JP5920555B1 - Austenitic stainless steel sheet and manufacturing method thereof - Google Patents

Austenitic stainless steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP5920555B1
JP5920555B1 JP2016501697A JP2016501697A JP5920555B1 JP 5920555 B1 JP5920555 B1 JP 5920555B1 JP 2016501697 A JP2016501697 A JP 2016501697A JP 2016501697 A JP2016501697 A JP 2016501697A JP 5920555 B1 JP5920555 B1 JP 5920555B1
Authority
JP
Japan
Prior art keywords
annealing
cold rolling
less
stainless steel
final
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016501697A
Other languages
Japanese (ja)
Other versions
JPWO2016047734A1 (en
Inventor
正美 澤田
正美 澤田
一芳 藤澤
一芳 藤澤
篤 栗田
篤 栗田
渋谷 将行
将行 渋谷
勇人 喜多
勇人 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Application granted granted Critical
Publication of JP5920555B1 publication Critical patent/JP5920555B1/en
Publication of JPWO2016047734A1 publication Critical patent/JPWO2016047734A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

質量%で、C+N:0.03〜0.20%、Si:0.1〜1.5%、Mn:0.10〜1.5%、Cr:15.0〜22.0%、Ni:4.5〜10.0%、Cu:0.10〜2.0%、Mo:0.1〜2.0%、Nb:0.02〜0.50%、残部がFeおよび不純物であり、平均結晶粒径が5.0μm以下、未再結晶部残存率が3.0%以下、結晶粒の平均スペクト比が1.2以下である、エッチング、レーザー加工などの精密加工に適したオーステナイト系ステンレス鋼板。% By mass, C + N: 0.03 to 0.20%, Si: 0.1 to 1.5%, Mn: 0.10 to 1.5%, Cr: 15.0 to 22.0%, Ni: 4.5 to 10.0%, Cu: 0.10 to 2.0%, Mo: 0.1 to 2.0%, Nb: 0.02 to 0.50%, the balance being Fe and impurities, An austenite system suitable for precision processing such as etching and laser processing, having an average crystal grain size of 5.0 μm or less, an unrecrystallized portion residual ratio of 3.0% or less, and an average spectroscopic ratio of crystal grains of 1.2 or less. Stainless steel sheet.

Description

本発明は、オーステナイト系ステンレス鋼板およびその製造方法に関する。   The present invention relates to an austenitic stainless steel sheet and a method for producing the same.

オーステナイト系ステンレス鋼板はメタルマスクなど幅広く使用されている。例えば、メタルマスクはエッチング加工、レーザー加工などの精密加工により製造される。これらの精密加工は、素材の結晶粒径が微細で、整粒度を高めることによりエッチング面の平滑性が向上することが知られている。   Austenitic stainless steel plates are widely used such as metal masks. For example, the metal mask is manufactured by precision processing such as etching and laser processing. In these precision processing, it is known that the crystal grain size of the material is fine and the smoothness of the etched surface is improved by increasing the grain size.

例えば、特許文献1、2および3には、化学組成を調整し、最終冷間圧延後の焼鈍を500〜850℃と通常より低い温度で実施することで、結晶粒成長を抑制させ、エッチング面の平滑性を確保したオーステナイト系ステンレス鋼板が提案されている。   For example, in Patent Documents 1, 2, and 3, the chemical composition is adjusted, and annealing after the final cold rolling is performed at a temperature lower than usual at 500 to 850 ° C. An austenitic stainless steel sheet that ensures the smoothness is proposed.

特に、特許文献2、3で開示されている発明は、Nbを添加し、Nbの炭窒化物を析出させることで、最終焼鈍での結晶粒成長を抑制させている。   In particular, the invention disclosed in Patent Documents 2 and 3 suppresses crystal grain growth in the final annealing by adding Nb and precipitating Nb carbonitride.

特開平2−173214号公報JP-A-2-173214 特開2003−003244号公報JP 2003-003244 A 特開2005−320587号公報Japanese Patent Application Laid-Open No. 2005-320587

しかしながら、近年、精密加工にはこれまで以上に加工面の平滑性が要求され、特許文献1〜3に開示されている方法ではその要求を十分に満足できないことがある。特に、特許文献2および3では、Nbを含有する鋼板において、最終冷間圧延で下部組織がラス状のマルテンサイトに変態させるためには、最終冷間圧延に供する鋼板中にNbを固溶させる必要がある。したがって、特許文献2では、最終冷間圧延の前工程である中間焼鈍の処理温度を1100℃と高い温度に設定せざるを得なかったと考えられる。また、特許文献3では、調質圧延(最終冷間圧延)後の残留応力除去によりエッチング時の反りを抑制するため、550℃以上700℃以下の温度域で応力除去焼鈍(最終焼鈍)を行っている。ここで、特許文献3では表2に記載のように硬さを高める点に着目している。このためにはオーステナイトへの逆変態を抑制してマルテンサイトを残存させる必要がある。したがって、特許文献3では最終焼鈍温度を低くせざるを得なかったと考えられる。   However, in recent years, smoothness of the processed surface is required more than ever for precision processing, and the methods disclosed in Patent Documents 1 to 3 may not fully satisfy the request. In particular, in Patent Documents 2 and 3, in a steel sheet containing Nb, in order to transform the lower structure into lath-shaped martensite by final cold rolling, Nb is dissolved in the steel sheet to be subjected to final cold rolling. There is a need. Therefore, in patent document 2, it is thought that the processing temperature of the intermediate annealing which is a pre-process of final cold rolling had to be set as high as 1100 degreeC. Moreover, in patent document 3, in order to suppress the curvature at the time of etching by the residual stress removal after temper rolling (final cold rolling), stress removal annealing (final annealing) is performed in the temperature range of 550 degreeC or more and 700 degrees C or less. ing. Here, Patent Document 3 focuses on increasing the hardness as shown in Table 2. For this purpose, it is necessary to suppress the reverse transformation to austenite and leave martensite. Therefore, in Patent Document 3, it is considered that the final annealing temperature had to be lowered.

特許文献2および3に記載のようにNbを含有する材料の場合、Nbがオーステナイト相中に固溶していると再結晶を遅らせるため、未再結晶部が残存することが多い。また、実際の製造においては、冷間圧延や焼鈍温度の操業上のばらつきにより、結晶粒が十分に微細化されず、未再結晶部が残存し、これらのステンレス鋼板を精密加工した際には、その平滑性がばらつくことがある。   In the case of a material containing Nb as described in Patent Documents 2 and 3, when Nb is dissolved in the austenite phase, recrystallization is delayed, so that an unrecrystallized portion often remains. In actual production, due to operational variations in cold rolling and annealing temperatures, the crystal grains are not sufficiently refined, and unrecrystallized parts remain, and when these stainless steel sheets are precision processed The smoothness may vary.

本発明は、エッチング、レーザー加工などの精密加工に適したオーステナイト系ステンレス鋼板と、そのようなオーステナイト系ステンレス鋼板を工業的に安定して製造する方法を提供することを課題とする。   An object of the present invention is to provide an austenitic stainless steel sheet suitable for precision processing such as etching and laser processing, and a method for industrially manufacturing such an austenitic stainless steel sheet.

本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、以下の知見を得た。   As a result of intensive studies to solve the above problems, the present inventors have obtained the following knowledge.

(1)これまで、エッチング加工、レーザー加工などの精密加工後の表面を平滑にするには、未再結晶部のない、微細結晶粒が望ましいことが知られている。これらに加え、更に、結晶粒を微細な等軸粒とすることで、精密加工面の平滑性が更に向上する。   (1) To date, it has been known that fine crystal grains having no unrecrystallized portion are desirable in order to smooth the surface after precision processing such as etching processing and laser processing. In addition to these, the smoothness of the precision machined surface is further improved by making the crystal grains into fine equiaxed grains.

(2)また、結晶粒を微細な等軸粒とするためには、冷間圧延によりマルテンサイトを生成させて、これを逆変態させるのみでは不十分である。   (2) Moreover, in order to make a crystal grain into a fine equiaxed grain, it is not enough to generate martensite by cold rolling and reversely transform it.

(3)冷間圧延の初期に加工誘起マルテンサイトを生成させ、それをさらに圧下することでラス状からセル状にマルテンサイトの形態を変化させることができ、その結果、目標とする微細等軸粒組織を得ることができる。   (3) Forming work-induced martensite at the initial stage of cold rolling, and further reducing it can change the form of martensite from lath to cell, resulting in the targeted fine equiaxes A grain structure can be obtained.

