite and the machinability is poor. The impact value is also low.

比較鋼14は、Mo量が本発明の上限値を超えて多量であり、また式(2)の値,式(3)の値がそれぞれ本発明の上限値を超えて高く、鋼組織がマルテンサイトとの混合組織となっており、被削性が悪く、また衝撃値も低い。   The comparative steel 14 has a large amount of Mo exceeding the upper limit of the present invention, and the values of the formula (2) and the formula (3) are higher than the upper limit of the present invention. It has a mixed structure with the site, has poor machinability and low impact value.

比較鋼15は、ベイナイト単相化の指数である式(3)の値が本発明の下限値よりも低く、鋼組織がフェライト混合組織となっている。結果として時効硬化処理による硬さの上昇の程度が低く、時効硬化処理によって十分な硬さが得られていない。その結果として疲労強度は不十分なものとなる。
これに対して本発明の条件を満たす1〜11の発明鋼は、何れの特性も良好となっている。
In the comparative steel 15, the value of the formula (3), which is an index of bainite single phase formation, is lower than the lower limit of the present invention, and the steel structure is a ferrite mixed structure. As a result, the degree of increase in hardness due to age hardening is low, and sufficient hardness is not obtained by age hardening. As a result, the fatigue strength is insufficient.
On the other hand, the invention steels 1 to 11 satisfying the conditions of the present invention have good characteristics.

因みに図1は、発明鋼6と比較鋼12との走査型電子顕微鏡(SEM)写真(倍率5000倍)を比較して示している。尚図中(A)は1100℃の加熱条件で鍛造を行った場合、(B)は1300℃の加熱条件で鍛造を行った場合である。
写真中白く表れている部分が生成したセメンタイトで、これらの比較から明らかなように、発明鋼6ではセメンタイトの生成が効果的に抑制されており、従ってまたそこに存在するセメンタイトの大きさも丸くて小さい。
FIG. 1 shows a comparison of scanning electron microscope (SEM) photographs (5000 magnifications) of Invention Steel 6 and Comparative Steel 12. In the figure, (A) shows a case where forging is performed under heating conditions of 1100 ° C., and (B) shows a case where forging is performed under heating conditions of 1300 ° C.
In the photograph, the whitened portion is formed cementite. As is clear from these comparisons, in Invention Steel 6, the formation of cementite is effectively suppressed, and the size of the cementite existing there is also round. small.

一方比較鋼12ではセメンタイトが多く生成し、そこにはサイズが大きく且つ細長い形の大きなセメンタイトが多く生成している。このような組織の鋼ではセメンタイトがクラックの発生起点となり、また発生したクラックがセメンタイトに沿って伝播することにより靭性を大きく損なう要因となる。   On the other hand, in the comparative steel 12, a large amount of cementite is generated, and a large amount of large cementite having a large size and an elongated shape is generated there. In steels having such a structure, cementite becomes the starting point of cracks, and the cracks that are generated propagate along the cementite and cause a significant loss of toughness.

以上本発明の実施例を詳述したがこれらはあくまで一例示であり、本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。   Although the embodiments of the present invention have been described in detail above, these are merely examples, and the present invention can be implemented in variously modified forms without departing from the spirit of the present invention.

Claims (2)

質量%で
C:0.06〜0.18%
Si:0.01〜0.60%
Mn:0.10〜3.00%
S:0.001〜0.030%
Cu:0.001〜0.40%
Ni:0.001〜0.40%
Cr:0.10〜2.00%
Mo:0.15〜1.00%
V:0.20〜0.40
残部Fe及び不可避的不純物から成り、且つ下記式(1)の値が1.4以下,式(2)の値が16.5以下,式(3)の値が20.0〜35.0を満たす組成を有し、ベイナイト組織の面積率が85%以上で且つ硬さが36HRC以下であることを特徴とする時効硬化型ベイナイト非調質鋼。
15×[C]−[Mo]−2×[V]・・式(1)
4×[C]+[Si]+4×[Mn]+[Cu]+[Ni]+5×[Cr]+4×[Mo]+5×[V]・・式(2)
3×[C]+10×[Mn]+2×[Cu]+2×[Ni]+12×[Cr]+9×[Mo]+2×[V]・・式(3)
(但し式(1)〜式(3)中の元素記号は対応する元素の含有質量%を表す)
By mass% C: 0.06-0.18%
Si: 0.01-0.60%
Mn: 0.10 to 3.00%
S: 0.001 to 0.030%
Cu: 0.001 to 0.40%
Ni: 0.001 to 0.40%
Cr: 0.10 to 2.00%
Mo: 0.15 ~1.00%
V: 0.20 to 0.40 %
And a balance of Fe and unavoidable impurities, and the value of the following formula (1) is 1.4 or less, the value of the expression (2) is 16.5 or less, have a composition the value of the expression (3) satisfies 20.0 to 35.0, bainite An age-hardened bainite non- tempered steel characterized by having an area ratio of 85% or more and a hardness of 36 HRC or less .
15 × [C] − [Mo] −2 × [V] ・ ・ Formula (1)
4 x [C] + [Si] + 4 x [Mn] + [Cu] + [Ni] + 5 x [Cr] + 4 x [Mo] + 5 x [V] · Equation (2)
3 x [C] + 10 x [Mn] + 2 x [Cu] + 2 x [Ni] + 12 x [Cr] + 9 x [Mo] + 2 x [V]-Formula (3)
(However, the element symbols in the formulas (1) to (3) represent the mass% of the corresponding elements)
請求項1において、100μmを一辺とする正方形の領域を観察領域とし、該観察領域10視野における短手方向寸法5μm以上の大きなサイズのセメンタイトが平均で5個以下であり、且つサイズに拘らず合計のセメンタイトの割合が面積率で平均10%以下であることを特徴とする時効硬化型ベイナイト非調質鋼。 Oite to claim 1, 100 [mu] m and a square region an observation area to one side, the short dimension 5μm or more large size of cementite in the observation region 10 field is not more than 5 in the average, and regardless of the size An age-hardened bainite non-tempered steel characterized in that the ratio of total cementite is 10% or less on average in terms of area ratio.
JP2012111883A 2012-05-07 2012-05-15 Age-hardening bainite non-tempered steel Active JP5974623B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012111883A JP5974623B2 (en) 2012-05-07 2012-05-15 Age-hardening bainite non-tempered steel
FR1354044A FR2990218B1 (en) 2012-05-07 2013-05-02 BAINITIQUE MICROALLIE STEEL TYPE HARDENING DURING AGING

