JP2012140690A - Method of manufacturing two-phase stainless steel excellent in toughness and corrosion resistance - Google Patents

Method of manufacturing two-phase stainless steel excellent in toughness and corrosion resistance Download PDF

Info

Publication number
JP2012140690A
JP2012140690A JP2011000960A JP2011000960A JP2012140690A JP 2012140690 A JP2012140690 A JP 2012140690A JP 2011000960 A JP2011000960 A JP 2011000960A JP 2011000960 A JP2011000960 A JP 2011000960A JP 2012140690 A JP2012140690 A JP 2012140690A
Authority
JP
Japan
Prior art keywords
less
stainless steel
corrosion resistance
toughness
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011000960A
Other languages
Japanese (ja)
Inventor
Yohei Mita
洋平 三田
Kazuo Nakama
一夫 中間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2011000960A priority Critical patent/JP2012140690A/en
Publication of JP2012140690A publication Critical patent/JP2012140690A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a two-phase stainless steel excellent in toughness and corrosion resistance, used for a member used to seawater resistance application, especially, used to shafts, valve, flange, piping or the like, measuring instrument or the like.SOLUTION: The method of manufacturing a two-phase stainless steel excellent in toughness and corrosion resistance is characterized as follows. Forging or rolling is performed at a temperature range of 1,000-1,300°C, then annealing is performed by a cooling speed of at most 5°C/min, then soaking is performed at a solid solution heat treatment temperature of 950-1,125°C, and then quenching is performed.

Description

本発明は、耐海水用途向けに使用される部材、特にシャフト類、バルブ、フランジ、配管類、計測機器等に使用される靭性および耐食性に優れた二相系ステンレス鋼の製造方法に関するものである。   The present invention relates to a method for producing a duplex stainless steel having excellent toughness and corrosion resistance used for members used for seawater-resistant applications, particularly shafts, valves, flanges, piping, measuring instruments and the like. .

一般に、二相系ステンレス鋼は優れた耐食性と強度を備えていることから、耐海水用途や化学プラント機器材料として広く使用されている。この二相系ステンレス鋼の耐食性は、Cr,Mo等の合金元素によってもたらされている。しかし、これらの元素はσ相等の脆い金属間化合物を形成しやすく、製造条件によっては、著しい靭性低下をもたらす。   In general, duplex stainless steels are widely used as seawater resistant applications and chemical plant equipment materials because they have excellent corrosion resistance and strength. The corrosion resistance of this duplex stainless steel is brought about by alloying elements such as Cr and Mo. However, these elements are liable to form brittle intermetallic compounds such as σ phase, and cause a significant decrease in toughness depending on the production conditions.

そこで、従来、二相系ステンレス鋼の製造方法として、多くがσ相析出や475℃脆性を防止するため、固溶化熱処理温度の冷却速度を規定しているものが多く、それ以外として固溶化熱処理をインライン化することで製造コストを低減するもので占められている。その代表する例として、特開平1−165720号公報(特許文献1)に開示されているように、二相系ステンレス鋼素材を熱間圧延した後に急冷する二相系ステンレス鋼の製造方法において、950℃以上の仕上げ温度で熱間圧延した直後に圧延ラインにて素材を水冷し、その表面温度を600℃以下に、一旦低下させた後に放冷する方法が提案されている。   Therefore, conventionally, as a method for producing duplex stainless steel, many of them have prescribed a cooling rate of the solution heat treatment temperature in order to prevent σ phase precipitation and 475 ° C. brittleness. It is occupied by what reduces the manufacturing cost by inlining. As a representative example thereof, as disclosed in JP-A-1-165720 (Patent Document 1), in a method for producing a duplex stainless steel that is rapidly cooled after hot rolling a duplex stainless steel material, There has been proposed a method in which a raw material is water-cooled in a rolling line immediately after hot rolling at a finishing temperature of 950 ° C. or higher, and the surface temperature is once lowered to 600 ° C. or lower and then allowed to cool.

また、特開2008−231464号公報(特許文献2)に開示されているように、熱間鍛造または熱間圧延により製造され、または鋳造ままの二相系ステンレス鋼片の固溶化熱処理において、1050℃以上の温度で均熱した後、鋼片の外表面温度で920〜1000℃までを150℃/hr以下の冷却速度で冷却し、さらにその温度から少なくとも300℃までを30〜40℃/minの冷却速度で冷却することで、σ相析出や475℃脆性を防止しつつ、残留応力の発生を抑制し、内部割れを防止する製造方法が提案されている。   Further, as disclosed in Japanese Patent Application Laid-Open No. 2008-231464 (Patent Document 2), in a solution heat treatment of a duplex stainless steel piece produced by hot forging or hot rolling or as cast, 1050 After soaking at a temperature of ℃ or higher, the outer surface temperature of the steel slab is cooled to 920 to 1000 ℃ at a cooling rate of 150 ℃ / hr or less, and further from that temperature to at least 300 ℃ to 30 to 40 ℃ / min A production method has been proposed in which the generation of residual stress is suppressed and internal cracks are prevented while cooling at a cooling rate of σ, while preventing σ phase precipitation and 475 ° C brittleness.