(4)このためには、冷間圧延率を90%以上とすること、化学組成によりγを不安定にすることが有効とも思われる。しかし、前者は工業的な側面から困難であり、後者はγが過度に不安定であると溶解または熱間圧延でδフェライトが生成し、熱延や冷延での割れを助長する。   (4) To this end, it seems effective to set the cold rolling rate to 90% or more and to make γ unstable by the chemical composition. However, the former is difficult from an industrial aspect, and the latter is too unstable, and δ ferrite is generated by melting or hot rolling, which promotes cracking in hot rolling and cold rolling.

(5)したがって、製造初期においては、γ安定度が高く、最終冷延ではα’変態させるという製造工程とすることによって、γ安定度を変えることが有効である。そのため、素材としてδフェライトの生成を防ぐため、最低限のγ安定度のものとし、最終冷延前に焼鈍(中間焼鈍)を行って、γ安定化元素であるC、Nを析出させる。これにより、その後の冷間圧延では、α’を生成しやすくなる。   (5) Accordingly, it is effective to change the γ stability by adopting a manufacturing process in which the γ stability is high in the initial stage of manufacture and the α ′ transformation is performed in the final cold rolling. Therefore, in order to prevent the formation of δ ferrite as a raw material, the material has a minimum γ stability, and annealing (intermediate annealing) is performed before the final cold rolling to precipitate C and N which are γ stabilizing elements. Thus, α ′ is easily generated in the subsequent cold rolling.

(6)中間焼鈍でNbの一部をNb(C、N)として析出させれば、ピン止め効果によって結晶粒成長を抑制することができ、また、最終焼鈍での固溶Nb量を低減させることができるため、未再結晶部残存率の低減にも有効である。   (6) If a part of Nb is precipitated as Nb (C, N) by intermediate annealing, crystal grain growth can be suppressed by the pinning effect, and the amount of solid solution Nb in the final annealing is reduced. Therefore, it is effective for reducing the remaining ratio of the non-recrystallized portion.

(7)中間焼鈍でNbの一部をNb(C、N)として析出させれば、δフェライトが生成しない程度にまでγ安定度を下げることができる。このため、操業時の圧延率が想定よりも低くなったり、最終焼鈍温度がばらついたりしても、安定して微細な等軸粒組織をつくることができる。   (7) If a part of Nb is precipitated as Nb (C, N) by intermediate annealing, the γ stability can be lowered to the extent that δ ferrite is not generated. For this reason, even if the rolling rate at the time of operation becomes lower than expected or the final annealing temperature varies, it is possible to stably form a fine equiaxed grain structure.

(8)γ安定度を高めるため、材料の化学組成も詳細に検討した。その結果、Cuはオーステナイト生成元素であるとともにオーステナイト相の安定度を調整可能な元素であり、さらに、Moが含有されている場合には、Moとの相乗効果で積層欠陥エネルギーを上昇させてオーステナイト母相中の歪の蓄積を抑制する機能も有する。これにより、過度な加工硬化が抑制されて、薄板製造時の負荷が大きく軽減される。加えて、エッチングやレーザー加工の前後にプレスや曲げ加工を施して使用される場合、過度な加工硬化の抑制により、これらの成形がしやすくなるという効果もある。   (8) In order to increase the γ stability, the chemical composition of the material was also examined in detail. As a result, Cu is an austenite-forming element and an element capable of adjusting the stability of the austenite phase. Further, when Mo is contained, the stacking fault energy is increased by a synergistic effect with Mo, thereby austenite. It also has a function of suppressing the accumulation of strain in the matrix. Thereby, excessive work hardening is suppressed and the load at the time of thin plate manufacture is reduced greatly. In addition, when it is used after being subjected to pressing or bending before or after etching or laser processing, there is an effect that these can be easily formed by suppressing excessive work hardening.

(9)以上のように、最終冷延前の焼鈍で通常よりも低い温度で焼鈍を行うことにより、Nb炭窒化物を析出させ、固溶Cおよび固溶N量を調整し、オーステナイト相の安定度を制御する。その後、冷間圧延を行うことにより、形成する加工誘起マルテンサイトを、従来のラス状α‘ではなく、セル状α’とする。これにより、最終焼鈍工程において初期の焼鈍で形成したNb炭窒化物によるピン止め効果と併せて、細粒かつアスペクト比が低下した等軸粒を得ることができる。その結果、細粒で、等軸粒なオーステナイト系ステンレス鋼板が得られ、エッチング加工面の平滑性を向上させることができる。   (9) As described above, Nb carbonitride is precipitated by annealing at a lower temperature than usual in the annealing before the final cold rolling, and the amount of solid solution C and solid solution N is adjusted, and the austenite phase Control stability. After that, by performing cold rolling, the work-induced martensite to be formed is not a conventional lath shape α ′ but a cellular shape α ′. Thereby, in addition to the pinning effect by the Nb carbonitride formed by the initial annealing in the final annealing step, equiaxed grains having a fine grain and a reduced aspect ratio can be obtained. As a result, fine and equiaxed austenitic stainless steel sheets can be obtained, and the smoothness of the etched surface can be improved.

本発明者らは、上記の知見に基づき、本発明を完成させた。本発明は、下記のオーステナイト系ステンレス鋼板およびその製造方法を要旨としている。   Based on the above findings, the present inventors have completed the present invention. The gist of the present invention is the following austenitic stainless steel sheet and method for producing the same.

(1)質量%で、
C+N:0.03〜0.20%、
Si:0.1〜1.5%、
Mn:0.10〜1.5%、
Cr:15.0〜22.0%、
Ni:4.5〜10.0%、
Cu:0.10〜2.0%、
Mo:0.1〜2.0%、
Nb:0.02〜0.50%、
残部がFeおよび不純物であり、
平均結晶粒径が5.0μm以下、
未再結晶部残存率が3.0%以下、
結晶粒の平均スペクト比が1.2以下である、
オーステナイト系ステンレス鋼板。
(1) In mass%,
C + N: 0.03 to 0.20%,
Si: 0.1 to 1.5%,
Mn: 0.10 to 1.5%,
Cr: 15.0-22.0%,
Ni: 4.5 to 10.0%,
Cu: 0.10 to 2.0%,
Mo: 0.1 to 2.0%,
Nb: 0.02 to 0.50%,
The balance is Fe and impurities,
The average crystal grain size is 5.0 μm or less,
Unrecrystallized portion remaining rate is 3.0% or less,
The average spectral ratio of the crystal grains is 1.2 or less,
Austenitic stainless steel sheet.

(2)上記(1)のオーステナイト系ステンレス鋼板の製造方法であって、
母材に熱間圧延、焼鈍、冷間圧延を行った後、
処理温度が1000℃未満の中間焼鈍、総板厚減少率が50%以上の最終冷間圧延、処理温度が700℃を超え950℃以下の温度域で行う最終焼鈍を順に行う、
オーステナイト系ステンレス鋼板の製造方法。
(2) A method for producing the austenitic stainless steel sheet of (1) above,
After hot rolling, annealing, cold rolling on the base material,
An intermediate annealing at a processing temperature of less than 1000 ° C., a final cold rolling with a total sheet thickness reduction rate of 50% or more, and a final annealing to be performed in a temperature range of 700 ° C. or more and 950 ° C. or less in order.
Manufacturing method of austenitic stainless steel sheet.

本発明によれば、細粒で、等軸粒なオーステナイト系ステンレス鋼板を得ることができる。このような、オーステナイト系ステンレス鋼板は、エッチング加工面の平滑性に優れているので、エッチング、レーザー加工などの精密加工に適している。本発明はまた、上記のオーステナイト鋼を工業的に安定して製造することができる。   According to the present invention, it is possible to obtain an austenitic stainless steel plate that is fine and equiaxed. Such an austenitic stainless steel plate is excellent in the smoothness of the etched surface, and is therefore suitable for precision processing such as etching and laser processing. The present invention can also produce the austenitic steel described above industrially stably.

図1は、従来の製造方法と本発明の製造方法との違いを表す図である。FIG. 1 is a diagram showing the difference between the conventional manufacturing method and the manufacturing method of the present invention. 図2は、結晶粒のアスペクト比を示す図である。FIG. 2 is a diagram showing an aspect ratio of crystal grains.

本発明を詳述する。なお、以下では、「質量%」を単に「%」と記載する。   The present invention will be described in detail. Hereinafter, “mass%” is simply referred to as “%”.