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012106199 2012-05-07
JP2012106199 2012-05-07
JP2012111883A JP5974623B2 (en) 2012-05-07 2012-05-15 Age-hardening bainite non-tempered steel

Publications (2)

Publication Number Publication Date
JP2013253265A JP2013253265A (en) 2013-12-19
JP5974623B2 true JP5974623B2 (en) 2016-08-23

Family

ID=49447215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012111883A Active JP5974623B2 (en) 2012-05-07 2012-05-15 Age-hardening bainite non-tempered steel

Country Status (2)

Country Link
JP (1) JP5974623B2 (en)
FR (1) FR2990218B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101750643B1 (en) * 2013-10-02 2017-06-23 신닛테츠스미킨 카부시키카이샤 Age hardening steel
EP2985361B1 (en) * 2013-10-02 2018-03-14 Nippon Steel & Sumitomo Metal Corporation Age-hardening steel
US10745772B2 (en) 2014-03-05 2020-08-18 Daido Steel Co., Ltd. Age hardening non-heat treated bainitic steel
CN105316596B (en) * 2014-06-13 2017-06-16 北京交通大学 A kind of ultralow phosphorus bainitic steel and its bainite rail
US20180245172A1 (en) * 2015-03-16 2018-08-30 Nippon Steel & Sumitomo Metal Corporation Age-hardenable steel, and method for manufacturing components using age-hardenable steel
KR101918432B1 (en) * 2015-03-31 2018-11-13 신닛테츠스미킨 카부시키카이샤 Method for manufacturing parts using age hardening steel and age hardening steel
JP6620490B2 (en) * 2015-09-29 2019-12-18 日本製鉄株式会社 Age-hardening steel
CN109266964B (en) * 2018-10-25 2021-03-05 青岛天赢智能工业股份有限公司 Production and machining process of steel forging

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4415219B2 (en) * 2004-07-28 2010-02-17 大同特殊鋼株式会社 Age hardened steel
JP2006291310A (en) * 2005-04-12 2006-10-26 Daido Steel Co Ltd Crankshaft and producing method therefor
JP5257460B2 (en) * 2009-02-04 2013-08-07 新日鐵住金株式会社 Method of manufacturing age-hardening steel and machine parts
JP5655366B2 (en) * 2010-05-07 2015-01-21 大同特殊鋼株式会社 Bainite steel

Also Published As

Publication number Publication date
JP2013253265A (en) 2013-12-19
FR2990218B1 (en) 2016-02-05
FR2990218A1 (en) 2013-11-08

Similar Documents

Publication Publication Date Title
JP5974623B2 (en) Age-hardening bainite non-tempered steel
JP5423806B2 (en) High toughness wear resistant steel and method for producing the same
JP5655366B2 (en) Bainite steel
JP2012140690A (en) Method of manufacturing two-phase stainless steel excellent in toughness and corrosion resistance
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
EP2385149B1 (en) Steel material for welding and method for producing same
US10087510B2 (en) Non-post-heat treated steel and non-post-heat treated steel member
JP6045256B2 (en) High strength, high toughness, high corrosion resistance martensitic stainless steel
CN111051553B (en) High Mn steel and method for producing same
JP2013108129A (en) Rolled steel bar for hot forging
CA3019483A1 (en) High-strength steel material and production method therefor
KR101539520B1 (en) Duplex stainless steel sheet
JPWO2015151519A1 (en) High-tensile steel plate and manufacturing method thereof
JP6729686B2 (en) Non-heat treated steel for induction hardening
JP6547599B2 (en) Austenitic heat resistant steel
JP4645307B2 (en) Wear-resistant steel with excellent low-temperature toughness and method for producing the same
JP5304507B2 (en) Non-tempered steel for induction hardening
WO2015133470A1 (en) Age hardening non-heat treated bainitic steel
JP2017066460A (en) Age hardening steel
JP2016138320A (en) NiCrMo STEEL AND MANUFACTURING METHOD OF NiCrMo STEEL
JP6493645B1 (en) Steel sheet and method of manufacturing the same
JP4752800B2 (en) Non-tempered steel
JP2010132998A (en) Method for manufacturing ferritic stainless steel having high corrosion resistance, high strength and superior cold forgeability
JP2008144211A (en) V-containing non-heat treated steel
JP6844943B2 (en) Non-microalloyed steel for induction hardening

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160704

R150 Certificate of patent or registration of utility model

Ref document number: 5974623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150