また、特開平9−217149号公報(特許文献3)に開示されているように、フェライト相の平均結晶粒径が50μm以上で製品中の残留応力が300N/mm2以下である二相系ステンレス鋼の大型鋳造品、鍛造品として、固溶化熱処理において、1000〜1100℃の温度に加熱し、980〜700℃の温度範囲を10℃/min以上の速度で冷却し、ついで500℃までは冷却速度5〜12.5℃/minの速度で徐冷し、その後少なくとも300℃までを10℃/min以上の速度で急冷する方法が提案されている。 Further, as disclosed in Japanese Patent Application Laid-Open No. 9-217149 (Patent Document 3), a duplex stainless steel in which the average crystal grain size of the ferrite phase is 50 μm or more and the residual stress in the product is 300 N / mm 2 or less. In solid solution heat treatment as steel large castings and forgings, heat to 1000-1100 ° C, cool the temperature range of 980-700 ° C at a rate of 10 ° C / min or more, then cool to 500 ° C A method of slow cooling at a rate of 5 to 12.5 ° C./min and then rapidly cooling to at least 300 ° C. at a rate of 10 ° C./min or more has been proposed.

さらに、特開2009−256791号公報(特許文献4)に開示されているように、1100℃以上の温度で鍛造または圧延後、直ちに冷却速度100℃/min以上で800℃以下まで急冷してフェライト相内に炭窒化物を析出させた後、固溶化熱処理温度950〜1100℃に加熱し、急冷することにより、耐食性に優れた二相系ステンレス鋼を製造する方法が提案されている。
特開平1−165720号公報 特開2008−231464号公報 特開平9−217149号公報 特開2009−256791号公報
Further, as disclosed in Japanese Patent Application Laid-Open No. 2009-256791 (Patent Document 4), after forging or rolling at a temperature of 1100 ° C. or higher, the ferrite is immediately cooled to 800 ° C. or lower at a cooling rate of 100 ° C./min or higher. There has been proposed a method for producing a duplex stainless steel having excellent corrosion resistance by precipitating carbonitrides in the phase, heating to a solution heat treatment temperature of 950 to 1100 ° C., and quenching.
JP-A-1-165720 JP 2008-231464 A Japanese Patent Laid-Open No. 9-217149 JP 2009-256791 A

上述した特許文献1は、固溶化熱処理をインライン化することで製造コストを低減するものである。また特許文献2〜3は、σ相析出や475℃脆性を防止するため固溶化熱処理時の冷却速度を規定しているものである。しかしながら、発明者は、これらの熱処理によっても脆化が十分に防止されないことを経験しており、靱性は固溶化熱処理の前組織によって大きく変化することを知見した。   Patent document 1 mentioned above reduces manufacturing cost by making solution heat treatment in-line. Patent Documents 2 to 3 specify the cooling rate during solution heat treatment in order to prevent σ phase precipitation and 475 ° C brittleness. However, the inventor has experienced that these heat treatments do not sufficiently prevent embrittlement, and has found that toughness varies greatly depending on the structure before the solution heat treatment.

一方、特許文献4は、鍛造または圧延後は急冷し、その後固溶化熱処理を行うことで、フェライト相内や粒界の炭窒化物を少なくして、耐食性を改善するものである。しかし、炭窒化物を核として生成したオーステナイト相は微細で、亀裂伝播抑制効果が小さいため、十分な靭性が得られない。   On the other hand, Patent Document 4 improves the corrosion resistance by quenching after forging or rolling and then performing solution heat treatment to reduce carbonitride in the ferrite phase and grain boundaries. However, since the austenite phase produced with carbonitrides as nuclei is fine and has a small crack propagation inhibiting effect, sufficient toughness cannot be obtained.

靭性の向上には、固溶化熱処理後の組織において、σ相析出や475℃脆性が生じていないことに加え、亀裂伝播抑制に寄与するオーステナイト相の形状が重要である。そこで発明者らは、上述した問題を解消するために鋭意開発を進めた結果、鍛造または圧延後の冷却速度により、固溶化熱処理後の靭性が異なることを新たに知見した。すなわち、本発明は鍛造または圧延時の冷却速度に着目したもので、鍛造または圧延後の冷却速度を5℃/min以下で徐冷し、ついで固溶化熱処理を行うことにより、靭性と耐食性に優れた二相系ステンレス鋼を提供するものである。   In order to improve toughness, the shape of the austenite phase contributing to crack propagation suppression is important in addition to the occurrence of σ phase precipitation and 475 ° C. brittleness in the structure after solution heat treatment. Thus, the inventors have made extensive developments to solve the above problems, and as a result, have newly found that the toughness after solution heat treatment varies depending on the cooling rate after forging or rolling. That is, the present invention focuses on the cooling rate at the time of forging or rolling, and is excellent in toughness and corrosion resistance by slow cooling the cooling rate after forging or rolling at 5 ° C./min or less and then performing a solution heat treatment. In addition, a two-phase stainless steel is provided.