1.オーステナイト系ステンレス鋼板
(1)化学組成
・C+N:0.03〜0.20%
CおよびNは、γ安定化元素であり、溶解時、熱間圧延時のδフェライトの生成を抑制するため、適量含有させる必要がある。さらに、CおよびNは、Nbと結合して微細なNb化合物として中間焼鈍時、または、最終焼鈍時に析出し、結晶粒成長を抑制させる効果がある。加えて、熱延板の時点では固溶し、中間焼鈍時にNb炭窒化物として析出することで、製造工程の途中で母材のγ安定度を調整することができる。したがって、CおよびNは、合計で0.03%以上含有させる必要がある。好ましくは0.05%以上である。一方、CおよびNの合計含有量が多すぎると、中間焼鈍時にNb化合物として析出させても、一部が固溶Cまたは固溶Nとして残存し、最終冷延時の母材のγ安定度が高い結果、最終冷延で十分なセル状マルテンサイトが生成しない。したがって、上限は0.20%とする。好ましくは0.16%以下である。また、CおよびNの含有量は、各々0.01〜0.10%、0.01〜0.15%であることが好ましい。
1. Austenitic stainless steel sheet (1) Chemical composition C + N: 0.03 to 0.20%
C and N are γ-stabilizing elements and need to be contained in appropriate amounts in order to suppress the formation of δ ferrite during melting and hot rolling. Furthermore, C and N combine with Nb and precipitate as a fine Nb compound during intermediate annealing or final annealing, and have the effect of suppressing crystal grain growth. In addition, the γ stability of the base material can be adjusted during the manufacturing process by forming a solid solution at the time of the hot-rolled sheet and precipitating as Nb carbonitride during intermediate annealing. Therefore, C and N need to be contained in total of 0.03% or more. Preferably it is 0.05% or more. On the other hand, if the total content of C and N is too large, even if it is precipitated as an Nb compound during intermediate annealing, a part remains as solute C or solute N, and the γ stability of the base material at the time of final cold rolling is increased. As a result, sufficient cellular martensite is not generated in the final cold rolling. Therefore, the upper limit is 0.20%. Preferably it is 0.16% or less. Moreover, it is preferable that content of C and N is 0.01 to 0.10% and 0.01 to 0.15%, respectively.

・Si:0.1〜1.5%
Siは、溶製時の脱酸材として使用され、鋼の強化にも寄与する。したがって、下限を0.1%とする。しかしながら、Si含有量が過度に多くなると、エッチング速度を低下させる悪影響がある。よって、Si含有量は、1.5%以下とする。好ましくは、0.8%以下とする。
・ Si: 0.1-1.5%
Si is used as a deoxidizing material during melting and contributes to strengthening of steel. Therefore, the lower limit is 0.1%. However, when the Si content is excessively large, there is an adverse effect of decreasing the etching rate. Therefore, the Si content is 1.5% or less. Preferably, it is 0.8% or less.

・Mn:0.10〜1.5%
Mnは、熱間加工時の脆性破壊防止と鋼の強化に寄与する。したがって、下限を0.10%とする。しかし、Mnは、強力なγ生成元素であるため、含有量が過度に多くなると、冷間圧延時に生成する加工誘起マルテンサイトが少なく、その後の焼鈍で微細結晶粒を得ることができない。よって、Mn含有量は、1.5%以下とする。更に好ましくは、1.2%以下とする。
Mn: 0.10 to 1.5%
Mn contributes to the prevention of brittle fracture during hot working and the strengthening of steel. Therefore, the lower limit is made 0.10%. However, since Mn is a strong γ-forming element, if the content is excessively large, there is little work-induced martensite generated during cold rolling, and fine crystal grains cannot be obtained by subsequent annealing. Therefore, the Mn content is 1.5% or less. More preferably, it is set to 1.2% or less.

・Cr:15.0〜22.0%
Crは、ステンレス鋼の基本元素であり、鋼材表面に金属酸化物層を形成し、耐食性を高める作用をする不可欠な元素であり、15.0%以上含有させる。しかしながら、Crは、強力なフェライト安定化元素であるため、含有量が多すぎると、溶製後に多量のδフェライトが残存する。このδフェライトは素材の熱間加工性を著しく劣化させる。よって、Cr含有量は、15.0〜22.0%とする。好ましい下限は、15.0%、好ましい上限は19.0%である。
・ Cr: 15.0-22.0%
Cr is a basic element of stainless steel, is an indispensable element that forms a metal oxide layer on the surface of the steel material and enhances the corrosion resistance, and is contained at 15.0% or more. However, since Cr is a strong ferrite stabilizing element, if the content is too large, a large amount of δ ferrite remains after melting. This δ ferrite significantly deteriorates the hot workability of the material. Therefore, the Cr content is 15.0 to 22.0%. A preferred lower limit is 15.0% and a preferred upper limit is 19.0%.

・Ni:4.5〜10.0%
Niは、γ生成元素であり、室温でγ相を安定して得るために不可欠な元素であり、下限値を4.5%とする。しかしながら、Ni含有量が多すぎると、γ相が安定化しすぎて、冷間圧延時の加工誘起マルテンサイト変態が抑制される。さらに、Niは高価な元素であり、含有量の増大は、コストの大幅な上昇を招く。よって、上限値は10.0%とする。
・ Ni: 4.5-10.0%
Ni is a γ-forming element, an indispensable element for stably obtaining a γ phase at room temperature, and the lower limit is set to 4.5%. However, if the Ni content is too high, the γ phase is too stabilized, and the work-induced martensitic transformation during cold rolling is suppressed. Furthermore, Ni is an expensive element, and an increase in the content causes a significant increase in cost. Therefore, the upper limit is set to 10.0%.

・Cu:0.10〜2.0%
Cuは、γ生成元素であり、Niと同様にγ相の安定度を調整可能な元素である。また、素材を軟質化させる効果があるため、本発明のように高い大きな圧延率で冷間圧延を施す場合、圧延の負荷を低減させることができる。さらに、Cuはオーステナイト生成元素であり、オーステナイト相の安定度を調整可能な元素である。Moが含有されている場合には、Moとの相乗効果で積層欠陥エネルギーを上昇させて、オーステナイト母相中の歪の蓄積を抑制し、過度な加工硬化が抑制されて、薄板製造時の負荷が大きく軽減される。加えて、エッチングやレーザー加工の前後にプレスや曲げ加工を施して使用される場合、過度な加工硬化の抑制により、これらの成形がしやすくなるという効果もある。従って、下限は0.10%とする。一方、Cu含有量が過度に多くなると、製造過程で粒界に偏析する。この粒界偏析は、熱間加工性を顕著に劣化させ、製造が困難になる。よって、上限値は2.0%とする。好ましい下限は0.2%、好ましい上限は1.0%である。
Cu: 0.10 to 2.0%
Cu is a γ-forming element, and is an element capable of adjusting the stability of the γ phase in the same manner as Ni. Moreover, since there exists an effect which softens a raw material, when performing cold rolling with a high big rolling rate like this invention, the load of rolling can be reduced. Further, Cu is an austenite generating element and is an element capable of adjusting the stability of the austenite phase. When Mo is contained, the stacking fault energy is increased by a synergistic effect with Mo, the accumulation of strain in the austenite matrix is suppressed, excessive work hardening is suppressed, and the load at the time of manufacturing the thin plate Is greatly reduced. In addition, when it is used after being subjected to pressing or bending before or after etching or laser processing, there is an effect that these can be easily formed by suppressing excessive work hardening. Therefore, the lower limit is 0.10%. On the other hand, when Cu content increases excessively, it segregates at a grain boundary in a manufacturing process. This grain boundary segregation significantly deteriorates hot workability and makes manufacture difficult. Therefore, the upper limit is set to 2.0%. A preferred lower limit is 0.2% and a preferred upper limit is 1.0%.

・Mo:0.1〜2.0%
Moは、γ生成元素であり、Niと同様にγ相の安定度を調整可能な元素である。また、Moは、均質な酸化皮膜を形成させる元素であるため、エッチングむらを低減させる効果がある。さらに、Moは、Cuとの相乗効果で、積層欠陥エネルギーを上昇させてオーステナイト母相中の歪の蓄積を抑制する元素であり、過度な加工硬化を抑制して、薄板製造時の負荷を大きく軽減させる。さらに、精密加工の前後にプレスや曲げなどの加工を施して使用される場合、過度な加工硬化の抑制により、これらの成形がしやすくなるという効果もある。したがって、下限を0.1%とする。しかしながら、Mo含有量が過度に多くなると、コストの上昇にもつながる。よって、Mo含有量は、2.0%以下とする。好ましくは1.0%以下とする。
Mo: 0.1-2.0%
Mo is a γ-forming element, and is an element capable of adjusting the stability of the γ phase in the same manner as Ni. Further, Mo is an element that forms a homogeneous oxide film, and therefore has an effect of reducing etching unevenness. In addition, Mo is an element that increases the stacking fault energy and suppresses the accumulation of strain in the austenite matrix due to a synergistic effect with Cu, suppresses excessive work hardening and increases the load during thin plate manufacturing. Reduce. Furthermore, when used by performing processing such as pressing and bending before and after precision processing, there is an effect that these moldings can be easily performed by suppressing excessive work hardening. Therefore, the lower limit is 0.1%. However, when the Mo content is excessively high, the cost increases. Therefore, the Mo content is set to 2.0% or less. Preferably it is 1.0% or less.

・Nb:0.02〜0.50%
Nbは、微細な炭化物または窒化物を生成し、ピン止め効果により結晶の粒成長を抑制する。また、中間焼鈍でNbの炭窒化物を析出させることで、母材中のC含有量、N含有量を低減させ、オーステナイト安定度をδフェライトが生成しない程度にまで下げる。その結果、中間焼鈍後の冷間圧延では、母相が早期にマルテンサイト変態し、その後セル状のマルテンサイトが多量に生成するようになる。また、Nbは、結晶粒成長を抑制する効果がある一方、固溶状態で存在すると、焼鈍時の再結晶を遅延させ、焼鈍後に未再結晶部が残存する要因となる。これらの効果を考慮し、Nb含有量の下限値は0.02%とする。しかしながら、固溶状態のNbの含有量が多くなりすぎると、焼鈍時の再結晶を遅延させ、未再結晶部が多量に残存する。未再結晶部が多量に残存すると、精密加工した製品の平滑性を低下させる要因となる。よって、上限値は0.50%とする。好ましい下限は0.04%、好ましい上限は0.20%である。
・ Nb: 0.02-0.50%
Nb generates fine carbides or nitrides, and suppresses crystal grain growth by a pinning effect. Further, by precipitating Nb carbonitride by intermediate annealing, the C content and N content in the base material are reduced, and the austenite stability is lowered to such an extent that δ ferrite is not generated. As a result, in the cold rolling after the intermediate annealing, the matrix phase undergoes martensite transformation at an early stage, and then a large amount of cellular martensite is generated. In addition, Nb has an effect of suppressing crystal grain growth, but if present in a solid solution state, Nb delays recrystallization during annealing, and causes unrecrystallized portions to remain after annealing. Considering these effects, the lower limit of the Nb content is 0.02%. However, if the content of Nb in a solid solution state is excessive, recrystallization during annealing is delayed and a large amount of unrecrystallized portions remain. If a large amount of non-recrystallized portion remains, it becomes a factor of reducing the smoothness of a precision processed product. Therefore, the upper limit is 0.50%. A preferred lower limit is 0.04%, and a preferred upper limit is 0.20%.

・残部:Feおよび不純物
ステンレス鋼の製造では、リサイクル推進の観点から、スクラップ原料を使用することが多い。このため、ステンレス鋼には、種々の不純物元素が不可避的に混入する。不純物元素の含有量を一義的に定めることは困難である。したがって、本発明における不純物とは、本発明の作用効果を阻害しない量で含有される元素を意味する。このような不純物としては、たとえばP:0.05%以下、S:0.03%以下が挙げられる。
-Remainder: Fe and impurities In the production of stainless steel, scrap raw materials are often used from the viewpoint of promoting recycling. For this reason, various impurity elements are inevitably mixed in the stainless steel. It is difficult to uniquely determine the content of the impurity element. Therefore, the impurity in the present invention means an element contained in an amount that does not impair the effects of the present invention. Examples of such impurities include P: 0.05% or less and S: 0.03% or less.

・その他
Md30は、30%のひずみを付与した際に金属組織全体の50%がマルテンサイトとなる温度であり、加工誘起マルテンサイト変態の起こりやすさを表す指標の一つである。このため、Md30は、30〜55℃の範囲であることが好ましい。この範囲であれば、加工誘起マルテンサイト変態を起こりやいからである。
-Others Md 30 is a temperature at which 50% of the entire metal structure becomes martensite when a strain of 30% is applied, and is one of the indexes representing the likelihood of processing-induced martensite transformation. Thus, Md 30 is preferably in the range of 30 to 55 ° C.. This is because within this range, processing-induced martensite transformation is likely to occur.

SFEは、積層欠陥エネルギーを意味し、積層欠陥の形成しやすさを表す指標の一つである。SFEが低すぎる場合には、積層欠陥が形成されやすく、加工誘起マルテンサイト変態を十分に起こすことが難しくなる。このため、SFEは、3mJ/cm以上とすることが好ましい。この範囲であれば、積層欠陥の形成を抑制しやすく、加工誘起マルテンサイト変態を充分に促進しやすいからである。SFEの好ましい上限は100mJ/cmである。SFE means stacking fault energy, and is one of the indexes indicating the ease of forming stacking faults. If SFE is too low, stacking faults are likely to be formed, and it will be difficult to cause sufficient processing-induced martensitic transformation. For this reason, it is preferable that SFE shall be 3 mJ / cm < 2 > or more. This is because if it is within this range, the formation of stacking faults can be easily suppressed, and the processing-induced martensitic transformation can be sufficiently promoted. A preferable upper limit of SFE is 100 mJ / cm 2 .

(2)オーステナイト系ステンレス鋼板の金属組織
・平均結晶粒径:5.0μm以下
平均結晶粒径が小さくなると、精密加工面の粗さが小さくなる。この効果は、特に平均結晶粒径を5.0μm以下とすると顕著に現れる。このため平均結晶粒径は、5.0μm以下とする。効果をより一層発揮するためには、3.0μm以下が望ましい。平均結晶粒径を小さくし過ぎると製造コストの上昇をもたらすため、その下限は0.3μmとする。製造コストとのバランスを考慮すると、その下限は0.5μmとすることが望ましい。平均結晶粒径とは求積法で算出した平均結晶粒面積と同じ面積を有する円の直径を表す。
(2) Metal structure of austenitic stainless steel plate ・ Average crystal grain size: 5.0 μm or less When the average crystal grain size becomes small, the roughness of the precision machined surface becomes small. This effect is particularly prominent when the average crystal grain size is 5.0 μm or less. For this reason, an average crystal grain diameter shall be 5.0 micrometers or less. In order to further exert the effect, 3.0 μm or less is desirable. If the average crystal grain size is too small, the production cost increases, so the lower limit is set to 0.3 μm. Considering the balance with the manufacturing cost, the lower limit is preferably 0.5 μm. The average crystal grain size represents the diameter of a circle having the same area as the average crystal grain area calculated by the quadrature method.

・未再結晶部残存率:3.0%以下
未再結晶部が多く残存すると、ステンレス鋼板にエッチング加工を行う際、その部分だけが周辺の再結晶粒に対して優先的にエッチングされる結果、その平滑性が損なわれることがある。そのため、平滑性を損なわないような未再結晶残存率を3.0%以下とすることが好ましい。未再結晶粒残存率が低すぎる素材の製造は生産効率の低下をもたらすため、その下限は0.5%が望ましい。
-Residual ratio of non-recrystallized portion: 3.0% or less When a large amount of non-recrystallized portion remains, when etching a stainless steel plate, only that portion is preferentially etched with respect to the surrounding recrystallized grains. The smoothness may be impaired. Therefore, it is preferable to set the non-recrystallized residual ratio to 3.0% or less so as not to impair the smoothness. Since the production of a material having an unrecrystallized grain residual rate that is too low brings about a decrease in production efficiency, the lower limit is preferably 0.5%.

・結晶粒の平均アスペクト比:1.2以下
結晶粒が微細な等軸粒であるほど精密加工面の粗さが小さい。そのため、結晶粒の平均アスペクト比(粒の長軸長さ/短軸長さ)を1.2以下とする。本発明における長軸長さとは、結晶粒を楕円近似した際の長軸長さを表す。また、本発明における短軸長さとは、結晶粒を大円近似した際の短軸長さを表す。たとえば、結晶粒が図2に示すような形状である場合、長い方の線分が長軸であり短い方の線分が短軸である。なお、平均アスペクト比は小さいほどよく、下限は1.0%とするのがよい。
-Average aspect ratio of crystal grains: 1.2 or less The finer the equiaxed grains, the smaller the roughness of the precision machined surface. Therefore, the average aspect ratio of crystal grains (long axis length / short axis length) is set to 1.2 or less. The long axis length in the present invention represents the long axis length when the crystal grains are approximated to an ellipse. Moreover, the minor axis length in the present invention represents the minor axis length when a crystal grain is approximated to a great circle. For example, when the crystal grains have a shape as shown in FIG. 2, the longer line segment is the major axis and the shorter line segment is the minor axis. The smaller the average aspect ratio, the better. The lower limit is preferably 1.0%.