その発明の要旨とするところは、
(1)1000〜1300℃の温度域で鍛造または圧延後、冷却速度5℃/min以下で徐冷した後、固溶化熱処理温度950〜1125℃で均熱後、急冷することを特徴とする靭性、耐食性に優れた二相系ステンレス鋼の製造方法。
(2)質量%で、C:0.08%以下、Si:1.00%以下、Mn:2.00%以下、P:0.040%以下、S:0.030%以下、Ni:3.0〜8.0%、Cr:21〜26%、Mo:1.0〜5.0%、Cu:1.0%以下、W:2.0%以下、N:0.10〜0.35%、残部を不可避不純物からなる二相系ステンレス鋼において、1000〜1300℃の温度域で鍛造または圧延後、冷却速度5℃/min以下で徐冷した後、固溶化熱処理温度950〜1125℃に均熱後、急冷することを特徴とする靭性、耐食性に優れた二相系ステンレス鋼の製造方法にある。
The gist of the invention is that
(1) Toughness after forging or rolling in a temperature range of 1000 to 1300 ° C, annealing at a cooling rate of 5 ° C / min or less, soaking at a solution heat treatment temperature of 950 to 1125 ° C, and then rapidly cooling. , A method for producing duplex stainless steel with excellent corrosion resistance.
(2) By mass, C: 0.08% or less, Si: 1.00% or less, Mn: 2.00% or less, P: 0.040% or less, S: 0.030% or less, Ni: 3 0.0 to 8.0%, Cr: 21 to 26%, Mo: 1.0 to 5.0%, Cu: 1.0% or less, W: 2.0% or less, N: 0.10 to 0.0. In a duplex stainless steel consisting of 35% and the balance of inevitable impurities, after forging or rolling in a temperature range of 1000 to 1300 ° C., after slow cooling at a cooling rate of 5 ° C./min or less, a solution heat treatment temperature of 950 to 1125 ° C. In the method for producing a duplex stainless steel excellent in toughness and corrosion resistance, characterized by rapid cooling after soaking.

本発明の鍛造または圧延後は徐冷し、ついで固溶化熱処理を行う二相系ステンレス鋼の製造方法によれば、σ相析出や475℃脆性を防止することができ、またフェライト相中の炭窒化物を核とした微細オーステナイト相が生成しにくいため、例え同鋼種であっても、靭性、耐食性に優れた二相系ステンレス鋼を提供することができる。   According to the method for producing a duplex stainless steel, which is gradually cooled after forging or rolling according to the present invention and then subjected to solution heat treatment, σ phase precipitation and 475 ° C. brittleness can be prevented, and carbon in the ferrite phase can be prevented. Since a fine austenite phase with nitride as a core is difficult to form, even if it is the same steel type, a duplex stainless steel having excellent toughness and corrosion resistance can be provided.

以下、本発明について詳細に説明する。
二相系ステンレス鋼とは、主にJISG4303のステンレス鋼棒やJISG3459の配管用ステンレス鋼管およびJISG3463のボイラ・熱交換器用ステンレス鋼鋼管、或いはASTMではA321やA479、A789、A790で規定されているオーステナイト・フェライト系に分類されるもので、代表的な鋼種としてSUS329J1、SUS329J3L、SUS329J4L、S31803、S32750等が挙げられる。
Hereinafter, the present invention will be described in detail.
The duplex stainless steel is mainly a stainless steel rod of JIS G4303, a stainless steel pipe for piping of JIS G3459 and a stainless steel pipe for boiler / heat exchanger of JIS G 3463, or austenite specified by ASTM A321, A479, A789 and A790. -It is classified into a ferrite type, and typical steel types include SUS329J1, SUS329J3L, SUS329J4L, S31803, S32750, and the like.

二相系ステンレス鋼は、オーステナイト相とフェライト相がほぼ等分に含有し、熱履歴によりこの相の分配率が大きく変化する。1100℃を超えるとフェライト相が増加し、逆にオーステナイト相が減少するため、CやNの固溶度が高いオーステナイト相の減少により固溶できなかったCやNがフェライト相内で炭窒化物として析出する。この現象は二相系ステンレス鋼特有の現象であり、オーステナイト系ステンレス鋼やマルテンサイト系ステンレス鋼ではみられない。   Duplex stainless steel contains an austenite phase and a ferrite phase almost equally, and the distribution ratio of this phase varies greatly depending on the thermal history. When the temperature exceeds 1100 ° C., the ferrite phase increases, and conversely, the austenite phase decreases. Therefore, C and N, which cannot be dissolved due to the decrease in the austenite phase with high C and N solid solubility, are carbonitrides in the ferrite phase. To be deposited. This phenomenon is unique to duplex stainless steels, and is not seen in austenitic stainless steels or martensitic stainless steels.

以下、本発明の成分組成の限定理由を説明する。
C:0.08%以下
Cは、オーステナイト相の体積分率を高めると共にオーステナイト相中に濃化して、オーステナイト相の安定度を高める元素である。しかし、0.08%を超えて含有させるとCr炭化物が生成して耐食性、靱性が劣化することから、その上限を0.08%とした。
Hereinafter, the reason for limitation of the component composition of the present invention will be described.
C: 0.08% or less C is an element that increases the volume fraction of the austenite phase and concentrates in the austenite phase to increase the stability of the austenite phase. However, if the content exceeds 0.08%, Cr carbide is generated and corrosion resistance and toughness deteriorate, so the upper limit was made 0.08%.

Si:1.00%以下
Siは、脱酸のための元素である。しかし、1.00%を超えて添加すると耐食性、靱性が劣化することから、その上限を1.00%とした。
Mn:2.00%以下
Mnは、脱酸のための元素である。しかし、2.00%を超えて添加すると耐食性、靱性が劣化することから、その上限を2.00%とした。
Si: 1.00% or less Si is an element for deoxidation. However, if added over 1.00%, corrosion resistance and toughness deteriorate, so the upper limit was made 1.00%.
Mn: 2.00% or less Mn is an element for deoxidation. However, if added over 2.00%, corrosion resistance and toughness deteriorate, so the upper limit was made 2.00%.

P:0.040%以下
Pは、耐食性および靱性が劣化することから、その上限を0.040%とした。
S:0.030%以下
Sは、耐食性および靱性が劣化することから、その上限を0.030%とした。
P: 0.040% or less P has an upper limit of 0.040% because corrosion resistance and toughness deteriorate.
S: 0.030% or less S has an upper limit of 0.030% because corrosion resistance and toughness deteriorate.

Ni:3.0〜8.0%
Niは、オーステナイト安定化元素として用いられ、二相系ステンレス鋼を得るための重要な元素である。オーステナイト・フェライト相比を望ましい値とするため、Ni含有量は、3.0〜8.0%とする。
Ni: 3.0-8.0%
Ni is used as an austenite stabilizing element and is an important element for obtaining a duplex stainless steel. In order to set the austenite-ferrite phase ratio to a desirable value, the Ni content is set to 3.0 to 8.0%.

Cr:21〜26%
Crは、耐食性を確保する必須元素であり、その効果を十分に得るためには21%を必要とする。しかし、26%を超えると、金属間化合物が析出しやすくなり靱性を阻害し、鋼中にオーステナイト相を生成させることが困難になる。したがって、その範囲を21〜26%とした。
Cr: 21-26%
Cr is an essential element that ensures corrosion resistance, and 21% is required to obtain the effect sufficiently. However, if it exceeds 26%, intermetallic compounds are likely to precipitate, impairing toughness, and it becomes difficult to generate an austenite phase in the steel. Therefore, the range was 21 to 26%.

Mo:1.0〜5.0%
Moは、ステンレス鋼の耐食性を付加的に高める有効な元素であり、その効果を得るためには、1.0%必要である。しかし、5.0%を超えるとCrと共に金属間化合物の析出を促進する元素であるため、その上限を5.0%とした。
Mo: 1.0-5.0%
Mo is an effective element that additionally enhances the corrosion resistance of stainless steel, and 1.0% is necessary to obtain the effect. However, if it exceeds 5.0%, it is an element that promotes precipitation of intermetallic compounds together with Cr, so the upper limit was made 5.0%.

Cu:1.0%以下
Cuは、ステンレス鋼の耐食性を付加的に高める有効な元素である。しかし、1.0%を超えると熱間加工性を劣化させることから、その上限を1.0%とした。
W:2.0%以下
Wは、Moと同様に、ステンレス鋼の耐食性を付加的に高める有効な元素である。しかし、2.0%を超えて含有させると金属間化合物が析出し靱性が低下することから、その上限を2.0%とした。
Cu: 1.0% or less Cu is an effective element that additionally enhances the corrosion resistance of stainless steel. However, if it exceeds 1.0%, the hot workability deteriorates, so the upper limit was made 1.0%.
W: 2.0% or less W, like Mo, is an effective element that additionally enhances the corrosion resistance of stainless steel. However, if the content exceeds 2.0%, an intermetallic compound precipitates and the toughness decreases, so the upper limit was made 2.0%.