2.オーステナイト系ステンレス鋼板の製造方法
(1)熱間圧延、焼鈍、冷間圧延
本発明における熱間圧延に供する母材には、転炉や電気炉で前述の化学組成を有する溶鋼を溶解した後、鋳型に鋳込んで形成された鋳塊や、連続鋳造により得られたスラブを用いるのがよい。鋳塊を用いる場合には、切削加工等により熱間圧延が可能な形状に母材を加工するのがよい。スラブの場合には、連続鋳造によりスラブ(厚さ120〜280mm、幅700〜1200mm、長さ8〜10m程度)を製造するのがよい。この鋳塊やスラブを1100〜1300℃程度の温度域に加熱した後、熱間圧延して厚さ2〜10mm程度の熱延鋼板とするのがよい。その後、1000〜1200℃で行う焼鈍処理と従来と同様の酸洗処理を施し、さらに圧延率が20〜70%の冷間圧延を行い0.2〜2.0mm程度の冷延鋼板とするのがよい。
2. Manufacturing method of austenitic stainless steel sheet (1) Hot rolling, annealing, cold rolling After the molten steel having the above-described chemical composition is melted in a converter or an electric furnace, the base material to be used for hot rolling in the present invention, It is preferable to use an ingot formed by casting into a mold or a slab obtained by continuous casting. When using an ingot, the base material is preferably processed into a shape that can be hot-rolled by cutting or the like. In the case of a slab, a slab (thickness 120 to 280 mm, width 700 to 1200 mm, length 8 to 10 m) is preferably manufactured by continuous casting. After heating this ingot or slab to the temperature range of about 1100-1300 degreeC, it is good to hot-roll and make a hot-rolled steel plate about 2-10 mm thick. Thereafter, an annealing treatment performed at 1000 to 1200 ° C. and a pickling treatment similar to the conventional one are performed, and further a cold rolling with a rolling rate of 20 to 70% is performed to obtain a cold rolled steel sheet of about 0.2 to 2.0 mm. Is good.

(2)中間焼鈍
本発明では冷間圧延により得られた鋼板を1000℃未満の温度域で中間焼鈍を行う。この中間焼鈍は、後述の最終冷間圧延の直前に行う焼鈍である。中間焼鈍では、Nbの一部が固溶せずに炭窒化物として析出し、母材のオーステナイト安定度をδフェライトが生成されない程度にまで下げる効果を得ることができる。図1に示すように、中間焼鈍温度が1050℃を超える場合には、Nbが鋼中に固溶し、最終冷延ではラス状のマルテンサイト変態となり、最終焼鈍で再結晶が遅れるために未再結晶部が残存することがある。また、未再結晶部が残存すると、精密加工した際にはその平滑性がばらつくことがある。したがって、本発明では中間焼鈍の処理温度を1000℃未満の温度域で行う。
(2) Intermediate annealing In the present invention, the steel sheet obtained by cold rolling is subjected to intermediate annealing in a temperature range of less than 1000 ° C. This intermediate annealing is annealing performed immediately before the final cold rolling described later. In the intermediate annealing, an effect of lowering the austenite stability of the base material to such an extent that δ ferrite is not generated can be obtained because a part of Nb is not dissolved but precipitated as carbonitride. As shown in FIG. 1, when the intermediate annealing temperature exceeds 1050 ° C., Nb dissolves in the steel, and in the final cold rolling, a lath-like martensitic transformation occurs, and recrystallization is delayed in the final annealing. A recrystallized part may remain. In addition, if the non-recrystallized portion remains, the smoothness may vary when precision processing is performed. Therefore, in the present invention, the intermediate annealing is performed in a temperature range of less than 1000 ° C.

処理温度は、低いほど固溶Cおよび固溶Nを低下させ、ひいてはオーステナイト安定度を低下させるので、セル状マルテンサイトを形成するのに優位である。従って、好ましい処理温度は980℃以下であり、特に好ましいのは950℃以下である。一方、Nbの炭窒化物を十分に析出させるとともに、鋼板の軟質化により次工程の冷間圧延の負荷を低減させるため、下限は700℃が好ましく、800℃がより好ましい。また、充分にNb炭窒化物を析出させる、つまり、固溶Cおよび固溶Nを減少させることによって、母材のオーステナイト安定度をある程度下げるためには、焼鈍保持時間は5〜300秒であることが望ましい。また、処理温度までの昇温速度、焼鈍後の冷却速度は特に限定されないが、粗大化し易いCrの炭窒化物の生成を抑制する観点から、各々10〜30℃/秒、10〜20℃/秒(保持温度から300℃まで)であることが好ましい。中間焼鈍の雰囲気は特に限定されない。   The lower the treatment temperature, the lower the solid solution C and the solid solution N, and the lower the austenite stability, which is advantageous for forming cellular martensite. Therefore, a preferable processing temperature is 980 ° C. or lower, and particularly preferable is 950 ° C. or lower. On the other hand, the lower limit is preferably 700 ° C. and more preferably 800 ° C. in order to sufficiently precipitate Nb carbonitride and reduce the load of cold rolling in the next step by softening the steel sheet. Also, in order to sufficiently precipitate Nb carbonitride, that is, to reduce solid solution C and solid solution N, thereby reducing the austenite stability of the base material to some extent, the annealing holding time is 5 to 300 seconds. It is desirable. Moreover, although the temperature increase rate to process temperature and the cooling rate after annealing are not specifically limited, from a viewpoint of suppressing the production | generation of the Cr carbonitride which is easy to coarsen, 10-30 degree-C / sec, 10-20 degree-C / sec, respectively. It is preferable that it is a second (from holding temperature to 300 degreeC). The atmosphere of the intermediate annealing is not particularly limited.

Nbの炭窒化物の生成は、透過型電子顕微鏡(TEM)によって観察することで判別できる。最終冷間圧延でセル状に変態させるのに有効なNbの炭窒化物の析出量は、母材のγ安定度によっても異なるが、鋼板中のNbのうち、0.01%程度のNbを析出させることで目標とする効果が得られる。   The formation of Nb carbonitrides can be determined by observation with a transmission electron microscope (TEM). The amount of precipitation of Nb carbonitride that is effective for transforming into a cell shape in the final cold rolling varies depending on the γ stability of the base metal, but about 0.01% of Nb in the steel sheet is about 0.01%. The target effect can be obtained by precipitating.

3.最終冷間圧延
中間焼鈍により得られた鋼板を総板厚減少率が50%以上の最終冷間圧延を行う。最終冷間圧延は、本発明のオーステナイト系ステンレス鋼板を製造する工程の中で最後に行う冷間圧延である。本発明の目的を達成するためには、中間焼鈍後の冷間圧延で加工誘起マルテンサイトを生成させ、さらにマルテンサイトの形態をラス状からセル状に変化させる必要がある。そのためには、総板厚減少率で50%以上の冷間圧延を実施する。総板厚減少率は60%以上とすることがさらに望ましい。一方、総板厚減少率が大きすぎると品質低下につながるため、総板厚減少率は100%以下とするのが好ましい。なお、セル状のマルテンサイトであることは、透過型電子顕微鏡(TEM)により観察することができる。この観察により筋状のラスの内部に比較的粒状のセル構造のマルテンサイトが生成していることがわかるため、セル状とラス状との区別は容易である。
3. Final cold rolling The steel plate obtained by the intermediate annealing is subjected to final cold rolling with a total thickness reduction rate of 50% or more. Final cold rolling is cold rolling performed at the end in the process of manufacturing the austenitic stainless steel sheet of the present invention. In order to achieve the object of the present invention, it is necessary to generate work-induced martensite by cold rolling after intermediate annealing and further change the form of martensite from lath to cell. For this purpose, cold rolling with a total sheet thickness reduction rate of 50% or more is performed. The total thickness reduction rate is more preferably 60% or more. On the other hand, if the total plate thickness reduction rate is too large, the quality deteriorates. Therefore, the total plate thickness reduction rate is preferably 100% or less. The cellular martensite can be observed with a transmission electron microscope (TEM). Since this observation shows that martensite having a relatively granular cell structure is generated inside the streak-like lath, it is easy to distinguish between the cell-like and lath-like shapes.

4.最終焼鈍
最終冷間圧延により得られた鋼板を、更に700℃を超え950℃以下の温度で最終焼鈍を行う。最終焼鈍は、本発明のオーステナイト系ステンレス鋼板を製造する工程の中で最後に行う焼鈍である。調質圧延を行う場合には、調質圧延前までの工程において最後に行う焼鈍である。最終焼鈍では、前行程で生成したセル状マルテンサイトを微細で等軸なオーステナイト粒に逆変態させる。この時、最終焼鈍温度が低すぎると、十分な再結晶をせず、アスペクト比の大きな未再結晶粒が残存する。一方、最終焼鈍温度が高すぎると、結晶粒が粗大化する。したがって、最終焼鈍は700℃を超え950℃以下とする。効果をより確実に発現させるためには、最終焼鈍の温度の下限は800℃とするのが好ましく、上限は930℃とするのが好ましい。最終焼鈍の雰囲気は特に限定されない。
4). Final annealing The steel plate obtained by the final cold rolling is further subjected to final annealing at a temperature exceeding 700 ° C and not more than 950 ° C. The final annealing is the last annealing performed in the process of manufacturing the austenitic stainless steel sheet of the present invention. When temper rolling is performed, the annealing is performed last in the process before temper rolling. In the final annealing, the cellular martensite generated in the previous step is reversely transformed into fine and equiaxed austenite grains. At this time, if the final annealing temperature is too low, sufficient recrystallization is not performed and unrecrystallized grains having a large aspect ratio remain. On the other hand, if the final annealing temperature is too high, the crystal grains become coarse. Accordingly, the final annealing is over 700 ° C. and 950 ° C. or less. In order to exhibit the effect more reliably, the lower limit of the final annealing temperature is preferably 800 ° C., and the upper limit is preferably 930 ° C. The atmosphere of the final annealing is not particularly limited.

また、未再結晶粒の撲滅と結晶粒粗大化の抑制の観点から、焼鈍保持時間は5〜300秒であることが望ましい。焼鈍温度までの昇温速度、焼鈍後の冷却速度は特に限定されないが、十分な再結晶により等軸なオーステナイト粒へ逆変態させるとともに結晶粒の粗大化を抑制する観点、およびエッチング性を阻害する粗大なCr炭窒化物を抑制する観点から、昇温速度は15〜50℃/秒とするのが好ましく、冷却速度は15〜45℃/秒(保持温度から300℃まで)であることが好ましい。   Further, from the viewpoint of eradication of non-recrystallized grains and suppression of grain coarsening, the annealing holding time is desirably 5 to 300 seconds. The rate of temperature rise to the annealing temperature and the cooling rate after annealing are not particularly limited, but it impairs the crystallographic coarsening while inhibiting reverse transformation to equiaxed austenite grains by sufficient recrystallization, and inhibits etching properties From the viewpoint of suppressing coarse Cr carbonitrides, the rate of temperature rise is preferably 15 to 50 ° C./sec, and the cooling rate is preferably 15 to 45 ° C./sec (from the holding temperature to 300 ° C.). .

供試材の鋼の化学組成を表1に示した。鋼AからGは、本発明の規定を満たす化学組成を有し、鋼HからNは、本発明範囲外の比較例である。表1の化学組成を有する小型鋳塊を溶製し、切削加工し、厚さ40mmの熱間圧延用素材とした。その後、厚さ4mmまで熱間圧延をし、1200℃で熱延後焼鈍した後、厚さ2mmまで冷間圧延を施した。その後、1150℃で焼鈍し、所定の板厚まで冷間圧延を施した。1150℃での焼鈍後に行った冷間圧延、つまり中間焼鈍前の冷間圧延の冷間圧延率は、表2に示す圧延率で最終冷間圧延をした際に、最終冷間圧延後の厚さが0.4mmとなるように逆算した。   Table 1 shows the chemical composition of the steel of the test material. Steels A to G have chemical compositions that satisfy the provisions of the present invention, and steels H to N are comparative examples outside the scope of the present invention. A small ingot having the chemical composition shown in Table 1 was melted and cut into a hot rolling material having a thickness of 40 mm. Then, after hot-rolling to thickness 4mm and annealing after hot-rolling at 1200 degreeC, it cold-rolled to thickness 2mm. Then, it annealed at 1150 degreeC and cold-rolled to predetermined plate | board thickness. The cold rolling rate of the cold rolling performed after annealing at 1150 ° C., that is, the cold rolling before intermediate annealing, is the thickness after the final cold rolling when the final cold rolling is performed at the rolling rates shown in Table 2. Was calculated so as to be 0.4 mm.

その後、表2に示す条件で中間焼鈍、最終冷間圧延、最終焼鈍を実施し、厚さ0.4mmの鋼板を得た。なお、中間焼鈍では、中間焼鈍温度まで10〜30℃/秒の昇温速度で昇温し、表2に記載の中間焼鈍温度で5〜300秒間保持した後、10〜20℃/秒の降温速度(保持温度から300℃まで)で降温した。また、最終焼鈍では、最終冷間圧延の後、最終焼鈍温度まで15〜30℃/秒の昇温速度で昇温し、表2に記載の最終焼鈍温度で5〜300秒間保持した後、15〜30℃/秒の降温速度(保持温度から300℃まで)で降温した。   Thereafter, intermediate annealing, final cold rolling, and final annealing were performed under the conditions shown in Table 2 to obtain a steel sheet having a thickness of 0.4 mm. In the intermediate annealing, the temperature is increased at a temperature increase rate of 10 to 30 ° C./second up to the intermediate annealing temperature, held at the intermediate annealing temperature shown in Table 2 for 5 to 300 seconds, and then the temperature decrease of 10 to 20 ° C./second. The temperature was lowered at a rate (from the holding temperature to 300 ° C.). Further, in the final annealing, after the final cold rolling, the temperature is increased to a final annealing temperature at a temperature rising rate of 15 to 30 ° C./second, and held at the final annealing temperature shown in Table 2 for 5 to 300 seconds. The temperature was decreased at a temperature decrease rate of -30 ° C / second (from the holding temperature to 300 ° C).

得られた鋼板の圧延方向垂直断面のミクロ組織写真を走査型電子顕微鏡で撮影し、平均結晶粒径、結晶粒の平均アスペクト比および未再結晶部の残存率を算出した。平均結晶粒径、結晶粒の平均アスペクト比は、いずれも各鋼板50個以上の粒の計測結果から算出した。未再結晶部の残存率は、撮影した写真に100点以上の格子点を書き、その格子点が結晶粒か未再結晶部かを確認した後、全格子点の数と未再結晶部の格子点の数の比率から算出した。   A microstructure photograph of the obtained steel sheet in the rolling direction was taken with a scanning electron microscope, and the average crystal grain size, the average aspect ratio of the crystal grains, and the residual ratio of the non-recrystallized portion were calculated. Both the average crystal grain size and the average aspect ratio of the crystal grains were calculated from the measurement results of 50 or more grains of each steel plate. The remaining ratio of the non-recrystallized portion is calculated by writing 100 or more lattice points on the photographed image and confirming whether the lattice point is a crystal grain or an unrecrystallized portion. It was calculated from the ratio of the number of grid points.

また、精密加工性を評価するために、本実施例では加工面の平均粗さを調査した。平均粗さは、塩化第二鉄溶液で板厚が半分になるまでエッチングした後に、接触式粗さ計を用いて測定した。圧延方向垂直方向と圧延方向平行方向にそれぞれ4mmずつの線粗さ(算術平均粗さ)を各方向3回ずつ測定し、6回の算術平均粗さの測定結果をさらに平均して代表値として評価した。平均粗さが0.10μm以下をメタルマスクとして問題ないレベルと判断した。結果を表2に示す。   Further, in order to evaluate the precision workability, in this example, the average roughness of the processed surface was investigated. The average roughness was measured using a contact-type roughness meter after etching until the plate thickness was reduced to half with a ferric chloride solution. Measure the line roughness (arithmetic average roughness) of 4 mm each in the direction perpendicular to the rolling direction and the direction parallel to the rolling direction three times in each direction, and further average the measurement results of the six arithmetic average roughnesses as representative values. evaluated. An average roughness of 0.10 μm or less was judged as a satisfactory level for a metal mask. The results are shown in Table 2.

Figure 0005920555
Figure 0005920555

Figure 0005920555
Figure 0005920555

表2の鋼板1〜12は、本発明例であり、精密加工面の平滑性に優れる。なお、最終冷間圧延終了後、最終焼鈍前の鋼板からサンプルを採取し、TEMにより組織観察を行ったところ、セル状のマルテンサイトに変態していることが確認できた。また、精密加工面の平滑性は、鋼板を塩化第二鉄溶液で板厚が半分になるまでエッチングした後に、接触式粗さ計を用いて測定したエッチング面の平均粗さを指標とした。   Steel plates 1 to 12 in Table 2 are examples of the present invention and are excellent in smoothness of precision processed surfaces. In addition, when the sample was extract | collected from the steel plate before final annealing after completion | finish of final cold rolling, and the structure | tissue observation was performed by TEM, it has confirmed that it transformed to the cellular martensite. In addition, the smoothness of the precision processed surface was determined by using the average roughness of the etched surface measured using a contact-type roughness meter after etching the steel plate with a ferric chloride solution until the plate thickness was reduced to half.

鋼板13〜25は、比較例であり、精密加工面の平滑性に劣る。以下、詳しく説明する。   The steel plates 13 to 25 are comparative examples, and are inferior in smoothness of precision processed surfaces. This will be described in detail below.