N:0.10〜0.35%
Nは、Niと同様に、オーステナイト相を安定化させる作用を持つ元素である。また、Nは、CrとMoと同様に、耐食性を高める効果を有する元素である。しかし、その含有量が0.10%未満では、これらの効果が十分でない。また、0.35%を超えて含有させるとCr窒化物析出を促進することから、その範囲を0.10〜0.35%とした。
N: 0.10 to 0.35%
N, like Ni, is an element that has the effect of stabilizing the austenite phase. N, like Cr and Mo, is an element having an effect of improving corrosion resistance. However, if the content is less than 0.10%, these effects are not sufficient. Moreover, since Cr nitride precipitation will be accelerated | stimulated if it contains exceeding 0.35%, the range was made into 0.10-0.35%.

1000℃〜1300℃の温度域で鍛造または圧延する理由は、熱間での延性を確保するためであり、1000℃未満になると高Cr,Moの鋼種ではσ相析出温度域となるため、熱間加工性が顕著に悪化するためである。鍛造または圧延後、冷却速度5℃/min以下で徐冷し、フェライト相内における析出炭窒化物の微細化を抑制し、後の固溶化熱処理時にこれらを核として析出するオーステナイト相の微細化を防止する。   The reason for forging or rolling in the temperature range of 1000 ° C. to 1300 ° C. is to ensure hot ductility. When the temperature is less than 1000 ° C., the high Cr and Mo steel grades are in the σ phase precipitation temperature range. This is because the inter-workability is significantly deteriorated. After forging or rolling, the steel is gradually cooled at a cooling rate of 5 ° C./min or less to suppress the refinement of the precipitated carbonitride in the ferrite phase, and to refine the austenite phase that precipitates as a nucleus during the subsequent solution heat treatment. To prevent.

また、固溶化熱処理温度950〜1125℃で均熱後、急冷することに限定した理由は、この温度域はオーステナイト相が元々あるオーステナイト相を核として成長しやすく、かつσ相や炭窒化物の析出温度以上であるためであり、急冷することで、σ相析出や475℃脆性を防止すると共に、炭窒化物の析出を軽減するためである。   Further, the reason for limiting to rapid cooling after soaking at a solution heat treatment temperature of 950 to 1125 ° C. is that this temperature range is easy to grow with the austenite phase originally having an austenite phase as the core, and the σ phase and carbonitride This is because the temperature is equal to or higher than the precipitation temperature, and by rapid cooling, σ phase precipitation and 475 ° C. brittleness are prevented and carbonitride precipitation is reduced.

以下、本発明について実施例によって具体的に説明する。
表1に示す各種化学成分100kg鋼塊を真空溶解炉にて溶解し、1200℃に加熱し、径60mmに鍛延したものを試験に供した。これらの鋼材を鍛造或いは圧延終止温度である加熱温度1000〜1250℃で30min加熱し、冷却速度5℃/min以下、または6〜20℃/minで冷却した後、950〜1125℃で30minの固溶化熱処理をした後、冷却速度20℃/min以上で冷却した結果を表2に示す。
Hereinafter, the present invention will be specifically described with reference to examples.
100 kg steel ingots having various chemical components shown in Table 1 were melted in a vacuum melting furnace, heated to 1200 ° C., and forged to a diameter of 60 mm, and then used for the test. These steel materials are heated for 30 minutes at a heating temperature of 1000 to 1250 ° C., which is a forging or rolling end temperature, cooled at a cooling rate of 5 ° C./min or less, or 6 to 20 ° C./min, and then solidified at 950 to 1125 ° C. for 30 minutes. Table 2 shows the results of cooling at a cooling rate of 20 ° C./min or higher after the solution heat treatment.

靭性はシャルピー衝撃試験で評価した。試験片はT方向採取−L方向ノッチとし、鋼種Aは2mm−Uノッチ、鋼種B〜Cは2mm−Vノッチで作製した。また試験条件は、試験温度23℃、各条件につきN=2である。
ミクロ組織観察は、供試材のL面中周部近傍を鏡面仕上げし、10%シュウ酸電解腐食(1A/cm2、30sec)の腐食試験を行い、光学顕微鏡にて組織観察を行った。
Toughness was evaluated by Charpy impact test. The test piece was made with a T-direction sampling-L-direction notch, steel type A with a 2 mm-U notch, and steel types B to C with a 2 mm-V notch. The test conditions are a test temperature of 23 ° C. and N = 2 for each condition.
In the microstructure observation, the vicinity of the L surface middle periphery of the test material was mirror finished, a 10% oxalic acid electrolytic corrosion (1 A / cm 2 , 30 sec) corrosion test was performed, and the structure was observed with an optical microscope.

Figure 2012140690
Figure 2012140690

Figure 2012140690
Figure 2012140690

表2に示すように、No.1〜6は鋼種A、No.7〜10は鋼種B、No.11〜14は鋼種Cである。また、冷却速度は加熱温度からのは冷却速度が5℃/min以下である本発明例と、加熱温度からの冷却速度が6〜20℃/minの比較例を示す。   As shown in Table 2, no. 1 to 6 are steel types A and No. 7 to 10 are steel types B and No. 11 to 14 are steel types C. Moreover, the cooling rate shows the example of the present invention in which the cooling rate is 5 ° C./min or less from the heating temperature and the comparative example in which the cooling rate from the heating temperature is 6 to 20 ° C./min.

加熱温度からの冷却速度を5℃/min以下と6〜20℃/minとした場合のミクロ組織の代表例として、鋼種Aのミクロ組織を図1に示す。比較例である、図1(a)の1100℃での急冷材はフェライト相内に炭窒化物が多数析出しているが、本発明例である、図1(b)の1100℃での徐冷材には炭窒化物の析出は認められない。   As a representative example of the microstructure when the cooling rate from the heating temperature is 5 ° C./min or less and 6 to 20 ° C./min, the microstructure of steel type A is shown in FIG. The quenching material at 1100 ° C. in FIG. 1 (a), which is a comparative example, has many carbonitrides precipitated in the ferrite phase, but the slow cooling material at 1100 ° C. in FIG. 1 (b), which is an example of the present invention. No carbonitride precipitation is observed.

また、図1に示すミクロ組織となった鋼材の固溶化熱処理後のミクロ組織を図2に示す。図2(a)と図2(b)は、同条件で固溶化熱処理を実施しているため、フェライト相量は同等となっている。しかしながら、固溶化熱処理を同条件で行った場合、いずれの鋼種においても、本発明例である冷却速度が5℃/min以下での鋼材は、比較例である6〜20℃/minの比較例鋼材よりも靭性が優れていた。   Moreover, the microstructure after the solution heat treatment of the steel material having the microstructure shown in FIG. 1 is shown in FIG. Since the solution heat treatment is performed under the same conditions in FIGS. 2A and 2B, the ferrite phase amounts are equal. However, when the solution heat treatment is performed under the same conditions, the steel material with a cooling rate of 5 ° C./min or less, which is an example of the present invention, is a comparative example of 6 to 20 ° C./min which is a comparative example. The toughness was superior to that of steel.

これは、比較例である加熱温度から急冷した鋼材は、フェライト相内に炭窒化物が多数析出していたため、固溶化熱処理時にこれらの炭窒化物を核とした、亀裂伝播抑制効果の小さい微細なオーステナイト相が生成しやすかったためと考えられる。
すなわち、圧延後の冷却速度を5℃/min以下の徐冷とすることで、ミクロ組織のオーステナイト・フェライト相比は同等であっても、オーステナイト相の亀裂伝播抑制効果が向上した。
This is because the steel material rapidly cooled from the heating temperature as a comparative example had a large amount of carbonitrides precipitated in the ferrite phase. This is thought to be because a large austenite phase was easily generated.
That is, the effect of suppressing the propagation of cracks in the austenite phase was improved even if the austenite / ferrite phase ratio of the microstructure was the same by gradually cooling the rolling after the rolling at 5 ° C./min.

本発明は、二相系ステンレス鋼が熱履歴によりフェライト相内に炭窒化物を析出することに着目したものであり、二相系ステンレス鋼全般に共通する現象である。
したがって、本発明は、靭性、耐食性に優れた二相系ステンレス鋼全般に適用可能な製造方法であり、工業的に極めて優れた効果を奏するものである。
The present invention focuses on the fact that duplex stainless steel precipitates carbonitride in the ferrite phase due to thermal history, and is a phenomenon common to all duplex stainless steels.
Therefore, the present invention is a production method applicable to all of the duplex stainless steels having excellent toughness and corrosion resistance, and exhibits extremely excellent effects industrially.

鋼種Aを加熱温度から急冷または徐冷した場合のミクロ組織である。It is a microstructure when steel type A is rapidly cooled or gradually cooled from the heating temperature. 図1に示す鋼種Aを加熱温度から急冷または徐冷した鋼材を1050℃で30minの固溶化熱処理後のミクロ組織である。1 is a microstructure after a solution heat treatment at 1050 ° C. for 30 minutes, in which a steel material A shown in FIG. 1 is rapidly cooled or gradually cooled from a heating temperature.

Claims (2)