鋼板13は、中間焼鈍温度が高く、中間焼鈍でのNb炭窒化物の析出がないため、その最終圧延で生成するマルテンサイトが主としてラス状であり、最終焼鈍後の平均粒径は比較的微細なものの、未再結晶部が多く残存し、結晶粒の平均アスペクト比も大きい。   Since the steel plate 13 has a high intermediate annealing temperature and no precipitation of Nb carbonitride during the intermediate annealing, the martensite produced by the final rolling is mainly lath-shaped, and the average grain size after the final annealing is relatively fine. However, many unrecrystallized parts remain and the average aspect ratio of the crystal grains is large.

鋼板14は、最終冷間圧延率が不足しているため、生成するマルテンサイトが少なく、生成したマルテンサイトも主としてラス状であり、最終焼鈍後の結晶粒の平均アスペクト比が大きい。   Since the steel sheet 14 is insufficient in the final cold rolling rate, the generated martensite is small, the generated martensite is mainly lath-shaped, and the average aspect ratio of the crystal grains after the final annealing is large.

鋼板15は、最終焼鈍温度が高く、結晶粒が大きく成長しており、加工面の平滑性が悪い。   The steel plate 15 has a high final annealing temperature, large crystal grains have grown, and the smoothness of the processed surface is poor.

鋼板16は、最終焼鈍温度が低いため、再結晶粒は小さいものの、未再結晶部が多量に残存しており、加工面の平均粗さが大きい。   Since the steel plate 16 has a low final annealing temperature, recrystallized grains are small, but a large amount of unrecrystallized portions remain, and the average roughness of the processed surface is large.

鋼板17は、中間焼鈍温度が高く、中間焼鈍でのNb炭窒化物の析出がないため、その後の最終圧延で生成するマルテンサイトが主としてラス状であり、最終焼鈍後の平均粒径は、比較的微細であるものの、未再結晶部が多く残存し、結晶粒の平均アスペクト比も大きい。   Since the steel plate 17 has a high intermediate annealing temperature and there is no precipitation of Nb carbonitride during the intermediate annealing, the martensite produced in the subsequent final rolling is mainly lath-shaped, and the average grain size after the final annealing is compared. However, many unrecrystallized portions remain and the average aspect ratio of the crystal grains is large.

鋼板18は、中間焼鈍温度は本発明の規定を満たすが、最終焼鈍温度が低いため、最終冷間圧延で生成したマルテンサイトのオーステナイトへの逆変態が不十分であり、通常の方法では結晶粒径などを算出できない。また、本鋼板の組織は、多量のマルテンサイトと未再結晶オーステナイトから構成されるため、精密加工面の粗さが極めて大きい。   The steel plate 18 has an intermediate annealing temperature that satisfies the provisions of the present invention, but because the final annealing temperature is low, the reverse transformation of martensite generated in the final cold rolling into austenite is insufficient, and in the usual method, crystal grains The diameter cannot be calculated. Moreover, since the structure of this steel plate is composed of a large amount of martensite and non-recrystallized austenite, the roughness of the precision machined surface is extremely large.

鋼板19から25は、化学組成が本発明の範囲外であり、平均結晶粒径、未再結晶部残存率、結晶粒の平均アスペクト比の少なくとも一つが本発明で規定される範囲を外れる比較例である。   Steel plates 19 to 25 are comparative examples in which the chemical composition is outside the range of the present invention, and at least one of the average crystal grain size, the remaining ratio of non-recrystallized portion, and the average aspect ratio of the crystal grains is outside the range defined by the present invention. It is.

鋼板19、20はNb量が低く、低温での中間焼鈍でもオーステナイト安定度の調整ができない。   The steel plates 19 and 20 have a low Nb amount, and the austenite stability cannot be adjusted even by intermediate annealing at a low temperature.

鋼板21は、Ni量、C+N量が高く、オーステナイト安定度が極めて高く、最終冷間圧延でセル状のマルテンサイトが生成しない。   The steel sheet 21 has a high Ni content and a high C + N content and an extremely high austenite stability, and no cellular martensite is generated in the final cold rolling.

鋼板22は、Cuが少なく、オーステナイト安定度が低いため、最終焼鈍後に多量のマルテンサイトが残存し、結晶粒径などが算出できない。また、加工後の粗さも大きい。   Since the steel plate 22 has little Cu and low austenite stability, a large amount of martensite remains after the final annealing, and the crystal grain size and the like cannot be calculated. Moreover, the roughness after processing is also large.

鋼板23は、多量のCuを含有しており、最終冷間圧延でセル状のマルテンサイトが生成されない。   The steel plate 23 contains a large amount of Cu, and cellular martensite is not generated in the final cold rolling.

鋼板24は、Nbが多量に含有しており、最終焼鈍後も未再結晶部が多量に残存してしまう。   The steel plate 24 contains a large amount of Nb, and a large amount of unrecrystallized portions remain after the final annealing.

鋼板25は、Mn、Ni量が多く、オーステナイト安定度が極めて高く、最終冷間圧延でもセル状のマルテンサイトが生成しない。   The steel plate 25 has a large amount of Mn and Ni, has a very high austenite stability, and no cellular martensite is generated even in the final cold rolling.

本発明によれば、細粒で、等軸粒なオーステナイト系ステンレス鋼板を得ることができる。このような、オーステナイト系ステンレス鋼板は、エッチング加工面の平滑性に優れているので、エッチング、レーザー加工などの精密加工に適している。本発明はまた、上記のオーステナイト鋼を工業的に安定して製造することができる。   According to the present invention, it is possible to obtain an austenitic stainless steel plate that is fine and equiaxed. Such an austenitic stainless steel plate is excellent in the smoothness of the etched surface, and is therefore suitable for precision processing such as etching and laser processing. The present invention can also produce the austenitic steel described above industrially stably.

Claims (2)

質量%で、
C+N:0.03〜0.20%、
Si:0.1〜1.5%、
Mn:0.10〜1.5%、
Cr:15.0〜22.0%、
Ni:4.5〜10.0%、
Cu:0.10〜2.0%、
Mo:0.1〜2.0%、
Nb:0.02〜0.50%、
残部がFeおよび不純物であり、
平均結晶粒径が5.0μm以下、
未再結晶部残存率が3.0%以下、
結晶粒の平均スペクト比が1.2以下である、
オーステナイト系ステンレス鋼板。
% By mass
C + N: 0.03 to 0.20%,
Si: 0.1 to 1.5%,
Mn: 0.10 to 1.5%,
Cr: 15.0-22.0%,
Ni: 4.5 to 10.0%,
Cu: 0.10 to 2.0%,
Mo: 0.1 to 2.0%,
Nb: 0.02 to 0.50%,
The balance is Fe and impurities,
The average crystal grain size is 5.0 μm or less,
Unrecrystallized portion remaining rate is 3.0% or less,
The average spectral ratio of the crystal grains is 1.2 or less,
Austenitic stainless steel sheet.
請求項1に記載のオーステナイト系ステンレス鋼板の製造方法であって、
母材に熱間圧延、焼鈍、冷間圧延を行った後、
処理温度が1000℃未満の中間焼鈍、総板厚減少率が50%以上の最終冷間圧延、処理温度が700℃を超え950℃以下の温度域で行う最終焼鈍を順に行う、
オーステナイト系ステンレス鋼板の製造方法。
It is a manufacturing method of the austenitic stainless steel sheet according to claim 1,
After hot rolling, annealing, cold rolling on the base material,
An intermediate annealing at a processing temperature of less than 1000 ° C., a final cold rolling with a total sheet thickness reduction rate of 50% or more, and a final annealing to be performed in a temperature range of 700 ° C. or more and 950 ° C. or less in order.
Manufacturing method of austenitic stainless steel sheet.
JP2016501697A 2014-09-25 2015-09-25 Austenitic stainless steel sheet and manufacturing method thereof Active JP5920555B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014195487 2014-09-25
JP2014195487 2014-09-25
PCT/JP2015/077053 WO2016047734A1 (en) 2014-09-25 2015-09-25 Austenitic stainless steel sheet and method for producing same

Publications (2)

Publication Number Publication Date
JP5920555B1 true JP5920555B1 (en) 2016-05-18
JPWO2016047734A1 JPWO2016047734A1 (en) 2017-04-27

Family

ID=55581251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016501697A Active JP5920555B1 (en) 2014-09-25 2015-09-25 Austenitic stainless steel sheet and manufacturing method thereof

Country Status (5)