1000〜1300℃の温度域で鍛造または圧延後、冷却速度5℃/min以下で徐冷した後、固溶化熱処理温度950〜1125℃で均熱後、急冷することを特徴とする靭性、耐食性に優れた二相系ステンレス鋼の製造方法。 Forging or rolling after forging or rolling in a temperature range of 1000 to 1300 ° C., annealing at a cooling rate of 5 ° C./min or less, soaking at a solution heat treatment temperature of 950 to 1125 ° C., and then rapidly cooling. An excellent method for producing duplex stainless steel. 質量%で、C:0.08%以下、Si:1.00%以下、Mn:2.00%以下、P:0.040%以下、S:0.030%以下、Ni:3.0〜8.0%、Cr:21〜26%、Mo:1.0〜5.0%、Cu:1.0%以下、W:2.0%以下、N:0.10〜0.35%、残部を不可避不純物からなる二相系ステンレス鋼において、1000〜1300℃の温度域で鍛造または圧延後、冷却速度5℃/min以下で徐冷した後、固溶化熱処理温度950〜1125℃に均熱後、急冷することを特徴とする靭性、耐食性に優れた二相系ステンレス鋼の製造方法。 C: 0.08% or less, Si: 1.00% or less, Mn: 2.00% or less, P: 0.040% or less, S: 0.030% or less, Ni: 3.0 to 8.0%, Cr: 21-26%, Mo: 1.0-5.0%, Cu: 1.0% or less, W: 2.0% or less, N: 0.10 to 0.35%, In the duplex stainless steel made of inevitable impurities, the balance is forged or rolled in a temperature range of 1000 to 1300 ° C., then gradually cooled at a cooling rate of 5 ° C./min or less, and then soaked to a solution heat treatment temperature of 950 to 1125 ° C. A method for producing a duplex stainless steel having excellent toughness and corrosion resistance, characterized by rapid cooling.
JP2011000960A 2011-01-06 2011-01-06 Method of manufacturing two-phase stainless steel excellent in toughness and corrosion resistance Withdrawn JP2012140690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011000960A JP2012140690A (en) 2011-01-06 2011-01-06 Method of manufacturing two-phase stainless steel excellent in toughness and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011000960A JP2012140690A (en) 2011-01-06 2011-01-06 Method of manufacturing two-phase stainless steel excellent in toughness and corrosion resistance

Publications (1)

Publication Number Publication Date
JP2012140690A true JP2012140690A (en) 2012-07-26

Family

ID=46677244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011000960A Withdrawn JP2012140690A (en) 2011-01-06 2011-01-06 Method of manufacturing two-phase stainless steel excellent in toughness and corrosion resistance

Country Status (1)

Country Link
JP (1) JP2012140690A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015074822A (en) * 2013-10-11 2015-04-20 三菱重工業株式会社 Method of heat-treating stainless member and method of producing stainless forged product
CN104630425A (en) * 2015-01-29 2015-05-20 安徽工业大学 Method for eliminating sigma phase in nuclear piping cast stainless steel
WO2015073201A1 (en) * 2013-11-12 2015-05-21 Ati Properties, Inc. Methods for processing metal alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
JP5951060B1 (en) * 2015-02-27 2016-07-13 鈴木住電ステンレス株式会社 Bottom net
KR20160086397A (en) 2014-01-31 2016-07-19 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Turbine blade manufacturing method
JP2016180172A (en) * 2015-03-25 2016-10-13 新日鐵住金ステンレス株式会社 Two-phase stainless steel wire and screw product and manufacturing method of two-phase stainless steel wire
US9523137B2 (en) 2004-05-21 2016-12-20 Ati Properties Llc Metastable β-titanium alloys and methods of processing the same by direct aging
US9616480B2 (en) 2011-06-01 2017-04-11 Ati Properties Llc Thermo-mechanical processing of nickel-base alloys
US9765420B2 (en) 2010-07-19 2017-09-19 Ati Properties Llc Processing of α/β titanium alloys
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
CN110004273A (en) * 2019-04-29 2019-07-12 东北大学 A method of control the second phase of FCC crystal structure alloy high temperature
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
CN114346142A (en) * 2022-01-18 2022-04-15 山西太钢不锈钢股份有限公司 Forging method for improving low-temperature impact toughness of S32750 super duplex stainless steel round steel
CN114622069A (en) * 2022-03-17 2022-06-14 南阳师范学院 Energy-concerving and environment-protective type automobile parts intelligence forges quenching production facility