Country Link
JP (1) JP5920555B1 (en)
KR (1) KR101952054B1 (en)
CN (1) CN107075632B (en)
SG (1) SG11201702136YA (en)
WO (1) WO2016047734A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020007597A (en) * 2018-07-05 2020-01-16 日本製鉄株式会社 Manufacturing method of austenitic stainless steel sheet
US20220372602A1 (en) * 2019-10-17 2022-11-24 Nippon Steel Corporation Austenitic stainless steel sheet

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019151901A (en) * 2018-03-05 2019-09-12 日鉄日新製鋼株式会社 Stainless steel
JP7067998B2 (en) * 2018-03-28 2022-05-16 日鉄ステンレス株式会社 Stainless steel
JP7165202B2 (en) * 2018-10-04 2022-11-02 日本製鉄株式会社 Austenitic stainless steel sheet and manufacturing method thereof
CN110306013A (en) * 2019-05-14 2019-10-08 江苏绿叶锅炉有限公司 A kind of 300 series austenitic stainless steels solid solution and stabilized heat treatment process
CN110819893A (en) * 2019-10-18 2020-02-21 甘肃酒钢集团宏兴钢铁股份有限公司 Austenitic stainless steel for electronic products and preparation method thereof
JP7466378B2 (en) 2020-05-28 2024-04-12 日鉄ステンレス株式会社 Austenitic stainless steel sheet and method for producing same
KR102448735B1 (en) * 2020-09-03 2022-09-30 주식회사 포스코 Austenitic stainless steel and manufacturing method thereof
KR20220169655A (en) * 2021-06-21 2022-12-28 주식회사 포스코 Austenitic stainless steel and manufacturing nmethod thereof
KR20230007619A (en) * 2021-07-06 2023-01-13 주식회사 포스코 Austenitic stainless steel and manufacturing nmethod thereof
KR20240119113A (en) * 2022-02-10 2024-08-06 닛테츠 스테인레스 가부시키가이샤 Austenitic stainless steel and method for manufacturing austenitic stainless steel
CN118541502A (en) * 2022-02-10 2024-08-23 日铁不锈钢株式会社 Austenitic stainless steel and method for producing austenitic stainless steel
CN116622948B (en) * 2023-05-16 2024-01-12 广东海洋大学 Stainless steel with equiaxial austenite-deformed austenite lamellar interphase heterostructure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214841A (en) * 1990-12-14 1992-08-05 Nisshin Steel Co Ltd Stainless steel for engine gasket excellent in formability and its manufacture
JPH05279736A (en) * 1992-03-30 1993-10-26 Nisshin Steel Co Ltd Manufacture of high strength stainless steel for spring excellent in stress corrosion cracking resistance
JPH10121207A (en) * 1996-10-14 1998-05-12 Nisshin Steel Co Ltd Austenitic stainless steel excellent in workability after punching
JPH10130734A (en) * 1996-09-06 1998-05-19 Sumitomo Metal Ind Ltd Production of austenitic stainless steel sheet for roll forming
WO2000014292A1 (en) * 1998-09-04 2000-03-16 Sumitomo Metal Industries, Ltd. Stainless steel for engine gasket and production method therefor
WO2012118113A1 (en) * 2011-03-01 2012-09-07 住友金属工業株式会社 Metal plate for laser processing and method for producing stainless steel plate for laser processing
WO2014030607A1 (en) * 2012-08-20 2014-02-27 新日鐵住金株式会社 Stainless steel sheet and method for producing same
WO2014038510A1 (en) * 2012-09-04 2014-03-13 新日鐵住金株式会社 Stainless steel sheet and method for producing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2754225B2 (en) 1988-12-26 1998-05-20 日鉱金属株式会社 Method for producing austenitic stainless steel with poor etchability
JPH05195054A (en) * 1991-12-10 1993-08-03 Nisshin Steel Co Ltd Production of high strength stainless steel material for structural use excellent in workability
JP3562492B2 (en) * 2001-06-22 2004-09-08 住友金属工業株式会社 Stainless steel plate for photoetching and method of manufacturing the same
JP4324509B2 (en) 2004-05-10 2009-09-02 日本冶金工業株式会社 Stainless steel sheet for photo-etching and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214841A (en) * 1990-12-14 1992-08-05 Nisshin Steel Co Ltd Stainless steel for engine gasket excellent in formability and its manufacture
JPH05279736A (en) * 1992-03-30 1993-10-26 Nisshin Steel Co Ltd Manufacture of high strength stainless steel for spring excellent in stress corrosion cracking resistance
JPH10130734A (en) * 1996-09-06 1998-05-19 Sumitomo Metal Ind Ltd Production of austenitic stainless steel sheet for roll forming
JPH10121207A (en) * 1996-10-14 1998-05-12 Nisshin Steel Co Ltd Austenitic stainless steel excellent in workability after punching
WO2000014292A1 (en) * 1998-09-04 2000-03-16 Sumitomo Metal Industries, Ltd. Stainless steel for engine gasket and production method therefor
WO2012118113A1 (en) * 2011-03-01 2012-09-07 住友金属工業株式会社 Metal plate for laser processing and method for producing stainless steel plate for laser processing
WO2014030607A1 (en) * 2012-08-20 2014-02-27 新日鐵住金株式会社 Stainless steel sheet and method for producing same
WO2014038510A1 (en) * 2012-09-04 2014-03-13 新日鐵住金株式会社 Stainless steel sheet and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020007597A (en) * 2018-07-05 2020-01-16 日本製鉄株式会社 Manufacturing method of austenitic stainless steel sheet
JP7031515B2 (en) 2018-07-05 2022-03-08 日本製鉄株式会社 Manufacturing method of austenitic stainless steel sheet
US20220372602A1 (en) * 2019-10-17 2022-11-24 Nippon Steel Corporation Austenitic stainless steel sheet

Also Published As

Publication number Publication date
JPWO2016047734A1 (en) 2017-04-27
CN107075632A (en) 2017-08-18
KR20170057412A (en) 2017-05-24
WO2016047734A1 (en) 2016-03-31
KR101952054B1 (en) 2019-02-25
SG11201702136YA (en) 2017-04-27
CN107075632B (en) 2019-07-23

Similar Documents

Publication Publication Date Title
JP5920555B1 (en) Austenitic stainless steel sheet and manufacturing method thereof
DK2591134T3 (en) Austenitic-ferritic stainless steel with improved machinability
JP5349015B2 (en) Method for producing Ni-saving austenitic stainless hot-rolled steel sheet, slab and hot-rolled steel sheet
KR101828199B1 (en) Abrasion-resistant steel plate and method for manufacturing the same
JP5156293B2 (en) Ferritic / austenitic stainless steel with excellent corrosion resistance and workability and manufacturing method thereof
JP2012140690A (en) Method of manufacturing two-phase stainless steel excellent in toughness and corrosion resistance
JP2009293063A (en) METHOD FOR MANUFACTURING HIGH-Cr HEAT-RESISTANT FERRITIC STEEL MATERIAL
US11339460B2 (en) Ferritic stainless steel having excellent high-temperature oxidation resistance, and manufacturing method therefor
JP2019537667A (en) Steel for pressure vessel excellent in resistance to hydrogen-induced cracking and method for producing the same
JP2020509175A (en) Low alloy steel sheet with excellent strength and softness
JP6520546B2 (en) Austenitic heat-resistant alloy member and method of manufacturing the same
JP6142837B2 (en) Stainless steel with a structure consisting of two phases: ferrite phase and martensite phase
JP6093063B1 (en) High-strength stainless steel material excellent in workability and its manufacturing method
JP5453747B2 (en) Stainless cold-rolled steel sheet excellent in punching processability and manufacturing method thereof
JP2015212412A (en) Hot rolled wire
JP5675139B2 (en) Method for producing duplex stainless steel material with excellent corrosion resistance
CN111479944A (en) Ferrite-based stainless steel having excellent impact toughness and method for producing the same
KR101279051B1 (en) Ferritic stainless steel and method for manufacturing the same
JP5233428B2 (en) Ferritic stainless steel sheet excellent in deep drawability and method for producing the same
JP5282456B2 (en) A material for stainless cold-rolled steel sheet capable of suppressing the occurrence of roping and ear cracking and its manufacturing method
JP2006118021A (en) Low alloy steel and manufacturing method therefor
JP2007239035A (en) Cold rolled steel sheet with excellent strain aging resistance, excellent surface roughing resistance and small in-plane anisotropy, and its manufacturing method
JP2007270168A (en) Method for producing chromium-containing ferritic steel sheet
JP2007302977A (en) Method for manufacturing high-strength steel of tensile strength of 570 mpa class having excellent toughness of weld heat affected zone
JP2013053366A (en) Ferritic stainless steel sheet excellent in ridging resistance and method for producing the same

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160328

R151 Written notification of patent or utility model registration

Ref document number: 5920555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250