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US9523137B2 (en) 2004-05-21 2016-12-20 Ati Properties Llc Metastable β-titanium alloys and methods of processing the same by direct aging
US10422027B2 (en) 2004-05-21 2019-09-24 Ati Properties Llc Metastable beta-titanium alloys and methods of processing the same by direct aging
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US10144999B2 (en) 2010-07-19 2018-12-04 Ati Properties Llc Processing of alpha/beta titanium alloys
US9765420B2 (en) 2010-07-19 2017-09-19 Ati Properties Llc Processing of α/β titanium alloys
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US9624567B2 (en) 2010-09-15 2017-04-18 Ati Properties Llc Methods for processing titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US10287655B2 (en) 2011-06-01 2019-05-14 Ati Properties Llc Nickel-base alloy and articles
US9616480B2 (en) 2011-06-01 2017-04-11 Ati Properties Llc Thermo-mechanical processing of nickel-base alloys
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US10570469B2 (en) 2013-02-26 2020-02-25 Ati Properties Llc Methods for processing alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US10337093B2 (en) 2013-03-11 2019-07-02 Ati Properties Llc Non-magnetic alloy forgings
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US10370751B2 (en) 2013-03-15 2019-08-06 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
DE112014004669B4 (en) * 2013-10-11 2019-01-31 Mitsubishi Hitachi Power Systems, Ltd. Method of heat treating a stainless element and method of making a forged stainless product
JP2015074822A (en) * 2013-10-11 2015-04-20 三菱重工業株式会社 Method of heat-treating stainless member and method of producing stainless forged product
US10370734B2 (en) 2013-10-11 2019-08-06 Mitsubishi Hitachi Power Systems, Ltd. Method for heat treatment of stainless member, and method for producing forged stainless product
WO2015073201A1 (en) * 2013-11-12 2015-05-21 Ati Properties, Inc. Methods for processing metal alloys
CN105849303A (en) * 2013-11-12 2016-08-10 Ati资产公司 Methods for processing metal alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US10105752B2 (en) 2014-01-31 2018-10-23 Mitsubishi Hitachi Power Systems, Ltd. Turbine blade manufacturing method
KR20160086397A (en) 2014-01-31 2016-07-19 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Turbine blade manufacturing method
DE112015000578B4 (en) 2014-01-31 2018-07-19 Mitsubishi Hitachi Power Systems, Ltd. Method for producing a turbine blade
US10808298B2 (en) 2015-01-12 2020-10-20 Ati Properties Llc Titanium alloy
US11319616B2 (en) 2015-01-12 2022-05-03 Ati Properties Llc Titanium alloy
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US11851734B2 (en) 2015-01-12 2023-12-26 Ati Properties Llc Titanium alloy
US10619226B2 (en) 2015-01-12 2020-04-14 Ati Properties Llc Titanium alloy
CN104630425A (en) * 2015-01-29 2015-05-20 安徽工业大学 Method for eliminating sigma phase in nuclear piping cast stainless steel
JP5951060B1 (en) * 2015-02-27 2016-07-13 鈴木住電ステンレス株式会社 Bottom net
JP2016180172A (en) * 2015-03-25 2016-10-13 新日鐵住金ステンレス株式会社 Two-phase stainless steel wire and screw product and manufacturing method of two-phase stainless steel wire
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
CN110004273A (en) * 2019-04-29 2019-07-12 东北大学 A method of control the second phase of FCC crystal structure alloy high temperature
CN114346142A (en) * 2022-01-18 2022-04-15 山西太钢不锈钢股份有限公司 Forging method for improving low-temperature impact toughness of S32750 super duplex stainless steel round steel
CN114346142B (en) * 2022-01-18 2023-07-14 山西太钢不锈钢股份有限公司 Forging method for improving low-temperature impact toughness of S32750 super duplex stainless steel round steel
CN114622069A (en) * 2022-03-17 2022-06-14 南阳师范学院 Energy-concerving and environment-protective type automobile parts intelligence forges quenching production facility

Similar Documents

Publication Publication Date Title
JP2012140690A (en) Method of manufacturing two-phase stainless steel excellent in toughness and corrosion resistance
US11085093B2 (en) Ultra-high strength maraging stainless steel with salt-water corrosion resistance
JP5920555B1 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP5880788B2 (en) High strength oil well steel and oil well pipe
JP6479527B2 (en) Bolt wire with excellent pickling property and delayed fracture resistance after quenching and tempering, and bolt
JP6264468B2 (en) High strength oil well steel and oil well pipe
JP5097017B2 (en) Manufacturing method of high Cr ferritic heat resistant steel
WO2016038809A1 (en) High strength seamless steel pipe for use in oil wells and manufacturing method thereof
JP5974623B2 (en) Age-hardening bainite non-tempered steel
JP5088455B2 (en) Duplex stainless steel
JP6461672B2 (en) Bolt steel wire and bolt with excellent cold forgeability and delayed fracture resistance after quenching and tempering
WO2017188284A1 (en) Untempered steel for induction hardening
JP6506978B2 (en) Method of manufacturing NiCrMo steel and NiCrMo steel material
JP6547599B2 (en) Austenitic heat resistant steel
WO2018146783A1 (en) Austenitic heat-resistant alloy and method for producing same
JPWO2018061101A1 (en) steel
JP6433341B2 (en) Age-hardening bainite non-tempered steel
JP2016512573A (en) Stainless steel for hot forging and method of hot forging using this steel
JP2019026874A (en) Raw material for high frequency induction hardening component
JP7333327B2 (en) new duplex stainless steel
JP2020041208A (en) Precipitation-hardening martensitic stainless steel
JP2016141821A (en) Softening heat treatment method of steel material excellent in cold forgeability and crystal grain coarsening resistance
JP2014189853A (en) Steel for mold for suppressing heat check and water-cooling hole crack
JP5454620B2 (en) Steel for carburized parts with excellent grain size prevention properties
JP5332894B2 (en) Low specific gravity steel sheet excellent in ductility, fatigue characteristics and toughness and method for producing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140401